* do not add linkage scope to aliased exported symbols - this is
not respected on macOS
* special-case `MachO.openPath` in `link.File.openPath` as on macOS
we always link with zld
* redirect to `MachO.flushObject` when linking relocatable objects
in MachO linker whereas move the entire linking logic into
`MachO.flushModule`
* Sema: fix returned operands not coercing to the function return type
in some cases.
- When returning an error or an error union from a function with an
inferred error set, it will now populate the inferred error set.
- Implement error set coercion for the common case of inferred error
set to inferred error set, without forcing a full resolution.
* LLVM backend: update instruction lowering that handles error unions
to respect `isByRef`.
- Also implement `wrap_err_union_err`.
* Relax compile error for "unable to export type foo" to allow
integers, structs, arrays, and floats. This will need to be further
improved to do the same checks as we do for C ABI struct field types.
* LLVM backend: fix extern variables
* LLVM backend: implement AIR instruction `wrap_err_union_payload`
* Sema: implement peer type resolution for optionals and null.
* Rename `Module.optionalType` to `Type.optional`.
* LLVM backend: re-use anonymous values. This is especially useful when
isByRef()=true because it means re-using the same generated LLVM globals.
* LLVM backend: rework the implementation of is_null and is_non_null
AIR instructions. Generate slightly better LLVM code, and also fix
the behavior for optionals whose payload type is 0-bit.
* LLVM backend: improve `cmp` AIR instruction lowering to support
pointer-like optionals.
* `Value`: implement support for equality-checking optionals.
* LLVM backend: The `alloc` AIR instruction as well as pointer
constants which point to a 0-bit element type now call a common
codepath to produce a `*const llvm.Value` which is a non-zero pointer
with a bogus-but-properly-aligned address.
* LLVM backend: improve the lowering of optional types.
* Type: `hasCodeGenBits()` now returns `true` for pointers even when
it returns `false` for their element types.
Effectively, #6706 is now implemented in stage2 but not stage1.
* std.os: take advantage of `@minimum`. It's probably time to
deprecate `std.min` and `std.max`.
* New AIR instructions: min and max
* Introduce SIMD vector support to stage2
* Add `@Type` support for vectors
* Sema: add `checkSimdBinOp` which can be re-used for other arithmatic
operators that want to support vectors.
* Implement coercion from vectors to arrays.
- In backends this is handled with bitcast for vector to array,
however maybe we want to reduce the amount of branching by
introducing an explicit AIR instruction for it in the future.
* LLVM backend: implement lowering vector types
* Sema: Implement `slice.ptr` at comptime
* Value: improve `numberMin` and `numberMax` to support floats in
addition to integers, and make them behave properly in the presence
of NaN.
* `Module.Union.getFullyQualifiedName` returns a sentinel-terminated
slice so that backends that need null-termination do not need an
additional copy.
* Module.Union: implement a `getLayout` function which returns
information about ABI size and alignment so that the LLVM backend can
properly lower union types into llvm types.
* Sema: `resolveType` now returns `error.GenericPoison` rather than a
Type with tag `generic_poison`. Callsites that want to allow that
need to bypass this higher-level function.
* Sema: implement coercion of enums and enum literals to unions.
* Sema: fix comptime mutation of pointers to unions
* LLVM backend: fully implement proper lowering of union types and
values according to the union layout, and update the handling of AIR
instructions that deal with unions to support union layouts.
* LLVM backend: handle `decl_ref_mut`
- Maybe this should be unreachable since comptime vars should be
changed to be non-mutable when they go out of scope, but it's
harmless for the LLVM backend to support lowering the value.
* Type: fix `requiresComptime` for optionals, pointers, and some other
types. This function is still wrong for structs, unions, and enums.
* Make `alloc` AIR instructions call `resolveTypeLayout`.
* `Sema.zirResolveInferredAlloc` now calls `requireRuntimeBlock` in the
case that it operates on a non-comptime instruction.
* `Type.abiSize` and `Type.abiAlignment` now return 0 for `void`
* Sema: implement `resolveTypeFields` for unions.
* LLVM Backend: support `ptr_elem_ptr` when the element type is 0-bit.
* Type: improve `abiAlignment` implementation for structs to properly
handle fields with non-default alignment.
* Value: implement hashing array, vector, and structs.
The logic for `buildAlloca` had a null deref when the latest alloca was
the last instruction in the entry block. Now the logic is simplified to
always insert alloca instructions first before all other instructions.
There is no longer a need to track `entry_block` or `latest_alloca_inst`;
these fields are deleted frem `FuncGen`.
* ZIR: the `array_type_sentinel` now has a source node attached to it
for proper error reporting.
* Refactor: move `Module.arrayType` to `Type.array`
* Value: the `bytes` and `array` tags now include the sentinel, if the
type has one. This simplifies comptime evaluation logic.
* Sema: fix `zirStructInitEmpty` to properly handle when the type is
void or a sentinel-terminated array. This handles the syntax `void{}`
and `[0:X]T{}`.
* Sema: fix the logic for reporting "cannot store runtime value in
compile time variable" as well as for emitting a runtime store when a
pointer value is comptime known but it is a global variable.
* Sema: implement elemVal for double pointer to array. This can happen
with this code for example: `var a: *[1]u8 = undefined; _ = a[0];`
* Sema: Rework the `storePtrVal` function to properly handle nested
structs and arrays.
- Also it now handles comptime stores through a bitcasted pointer.
When the pointer element type and the type according to the Decl
don't match, the element value is bitcasted before storage.
* Add AIR instructions: ret_ptr, ret_load
- This allows Sema to be blissfully unaware of the backend's decision
to implement by-val/by-ref semantics for struct/union/array types.
Backends can lower these simply as alloc, load, ret instructions,
or they can take advantage of them to use a result pointer.
* Add AIR instruction: array_elem_val
- Allows for better codegen for `Sema.elemVal`.
* Implement calculation of ABI alignment and ABI size for unions.
* Before appending the following AIR instructions to a block,
resolveTypeLayout is called on the type:
- call - return type
- ret - return type
- store_ptr - elem type
* Sema: fix memory leak in `zirArrayInit` and other cleanups to this
function.
* x86_64: implement the full x86_64 C ABI according to the spec
* Type: implement `intInfo` for error sets.
* Type: implement `intTagType` for tagged unions.
The Zig type tag `Fn` is now used exclusively for function bodies.
Function pointers are modeled as `*const T` where `T` is a `Fn` type.
* The `call` AIR instruction now allows a function pointer operand as
well as a function operand.
* Sema now has a coercion from function body to function pointer.
* Function type syntax, e.g. `fn()void`, now returns zig tag type of
Pointer with child Fn, rather than Fn directly.
- I think this should probably be reverted. Will discuss the lang
specs before doing this. Idea being that function pointers would
need to be specified as `*const fn()void` rather than `fn() void`.
LLVM backend:
* Enable calling the panic handler (previously this just
emitted `@breakpoint()` since the backend could not handle the panic
function).
* Implement sret
* Introduce `isByRef` and implement it for structs and arrays. Types
that are `isByRef` are now passed as pointers to functions, and e.g.
`elem_val` will return a pointer instead of doing a load.
* Move the function type creating code from `resolveLlvmFunction` to
`llvmType` where it belongs; now there is only 1 instance of this
logic instead of two.
* Add the `nonnull` attribute to non-optional pointer parameters.
* Fix `resolveGlobalDecl` not using fully-qualified names and not using
the `decl_map`.
* Implement `genTypedValue` for pointer-like optionals.
* Fix memory leak when lowering `block` instruction and OOM occurs.
* Implement volatile checks where relevant.
* Sema: fix a missing copy on enum tag values
* LLVM backend: fix lowering of enum constant values for enums with
specified tag values.
* Value: fix enumToInt for `enum_numbered` cases.
The float widening behavior tests which rely on compiler-rt symbols are
now passing.
* Update AIR instruction `intcast` to allow the dest type to be an
enum.
* LLVM backend: update `intcast` to support when the bit counts of
operand and dest type are the same. This was already a requirement of
the instruction previously.
* Type: `intInfo` supports the case when the type is an enum, and
retrieves the info for the integer tag type. This makes it pretty
easy for backends to implement `intcast` without having to care
explicitly that the new type is an enum. As a bonus, simple enums
never have to go through the type system; their signedness and bit
count are computed directly.
The "int to enum" behavior test case is now passing for stage2 in the
LLVM backend.
* work around a stage1 miscompilation leading to the wrong integer
comparison predicate being emitted.
* fix the bug of not annotating callsites with the calling convention
of the callee, leading to undefined behavior.
* add the `nobuiltin` attribute when building freestanding libc or
compiler_rt libraries to prevent e.g. memcpy from being "optimized"
into a call to itself.
* compiler-rt: change a call to be comptime to make the generated LLVM
IR simpler and easier to study.
I still can't enable the widening tests due to the compiler-rt compare
function being miscompiled in some not-yet-diagnosed way.
Before, Sema for comptime `@bitCast` would return the same Value but
change the Type. This gave invalid results because, for example, an
integer Value when the Type is a float would be interpreted numerically,
but `@bitCast` needs it to reinterpret how they would be stored in
memory.
This requires a mechanism to serialize a Value to a byte buffer and
deserialize a Value from a byte buffer.
Not done yet, but needs to happen: comptime dereferencing a pointer
to a Decl needs to perform a comptime bitcast on the loaded value.
Currently the value is silently wrong in the same way that `@bitCast`
was silently wrong before this commit.
The logic in Value for handling readFromMemory for large integers is
only correct for small integers. It needs to be fleshed out for proper
big integers.
As part of this change:
* std.math.big.Int: initial implementations of readTwosComplement and
writeTwosComplement. They only support bit_count <= 128 so far and
panic otherwise.
* compiler-rt: move the compareXf2 exports over to the stage2 section.
Even with the improvements in this commit, I'm still seeing test
failures in the widening behavior tests; more investigation is
needed.
Decl names are now rendered fully qualified, so that e.g. "main" in two
different files does not conflict with each other.
Additionally, they are now mangled so as to not generate invalid C
identifier names.
Companion commit to 61a53a587558ff1fe1b0ec98bb424022885edccf.
This commit also moves over a bunch of behavior test cases to the
passing-for-stage2 section.
Also improve the LLVM backend to support lowering bigints to LLVM
values.
Moves over a bunch of math.zig test cases to the "passing for stage2"
section.
* Remove the builtins `@addWithSaturation`, `@subWithSaturation`,
`@mulWithSaturation`, and `@shlWithSaturation` now that we have
first-class syntax for saturating arithmetic.
* langref: Clarify the behavior of `@shlExact`.
* Ast: rename `bit_shift_left` to `shl` and `bit_shift_right` to `shr`
for consistency.
* Air: rename to include underscore separator with consistency with
the rest of the ops.
* Air: add shl_exact instruction
* Use non-extended tags for saturating arithmetic, to keep it
simple so that all the arithmetic operations can be done the same
way.
- Sema: unify analyzeArithmetic with analyzeSatArithmetic
- implement comptime `+|`, `-|`, and `*|`
- allow float operands to saturating arithmetic
* `<<|` allows any integer type for the RHS.
* C backend: fix rebase conflicts
* LLVM backend: reduce the amount of branching for arithmetic ops
* zig.h: fix magic number not matching actual size of C integer types
- modify AstGen binOpExt()/assignBinOpExt() to accept generic extended payload T
- rework Sema zirSatArithmetic() to use existing sema.analyzeArithmetic() by adding an `opt_extended` parameter.
- add airSatOp() to codegen/c.zig
- add saturating functions to src/link/C/zig.h
- adds initial support for the operators +|, -|, *|, <<|, +|=, -|=, *|=, <<|=
- uses operators in addition to builtins in behavior test
- adds binOpExt() and assignBinOpExt() to AstGen.zig. these need to be audited
* AIR: add `mod` instruction for modulus division
- Implement for LLVM backend
* Sema: implement `@mod`, `@rem`, and `%`.
* Sema: fix comptime switch evaluation
* Sema: implement comptime shift left
* Sema: fix the logic inside analyzeArithmetic to handle all the
nuances between the different mathematical operations.
- Implement comptime wrapping operations
* AIR: add `get_union_tag` instruction
- implement in LLVM backend
* Sema: implement == and != for union and enum literal
- Also implement coercion from union to its own tag type
* Value: implement hashing for union values
The motivating example is this snippet:
comptime assert(@typeInfo(T) == .Float);
This was the next blocker for stage2 building compiler-rt.
Now it is switch at compile-time on an integer.
* AIR instructions struct_field_ptr and related functions now are also
emitted by the frontend for unions. Backends must inspect the type
of the pointer operand to lower the instructions correctly.
- These will be renamed to `agg_field_ptr` (short for "aggregate") in
the future.
* Introduce the new `set_union_tag` AIR instruction.
* Introduce `Module.EnumNumbered` and associated `Type` methods. This
is for enums which have no decls, but do have the possibility of
overriding the integer tag type and tag values.
* Sema: Implement support for union tag types in both the
auto-generated and explicitly-provided cases, as well as explicitly
provided enum tag values in union declarations.
* LLVM backend: implement lowering union types, union field pointer
instructions, and the new `set_union_tag` instruction.