This commit eliminates the `dbg_block_{begin,end}` instructions from
both ZIR and AIR. Instead, lexical scoping of `dbg_var_{ptr,val}`
instructions is decided based on the AIR block they exist within. This
is a much more robust system, and also results in a huge drop in ZIR
bytes - around 7% for Sema.zig.
This required some enhancements to Sema to prevent elision of blocks
when they are required for debug variable scoping. This can be observed
by looking at the AIR for the following simple test program with and
without `-fstrip`:
```zig
export fn f() void {
{
var a: u32 = 0;
_ = &a;
}
{
var a: u32 = 0;
_ = &a;
}
}
```
When `-fstrip` is passed, no AIR blocks are generated. When `-fno-strip`
is passed, the ZIR blocks are lowered to true AIR blocks to give correct
lexical scoping to the debug vars.
The changes here incidentally reolve #19060. A corresponding behavior
test has been added.
Resolves: #19060
* make test names contain the fully qualified name
* make test filters match the fully qualified name
* allow multiple test filters, where a test is skipped if it does not
match any of the specified filters
Found while fuzzing. Previously 1.1897314953572317650857593266280070162E4932
was parsed as +inf, which caused issues for round-trip serialization of
floats. Only f128 had issues, but have added other tests for all
floating point large normals.
The max_exponent for f128 was wrong, it is subtly different in the
decimal code-path as it is based on where the decimal digit should go.
This needs to be 2 greater than the max exponent (e.g. 308 or 4932) to
work correctly (greater by 1, then we use a >= comparision).
In addition, I've removed the redundant `optimize` constant which was only
use for testing the slow path locally.
std.heap.c_allocator was already doing this, however,
std.heap.raw_c_allocator, which asserts no allocations more than 16
bytes aligned, was not.
The zig compiler uses std.heap.raw_c_allocator, so it is affected by
this.
Windows paths now use WTF-16 <-> WTF-8 conversion everywhere, which is lossless. Previously, conversion of ill-formed UTF-16 paths would either fail or invoke illegal behavior.
WASI paths must be valid UTF-8, and the relevant function calls have been updated to handle the possibility of failure due to paths not being encoded/encodable as valid UTF-8.
Closes#18694Closes#1774Closes#2565
Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD) according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder