This commit changes a lot of `*const Module` to `*Module` to make it
work, since accessing the integer tag type of an enum might need to
mutate the InternPool by adding a new integer type into it.
An alternate strategy would be to pre-heat the InternPool with the
integer tag type when creating an enum type, which would make it so that
intTagType could accept a const Module instead of a mutable one,
asserting that the InternPool already had the integer tag type.
Temporarily used for some unfortunate allocations made by backends that
need to construct pointer types that can't be represented by the
InternPool. Once all types are migrated to be stored in the InternPool,
this can be removed.
* Add some assertions to make sure instructions are not none. I tested
all these with master branch as well and made sure the behavior tests
still passed with the assertions intact (along with a handful of
callsite updates).
* Fix Sema.resolveMaybeUndefValAllowVariablesMaybeRuntime not noticing
that interned values are comptime-known. This was causing all kinds
of chaos.
* Fix print_air writeType calling tag() without checking for ip_index
The Key struct now has a Storage tagged union which can store a u64,
i64, or big int.
This is needed so that indexToKey can be implemented for integers stored
compactly in the data structure.
Instead of doing everything at once which is a hopelessly large task,
this introduces a piecemeal transition that can be done in small
increments at a time.
This is a minimal changeset that keeps the compiler compiling. It only
uses the InternPool for a small set of types.
Behavior tests are not passing.
Air.Inst.Ref and Zir.Inst.Ref are separated into different enums but
compile-time verified to have the same fields in the same order.
The large set of changes is mainly to deal with the fact that most Type
and Value methods now require a Module to be passed in, so that the
InternPool object can be accessed.
We need to set rbp last because the arguments are stored on the
stack. If we clobber rbp first, then we will get a segfault when
trying to access the function arguments.
I believe I had already done this with the other syscall* functions,
but not with syscall1, so this allows single argument syscalls like
close to work.