The new builtins are:
* `@EnumLiteral`
* `@Int`
* `@Fn`
* `@Pointer`
* `@Tuple`
* `@Enum`
* `@Union`
* `@Struct`
Their usage is documented in the language reference.
There is no `@Array` because arrays can be created like this:
if (sentinel) |s| [n:s]T else [n]T
There is also no `@Float`. Instead, `std.meta.Float` can serve this use
case if necessary.
There is no `@ErrorSet` and intentionally no way to achieve this.
Likewise, there is intentionally no way to reify tuples with comptime
fields, or function types with comptime parameters. These decisions
simplify the Zig language specification, and moreover make Zig code more
readable by discouraging overly complex metaprogramming.
Co-authored-by: Ali Cheraghi <alichraghi@proton.me>
Resolves: #10710
The changes to `codegen.c` are blatant hacks, but the problem they work
around isn't a regression: it's an existing miscompilation. This branch
happened to *expose* that miscompilation in more cases by changing how
an incorrect result is *used*.
I started this diff trying to remove a little dead code from the C
backend, but ended up finding a bunch of dead code sprinkled all over
the place:
* `packed` handling in the C backend which was made dead by `Legalize`
* Representation of pointers to runtime-known vector indices
* Handling for the `vector_store_elem` AIR instruction (now removed)
* Old tuple handling from when they used the InternPool repr of structs
* Straightforward unused functions
* TODOs in the LLVM backend for features which Zig just does not support
The "completed" count in the "Semantic Analysis" progress node had
regressed since 0.14.0: the number got crazy big very fast, even on
simple cases. For instance, an empty `pub fn main` got to ~59,000 where
on 0.14 it only reached ~4,000. This was happening because I was
unintentionally introducing a node every time type resolution was
*requested*, even if (as is usually the case) it turned out to already
be done. The fix is simply to start the progress node a little later,
once we know we are actually doing semantic analysis. This brings the
number for that empty test case down to ~5,000, which makes perfect
sense. It won't exactly match 0.14, because the standard library has
changed, and also because the compiler's progress output does have some
*intentional* changes.
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.
The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.
When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.
When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.
In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.
If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.
To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.
If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.
Implementation notes:
* The `lib/build-web/` directory holds the client side of the web UI.
* The general server logic is in `std.Build.WebServer`.
* Fuzzing-specific logic is in `std.Build.Fuzz`.
* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
relates to the build system web UI in general.
* The build runner now has an **actual** general-purpose allocator,
because thanks to `--watch` and `--webui`, the process can be
arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
arena remains backed by `std.heap.page_allocator` for efficiency. I
fixed several crashes caused by conflation of `gpa` and `arena` in the
build runner and `std.Build`, but there may still be some I have
missed.
* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
*lot* of threads involved. I anticipate this situation improving
significantly once the `std.Io` interface (with concurrency support)
is introduced.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
In a compiler built with debug extensions, pass `--debug-incremental` to
spawn the "incremental debug server". This is a TCP server exposing a
REPL which allows querying a bunch of compiler state, some of which is
stored only when that flag is passed. Eventually, this will probably
move into `std.zig.Server`/`std.zig.Client`, but this is easier to work
with right now. The easiest way to interact with the server is `telnet`.
* When storing a zero-bit type, we should short-circuit almost
immediately. Zero-bit stores do not need to do any work.
* The bit size computation for arrays is incorrect; the `abiSize` will
already be appropriately aligned, but the logic to do so here
incorrectly assumes that zero-bit types have an alignment of 0. They
don't; their alignment is 1.
Resolves: #21202Resolves: #21508Resolves: #23307
This commits adds the following distinct integer types to std.zig.Ast:
- OptionalTokenIndex
- TokenOffset
- OptionalTokenOffset
- Node.OptionalIndex
- Node.Offset
- Node.OptionalOffset
The `Node.Index` type has also been converted to a distinct type while
`TokenIndex` remains unchanged.
`Ast.Node.Data` has also been changed to a (untagged) union to provide
safety checks.