Get rid of `std.math.F80Repr`. Instead of trying to match the memory
layout of f80, we treat it as a value, same as the other floating point
types. The functions `make_f80` and `break_f80` are introduced to
compose an f80 value out of its parts, and the inverse operation.
stage2 LLVM backend: fix pointer to zero length array tripping LLVM
assertion. It now checks for when the element type is a zero-bit type
and lowers such thing the same way that pointers to other zero-bit types
are lowered.
Both stage1 and stage2 LLVM backends are adjusted so that f80 is lowered
as x86_fp80 on x86_64 and i386 architectures, and identical to a u80 on
others. LLVM constants are lowered in a less hacky way now that #10860
is fixed, by using the expression `(exp << 64) | fraction` using llvm
constants.
Sema is improved to handle c_longdouble by recursively handling it
correctly for whatever the float bit width is. In both stage1 and
stage2.
* F80Repr extern struct needs no explicit padding; let's match the
target padding.
* stage2: fix lowering of f80 constants.
* stage1: decide ABI size and alignment of f80 based on alignment of
u64. x86 has alignof u64 equal to 4 but arm has it as 8.
* stage2: fix Value.floatReadFromMemory to use F80Repr
* pass more x64 behavior tests
* return with a TODO error when lowering a decl with no runtime bits
* insert some debug logs for tracing recursive descent down the
type-value tree when lowering types
* print `Decl`'s name when print debugging `decl_ref` value
* pass air_tag instead of zir_tag
* also pass eval function so that the branch only happens once and the
body of zirUnaryMath is simplified
* Value.sqrt: update to handle f80 and f128 in the normalized way that
includes handling c_longdouble.
Semi-related change: fix incorrect sqrt builtin name for f80 in stage1.
Support for f128, comptime_float, and c_longdouble require improvements
to compiler_rt and will implemented in a later PR. Some of the code in
this commit could be made more generic, for instance `llvm.airSqrt`
could probably be `llvm.airUnaryMath`, but let's cross that
bridge when we get to it.
Currently Zig lowers `@intToFloat` for f80 incorrectly on non-x86
targets:
```
broken LLVM module found:
UIToFP result must be FP or FP vector
%62 = uitofp i64 %61 to i128
SIToFP result must be FP or FP vector
%66 = sitofp i64 %65 to i128
```
This happens because on such targets, we use i128 instead of x86_fp80 in
order to avoid "LLVM ERROR: Cannot select". `@intToFloat` must be
lowered differently to account for this difference as well.
AstGen: Fixed bug where f80 types in source were triggering illegal
behavior.
Value: handle f80 in floating point arithmetic functions.
Value: implement floatRem and floatMod
This commit introduces dependencies on compiler-rt that are not
implemented. Those are a prerequisite to merging this branch.
`ExternFn` will contain a maybe-lib-name if it was defined with
the `extern` keyword like so
```zig
extern "c" fn write(usize, usize, usize) usize;
```
`lib_name` will live as long as `ExternFn` decl does.
Takes advantage of the pattern already established with
array_init_anon. Also upgrades array_init (non-anon) to the pattern.
Implements comptime struct value equality and pointer value hashing.
AstGen:
* rename the known_has_bits flag to known_non_opv to make it better
reflect what it actually means.
* add a known_comptime_only flag.
* make the flags take advantage of identifiers of primitives and the
fact that zig has no shadowing.
* correct the known_non_opv flag for function bodies.
Sema:
* Rename `hasCodeGenBits` to `hasRuntimeBits` to better reflect what it
does.
- This function got a bit more complicated in this commit because of
the duality of function bodies: on one hand they have runtime bits,
but on the other hand they require being comptime known.
* WipAnonDecl now takes a LazySrcDecl parameter and performs the type
resolutions that it needs during finish().
* Implement comptime `@ptrToInt`.
Codegen:
* Improved handling of lowering decl_ref; make it work for
comptime-known ptr-to-int values.
- This same change had to be made many different times; perhaps we
should look into merging the implementations of `genTypedValue`
across x86, arm, aarch64, and riscv.
This commit updates stage2 to enforce the property that the syntax
`fn()void` is a function *body* not a *pointer*. To get a pointer, the
syntax `*const fn()void` is required.
ZIR puts function alignment into the func instruction rather than the
decl because this way it makes it into function types. LLVM backend
respects function alignments.
Struct and Union have methods `fieldSrcLoc` to help look up source
locations of their fields. These trigger full loading, tokenization, and
parsing of source files, so should only be called once it is confirmed
that an error message needs to be printed.
There are some nice new error hints for explaining why a type is
required to be comptime, particularly for structs that contain function
body types.
`Type.requiresComptime` is now moved into Sema because it can fail and
might need to trigger field type resolution. Comptime pointer loading
takes into account types that do not have a well-defined memory layout
and does not try to compute a byte offset for them.
`fn()void` syntax no longer secretly makes a pointer. You get a function
body type, which requires comptime. However a pointer to a function body
can be runtime known (obviously).
Compile errors that report "expected pointer, found ..." are factored
out into convenience functions `checkPtrOperand` and `checkPtrType` and
have a note about function pointers.
Implemented `Value.hash` for functions, enum literals, and undefined values.
stage1 is not updated to this (yet?), so some workarounds and disabled
tests are needed to keep everything working. Should we update stage1 to
these new type semantics? Yes probably because I don't want to add too
much conditional compilation logic in the std lib for the different
backends.
In the behavior test listings, I had to move type_info.zig test import
to a section that did not include the x86 backend because it got to the
point where adding another test to the file, even if it was an empty
test that just returned immediately, caused a runtime failure when
executing the test binary.
Anyway, type info for opaques is implemented, and the declarations slice
is shared between it, enums, and unions.
Still TODO is the `data` field of a `Declaration`. I want to consider
removing it from the data returned from `@typeInfo` and introducing
`@declInfo` or similar for this data. This would avoid the complexity of
a lazy mechanism.
It is the job of codegen backends to mark Decls that are referenced as
alive so that the frontend does not sweep them with the garbage. This
commit unifies the code between the backends with an added method on
Decl.
The implementation is more complete than before, switching on the Decl
val tag and recursing into sub-values.
As a result, two more array tests are passing.
Introduce `validate_array_init_comptime`, similar to
`validate_struct_init_comptime` introduced in
713d2a9b3883942491b40738245232680877cc66.
`zirValidateArrayInit` is improved to detect comptime array literals and
emit AIR accordingly. This code is very similar to the changes
introduced in that same commit for `zirValidateStructInit`.
The C backend needed some improvements to continue passing the same set
of tests:
* `resolveInst` for arrays now will add a local `static const` with the
array value and so then `elem_val` instructions reference that local.
It memoizes accesses using `value_map`, which is changed to use
`Air.Inst.Ref` as the key rather than `Air.Inst.Index`.
* This required a mechanism for writing to a "header" which is lines
that appear at the beginning of a function body, before everything
else.
* dbg_stmt output comments rather than `#line` directives.
TODO comment reproduced here:
We need to re-evaluate whether to emit these or not. If we naively emit
these directives, the output file will report bogus line numbers because
every newline after the #line directive adds one to the line.
We also don't print the filename yet, so the output is strictly unhelpful.
If we wanted to go this route, we would need to go all the way and not output
newlines until the next dbg_stmt occurs.
Perhaps an additional compilation option is in order?
`Value.elemValue` is improved to support `elem_ptr` values.
AIR:
* `array_elem_val` is now allowed to be used with a vector as the array
type.
* New instructions: splat, vector_init
AstGen:
* The splat ZIR instruction uses coerced_ty for the ResultLoc, avoiding
an unnecessary `as` instruction, since the coercion will be performed
in Sema.
* Builtins that accept vectors now ignore the type parameter. Comment
from this commit reproduced here:
The accepted proposal #6835 tells us to remove the type parameter from
these builtins. To stay source-compatible with stage1, we still observe
the parameter here, but we do not encode it into the ZIR. To implement
this proposal in stage2, only AstGen code will need to be changed.
Sema:
* `clz` and `ctz` ZIR instructions are now handled by the same function
which accept AIR tag and comptime eval function pointer to
differentiate.
* `@typeInfo` for vectors is implemented.
* `@splat` is implemented. It takes advantage of `Value.Tag.repeated` 😎
* `elemValue` is implemented for vectors, when the index is a scalar.
Handling a vector index is still TODO.
* Element-wise coercion is implemented for vectors. It could probably
be optimized a bit, but it is at least complete & correct.
* `Type.intInfo` supports vectors, returning int info for the element.
* `Value.ctz` initial implementation. Needs work.
* `Value.eql` is implemented for arrays and vectors.
LLVM backend:
* Implement vector support when lowering `array_elem_val`.
* Implement vector support when lowering `ctz` and `clz`.
* Implement `splat` and `vector_init`.
* reduce number of branches in zirCmpEq
* implement equality comparison for enums and unions
* fix coercion from union to its tag type resulting in the wrong type
* fix method calls of unions
* implement peer type resolution for unions, enums, and enum literals
* fix union tag type memory in the wrong arena
Introduced a new AIR instruction: `tag_name`. Reasons to do this
instead of lowering it in Sema to a switch, function call, array
lookup, or if-else tower:
* Sema is a bottleneck; do less work in Sema whenever possible.
* If any optimization passes run, and the operand to becomes
comptime-known, then it could change to have a comptime result
value instead of lowering to a function or array or something which
would then have to be garbage-collected.
* Backends may want to choose to use a function and a switch branch,
or they may want to use a different strategy.
Codegen for `@tagName` is implemented for the LLVM backend but not any
others yet.
Introduced some new `Type` tags:
* `const_slice_u8_sentinel_0`
* `manyptr_const_u8_sentinel_0`
The motivation for this was to make typeof() on the tag_name AIR
instruction non-allocating.
A bunch more enum tests are passing now.
* remove false positive "all prongs handled" compile error for
non-exhaustive enums.
* implement `@TypeInfo` for enums, except enums which have any
declarations is still TODO.
* `getBuiltin` uses nomespaceLookup/analyzeDeclVal rather than
namespaceLookupRef/analyzeLoad. Avoids a detour through an
unnecessary type, and adds a detour through a caching mechanism.
* `Value.eql`: add missing code to handle enum comparisons for
non-exhaustive enums. It works by converting the enum tags to numeric
values and comparing those.
* Introduce a mechanism into Sema for emitting a compile error when an
integer is too big and we need it to fit into a usize.
* Add `@intCast` where necessary
* link/MachO: fix an unnecessary allocation when all that was happening
was appending zeroes to an ArrayList.
* Add `error.Overflow` as a possible error to some codepaths, allowing
usage of `math.intCast`.
closes#9710
* C pointer types always have allowzero set to true but they omit the
word allowzero when printed.
* Implement coercion from C pointers to other pointers.
* Implement in-memory coercion for slices and pointer-like optionals.
* Make slicing a C pointer drop the allowzero bit.
* Value representation for pointer-like optionals is now allowed to use
pointer tag values in addition to the `opt_payload` tag.