383 Commits

Author SHA1 Message Date
Robin Voetter
efb7539cb6
spirv: dont emit forward pointer for annotation instructions 2024-11-09 01:53:13 +01:00
Robin Voetter
89bd987f1c
spirv: emit ArrayStride for many-item pointers 2024-11-08 20:43:57 +01:00
Robin Voetter
b16252b17e
spirv: make all vulkan structs Block for now 2024-11-08 20:43:57 +01:00
Robin Voetter
d35dfc5a3f
add storage_buffer address space 2024-11-08 20:43:57 +01:00
Robin Voetter
688d7055e3
spirv: assembler hacky constant placeholders 2024-11-08 20:43:55 +01:00
Robin Voetter
b5301558ae
spirv: make default generic address space for vulkan Function
We are not using Private variables. This needs to be cleaned up a bit
more, this will happen with the general address space improvements.
2024-11-08 20:38:23 +01:00
Robin Voetter
7682ced08e
spirv: track global OpVariables properly in assembler
Also cleans up the assembler a bit in general.
2024-11-08 20:38:22 +01:00
Robin Voetter
4fbc100959
spirv: properly resolve type inputs in assembly
For now the frontend still allows type inputs in assembly. We
might as well resolve them properly in the SPIR-V backend.
2024-11-08 20:38:21 +01:00
Robin Voetter
ba5f57616f
Merge pull request #21861 from alichraghi/master
spirv: push constants and small fixes
2024-11-01 03:44:37 +01:00
Ali Cheraghi
c07b3c8279
spirv: decorate arrays stride 2024-11-01 02:04:27 +03:30
Ali Cheraghi
a1cb9563f6
spirv: Uniform/PushConstant variables
- Rename GPU address spaces to match with SPIR-V spec.
- Emit `Block` Decoration for Uniform/PushConstant variables.
- Don't emit `OpTypeForwardPointer` for non-opencl targets.
  (there's still a false-positive about recursive structs)

Signed-off-by: Ali Cheraghi <alichraghi@proton.me>
2024-11-01 02:03:33 +03:30
mlugg
d11bbde5f9
compiler: remove anonymous struct types, unify all tuples
This commit reworks how anonymous struct literals and tuples work.

Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.

Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.

This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.

Resolves: #16865
2024-10-31 20:42:53 +00:00
Robin Voetter
39013619b9
spirv: generate test entry points for vulkan 2024-10-27 15:19:57 +01:00
Robin Voetter
7c69231367
spirv: use PhysicalStorageBuffer64 for global pointers under vk
We can use real pointers with this storage class!!
2024-10-27 15:19:56 +01:00
Robin Voetter
6de456c179
spirv: fix up calling conventions for vulkan
* Fragment and Vertex CCs are only valid for SPIR-V when
  running under Vulkan.
* Emit GLCompute instead of Kernel for SPIR-V kernels.
2024-10-27 15:19:55 +01:00
mlugg
51706af908
compiler: introduce new CallingConvention
This commit begins implementing accepted proposal #21209 by making
`std.builtin.CallingConvention` a tagged union.

The stage1 dance here is a little convoluted. This commit introduces the
new type as `NewCallingConvention`, keeping the old `CallingConvention`
around. The compiler uses `std.builtin.NewCallingConvention`
exclusively, but when fetching the type from `std` when running the
compiler (e.g. with `getBuiltinType`), the name `CallingConvention` is
used. This allows a prior build of Zig to be used to build this commit.
The next commit will update `zig1.wasm`, and then the compiler and
standard library can be updated to completely replace
`CallingConvention` with `NewCallingConvention`.

The second half of #21209 is to remove `@setAlignStack`, which will be
implemented in another commit after updating `zig1.wasm`.
2024-10-19 19:08:59 +01:00
Robin Voetter
c1132edd53
spirv: don't generate OpUnreachable after noreturn call
It seems that these are now automatically added to AIR in Sema.
2024-10-13 01:57:35 +02:00
Robin Voetter
973f846251
spirv: implement repeat and dbg_arg_inline 2024-10-13 01:57:06 +02:00
Robin Voetter
3cd19b8884
spirv: don't try to lower types which have no runtime bits 2024-10-13 01:56:33 +02:00
Felix Queißner
7c74edec8d
Adds new cpu architectures propeller1 and propeller2. (#21563)
* Adds new cpu architectures propeller1 and propeller2.

These cpu architectures allow targeting the Parallax Propeller 1 and Propeller 2, which are both very special microcontrollers with 512 registers and 8 cpu cores.

Resolves #21559

* Adds std.elf.EM.PROPELLER and std.elf.EM.PROPELLER2
* Fixes missing switch prongs in src/codegen/llvm.zig
* Fixes order in std.Target.Arch

---------

Co-authored-by: Felix "xq" Queißner <git@random-projects.net>
2024-10-04 13:53:28 -07:00
Linus Groh
8588964972 Replace deprecated default initializations with decl literals 2024-09-12 16:01:23 +01:00
mlugg
5fb4a7df38
Air: add explicit repeat instruction to repeat loops
This commit introduces a new AIR instruction, `repeat`, which causes
control flow to move back to the start of a given AIR loop. `loop`
instructions will no longer automatically perform this operation after
control flow reaches the end of the body.

The motivation for making this change now was really just consistency
with the upcoming implementation of #8220: it wouldn't make sense to
have this feature work significantly differently. However, there were
already some TODOs kicking around which wanted this feature. It's useful
for two key reasons:

* It allows loops over AIR instruction bodies to loop precisely until
  they reach a `noreturn` instruction. This allows for tail calling a
  few things, and avoiding a range check on each iteration of a hot
  path, plus gives a nice assertion that validates AIR structure a
  little. This is a very minor benefit, which this commit does apply to
  the LLVM and C backends.

* It should allow for more compact ZIR and AIR to be emitted by having
  AstGen emit `repeat` instructions more often rather than having
  `continue` statements `break` to a `block` which is *followed* by a
  `repeat`. This is done in status quo because `repeat` instructions
  only ever cause the direct parent block to repeat. Now that AIR is
  more flexible, this flexibility can be pretty trivially extended to
  ZIR, and we can then emit better ZIR. This commit does not implement
  this.

Support for this feature is currently regressed on all self-hosted
native backends, including x86_64. This support will be added where
necessary before this branch is merged.
2024-09-01 18:30:31 +01:00
mlugg
1b000b90c9
Air: direct representation of ranges in switch cases
This commit modifies the representation of the AIR `switch_br`
instruction to represent ranges in cases. Previously, Sema emitted
different AIR in the case of a range, where the `else` branch of the
`switch_br` contained a simple `cond_br` for each such case which did a
simple range check (`x > a and x < b`). Not only does this add
complexity to Sema, which we would like to minimize, but it also gets in
the way of the implementation of #8220. That proposal turns certain
`switch` statements into a looping construct, and for optimization
purposes, we want to lower this to AIR fairly directly (i.e. without
involving a `loop` instruction). That means we would ideally like a
single instruction to represent the entire `switch` statement, so that
we can dispatch back to it with a different operand as in #8220. This is
not really possible to do correctly under the status quo system.

This commit implements lowering of this new `switch_br` usage in the
LLVM and C backends. The C backend just turns any case containing ranges
entirely into conditionals, as before. The LLVM backend is a little
smarter, and puts scalar items into the `switch` instruction, only using
conditionals for the range cases (which direct to the same bb). All
remaining self-hosted backends are temporarily regressed in the presence
of switch range cases. This functionality will be restored for at least
the x86_64 backend before merge.
2024-09-01 18:30:31 +01:00
mlugg
0fe3fd01dd
std: update std.builtin.Type fields to follow naming conventions
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.

This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
2024-08-28 08:39:59 +01:00
mlugg
6808ce27bd
compiler,lib,test,langref: migrate @setCold to @branchHint 2024-08-27 00:44:35 +01:00
mlugg
457c94d353
compiler: implement @branchHint, replacing @setCold
Implements the accepted proposal to introduce `@branchHint`. This
builtin is permitted as the first statement of a block if that block is
the direct body of any of the following:

* a function (*not* a `test`)
* either branch of an `if`
* the RHS of a `catch` or `orelse`
* a `switch` prong
* an `or` or `and` expression

It lowers to the ZIR instruction `extended(branch_hint(...))`. When Sema
encounters this instruction, it sets `sema.branch_hint` appropriately,
and `zirCondBr` etc are expected to reset this value as necessary. The
state is on `Sema` rather than `Block` to make it automatically
propagate up non-conditional blocks without special handling. If
`@panic` is reached, the branch hint is set to `.cold` if none was
already set; similarly, error branches get a hint of `.unlikely` if no
hint is explicitly provided. If a condition is comptime-known, `cold`
hints from the taken branch are allowed to propagate up, but other hints
are discarded. This is because a `likely`/`unlikely` hint just indicates
the direction this branch is likely to go, which is redundant
information when the branch is known at comptime; but `cold` hints
indicate that control flow is unlikely to ever reach this branch,
meaning if the branch is always taken from its parent, then the parent
is also unlikely to ever be reached.

This branch information is stored in AIR `cond_br` and `switch_br`. In
addition, `try` and `try_ptr` instructions have variants `try_cold` and
`try_ptr_cold` which indicate that the error case is cold (rather than
just unlikely); this is reachable through e.g. `errdefer unreachable` or
`errdefer @panic("")`.

A new API `unwrapSwitch` is introduced to `Air` to make it more
convenient to access `switch_br` instructions. In time, I plan to update
all AIR instructions to be accessed via an `unwrap` method which returns
a convenient tagged union a la `InternPool.indexToKey`.

The LLVM backend lowers branch hints for conditional branches and
switches as follows:

* If any branch is marked `unpredictable`, the instruction is marked
  `!unpredictable`.
* Any branch which is marked as `cold` gets a
  `llvm.assume(i1 true) [ "cold"() ]` call to mark the code path cold.
* If any branch is marked `likely` or `unlikely`, branch weight metadata
  is attached with `!prof`. Likely branches get a weight of 2000, and
  unlikely branches a weight of 1. In `switch` statements, un-annotated
  branches get a weight of 1000 as a "middle ground" hint, since there
  could be likely *and* unlikely *and* un-annotated branches.

For functions, a `cold` hint corresponds to the `cold` function
attribute, and other hints are currently ignored -- as far as I can tell
LLVM doesn't really have a way to lower them. (Ideally, we would want
the branch hint given in the function to propagate to call sites.)

The compiler and standard library do not yet use this new builtin.

Resolves: #21148
2024-08-27 00:41:49 +01:00
David Rubin
80cd53d3bb
sema: clean-up {union,struct}FieldAlignment and friends
My main gripes with this design were that it was incorrectly namespaced, the naming was inconsistent and a bit wrong (`fooAlign` vs `fooAlignment`).

This commit moves all the logic from `PerThread.zig` to use the zcu + tid system that the previous couple commits introduce.
I've organized and merged the functions to be a bit more specific to their own purpose.

- `fieldAlignment` takes a struct or union type, an index, and a Zcu (or the Sema version which takes a Pt), and gives you the alignment of the field at the index.
- `structFieldAlignment` takes the field type itself, and provides the logic to handle special cases, such as externs.

A design goal I had in mind was to avoid using the word 'struct' in the function name, when it worked for things that aren't structs, such as unions.
2024-08-25 15:16:46 -07:00
David Rubin
b4bb64ce78
sema: rework type resolution to use Zcu when possible 2024-08-25 15:16:42 -07:00
Jacob Young
62f7276501 Dwarf: emit info about inline call sites 2024-08-20 08:09:33 -04:00
mlugg
548a087faf
compiler: split Decl into Nav and Cau
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
2024-08-11 07:29:41 +01:00
sobolevn
4c71d3f29e
Fix typos in code comments in src/ 2024-07-20 20:23:18 +03:00
mlugg
f84a4953d2
Value: eliminate static recursion loop from value printing 2024-07-16 11:38:21 +01:00
Jacob Young
a1053e8e1d InternPool: add and use a mutate mutex for each list
This allows the mutate mutex to only be locked during actual grows,
which are rare. For the lists that didn't previously have a mutex, this
change has little effect since grows are rare and there is zero
contention on a mutex that is only ever locked by one thread.  This
change allows `extra` to be mutated without racing with a grow.
2024-07-13 04:47:38 -04:00
Jacob Young
c2316c5228 InternPool: make global_error_set thread-safe 2024-07-10 21:39:55 -04:00
Jacob Young
667b4f9054 Zcu: cache fully qualified name on Decl
This avoids needing to mutate the intern pool from backends.
2024-07-10 11:10:49 -04:00
Jacob Young
ca02266157 Zcu: pass PerThread to intern pool string functions 2024-07-07 22:59:52 -04:00
Jacob Young
525f341f33 Zcu: introduce PerThread and pass to all the functions 2024-07-07 22:59:52 -04:00
Andrew Kelley
30ec43a6c7 Zcu: extract permanent state from File
Primarily, this commit removes 2 fields from File, relying on the data
being stored in the `files` field, with the key as the path digest, and
the value as the struct decl corresponding to the File. This table is
serialized into the compiler state that survives between incremental
updates.

Meanwhile, the File struct remains ephemeral data that can be
reconstructed the first time it is needed by the compiler process, as
well as operated on by independent worker threads.

A key outcome of this commit is that there is now a stable index that
can be used to refer to a File. This will be needed when serializing
error messages to survive incremental compilation updates.
2024-07-04 17:51:35 -07:00
mlugg
2f0f1efa6f
compiler: type.zig -> Type.zig 2024-07-04 21:01:42 +01:00
mlugg
ded5c759f8
Zcu: store LazySrcLoc in error messages
This change modifies `Zcu.ErrorMsg` to store a `Zcu.LazySrcLoc` rather
than a `Zcu.SrcLoc`. Everything else is dominoes.

The reason for this change is incremental compilation. If a failed
`AnalUnit` is up-to-date on an update, we want to re-use the old error
messages. However, the file containing the error location may have been
modified, and `SrcLoc` cannot survive such a modification. `LazySrcLoc`
is designed to be correct across incremental updates. Therefore, we
defer source location resolution until `Compilation` gathers the compile
errors into the `ErrorBundle`.
2024-07-04 21:01:41 +01:00
mlugg
5f03c02505
Zcu: key compile errors on AnalUnit where appropriate
This change seeks to more appropriately model the way semantic analysis
works by drawing a more clear line between errors emitted by analyzing a
`Decl` (in future a `Cau`) and errors emitted by analyzing a runtime
function.

This does change a few compile errors surrounding compile logs by adding
more "also here" notes. The new notes are more technically correct, but
perhaps not so helpful. They're not doing enough harm for me to put
extensive thought into this for now.
2024-07-04 21:01:41 +01:00
mlugg
5b523d0469
Zir: make src_line absolute for declaration instructions
We need special logic for updating line numbers anyway, so it's fine to
just use absolute numbers here. This eliminates a field from `Decl`.
2024-06-26 05:28:03 +01:00
Andrew Kelley
0fcd59eada rename src/Module.zig to src/Zcu.zig
This patch is a pure rename plus only changing the file path in
`@import` sites, so it is expected to not create version control
conflicts, even when rebasing.
2024-06-22 22:59:56 -04:00
Matthew Lugg
f73be120f4
Merge pull request #20299 from mlugg/the-great-decl-split
The Great Decl Split (preliminary work): refactor source locations and eliminate `Sema.Block.src_decl`.
2024-06-20 11:07:17 +01:00
Robin Voetter
50a771a11e
spirv: add support for workItemId, workGroupId, workGroupSize 2024-06-16 01:00:13 +02:00
mlugg
1eaeb4a0a8
Zcu: rework source locations
`LazySrcLoc` now stores a reference to the "base AST node" to which it
is relative. The previous tagged union is `LazySrcLoc.Offset`. To make
working with this structure convenient, `Sema.Block` contains a
convenience `src` method which takes an `Offset` and returns a
`LazySrcLoc`.

The "base node" of a source location is no longer given by a `Decl`, but
rather a `TrackedInst` representing either a `declaration`,
`struct_decl`, `union_decl`, `enum_decl`, or `opaque_decl`. This is a
more appropriate model, and removes an unnecessary responsibility from
`Decl` in preparation for the upcoming refactor which will split it into
`Nav` and `Cau`.

As a part of these `Decl` reworks, the `src_node` field is eliminated.
This change aids incremental compilation, and simplifies `Decl`. In some
cases -- particularly in backends -- the source location of a
declaration is desired. This was previously `Decl.srcLoc` and worked for
any `Decl`. Now, it is `Decl.navSrcLoc` in reference to the upcoming
refactor, since the set of `Decl`s this works for precisely corresponds
to what will in future become a `Nav` -- that is, source-level
declarations and generic function instantiations, but *not* type owner
Decls.

This commit introduces more tags to `LazySrcLoc.Offset` so as to
eliminate the concept of `error.NeededSourceLocation`. Now, `.unneeded`
should only be used to assert that an error path is unreachable. In the
future, uses of `.unneeded` can probably be replaced with `undefined`.

The `src_decl` field of `Sema.Block` no longer has a role in type
resolution. Its main remaining purpose is to handle namespacing of type
names. It will be eliminated entirely in a future commit to remove
another undue responsibility from `Decl`.

It is worth noting that in future, the `Zcu.SrcLoc` type should probably
be eliminated entirely in favour of storing `Zcu.LazySrcLoc` values.
This is because `Zcu.SrcLoc` is not valid across incremental updates,
and we want to be able to reuse error messages from previous updates
even if the source file in question changed. The error reporting logic
should instead simply resolve the location from the `LazySrcLoc` on the
fly.
2024-06-15 00:57:52 +01:00
mlugg
07a24bec9a
compiler: move LazySrcLoc out of std
This is in preparation for some upcoming changes to how we represent
source locations in the compiler. The bulk of the change here is dealing
with the removal of `src()` methods from `Zir` types.
2024-06-15 00:57:52 +01:00
Robin Voetter
a567f3871e
spirv: improve shuffle codegen 2024-06-10 20:32:50 +02:00
Robin Voetter
a3b1ba82f5
spirv: new vectorization helper
The old vectorization helper (WipElementWise) was clunky and a bit
annoying to use, and it wasn't really flexible enough.

This introduces a new vectorization helper, which uses Temporary and
Operation types to deduce a Vectorization to perform the operation
in a reasonably efficient manner. It removes the outer loop
required by WipElementWise so that implementations of AIR instructions
are cleaner. This helps with sanity when we start to introduce support
for composite integers.

airShift, convertToDirect, convertToIndirect, and normalize are initially
implemented using this new method.
2024-06-10 20:32:49 +02:00
Robin Voetter
4e7159ae1d
spirv: remove OpCompositeConstruct workarounds
Now that we use POCL to test, we no longer need this 
2024-06-10 20:32:43 +02:00