Merge pull request #10017 from Snektron/big-int-div

Big ints: division fixes
This commit is contained in:
Andrew Kelley 2021-10-23 22:49:33 -04:00 committed by GitHub
commit 94879506ea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 305 additions and 169 deletions

View File

@ -18,11 +18,14 @@ const debug_safety = false;
/// Returns the number of limbs needed to store `scalar`, which must be a
/// primitive integer value.
pub fn calcLimbLen(scalar: anytype) usize {
if (scalar == 0) {
return 1;
}
const T = @TypeOf(scalar);
const max_scalar = switch (@typeInfo(T)) {
.Int => maxInt(T),
.ComptimeInt => scalar,
else => @compileError("parameter must be a primitive integer type"),
};
const w_value = std.math.absCast(scalar);
const w_value = std.math.absCast(max_scalar);
return @divFloor(@intCast(Limb, math.log2(w_value)), limb_bits) + 1;
}
@ -33,7 +36,7 @@ pub fn calcToStringLimbsBufferLen(a_len: usize, base: u8) usize {
}
pub fn calcDivLimbsBufferLen(a_len: usize, b_len: usize) usize {
return calcMulLimbsBufferLen(a_len, b_len, 2) * 4;
return a_len + b_len + 4;
}
pub fn calcMulLimbsBufferLen(a_len: usize, b_len: usize, aliases: usize) usize {
@ -760,8 +763,8 @@ pub const Mutable = struct {
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is a.limbs.len.
/// The upper bound for q limb count is given by `a.limbs.len + b.limbs.len + 1`.
/// The upper bound for r limb count is `b.limbs.len`.
/// The upper bound for q limb count is given by `a.limbs`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
@ -773,20 +776,115 @@ pub const Mutable = struct {
a: Const,
b: Const,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) void {
div(q, r, a, b, limbs_buffer, allocator);
const sep = a.limbs.len + 2;
var x = a.toMutable(limbs_buffer[0..sep]);
var y = b.toMutable(limbs_buffer[sep..]);
// Trunc -> Floor.
if (a.positive and b.positive) return;
div(q, r, &x, &y);
if ((!q.positive or q.eqZero()) and !r.eqZero()) {
const one: Const = .{ .limbs = &[_]Limb{1}, .positive = true };
q.sub(q.toConst(), one);
// Note, `div` performs truncating division, which satisfies
// @divTrunc(a, b) * b + @rem(a, b) = a
// so r = a - @divTrunc(a, b) * b
// Note, @rem(a, -b) = @rem(-b, a) = -@rem(a, b) = -@rem(-a, -b)
// For divTrunc, we want to perform
// @divFloor(a, b) * b + @mod(a, b) = a
// Note:
// @divFloor(-a, b)
// = @divFloor(a, -b)
// = -@divCeil(a, b)
// = -@divFloor(a + b - 1, b)
// = -@divTrunc(a + b - 1, b)
// Note (1):
// @divTrunc(a + b - 1, b) * b + @rem(a + b - 1, b) = a + b - 1
// = @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) = a + b - 1
// = @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = a
if (a.positive and b.positive) {
// Positive-positive case, don't need to do anything.
} else if (a.positive and !b.positive) {
// a/-b -> q is negative, and so we need to fix flooring.
// Subtract one to make the division flooring.
// @divFloor(a, -b) * -b + @mod(a, -b) = a
// If b divides a exactly, we have @divFloor(a, -b) * -b = a
// Else, we have @divFloor(a, -b) * -b > a, so @mod(a, -b) becomes negative
// We have:
// @divFloor(a, -b) * -b + @mod(a, -b) = a
// = -@divTrunc(a + b - 1, b) * -b + @mod(a, -b) = a
// = @divTrunc(a + b - 1, b) * b + @mod(a, -b) = a
// Substitute a for (1):
// @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = @divTrunc(a + b - 1, b) * b + @mod(a, -b)
// Yields:
// @mod(a, -b) = @rem(a - 1, b) - b + 1
// Note that `r` holds @rem(a, b) at this point.
//
// If @rem(a, b) is not 0:
// @rem(a - 1, b) = @rem(a, b) - 1
// => @mod(a, -b) = @rem(a, b) - 1 - b + 1 = @rem(a, b) - b
// Else:
// @rem(a - 1, b) = @rem(a + b - 1, b) = @rem(b - 1, b) = b - 1
// => @mod(a, -b) = b - 1 - b + 1 = 0
if (!r.eqZero()) {
q.addScalar(q.toConst(), -1);
r.positive = true;
r.sub(r.toConst(), y.toConst().abs());
}
} else if (!a.positive and b.positive) {
// -a/b -> q is negative, and so we need to fix flooring.
// Subtract one to make the division flooring.
// @divFloor(-a, b) * b + @mod(-a, b) = a
// If b divides a exactly, we have @divFloor(-a, b) * b = -a
// Else, we have @divFloor(-a, b) * b < -a, so @mod(-a, b) becomes positive
// We have:
// @divFloor(-a, b) * b + @mod(-a, b) = -a
// = -@divTrunc(a + b - 1, b) * b + @mod(-a, b) = -a
// = @divTrunc(a + b - 1, b) * b - @mod(-a, b) = a
// Substitute a for (1):
// @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = @divTrunc(a + b - 1, b) * b - @mod(-a, b)
// Yields:
// @rem(a - 1, b) - b + 1 = -@mod(-a, b)
// => -@mod(-a, b) = @rem(a - 1, b) - b + 1
// => @mod(-a, b) = -(@rem(a - 1, b) - b + 1) = -@rem(a - 1, b) + b - 1
//
// If @rem(a, b) is not 0:
// @rem(a - 1, b) = @rem(a, b) - 1
// => @mod(-a, b) = -(@rem(a, b) - 1) + b - 1 = -@rem(a, b) + 1 + b - 1 = -@rem(a, b) + b
// Else :
// @rem(a - 1, b) = b - 1
// => @mod(-a, b) = -(b - 1) + b - 1 = 0
if (!r.eqZero()) {
q.addScalar(q.toConst(), -1);
r.positive = false;
r.add(r.toConst(), y.toConst().abs());
}
} else if (!a.positive and !b.positive) {
// a/b -> q is positive, don't need to do anything to fix flooring.
// @divFloor(-a, -b) * -b + @mod(-a, -b) = -a
// If b divides a exactly, we have @divFloor(-a, -b) * -b = -a
// Else, we have @divFloor(-a, -b) * -b > -a, so @mod(-a, -b) becomes negative
// We have:
// @divFloor(-a, -b) * -b + @mod(-a, -b) = -a
// = @divTrunc(a, b) * -b + @mod(-a, -b) = -a
// = @divTrunc(a, b) * b - @mod(-a, -b) = a
// We also have:
// @divTrunc(a, b) * b + @rem(a, b) = a
// Substitute a:
// @divTrunc(a, b) * b + @rem(a, b) = @divTrunc(a, b) * b - @mod(-a, -b)
// => @rem(a, b) = -@mod(-a, -b)
// => @mod(-a, -b) = -@rem(a, b)
r.positive = false;
}
r.mulNoAlias(q.toConst(), b, allocator);
r.sub(a, r.toConst());
}
/// q = a / b (rem r)
@ -795,9 +893,8 @@ pub const Mutable = struct {
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is a.limbs.len.
/// The upper bound for q limb count is given by `calcQuotientLimbLen`. This accounts
/// for temporary space used by the division algorithm.
/// The upper bound for r limb count is `b.limbs.len`.
/// The upper bound for q limb count is given by `a.limbs.len`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
@ -809,10 +906,12 @@ pub const Mutable = struct {
a: Const,
b: Const,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) void {
div(q, r, a, b, limbs_buffer, allocator);
r.positive = a.positive;
const sep = a.limbs.len + 2;
var x = a.toMutable(limbs_buffer[0..sep]);
var y = b.toMutable(limbs_buffer[sep..]);
div(q, r, &x, &y);
}
/// r = a << shift, in other words, r = a * 2^shift
@ -1176,181 +1275,214 @@ pub const Mutable = struct {
result.copy(x.toConst());
}
/// Truncates by default.
fn div(quo: *Mutable, rem: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?*Allocator) void {
assert(!b.eqZero()); // division by zero
assert(quo != rem); // illegal aliasing
// Truncates by default.
fn div(q: *Mutable, r: *Mutable, x: *Mutable, y: *Mutable) void {
assert(!y.eqZero()); // division by zero
assert(q != r); // illegal aliasing
if (a.orderAbs(b) == .lt) {
// quo may alias a so handle rem first
rem.copy(a);
rem.positive = a.positive == b.positive;
const q_positive = (x.positive == y.positive);
const r_positive = x.positive;
quo.positive = true;
quo.len = 1;
quo.limbs[0] = 0;
if (x.toConst().orderAbs(y.toConst()) == .lt) {
// q may alias x so handle r first.
r.copy(x.toConst());
r.positive = r_positive;
q.set(0);
return;
}
// Handle trailing zero-words of divisor/dividend. These are not handled in the following
// algorithms.
const a_zero_limb_count = blk: {
var i: usize = 0;
while (i < a.limbs.len) : (i += 1) {
if (a.limbs[i] != 0) break;
}
break :blk i;
};
const b_zero_limb_count = blk: {
var i: usize = 0;
while (i < b.limbs.len) : (i += 1) {
if (b.limbs[i] != 0) break;
}
break :blk i;
};
// Note, there must be a non-zero limb for either.
// const x_trailing = std.mem.indexOfScalar(Limb, x.limbs[0..x.len], 0).?;
// const y_trailing = std.mem.indexOfScalar(Limb, y.limbs[0..y.len], 0).?;
const ab_zero_limb_count = math.min(a_zero_limb_count, b_zero_limb_count);
const x_trailing = for (x.limbs[0..x.len]) |xi, i| {
if (xi != 0) break i;
} else unreachable;
if (b.limbs.len - ab_zero_limb_count == 1) {
lldiv1(quo.limbs[0..], &rem.limbs[0], a.limbs[ab_zero_limb_count..a.limbs.len], b.limbs[b.limbs.len - 1]);
quo.normalize(a.limbs.len - ab_zero_limb_count);
quo.positive = (a.positive == b.positive);
const y_trailing = for (y.limbs[0..y.len]) |yi, i| {
if (yi != 0) break i;
} else unreachable;
rem.len = 1;
rem.positive = true;
const xy_trailing = math.min(x_trailing, y_trailing);
if (y.len - xy_trailing == 1) {
lldiv1(q.limbs, &r.limbs[0], x.limbs[xy_trailing..x.len], y.limbs[y.len - 1]);
q.normalize(x.len - xy_trailing);
q.positive = q_positive;
r.len = 1;
r.positive = r_positive;
} else {
// x and y are modified during division
const sep_len = calcMulLimbsBufferLen(a.limbs.len, b.limbs.len, 2);
const x_limbs = limbs_buffer[0 * sep_len ..][0..sep_len];
const y_limbs = limbs_buffer[1 * sep_len ..][0..sep_len];
const t_limbs = limbs_buffer[2 * sep_len ..][0..sep_len];
const mul_limbs_buf = limbs_buffer[3 * sep_len ..][0..sep_len];
var x: Mutable = .{
.limbs = x_limbs,
.positive = true,
.len = a.limbs.len - ab_zero_limb_count,
};
var y: Mutable = .{
.limbs = y_limbs,
.positive = true,
.len = b.limbs.len - ab_zero_limb_count,
};
// Shrink x, y such that the trailing zero limbs shared between are removed.
mem.copy(Limb, x.limbs, a.limbs[ab_zero_limb_count..a.limbs.len]);
mem.copy(Limb, y.limbs, b.limbs[ab_zero_limb_count..b.limbs.len]);
var x0 = Mutable{
.limbs = x.limbs[xy_trailing..],
.len = x.len - xy_trailing,
.positive = true,
};
divN(quo, rem, &x, &y, t_limbs, mul_limbs_buf, allocator);
quo.positive = (a.positive == b.positive);
var y0 = Mutable{
.limbs = y.limbs[xy_trailing..],
.len = y.len - xy_trailing,
.positive = true,
};
divmod(q, r, &x0, &y0);
q.positive = q_positive;
r.positive = r_positive;
}
if (ab_zero_limb_count != 0) {
rem.shiftLeft(rem.toConst(), ab_zero_limb_count * limb_bits);
if (xy_trailing != 0) {
// Manually shift here since we know its limb aligned.
mem.copyBackwards(Limb, r.limbs[xy_trailing..], r.limbs[0..r.len]);
mem.set(Limb, r.limbs[0..xy_trailing], 0);
r.len += xy_trailing;
}
}
/// Handbook of Applied Cryptography, 14.20
///
/// x = qy + r where 0 <= r < y
fn divN(
/// y is modified but returned intact.
fn divmod(
q: *Mutable,
r: *Mutable,
x: *Mutable,
y: *Mutable,
tmp_limbs: []Limb,
mul_limb_buf: []Limb,
allocator: ?*Allocator,
) void {
assert(y.len >= 2);
assert(x.len >= y.len);
assert(q.limbs.len >= x.len + y.len - 1);
// 0.
// Normalize so that y[t] > b/2
const lz = @clz(Limb, y.limbs[y.len - 1]);
const norm_shift = if (lz == 0 and y.toConst().isOdd())
limb_bits // Force an extra limb so that y is even.
else
lz;
// See 3.2
var backup_tmp_limbs: [3]Limb = undefined;
const t_limbs = if (tmp_limbs.len < 3) &backup_tmp_limbs else tmp_limbs;
var tmp: Mutable = .{
.limbs = t_limbs,
.len = 1,
.positive = true,
};
tmp.limbs[0] = 0;
// Normalize so y > limb_bits / 2 (i.e. leading bit is set) and even
var norm_shift = @clz(Limb, y.limbs[y.len - 1]);
if (norm_shift == 0 and y.toConst().isOdd()) {
norm_shift = limb_bits;
}
x.shiftLeft(x.toConst(), norm_shift);
y.shiftLeft(y.toConst(), norm_shift);
const n = x.len - 1;
const t = y.len - 1;
const shift = n - t;
// 1.
q.len = n - t + 1;
// for 0 <= j <= n - t, set q[j] to 0
q.len = shift + 1;
q.positive = true;
mem.set(Limb, q.limbs[0..q.len], 0);
// 2.
tmp.shiftLeft(y.toConst(), limb_bits * (n - t));
while (x.toConst().order(tmp.toConst()) != .lt) {
q.limbs[n - t] += 1;
x.sub(x.toConst(), tmp.toConst());
// while x >= y * b^(n - t):
// x -= y * b^(n - t)
// q[n - t] += 1
// Note, this algorithm is performed only once if y[t] > radix/2 and y is even, which we
// enforced in step 0. This means we can replace the while with an if.
// Note, multiplication by b^(n - t) comes down to shifting to the right by n - t limbs.
// We can also replace x >= y * b^(n - t) by x/b^(n - t) >= y, and use shifts for that.
{
// x >= y * b^(n - t) can be replaced by x/b^(n - t) >= y.
// 'divide' x by b^(n - t)
var tmp = Mutable{
.limbs = x.limbs[shift..],
.len = x.len - shift,
.positive = true,
};
if (tmp.toConst().order(y.toConst()) != .lt) {
// Perform x -= y * b^(n - t)
// Note, we can subtract y from x[n - t..] and get the result without shifting.
// We can also re-use tmp which already contains the relevant part of x. Note that
// this also edits x.
// Due to the check above, this cannot underflow.
tmp.sub(tmp.toConst(), y.toConst());
// tmp.sub normalized tmp, but we need to normalize x now.
x.limbs.len = tmp.limbs.len + shift;
q.limbs[shift] += 1;
}
}
// 3.
// for i from n down to t + 1, do
var i = n;
while (i > t) : (i -= 1) {
// 3.1
while (i >= t + 1) : (i -= 1) {
const k = i - t - 1;
// 3.1.
// if x_i == y_t:
// q[i - t - 1] = b - 1
// else:
// q[i - t - 1] = (x[i] * b + x[i - 1]) / y[t]
if (x.limbs[i] == y.limbs[t]) {
q.limbs[i - t - 1] = maxInt(Limb);
q.limbs[k] = maxInt(Limb);
} else {
const num = (@as(DoubleLimb, x.limbs[i]) << limb_bits) | @as(DoubleLimb, x.limbs[i - 1]);
const z = @intCast(Limb, num / @as(DoubleLimb, y.limbs[t]));
q.limbs[i - t - 1] = if (z > maxInt(Limb)) maxInt(Limb) else @as(Limb, z);
const q0 = (@as(DoubleLimb, x.limbs[i]) << limb_bits) | @as(DoubleLimb, x.limbs[i - 1]);
const n0 = @as(DoubleLimb, y.limbs[t]);
q.limbs[k] = @intCast(Limb, q0 / n0);
}
// 3.2
tmp.limbs[0] = if (i >= 2) x.limbs[i - 2] else 0;
tmp.limbs[1] = if (i >= 1) x.limbs[i - 1] else 0;
tmp.limbs[2] = x.limbs[i];
tmp.normalize(3);
// while q[i - t - 1] * (y[t] * b + y[t - 1] > x[i] * b * b + x[i - 1] + x[i - 2]:
// q[i - t - 1] -= 1
// Note, if y[t] > b / 2 this part is repeated no more than twice.
// Extract from y.
const y0 = if (t > 0) y.limbs[t - 1] else 0;
const y1 = y.limbs[t];
// Extract from x.
// Note, big endian.
const tmp0 = [_]Limb{
x.limbs[i],
if (i >= 1) x.limbs[i - 1] else 0,
if (i >= 2) x.limbs[i - 2] else 0,
};
while (true) {
// 2x1 limb multiplication unrolled against single-limb q[i-t-1]
var carry: Limb = 0;
r.limbs[0] = addMulLimbWithCarry(0, if (t >= 1) y.limbs[t - 1] else 0, q.limbs[i - t - 1], &carry);
r.limbs[1] = addMulLimbWithCarry(0, y.limbs[t], q.limbs[i - t - 1], &carry);
r.limbs[2] = carry;
r.normalize(3);
// Ad-hoc 2x1 multiplication with q[i - t - 1].
// Note, big endian.
var tmp1 = [_]Limb{ 0, undefined, undefined };
tmp1[2] = addMulLimbWithCarry(0, y0, q.limbs[k], &tmp1[0]);
tmp1[1] = addMulLimbWithCarry(0, y1, q.limbs[k], &tmp1[0]);
if (r.toConst().orderAbs(tmp.toConst()) != .gt) {
// Big-endian compare
if (mem.order(Limb, &tmp1, &tmp0) != .gt)
break;
}
q.limbs[i - t - 1] -= 1;
q.limbs[k] -= 1;
}
// 3.3
tmp.set(q.limbs[i - t - 1]);
tmp.mul(tmp.toConst(), y.toConst(), mul_limb_buf, allocator);
tmp.shiftLeft(tmp.toConst(), limb_bits * (i - t - 1));
x.sub(x.toConst(), tmp.toConst());
// 3.3.
// x -= q[i - t - 1] * y * b^(i - t - 1)
// Note, we multiply by a single limb here.
// The shift doesn't need to be performed if we add the result of the first multiplication
// to x[i - t - 1].
// mem.set(Limb, x.limbs, 0);
const underflow = llmulLimb(.sub, x.limbs[k..x.len], y.limbs[0..y.len], q.limbs[k]);
if (!x.positive) {
tmp.shiftLeft(y.toConst(), limb_bits * (i - t - 1));
x.add(x.toConst(), tmp.toConst());
q.limbs[i - t - 1] -= 1;
// 3.4.
// if x < 0:
// x += y * b^(i - t - 1)
// q[i - t - 1] -= 1
// Note, we check for x < 0 using the underflow flag from the previous operation.
if (underflow) {
// While we didn't properly set the signedness of x, this operation should 'flow' it back to positive.
llaccum(.add, x.limbs[k..x.len], y.limbs[0..y.len]);
q.limbs[k] -= 1;
}
x.normalize(x.len);
}
// Denormalize
q.normalize(q.len);
// De-normalize r and y.
r.shiftRight(x.toConst(), norm_shift);
r.normalize(r.len);
y.shiftRight(y.toConst(), norm_shift);
}
/// Truncate an integer to a number of bits, following 2s-complement semantics.
@ -1808,7 +1940,7 @@ pub const Const = struct {
while (q.len >= 2) {
// Passing an allocator here would not be helpful since this division is destroying
// information, not creating it. [TODO citation needed]
q.divTrunc(&r, q.toConst(), b, rest_of_the_limbs_buf, null);
q.divTrunc(&r, q.toConst(), b, rest_of_the_limbs_buf);
var r_word = r.limbs[0];
var i: usize = 0;
@ -2435,16 +2567,14 @@ pub const Managed = struct {
/// a / b are floored (rounded towards 0).
///
/// Returns an error if memory could not be allocated.
///
/// q's allocator is used for temporary storage to speed up the multiplication.
pub fn divFloor(q: *Managed, r: *Managed, a: Const, b: Const) !void {
try q.ensureCapacity(a.limbs.len + b.limbs.len + 1);
try r.ensureCapacity(a.limbs.len);
try q.ensureCapacity(a.limbs.len);
try r.ensureCapacity(b.limbs.len);
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.limbs.len, b.limbs.len));
defer q.allocator.free(limbs_buffer);
mq.divFloor(&mr, a, b, limbs_buffer, q.allocator);
mq.divFloor(&mr, a, b, limbs_buffer);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
@ -2454,16 +2584,14 @@ pub const Managed = struct {
/// a / b are truncated (rounded towards -inf).
///
/// Returns an error if memory could not be allocated.
///
/// q's allocator is used for temporary storage to speed up the multiplication.
pub fn divTrunc(q: *Managed, r: *Managed, a: Const, b: Const) !void {
try q.ensureCapacity(a.limbs.len + b.limbs.len + 1);
try r.ensureCapacity(a.limbs.len);
try q.ensureCapacity(a.limbs.len);
try r.ensureCapacity(b.limbs.len);
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.limbs.len, b.limbs.len));
defer q.allocator.free(limbs_buffer);
mq.divTrunc(&mr, a, b, limbs_buffer, q.allocator);
mq.divTrunc(&mr, a, b, limbs_buffer);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
@ -2893,20 +3021,22 @@ fn llmulaccLong(comptime op: AccOp, r: []Limb, a: []const Limb, b: []const Limb)
var i: usize = 0;
while (i < b.len) : (i += 1) {
llmulLimb(op, r[i..], a, b[i]);
_ = llmulLimb(op, r[i..], a, b[i]);
}
}
/// r = r (op) y * xi
/// The result is computed modulo `r.len`.
fn llmulLimb(comptime op: AccOp, acc: []Limb, y: []const Limb, xi: Limb) void {
/// Returns whether the operation overflowed.
fn llmulLimb(comptime op: AccOp, acc: []Limb, y: []const Limb, xi: Limb) bool {
@setRuntimeSafety(debug_safety);
if (xi == 0) {
return;
return false;
}
var a_lo = acc[0..y.len];
var a_hi = acc[y.len..];
const split = std.math.min(y.len, acc.len);
var a_lo = acc[0..split];
var a_hi = acc[split..];
switch (op) {
.add => {
@ -2920,6 +3050,8 @@ fn llmulLimb(comptime op: AccOp, acc: []Limb, y: []const Limb, xi: Limb) void {
while ((carry != 0) and (j < a_hi.len)) : (j += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a_hi[j], carry, &a_hi[j]));
}
return carry != 0;
},
.sub => {
var borrow: Limb = 0;
@ -2932,6 +3064,8 @@ fn llmulLimb(comptime op: AccOp, acc: []Limb, y: []const Limb, xi: Limb) void {
while ((borrow != 0) and (j < a_hi.len)) : (j += 1) {
borrow = @boolToInt(@subWithOverflow(Limb, a_hi[j], borrow, &a_hi[j]));
}
return borrow != 0;
},
}
}
@ -3424,7 +3558,8 @@ fn llsquareBasecase(r: []Limb, x: []const Limb) void {
for (x_norm) |v, i| {
// Accumulate all the x[i]*x[j] (with x!=j) products
llmulLimb(.add, r[2 * i + 1 ..], x_norm[i + 1 ..], v);
const overflow = llmulLimb(.add, r[2 * i + 1 ..], x_norm[i + 1 ..], v);
assert(!overflow);
}
// Each product appears twice, multiply by 2
@ -3432,7 +3567,8 @@ fn llsquareBasecase(r: []Limb, x: []const Limb) void {
for (x_norm) |v, i| {
// Compute and add the squares
llmulLimb(.add, r[2 * i ..], x[i .. i + 1], v);
const overflow = llmulLimb(.add, r[2 * i ..], x[i .. i + 1], v);
assert(!overflow);
}
}

View File

@ -1016,7 +1016,7 @@ test "big.int mulWrap multi-multi unsigned" {
defer c.deinit();
try c.mulWrap(a.toConst(), b.toConst(), .unsigned, 65);
try testing.expect((try c.to(u256)) == (op1 * op2) & ((1 << 65) - 1));
try testing.expect((try c.to(u128)) == (op1 * op2) & ((1 << 65) - 1));
}
test "big.int mulWrap multi-multi signed" {

View File

@ -2307,11 +2307,11 @@ pub const Value = extern union {
const rhs_bigint = rhs.toBigInt(&rhs_space);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
@ -2319,7 +2319,7 @@ pub const Value = extern union {
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer, null);
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
const result_limbs = result_q.limbs[0..result_q.len];
if (result_q.positive) {
@ -2338,11 +2338,11 @@ pub const Value = extern union {
const rhs_bigint = rhs.toBigInt(&rhs_space);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
@ -2350,7 +2350,7 @@ pub const Value = extern union {
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer, null);
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
const result_limbs = result_q.limbs[0..result_q.len];
if (result_q.positive) {
@ -2369,13 +2369,13 @@ pub const Value = extern union {
const rhs_bigint = rhs.toBigInt(&rhs_space);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
// TODO: audit this size, and also consider reworking Sema to re-use Values rather than
// TODO: consider reworking Sema to re-use Values rather than
// always producing new Value objects.
rhs_bigint.limbs.len + 1,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
@ -2383,7 +2383,7 @@ pub const Value = extern union {
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer, null);
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
const result_limbs = result_r.limbs[0..result_r.len];
if (result_r.positive) {
@ -2402,11 +2402,11 @@ pub const Value = extern union {
const rhs_bigint = rhs.toBigInt(&rhs_space);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
@ -2414,7 +2414,7 @@ pub const Value = extern union {
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer, null);
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
const result_limbs = result_r.limbs[0..result_r.len];
if (result_r.positive) {