The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
The signature is documented as:
int link(const char *, const char *);
(see https://man7.org/linux/man-pages/man2/link.2.html or https://man.netbsd.org/link.2)
And its not some Linux extension, the [syscall
implementation](21b136cc63/fs/namei.c (L4794-L4797))
only expects two arguments too.
It probably *should* have a flags parameter, but its too late now.
I am a bit surprised that linking glibc or musl against code that invokes
a 'link' with three parameters doesn't fail (at least, I couldn't get any
local test cases to trigger a compile or link error).
The test case in std/posix/test.zig is currently disabled, but if I
manually enable it, it works with this change.
If there is a VDSO, it will have clock_gettime(). The main thing we're concerned
about is architectures that don't have a VDSO at all, of which there are a few.
* Rename isPPC() -> isPowerPC32().
* Rename isPPC64() -> isPowerPC64().
* Add new isPowerPC() function which covers both.
There was confusion even in the standard library about what isPPC() meant. This
change makes these functions work how I think most people actually expect them
to work, and makes them consistent with isMIPS(), isSPARC(), etc.
I chose to rename from PPC to PowerPC because 1) it's more consistent with the
other functions, and 2) it'll cause loud rather than silent breakage for anyone
who might have been depending on isPPC() while misunderstanding it.
What is `sparcel`, you might ask? Good question!
If you take a peek in the SPARC v8 manual, §2.2, it is quite explicit that SPARC
v8 is a big-endian architecture. No little-endian or mixed-endian support to be
found here.
On the other hand, the SPARC v9 manual, in §3.2.1.2, states that it has support
for mixed-endian operation, with big-endian mode being the default.
Ok, so `sparcel` must just be referring to SPARC v9 running in little-endian
mode, surely?
Nope:
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L226)
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L104)
So, `sparcel` in LLVM is referring to some sort of fantastical little-endian
SPARC v8 architecture. I've scoured the internet and I can find absolutely no
evidence that such a thing exists or has ever existed. In fact, I can find no
evidence that a little-endian implementation of SPARC v9 ever existed, either.
Or any SPARC version, actually!
The support was added here: https://reviews.llvm.org/D8741
Notably, there is no mention whatsoever of what CPU this might be referring to,
and no justification given for the "but some are little" comment added in the
patch.
My best guess is that this might have been some private exercise in creating a
little-endian version of SPARC that never saw the light of day. Given that SPARC
v8 explicitly doesn't support little-endian operation (let alone little-endian
instruction encoding!), and no CPU is known to be implemented as such, I think
it's very reasonable for us to just remove this support.
This is kind of a hack because the timespec in UAPI headers is actually still
32-bit while __kernel_timespec is 64-bit. But, importantly, all the syscalls
take __kernel_timespec from the get-go (because riscv32 support is so recent).
Defining our timespec this way will allow all the syscall wrappers in
std.os.linux to do the right thing for riscv32. For other 32-bit architectures,
we have to use the 64-bit time syscalls explicitly to solve the Y2038 problem.
* common symbols are now public from std.c even if they live in
std.posix
* LOCK is now one of the common symbols since it is the same on 100% of
operating systems.
* flock is now void value on wasi and windows
* std.fs.Dir now uses flock being void as feature detection, avoiding
trying to call it on wasi and windows
It is now composed of these main sections:
* Declarations that are shared among all operating systems.
* Declarations that have the same name, but different type signatures
depending on the operating system. Often multiple operating systems
share the same type signatures however.
* Declarations that are specific to a single operating system.
- These are imported one per line so you can see where they come from,
protected by a comptime block to prevent accessing the wrong one.
Closes#19352 by changing the convention to making types `void` and
functions `{}`, so that it becomes possible to update `@hasDecl` sites
to use `@TypeOf(f) != void` or `T != void`. Happily, this ended up
removing some duplicate logic and update some bitrotted feature
detection checks.
A handful of types have been modified to gain namespacing and type
safety. This is a breaking change.
Oh, and the last usage of `usingnamespace` site is eliminated.