This "get" is useless noise and was copied from FixedBufferWriter.
Since this API has not yet landed in a release, now is a good time
to make the breaking change to fix this.
`Aegis256XGeneric` behaves differently than `Aegis128XGeneric` in that
it currently encrypts associated data instead of just absorbing it. Even
though the end result is the same, there's no point in encrypting and
copying the ad into a buffer that gets overwritten anyway. This fix
makes `Aegis256XGeneric` behave the same as `Aegis128XGeneric`.
According to https://apilevels.com, 88.5% of Android users are on 29+. Older API
levels require libc as of https://github.com/ziglang/zig/pull/24629, which has
confused some users. Seems reasonable to bump the default so most people won't
be confused by this.
This commit expands on the foundations laid by https://github.com/ziglang/zig/pull/23177
and moves even more `Sema`-only functionality from `Value`
to `Sema.arith`. Specifically all shift and bitwise operations,
`@truncate`, `@bitReverse` and `@byteSwap` have been moved and
adapted to the new rules around `undefined`.
Especially the comptime shift operations have been basically
rewritten, fixing many open issues in the process.
New rules applied to operators:
* `<<`, `@shlExact`, `@shlWithOverflow`, `>>`, `@shrExact`: compile error if any operand is undef
* `<<|`, `~`, `^`, `@truncate`, `@bitReverse`, `@byteSwap`: return undef if any operand is undef
* `&`, `|`: Return undef if both operands are undef, turn undef into actual `0xAA` bytes otherwise
Additionally this commit canonicalizes the representation of
aggregates with all-undefined members in the `InternPool` by
disallowing them and enforcing the usage of a single typed
`undef` value instead. This reduces the amount of edge cases
and fixes a bunch of bugs related to partially undefined vecs.
List of operations directly affected by this patch:
* `<<`, `<<|`, `@shlExact`, `@shlWithOverflow`
* `>>`, `@shrExact`
* `&`, `|`, `~`, `^` and their atomic rmw + reduce pendants
* `@truncate`, `@bitReverse`, `@byteSwap`
This algorithm is non-trivial and makes sense for any data structure
that acts as an array list, so I thought it would make sense as a
method.
I have a real world case for this in a music player application
(deleting queue items).
Adds the method to:
* ArrayList
* ArrayHashMap
* MultiArrayList
This experimental target was never fully completed. The operating system
is not that interesting or popular anyway, and the maintainer is no
longer around.
Not worth the maintenance burden. This code can be resurrected later if
it is worth it. In such case it will be subject to greater scrutiny.
This is one way of partially addressing https://github.com/ziglang/zig/issues/24767
- These functions are unused
- These functions are untested
- These functions are broken
+ The same dangling pointer bug from 6219c015d8e8c958d96e5caa5ef0dbab9c414996 exists in `writePreserve`
+ The order of the bytes preserved in relation to the `bytes` being written can differ depending on unused buffer capacity at the time of the call and the drain implementation.
If there ends up being a need for these functions, they can be fixed and added back.
This commit re-enables the --webui functionality on windows, with the caveat that rebuild functionality is still disabled (due to deadlocks caused by reading to / writing from the same non-overlapped socket on multiple threads). I updated the UI to be aware of this, and hide the `Rebuild` button.
http.Server: Remove incorrect advance() call. This was causing browsers to disconnect the websocket, as we were sending undefined bytes.
build.WebServer: Re-enable on windows, but disable functionality that requires receiving messages from the client
build-web: Show total times in tables
The "completed" count in the "Semantic Analysis" progress node had
regressed since 0.14.0: the number got crazy big very fast, even on
simple cases. For instance, an empty `pub fn main` got to ~59,000 where
on 0.14 it only reached ~4,000. This was happening because I was
unintentionally introducing a node every time type resolution was
*requested*, even if (as is usually the case) it turned out to already
be done. The fix is simply to start the progress node a little later,
once we know we are actually doing semantic analysis. This brings the
number for that empty test case down to ~5,000, which makes perfect
sense. It won't exactly match 0.14, because the standard library has
changed, and also because the compiler's progress output does have some
*intentional* changes.