Merge pull request #13552 from hryx/comparus-tautologicus

Sema: elide integer comparisons with guaranteed outcomes
This commit is contained in:
Veikka Tuominen 2022-12-18 01:57:49 +02:00 committed by GitHub
commit 901c3e9636
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 267 additions and 14 deletions

View File

@ -1437,6 +1437,19 @@ pub const CompareOperator = enum {
gt,
/// Not equal (`!=`)
neq,
/// Reverse the direction of the comparison.
/// Use when swapping the left and right hand operands.
pub fn reverse(op: CompareOperator) CompareOperator {
return switch (op) {
.lt => .gt,
.lte => .gte,
.gt => .lt,
.gte => .lte,
.eq => .eq,
.neq => .neq,
};
}
};
/// This function does the same thing as comparison operators, however the
@ -1496,6 +1509,15 @@ test "order.compare" {
try testing.expect(order(1, 0).compare(.neq));
}
test "compare.reverse" {
inline for (@typeInfo(CompareOperator).Enum.fields) |op_field| {
const op = @intToEnum(CompareOperator, op_field.value);
try testing.expect(compare(2, op, 3) == compare(3, op.reverse(), 2));
try testing.expect(compare(3, op, 3) == compare(3, op.reverse(), 3));
try testing.expect(compare(4, op, 3) == compare(3, op.reverse(), 4));
}
}
/// Returns a mask of all ones if value is true,
/// and a mask of all zeroes if value is false.
/// Compiles to one instruction for register sized integers.

View File

@ -28497,6 +28497,19 @@ fn cmpNumeric(
const runtime_src: LazySrcLoc = src: {
if (try sema.resolveMaybeUndefVal(lhs)) |lhs_val| {
if (try sema.resolveMaybeUndefVal(rhs)) |rhs_val| {
// Compare ints: const vs. undefined (or vice versa)
if (!lhs_val.isUndef() and (lhs_ty.isInt() or lhs_ty_tag == .ComptimeInt) and rhs_ty.isInt() and rhs_val.isUndef()) {
try sema.resolveLazyValue(lhs_val);
if (sema.compareIntsOnlyPossibleResult(target, lhs_val, op, rhs_ty)) |res| {
return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false;
}
} else if (!rhs_val.isUndef() and (rhs_ty.isInt() or rhs_ty_tag == .ComptimeInt) and lhs_ty.isInt() and lhs_val.isUndef()) {
try sema.resolveLazyValue(rhs_val);
if (sema.compareIntsOnlyPossibleResult(target, rhs_val, op.reverse(), lhs_ty)) |res| {
return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false;
}
}
if (lhs_val.isUndef() or rhs_val.isUndef()) {
return sema.addConstUndef(Type.bool);
}
@ -28513,9 +28526,25 @@ fn cmpNumeric(
return Air.Inst.Ref.bool_false;
}
} else {
if (!lhs_val.isUndef() and (lhs_ty.isInt() or lhs_ty_tag == .ComptimeInt) and rhs_ty.isInt()) {
// Compare ints: const vs. var
try sema.resolveLazyValue(lhs_val);
if (sema.compareIntsOnlyPossibleResult(target, lhs_val, op, rhs_ty)) |res| {
return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false;
}
}
break :src rhs_src;
}
} else {
if (try sema.resolveMaybeUndefVal(rhs)) |rhs_val| {
if (!rhs_val.isUndef() and (rhs_ty.isInt() or rhs_ty_tag == .ComptimeInt) and lhs_ty.isInt()) {
// Compare ints: var vs. const
try sema.resolveLazyValue(rhs_val);
if (sema.compareIntsOnlyPossibleResult(target, rhs_val, op.reverse(), lhs_ty)) |res| {
return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false;
}
}
}
break :src lhs_src;
}
};
@ -28704,6 +28733,107 @@ fn cmpNumeric(
return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .Optimized), casted_lhs, casted_rhs);
}
/// Asserts that LHS value is an int or comptime int and not undefined, and that RHS type is an int.
/// Given a const LHS and an unknown RHS, attempt to determine whether `op` has a guaranteed result.
/// If it cannot be determined, returns null.
/// Otherwise returns a bool for the guaranteed comparison operation.
fn compareIntsOnlyPossibleResult(sema: *Sema, target: std.Target, lhs_val: Value, op: std.math.CompareOperator, rhs_ty: Type) ?bool {
const rhs_info = rhs_ty.intInfo(target);
const vs_zero = lhs_val.orderAgainstZeroAdvanced(sema) catch unreachable;
const is_zero = vs_zero == .eq;
const is_negative = vs_zero == .lt;
const is_positive = vs_zero == .gt;
// Anything vs. zero-sized type has guaranteed outcome.
if (rhs_info.bits == 0) return switch (op) {
.eq, .lte, .gte => is_zero,
.neq, .lt, .gt => !is_zero,
};
// Special case for i1, which can only be 0 or -1.
// Zero and positive ints have guaranteed outcome.
if (rhs_info.bits == 1 and rhs_info.signedness == .signed) {
if (is_positive) return switch (op) {
.gt, .gte, .neq => true,
.lt, .lte, .eq => false,
};
if (is_zero) return switch (op) {
.gte => true,
.lt => false,
.gt, .lte, .eq, .neq => null,
};
}
// Negative vs. unsigned has guaranteed outcome.
if (rhs_info.signedness == .unsigned and is_negative) return switch (op) {
.eq, .gt, .gte => false,
.neq, .lt, .lte => true,
};
const sign_adj = @boolToInt(!is_negative and rhs_info.signedness == .signed);
const req_bits = lhs_val.intBitCountTwosComp(target) + sign_adj;
// No sized type can have more than 65535 bits.
// The RHS type operand is either a runtime value or sized (but undefined) constant.
if (req_bits > 65535) return switch (op) {
.lt, .lte => is_negative,
.gt, .gte => is_positive,
.eq => false,
.neq => true,
};
const fits = req_bits <= rhs_info.bits;
// Oversized int has guaranteed outcome.
switch (op) {
.eq => return if (!fits) false else null,
.neq => return if (!fits) true else null,
.lt, .lte => if (!fits) return is_negative,
.gt, .gte => if (!fits) return !is_negative,
}
// For any other comparison, we need to know if the LHS value is
// equal to the maximum or minimum possible value of the RHS type.
const edge: struct { min: bool, max: bool } = edge: {
if (is_zero and rhs_info.signedness == .unsigned) break :edge .{
.min = true,
.max = false,
};
if (req_bits != rhs_info.bits) break :edge .{
.min = false,
.max = false,
};
var ty_buffer: Type.Payload.Bits = .{
.base = .{ .tag = if (is_negative) .int_signed else .int_unsigned },
.data = @intCast(u16, req_bits),
};
const ty = Type.initPayload(&ty_buffer.base);
const pop_count = lhs_val.popCount(ty, target);
if (is_negative) {
break :edge .{
.min = pop_count == 1,
.max = false,
};
} else {
break :edge .{
.min = false,
.max = pop_count == req_bits - sign_adj,
};
}
};
assert(fits);
return switch (op) {
.lt => if (edge.max) false else null,
.lte => if (edge.min) true else null,
.gt => if (edge.min) false else null,
.gte => if (edge.max) true else null,
.eq, .neq => unreachable,
};
}
/// Asserts that lhs and rhs types are both vectors.
fn cmpVector(
sema: *Sema,

View File

@ -1723,7 +1723,8 @@ pub const TestContext = struct {
(case_msg.src.column == std.math.maxInt(u32) or
actual_msg.column == case_msg.src.column) and
std.mem.eql(u8, expected_msg, actual_msg.msg) and
case_msg.src.kind == .note)
case_msg.src.kind == .note and
actual_msg.count == case_msg.src.count)
{
handled_errors[i] = true;
break;
@ -1733,7 +1734,8 @@ pub const TestContext = struct {
if (ex_tag != .plain) continue;
if (std.mem.eql(u8, case_msg.plain.msg, plain.msg) and
case_msg.plain.kind == .note)
case_msg.plain.kind == .note and
case_msg.plain.count == plain.count)
{
handled_errors[i] = true;
break;

View File

@ -1756,17 +1756,8 @@ pub const Value = extern union {
const info = ty.intInfo(target);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, target);
var limbs_buffer: [4]std.math.big.Limb = undefined;
var result_bigint = BigIntMutable{
.limbs = &limbs_buffer,
.positive = undefined,
.len = undefined,
};
result_bigint.popCount(operand_bigint, info.bits);
return result_bigint.toConst().to(u64) catch unreachable;
const int = val.toBigInt(&buffer, target);
return @intCast(u64, int.popCount(info.bits));
},
}
}

View File

@ -160,7 +160,7 @@ test {
_ = @import("behavior/incomplete_struct_param_tld.zig");
_ = @import("behavior/inline_switch.zig");
_ = @import("behavior/int128.zig");
_ = @import("behavior/int_div.zig");
_ = @import("behavior/int_comparison_elision.zig");
_ = @import("behavior/inttoptr.zig");
_ = @import("behavior/ir_block_deps.zig");
_ = @import("behavior/lower_strlit_to_vector.zig");

View File

@ -0,0 +1,108 @@
const std = @import("std");
const minInt = std.math.minInt;
const maxInt = std.math.maxInt;
const builtin = @import("builtin");
test "int comparison elision" {
testIntEdges(u0);
testIntEdges(i0);
testIntEdges(u1);
testIntEdges(i1);
testIntEdges(u4);
testIntEdges(i4);
// TODO: support int types > 128 bits wide in other backends
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
// TODO: panic: integer overflow with int types > 65528 bits wide
// TODO: LLVM generates too many parameters for wasmtime when splitting up int > 64000 bits wide
testIntEdges(u64000);
testIntEdges(i64000);
}
// All comparisons in this test have a guaranteed result,
// so one branch of each 'if' should never be analyzed.
fn testIntEdges(comptime T: type) void {
const min = minInt(T);
const max = maxInt(T);
var runtime_val: T = undefined;
if (min > runtime_val) @compileError("analyzed impossible branch");
if (min <= runtime_val) {} else @compileError("analyzed impossible branch");
if (runtime_val < min) @compileError("analyzed impossible branch");
if (runtime_val >= min) {} else @compileError("analyzed impossible branch");
if (min - 1 > runtime_val) @compileError("analyzed impossible branch");
if (min - 1 >= runtime_val) @compileError("analyzed impossible branch");
if (min - 1 < runtime_val) {} else @compileError("analyzed impossible branch");
if (min - 1 <= runtime_val) {} else @compileError("analyzed impossible branch");
if (min - 1 == runtime_val) @compileError("analyzed impossible branch");
if (min - 1 != runtime_val) {} else @compileError("analyzed impossible branch");
if (runtime_val < min - 1) @compileError("analyzed impossible branch");
if (runtime_val <= min - 1) @compileError("analyzed impossible branch");
if (runtime_val > min - 1) {} else @compileError("analyzed impossible branch");
if (runtime_val >= min - 1) {} else @compileError("analyzed impossible branch");
if (runtime_val == min - 1) @compileError("analyzed impossible branch");
if (runtime_val != min - 1) {} else @compileError("analyzed impossible branch");
if (max >= runtime_val) {} else @compileError("analyzed impossible branch");
if (max < runtime_val) @compileError("analyzed impossible branch");
if (runtime_val <= max) {} else @compileError("analyzed impossible branch");
if (runtime_val > max) @compileError("analyzed impossible branch");
if (max + 1 > runtime_val) {} else @compileError("analyzed impossible branch");
if (max + 1 >= runtime_val) {} else @compileError("analyzed impossible branch");
if (max + 1 < runtime_val) @compileError("analyzed impossible branch");
if (max + 1 <= runtime_val) @compileError("analyzed impossible branch");
if (max + 1 == runtime_val) @compileError("analyzed impossible branch");
if (max + 1 != runtime_val) {} else @compileError("analyzed impossible branch");
if (runtime_val < max + 1) {} else @compileError("analyzed impossible branch");
if (runtime_val <= max + 1) {} else @compileError("analyzed impossible branch");
if (runtime_val > max + 1) @compileError("analyzed impossible branch");
if (runtime_val >= max + 1) @compileError("analyzed impossible branch");
if (runtime_val == max + 1) @compileError("analyzed impossible branch");
if (runtime_val != max + 1) {} else @compileError("analyzed impossible branch");
const undef_const: T = undefined;
if (min > undef_const) @compileError("analyzed impossible branch");
if (min <= undef_const) {} else @compileError("analyzed impossible branch");
if (undef_const < min) @compileError("analyzed impossible branch");
if (undef_const >= min) {} else @compileError("analyzed impossible branch");
if (min - 1 > undef_const) @compileError("analyzed impossible branch");
if (min - 1 >= undef_const) @compileError("analyzed impossible branch");
if (min - 1 < undef_const) {} else @compileError("analyzed impossible branch");
if (min - 1 <= undef_const) {} else @compileError("analyzed impossible branch");
if (min - 1 == undef_const) @compileError("analyzed impossible branch");
if (min - 1 != undef_const) {} else @compileError("analyzed impossible branch");
if (undef_const < min - 1) @compileError("analyzed impossible branch");
if (undef_const <= min - 1) @compileError("analyzed impossible branch");
if (undef_const > min - 1) {} else @compileError("analyzed impossible branch");
if (undef_const >= min - 1) {} else @compileError("analyzed impossible branch");
if (undef_const == min - 1) @compileError("analyzed impossible branch");
if (undef_const != min - 1) {} else @compileError("analyzed impossible branch");
if (max >= undef_const) {} else @compileError("analyzed impossible branch");
if (max < undef_const) @compileError("analyzed impossible branch");
if (undef_const <= max) {} else @compileError("analyzed impossible branch");
if (undef_const > max) @compileError("analyzed impossible branch");
if (max + 1 > undef_const) {} else @compileError("analyzed impossible branch");
if (max + 1 >= undef_const) {} else @compileError("analyzed impossible branch");
if (max + 1 < undef_const) @compileError("analyzed impossible branch");
if (max + 1 <= undef_const) @compileError("analyzed impossible branch");
if (max + 1 == undef_const) @compileError("analyzed impossible branch");
if (max + 1 != undef_const) {} else @compileError("analyzed impossible branch");
if (undef_const < max + 1) {} else @compileError("analyzed impossible branch");
if (undef_const <= max + 1) {} else @compileError("analyzed impossible branch");
if (undef_const > max + 1) @compileError("analyzed impossible branch");
if (undef_const >= max + 1) @compileError("analyzed impossible branch");
if (undef_const == max + 1) @compileError("analyzed impossible branch");
if (undef_const != max + 1) {} else @compileError("analyzed impossible branch");
}