Merge pull request #6809 from jedisct1/salsa

std/crypto: add (X)Salsa20 and NaCl boxes
This commit is contained in:
Andrew Kelley 2020-10-25 20:34:35 -04:00 committed by GitHub
commit 0088efc4b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 553 additions and 98 deletions

View File

@ -6,15 +6,14 @@
/// Authenticated Encryption with Associated Data
pub const aead = struct {
const chacha20 = @import("crypto/chacha20.zig");
pub const Gimli = @import("crypto/gimli.zig").Aead;
pub const ChaCha20Poly1305 = chacha20.Chacha20Poly1305;
pub const XChaCha20Poly1305 = chacha20.XChacha20Poly1305;
pub const ChaCha20Poly1305 = @import("crypto/chacha20.zig").Chacha20Poly1305;
pub const XChaCha20Poly1305 = @import("crypto/chacha20.zig").XChacha20Poly1305;
pub const Aegis128L = @import("crypto/aegis.zig").Aegis128L;
pub const Aegis256 = @import("crypto/aegis.zig").Aegis256;
pub const Aes128Gcm = @import("crypto/aes_gcm.zig").Aes128Gcm;
pub const Aes256Gcm = @import("crypto/aes_gcm.zig").Aes256Gcm;
pub const XSalsa20Poly1305 = @import("crypto/salsa20.zig").XSalsa20Poly1305;
};
/// Authentication (MAC) functions.
@ -101,6 +100,15 @@ pub const stream = struct {
pub const ChaCha20IETF = @import("crypto/chacha20.zig").ChaCha20IETF;
pub const XChaCha20IETF = @import("crypto/chacha20.zig").XChaCha20IETF;
pub const ChaCha20With64BitNonce = @import("crypto/chacha20.zig").ChaCha20With64BitNonce;
pub const Salsa20 = @import("crypto/salsa20.zig").Salsa20;
pub const XSalsa20 = @import("crypto/salsa20.zig").XSalsa20;
};
pub const nacl = struct {
const salsa20 = @import("crypto/salsa20.zig");
pub const box = salsa20.box;
pub const secretBox = salsa20.secretBox;
pub const sealedBox = salsa20.sealedBox;
};
const std = @import("std.zig");
@ -134,6 +142,7 @@ test "crypto" {
_ = @import("crypto/sha1.zig");
_ = @import("crypto/sha2.zig");
_ = @import("crypto/sha3.zig");
_ = @import("crypto/salsa20.zig");
_ = @import("crypto/siphash.zig");
_ = @import("crypto/25519/curve25519.zig");
_ = @import("crypto/25519/ed25519.zig");

View File

@ -4,6 +4,8 @@
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const fmt = std.fmt;
const mem = std.mem;
const Sha512 = std.crypto.hash.sha2.Sha512;
@ -14,8 +16,8 @@ pub const Ed25519 = struct {
pub const Curve = @import("edwards25519.zig").Edwards25519;
/// Length (in bytes) of a seed required to create a key pair.
pub const seed_length = 32;
/// Length (in bytes) of a compressed key pair.
pub const keypair_length = 64;
/// Length (in bytes) of a compressed secret key.
pub const secret_length = 64;
/// Length (in bytes) of a compressed public key.
pub const public_length = 32;
/// Length (in bytes) of a signature.
@ -23,41 +25,61 @@ pub const Ed25519 = struct {
/// Length (in bytes) of optional random bytes, for non-deterministic signatures.
pub const noise_length = 32;
/// Derive a key pair from a secret seed.
///
/// As in RFC 8032, an Ed25519 public key is generated by hashing
/// the secret key using the SHA-512 function, and interpreting the
/// bit-swapped, clamped lower-half of the output as the secret scalar.
///
/// For this reason, an EdDSA secret key is commonly called a seed,
/// from which the actual secret is derived.
pub fn createKeyPair(seed: [seed_length]u8) ![keypair_length]u8 {
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(&seed);
h.final(&az);
const p = try Curve.basePoint.clampedMul(az[0..32].*);
var keypair: [keypair_length]u8 = undefined;
mem.copy(u8, &keypair, &seed);
mem.copy(u8, keypair[seed_length..], &p.toBytes());
return keypair;
}
/// An Ed25519 key pair.
pub const KeyPair = struct {
/// Public part.
public_key: [public_length]u8,
/// Secret part. What we expose as a secret key is, under the hood, the concatenation of the seed and the public key.
secret_key: [secret_length]u8,
/// Return the public key for a given key pair.
pub fn publicKey(key_pair: [keypair_length]u8) [public_length]u8 {
var public_key: [public_length]u8 = undefined;
mem.copy(u8, public_key[0..], key_pair[seed_length..]);
return public_key;
}
/// Derive a key pair from an optional secret seed.
///
/// As in RFC 8032, an Ed25519 public key is generated by hashing
/// the secret key using the SHA-512 function, and interpreting the
/// bit-swapped, clamped lower-half of the output as the secret scalar.
///
/// For this reason, an EdDSA secret key is commonly called a seed,
/// from which the actual secret is derived.
pub fn create(seed: ?[seed_length]u8) !KeyPair {
const ss = seed orelse ss: {
var random_seed: [seed_length]u8 = undefined;
try crypto.randomBytes(&random_seed);
break :ss random_seed;
};
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(&ss);
h.final(&az);
const p = try Curve.basePoint.clampedMul(az[0..32].*);
var sk: [secret_length]u8 = undefined;
mem.copy(u8, &sk, &ss);
const pk = p.toBytes();
mem.copy(u8, sk[seed_length..], &pk);
return KeyPair{ .public_key = pk, .secret_key = sk };
}
/// Create a KeyPair from a secret key.
pub fn fromSecretKey(secret_key: [secret_length]u8) KeyPair {
return KeyPair{
.secret_key = secret_key,
.public_key = secret_key[seed_length..].*,
};
}
};
/// Sign a message using a key pair, and optional random noise.
/// Having noise creates non-standard, non-deterministic signatures,
/// but has been proven to increase resilience against fault attacks.
pub fn sign(msg: []const u8, key_pair: [keypair_length]u8, noise: ?[noise_length]u8) ![signature_length]u8 {
const public_key = key_pair[32..];
pub fn sign(msg: []const u8, key_pair: KeyPair, noise: ?[noise_length]u8) ![signature_length]u8 {
const seed = key_pair.secret_key[0..seed_length];
const public_key = key_pair.secret_key[seed_length..];
if (!mem.eql(u8, public_key, &key_pair.public_key)) {
return error.KeyMismatch;
}
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(key_pair[0..seed_length]);
h.update(seed);
h.final(&az);
h = Sha512.init(.{});
@ -186,50 +208,44 @@ pub const Ed25519 = struct {
test "ed25519 key pair creation" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.createKeyPair(seed);
const key_pair = try Ed25519.KeyPair.create(seed);
var buf: [256]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
const public_key = Ed25519.publicKey(key_pair);
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{public_key}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair.secret_key}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair.public_key}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
}
test "ed25519 signature" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.createKeyPair(seed);
const key_pair = try Ed25519.KeyPair.create(seed);
const sig = try Ed25519.sign("test", key_pair, null);
var buf: [128]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{sig}), "10A442B4A80CC4225B154F43BEF28D2472CA80221951262EB8E0DF9091575E2687CC486E77263C3418C757522D54F84B0359236ABBBD4ACD20DC297FDCA66808");
const public_key = Ed25519.publicKey(key_pair);
try Ed25519.verify(sig, "test", public_key);
std.testing.expectError(error.InvalidSignature, Ed25519.verify(sig, "TEST", public_key));
try Ed25519.verify(sig, "test", key_pair.public_key);
std.testing.expectError(error.InvalidSignature, Ed25519.verify(sig, "TEST", key_pair.public_key));
}
test "ed25519 batch verification" {
var i: usize = 0;
while (i < 100) : (i += 1) {
var seed: [32]u8 = undefined;
try std.crypto.randomBytes(&seed);
const key_pair = try Ed25519.createKeyPair(seed);
const key_pair = try Ed25519.KeyPair.create(null);
var msg1: [32]u8 = undefined;
var msg2: [32]u8 = undefined;
try std.crypto.randomBytes(&msg1);
try std.crypto.randomBytes(&msg2);
const sig1 = try Ed25519.sign(&msg1, key_pair, null);
const sig2 = try Ed25519.sign(&msg2, key_pair, null);
const public_key = Ed25519.publicKey(key_pair);
var signature_batch = [_]Ed25519.BatchElement{
Ed25519.BatchElement{
.sig = sig1,
.msg = &msg1,
.public_key = public_key,
.public_key = key_pair.public_key,
},
Ed25519.BatchElement{
.sig = sig2,
.msg = &msg2,
.public_key = public_key,
.public_key = key_pair.public_key,
},
};
try Ed25519.verifyBatch(2, signature_batch);

View File

@ -4,6 +4,7 @@
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
const crypto = std.crypto;
const mem = std.mem;
const fmt = std.fmt;
@ -13,40 +14,46 @@ pub const X25519 = struct {
pub const Curve = @import("curve25519.zig").Curve25519;
/// Length (in bytes) of a secret key.
pub const secret_length = 32;
/// Length (in bytes) of a public key.
pub const public_length = 32;
/// Length (in bytes) of the output of the DH function.
pub const key_length = 32;
pub const shared_length = 32;
/// Seed (for key pair creation) length in bytes.
pub const seed_length = 32;
/// An X25519 key pair.
pub const KeyPair = struct {
/// Public part.
public_key: [public_length]u8,
/// Secret part.
secret_key: [secret_length]u8,
/// Create a new key pair using an optional seed.
pub fn create(seed: ?[seed_length]u8) !KeyPair {
const sk = seed orelse sk: {
var random_seed: [seed_length]u8 = undefined;
try crypto.randomBytes(&random_seed);
break :sk random_seed;
};
var kp: KeyPair = undefined;
mem.copy(u8, &kp.secret_key, sk[0..]);
try X25519.recoverPublicKey(&kp.public_key, sk);
return kp;
}
};
/// Compute the public key for a given private key.
pub fn createPublicKey(public_key: []u8, private_key: []const u8) bool {
std.debug.assert(private_key.len >= key_length);
std.debug.assert(public_key.len >= key_length);
var s: [32]u8 = undefined;
mem.copy(u8, &s, private_key[0..32]);
if (Curve.basePoint.clampedMul(s)) |q| {
mem.copy(u8, public_key, q.toBytes()[0..]);
return true;
} else |_| {
return false;
}
pub fn recoverPublicKey(public_key: *[public_length]u8, secret_key: [secret_length]u8) !void {
const q = try Curve.basePoint.clampedMul(secret_key);
mem.copy(u8, public_key, q.toBytes()[0..]);
}
/// Compute the scalar product of a public key and a secret scalar.
/// Note that the output should not be used as a shared secret without
/// hashing it first.
pub fn create(out: []u8, private_key: []const u8, public_key: []const u8) bool {
std.debug.assert(out.len >= secret_length);
std.debug.assert(private_key.len >= key_length);
std.debug.assert(public_key.len >= key_length);
var s: [32]u8 = undefined;
var b: [32]u8 = undefined;
mem.copy(u8, &s, private_key[0..32]);
mem.copy(u8, &b, public_key[0..32]);
if (Curve.fromBytes(b).clampedMul(s)) |q| {
mem.copy(u8, out, q.toBytes()[0..]);
return true;
} else |_| {
return false;
}
pub fn scalarmult(out: *[shared_length]u8, secret_key: [secret_length]u8, public_key: [public_length]u8) !void {
const q = try Curve.fromBytes(public_key).clampedMul(secret_key);
mem.copy(u8, out, q.toBytes()[0..]);
}
};
@ -56,7 +63,7 @@ test "x25519 public key calculation from secret key" {
var pk_calculated: [32]u8 = undefined;
try fmt.hexToBytes(sk[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
try fmt.hexToBytes(pk_expected[0..], "f1814f0e8ff1043d8a44d25babff3cedcae6c22c3edaa48f857ae70de2baae50");
std.testing.expect(X25519.createPublicKey(pk_calculated[0..], &sk));
try X25519.recoverPublicKey(&pk_calculated, sk);
std.testing.expectEqual(pk_calculated, pk_expected);
}
@ -68,7 +75,7 @@ test "x25519 rfc7748 vector1" {
var output: [32]u8 = undefined;
std.testing.expect(X25519.create(output[0..], secret_key[0..], public_key[0..]));
try X25519.scalarmult(&output, secret_key, public_key);
std.testing.expectEqual(output, expected_output);
}
@ -80,7 +87,7 @@ test "x25519 rfc7748 vector2" {
var output: [32]u8 = undefined;
std.testing.expect(X25519.create(output[0..], secret_key[0..], public_key[0..]));
try X25519.scalarmult(&output, secret_key, public_key);
std.testing.expectEqual(output, expected_output);
}
@ -94,7 +101,7 @@ test "x25519 rfc7748 one iteration" {
var i: usize = 0;
while (i < 1) : (i += 1) {
var output: [32]u8 = undefined;
std.testing.expect(X25519.create(output[0..], &k, &u));
try X25519.scalarmult(output[0..], k, u);
mem.copy(u8, u[0..], k[0..]);
mem.copy(u8, k[0..], output[0..]);
@ -118,7 +125,7 @@ test "x25519 rfc7748 1,000 iterations" {
var i: usize = 0;
while (i < 1000) : (i += 1) {
var output: [32]u8 = undefined;
std.testing.expect(X25519.create(output[0..], &k, &u));
std.testing.expect(X25519.scalarmult(output[0..], &k, &u));
mem.copy(u8, u[0..], k[0..]);
mem.copy(u8, k[0..], output[0..]);
@ -141,7 +148,7 @@ test "x25519 rfc7748 1,000,000 iterations" {
var i: usize = 0;
while (i < 1000000) : (i += 1) {
var output: [32]u8 = undefined;
std.testing.expect(X25519.create(output[0..], &k, &u));
std.testing.expect(X25519.scalarmult(output[0..], &k, &u));
mem.copy(u8, u[0..], k[0..]);
mem.copy(u8, k[0..], output[0..]);

View File

@ -96,12 +96,12 @@ pub fn benchmarkMac(comptime Mac: anytype, comptime bytes: comptime_int) !u64 {
const exchanges = [_]Crypto{Crypto{ .ty = crypto.dh.X25519, .name = "x25519" }};
pub fn benchmarkKeyExchange(comptime DhKeyExchange: anytype, comptime exchange_count: comptime_int) !u64 {
std.debug.assert(DhKeyExchange.key_length >= DhKeyExchange.secret_length);
std.debug.assert(DhKeyExchange.shared_length >= DhKeyExchange.secret_length);
var in: [DhKeyExchange.key_length]u8 = undefined;
var in: [DhKeyExchange.shared_length]u8 = undefined;
prng.random.bytes(in[0..]);
var out: [DhKeyExchange.key_length]u8 = undefined;
var out: [DhKeyExchange.shared_length]u8 = undefined;
prng.random.bytes(out[0..]);
var timer = try Timer.start();
@ -109,7 +109,7 @@ pub fn benchmarkKeyExchange(comptime DhKeyExchange: anytype, comptime exchange_c
{
var i: usize = 0;
while (i < exchange_count) : (i += 1) {
_ = DhKeyExchange.create(out[0..], out[0..], in[0..]);
try DhKeyExchange.scalarmult(&out, out, in);
mem.doNotOptimizeAway(&out);
}
}
@ -124,10 +124,8 @@ pub fn benchmarkKeyExchange(comptime DhKeyExchange: anytype, comptime exchange_c
const signatures = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
pub fn benchmarkSignature(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
var seed: [Signature.seed_length]u8 = undefined;
prng.random.bytes(seed[0..]);
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.createKeyPair(seed);
const key_pair = try Signature.KeyPair.create(null);
var timer = try Timer.start();
const start = timer.lap();
@ -149,11 +147,8 @@ pub fn benchmarkSignature(comptime Signature: anytype, comptime signatures_count
const signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
var seed: [Signature.seed_length]u8 = undefined;
prng.random.bytes(seed[0..]);
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.createKeyPair(seed);
const public_key = Signature.publicKey(key_pair);
const key_pair = try Signature.KeyPair.create(null);
const sig = try Signature.sign(&msg, key_pair, null);
var timer = try Timer.start();
@ -161,7 +156,7 @@ pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime sign
{
var i: usize = 0;
while (i < signatures_count) : (i += 1) {
try Signature.verify(sig, &msg, public_key);
try Signature.verify(sig, &msg, key_pair.public_key);
mem.doNotOptimizeAway(&sig);
}
}
@ -176,16 +171,13 @@ pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime sign
const batch_signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
pub fn benchmarkBatchSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
var seed: [Signature.seed_length]u8 = undefined;
prng.random.bytes(seed[0..]);
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.createKeyPair(seed);
const public_key = Signature.publicKey(key_pair);
const key_pair = try Signature.KeyPair.create(null);
const sig = try Signature.sign(&msg, key_pair, null);
var batch: [64]Signature.BatchElement = undefined;
for (batch) |*element| {
element.* = Signature.BatchElement{ .sig = sig, .msg = &msg, .public_key = public_key };
element.* = Signature.BatchElement{ .sig = sig, .msg = &msg, .public_key = key_pair.public_key };
}
var timer = try Timer.start();
@ -208,6 +200,7 @@ pub fn benchmarkBatchSignatureVerification(comptime Signature: anytype, comptime
const aeads = [_]Crypto{
Crypto{ .ty = crypto.aead.ChaCha20Poly1305, .name = "chacha20Poly1305" },
Crypto{ .ty = crypto.aead.XChaCha20Poly1305, .name = "xchacha20Poly1305" },
Crypto{ .ty = crypto.aead.XSalsa20Poly1305, .name = "xsalsa20Poly1305" },
Crypto{ .ty = crypto.aead.Gimli, .name = "gimli-aead" },
Crypto{ .ty = crypto.aead.Aegis128L, .name = "aegis-128l" },
Crypto{ .ty = crypto.aead.Aegis256, .name = "aegis-256" },

430
lib/std/crypto/salsa20.zig Normal file
View File

@ -0,0 +1,430 @@
const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const math = std.math;
const mem = std.mem;
const Poly1305 = crypto.onetimeauth.Poly1305;
const Blake2b = crypto.hash.blake2.Blake2b;
const X25519 = crypto.dh.X25519;
const Salsa20NonVecImpl = struct {
const BlockVec = [16]u32;
fn initContext(key: [8]u32, d: [4]u32) BlockVec {
const c = "expand 32-byte k";
const constant_le = comptime [4]u32{
mem.readIntLittle(u32, c[0..4]),
mem.readIntLittle(u32, c[4..8]),
mem.readIntLittle(u32, c[8..12]),
mem.readIntLittle(u32, c[12..16]),
};
return BlockVec{
constant_le[0], key[0], key[1], key[2],
key[3], constant_le[1], d[0], d[1],
d[2], d[3], constant_le[2], key[4],
key[5], key[6], key[7], constant_le[3],
};
}
const QuarterRound = struct {
a: usize,
b: usize,
c: usize,
d: u6,
};
inline fn Rp(comptime a: usize, comptime b: usize, comptime c: usize, comptime d: u6) QuarterRound {
return QuarterRound{
.a = a,
.b = b,
.c = c,
.d = d,
};
}
inline fn salsa20Core(x: *BlockVec, input: BlockVec) void {
const arx_steps = comptime [_]QuarterRound{
Rp(4, 0, 12, 7), Rp(8, 4, 0, 9), Rp(12, 8, 4, 13), Rp(0, 12, 8, 18),
Rp(9, 5, 1, 7), Rp(13, 9, 5, 9), Rp(1, 13, 9, 13), Rp(5, 1, 13, 18),
Rp(14, 10, 6, 7), Rp(2, 14, 10, 9), Rp(6, 2, 14, 13), Rp(10, 6, 2, 18),
Rp(3, 15, 11, 7), Rp(7, 3, 15, 9), Rp(11, 7, 3, 13), Rp(15, 11, 7, 18),
Rp(1, 0, 3, 7), Rp(2, 1, 0, 9), Rp(3, 2, 1, 13), Rp(0, 3, 2, 18),
Rp(6, 5, 4, 7), Rp(7, 6, 5, 9), Rp(4, 7, 6, 13), Rp(5, 4, 7, 18),
Rp(11, 10, 9, 7), Rp(8, 11, 10, 9), Rp(9, 8, 11, 13), Rp(10, 9, 8, 18),
Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
};
x.* = input;
var j: usize = 0;
while (j < 20) : (j += 2) {
inline for (arx_steps) |r| {
x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
}
}
}
fn hashToBytes(out: *[64]u8, x: BlockVec) void {
for (x) |w, i| {
mem.writeIntLittle(u32, out[i * 4 ..][0..4], w);
}
}
fn contextFeedback(x: *BlockVec, ctx: BlockVec) void {
var i: usize = 0;
while (i < 16) : (i += 1) {
x[i] +%= ctx[i];
}
}
fn salsa20Internal(out: []u8, in: []const u8, key: [8]u32, d: [4]u32) void {
var ctx = initContext(key, d);
var x: BlockVec = undefined;
var buf: [64]u8 = undefined;
var i: usize = 0;
while (i + 64 <= in.len) : (i += 64) {
salsa20Core(x[0..], ctx);
contextFeedback(&x, ctx);
hashToBytes(buf[0..], x);
var xout = out[i..];
const xin = in[i..];
var j: usize = 0;
while (j < 64) : (j += 1) {
xout[j] = xin[j];
}
j = 0;
while (j < 64) : (j += 1) {
xout[j] ^= buf[j];
}
ctx[9] += @boolToInt(@addWithOverflow(u32, ctx[8], 1, &ctx[8]));
}
if (i < in.len) {
salsa20Core(x[0..], ctx);
contextFeedback(&x, ctx);
hashToBytes(buf[0..], x);
var xout = out[i..];
const xin = in[i..];
var j: usize = 0;
while (j < in.len % 64) : (j += 1) {
xout[j] = xin[j] ^ buf[j];
}
}
}
fn hsalsa20(input: [16]u8, key: [32]u8) [32]u8 {
var c: [4]u32 = undefined;
for (c) |_, i| {
c[i] = mem.readIntLittle(u32, input[4 * i ..][0..4]);
}
const ctx = initContext(keyToWords(key), c);
var x: BlockVec = undefined;
salsa20Core(x[0..], ctx);
var out: [32]u8 = undefined;
mem.writeIntLittle(u32, out[0..4], x[0]);
mem.writeIntLittle(u32, out[4..8], x[5]);
mem.writeIntLittle(u32, out[8..12], x[10]);
mem.writeIntLittle(u32, out[12..16], x[15]);
mem.writeIntLittle(u32, out[16..20], x[6]);
mem.writeIntLittle(u32, out[20..24], x[7]);
mem.writeIntLittle(u32, out[24..28], x[8]);
mem.writeIntLittle(u32, out[28..32], x[9]);
return out;
}
};
const Salsa20Impl = Salsa20NonVecImpl;
fn keyToWords(key: [32]u8) [8]u32 {
var k: [8]u32 = undefined;
var i: usize = 0;
while (i < 8) : (i += 1) {
k[i] = mem.readIntLittle(u32, key[i * 4 ..][0..4]);
}
return k;
}
fn extend(key: [32]u8, nonce: [24]u8) struct { key: [32]u8, nonce: [8]u8 } {
return .{
.key = Salsa20Impl.hsalsa20(nonce[0..16].*, key),
.nonce = nonce[16..24].*,
};
}
/// The Salsa20 stream cipher.
pub const Salsa20 = struct {
/// Nonce length in bytes.
pub const nonce_length = 8;
/// Key length in bytes.
pub const key_length = 32;
/// Add the output of the Salsa20 stream cipher to `in` and stores the result into `out`.
/// WARNING: This function doesn't provide authenticated encryption.
/// Using the AEAD or one of the `box` versions is usually preferred.
pub fn xor(out: []u8, in: []const u8, counter: u64, key: [key_length]u8, nonce: [nonce_length]u8) void {
debug.assert(in.len == out.len);
var d: [4]u32 = undefined;
d[0] = mem.readIntLittle(u32, nonce[0..4]);
d[1] = mem.readIntLittle(u32, nonce[4..8]);
d[2] = @truncate(u32, counter);
d[3] = @truncate(u32, counter >> 32);
Salsa20Impl.salsa20Internal(out, in, keyToWords(key), d);
}
};
/// The XSalsa20 stream cipher.
pub const XSalsa20 = struct {
/// Nonce length in bytes.
pub const nonce_length = 24;
/// Key length in bytes.
pub const key_length = 32;
/// Add the output of the XSalsa20 stream cipher to `in` and stores the result into `out`.
/// WARNING: This function doesn't provide authenticated encryption.
/// Using the AEAD or one of the `box` versions is usually preferred.
pub fn xor(out: []u8, in: []const u8, counter: u64, key: [key_length]u8, nonce: [nonce_length]u8) void {
const extended = extend(key, nonce);
Salsa20.xor(out, in, counter, extended.key, extended.nonce);
}
};
/// The XSalsa20 stream cipher, combined with the Poly1305 MAC
pub const XSalsa20Poly1305 = struct {
/// Authentication tag length in bytes.
pub const tag_length = Poly1305.mac_length;
/// Nonce length in bytes.
pub const nonce_length = XSalsa20.nonce_length;
/// Key length in bytes.
pub const key_length = XSalsa20.key_length;
/// c: ciphertext: output buffer should be of size m.len
/// tag: authentication tag: output MAC
/// m: message
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void {
debug.assert(c.len == m.len);
const extended = extend(k, npub);
var block0 = [_]u8{0} ** 64;
const mlen0 = math.min(32, m.len);
mem.copy(u8, block0[32..][0..mlen0], m[0..mlen0]);
Salsa20.xor(block0[0..], block0[0..], 0, extended.key, extended.nonce);
mem.copy(u8, c[0..mlen0], block0[32..][0..mlen0]);
Salsa20.xor(c[mlen0..], m[mlen0..], 1, extended.key, extended.nonce);
var mac = Poly1305.init(block0[0..32]);
mac.update(ad);
mac.update(c);
mac.final(tag);
}
/// m: message: output buffer should be of size c.len
/// c: ciphertext
/// tag: authentication tag
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) !void {
debug.assert(c.len == m.len);
const extended = extend(k, npub);
var block0 = [_]u8{0} ** 64;
const mlen0 = math.min(32, c.len);
mem.copy(u8, block0[32..][0..mlen0], c[0..mlen0]);
Salsa20.xor(block0[0..], block0[0..], 0, extended.key, extended.nonce);
var mac = Poly1305.init(block0[0..32]);
mac.update(ad);
mac.update(c);
var computedTag: [tag_length]u8 = undefined;
mac.final(&computedTag);
var acc: u8 = 0;
for (computedTag) |_, i| {
acc |= (computedTag[i] ^ tag[i]);
}
if (acc != 0) {
mem.secureZero(u8, &computedTag);
return error.AuthenticationFailed;
}
mem.copy(u8, m[0..mlen0], block0[32..][0..mlen0]);
Salsa20.xor(m[mlen0..], c[mlen0..], 1, extended.key, extended.nonce);
}
};
/// NaCl-compatible secretbox API.
///
/// A secretbox contains both an encrypted message and an authentication tag to verify that it hasn't been tampered with.
/// A secret key shared by all the recipients must be already known in order to use this API.
///
/// Nonces are 192-bit large and can safely be chosen with a random number generator.
pub const secretBox = struct {
/// Key length in bytes.
pub const key_length = XSalsa20Poly1305.key_length;
/// Nonce length in bytes.
pub const nonce_length = XSalsa20Poly1305.nonce_length;
/// Authentication tag length in bytes.
pub const tag_length = XSalsa20Poly1305.tag_length;
/// Encrypt and authenticate `m` using a nonce `npub` and a key `k`.
/// `c` must be exactly `tag_length` longer than `m`, as it will store both the ciphertext and the authentication tag.
pub fn seal(c: []u8, m: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void {
debug.assert(c.len == tag_length + m.len);
XSalsa20Poly1305.encrypt(c[tag_length..], c[0..tag_length], m, "", npub, k);
}
/// Verify and decrypt `c` using a nonce `npub` and a key `k`.
/// `m` must be exactly `tag_length` smaller than `c`, as `c` includes an authentication tag in addition to the encrypted message.
pub fn open(m: []u8, c: []const u8, npub: [nonce_length]u8, k: [key_length]u8) !void {
if (c.len < tag_length) {
return error.AuthenticationFailed;
}
debug.assert(m.len == c.len - tag_length);
return XSalsa20Poly1305.decrypt(m, c[tag_length..], c[0..tag_length].*, "", npub, k);
}
};
/// NaCl-compatible box API.
///
/// A secretbox contains both an encrypted message and an authentication tag to verify that it hasn't been tampered with.
/// This construction uses public-key cryptography. A shared secret doesn't have to be known in advance by both parties.
/// Instead, a message is encrypted using a sender's secret key and a recipient's public key,
/// and is decrypted using the recipient's secret key and the sender's public key.
///
/// Nonces are 192-bit large and can safely be chosen with a random number generator.
pub const box = struct {
/// Public key length in bytes.
pub const public_length = X25519.public_length;
/// Secret key length in bytes.
pub const secret_length = X25519.secret_length;
/// Shared key length in bytes.
pub const shared_length = XSalsa20Poly1305.key_length;
/// Seed (for key pair creation) length in bytes.
pub const seed_length = X25519.seed_length;
/// Nonce length in bytes.
pub const nonce_length = XSalsa20Poly1305.nonce_length;
/// Authentication tag length in bytes.
pub const tag_length = XSalsa20Poly1305.tag_length;
/// A key pair.
pub const KeyPair = X25519.KeyPair;
/// Compute a secret suitable for `secretbox` given a recipent's public key and a sender's secret key.
pub fn createSharedSecret(public_key: [public_length]u8, secret_key: [secret_length]u8) ![shared_length]u8 {
var p: [32]u8 = undefined;
try X25519.scalarmult(&p, secret_key, public_key);
const zero = [_]u8{0} ** 16;
return Salsa20Impl.hsalsa20(zero, p);
}
/// Encrypt and authenticate a message using a recipient's public key `public_key` and a sender's `secret_key`.
pub fn seal(c: []u8, m: []const u8, npub: [nonce_length]u8, public_key: [public_length]u8, secret_key: [secret_length]u8) !void {
const shared_key = try createSharedSecret(public_key, secret_key);
return secretBox.seal(c, m, npub, shared_key);
}
/// Verify and decrypt a message using a recipient's secret key `public_key` and a sender's `public_key`.
pub fn open(m: []u8, c: []const u8, npub: [nonce_length]u8, public_key: [public_length]u8, secret_key: [secret_length]u8) !void {
const shared_key = try createSharedSecret(public_key, secret_key);
return secretBox.open(m, c, npub, shared_key);
}
};
/// libsodium-compatible sealed boxes
///
/// Sealed boxes are designed to anonymously send messages to a recipient given their public key.
/// Only the recipient can decrypt these messages, using their private key.
/// While the recipient can verify the integrity of the message, it cannot verify the identity of the sender.
///
/// A message is encrypted using an ephemeral key pair, whose secret part is destroyed right after the encryption process.
pub const sealedBox = struct {
pub const public_length = box.public_length;
pub const secret_length = box.secret_length;
pub const seed_length = box.seed_length;
pub const seal_length = box.public_length + box.tag_length;
/// A key pair.
pub const KeyPair = box.KeyPair;
fn createNonce(pk1: [public_length]u8, pk2: [public_length]u8) [box.nonce_length]u8 {
var hasher = Blake2b(box.nonce_length * 8).init(.{});
hasher.update(&pk1);
hasher.update(&pk2);
var nonce: [box.nonce_length]u8 = undefined;
hasher.final(&nonce);
return nonce;
}
/// Encrypt a message `m` for a recipient whose public key is `public_key`.
/// `c` must be `seal_length` bytes larger than `m`, so that the required metadata can be added.
pub fn seal(c: []u8, m: []const u8, public_key: [public_length]u8) !void {
debug.assert(c.len == m.len + seal_length);
var ekp = try KeyPair.create(null);
const nonce = createNonce(ekp.public_key, public_key);
mem.copy(u8, c[0..public_length], ekp.public_key[0..]);
try box.seal(c[box.public_length..], m, nonce, public_key, ekp.secret_key);
mem.secureZero(u8, ekp.secret_key[0..]);
}
/// Decrypt a message using a key pair.
/// `m` must be exactly `seal_length` bytes smaller than `c`, as `c` also includes metadata.
pub fn open(m: []u8, c: []const u8, keypair: KeyPair) !void {
if (c.len < seal_length) {
return error.AuthenticationFailed;
}
const epk = c[0..public_length];
const nonce = createNonce(epk.*, keypair.public_key);
return box.open(m, c[public_length..], nonce, epk.*, keypair.secret_key);
}
};
test "xsalsa20poly1305" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var c: [msg.len]u8 = undefined;
var key: [XSalsa20Poly1305.key_length]u8 = undefined;
var nonce: [XSalsa20Poly1305.nonce_length]u8 = undefined;
var tag: [XSalsa20Poly1305.tag_length]u8 = undefined;
try crypto.randomBytes(&msg);
try crypto.randomBytes(&key);
try crypto.randomBytes(&nonce);
XSalsa20Poly1305.encrypt(c[0..], &tag, msg[0..], "ad", nonce, key);
try XSalsa20Poly1305.decrypt(msg2[0..], c[0..], tag, "ad", nonce, key);
}
test "xsalsa20poly1305 secretbox" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var key: [XSalsa20Poly1305.key_length]u8 = undefined;
var nonce: [box.nonce_length]u8 = undefined;
var boxed: [msg.len + box.tag_length]u8 = undefined;
try crypto.randomBytes(&msg);
try crypto.randomBytes(&key);
try crypto.randomBytes(&nonce);
secretBox.seal(boxed[0..], msg[0..], nonce, key);
try secretBox.open(msg2[0..], boxed[0..], nonce, key);
}
test "xsalsa20poly1305 box" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var nonce: [box.nonce_length]u8 = undefined;
var boxed: [msg.len + box.tag_length]u8 = undefined;
try crypto.randomBytes(&msg);
try crypto.randomBytes(&nonce);
var kp1 = try box.KeyPair.create(null);
var kp2 = try box.KeyPair.create(null);
try box.seal(boxed[0..], msg[0..], nonce, kp1.public_key, kp2.secret_key);
try box.open(msg2[0..], boxed[0..], nonce, kp2.public_key, kp1.secret_key);
}
test "xsalsa20poly1305 sealedbox" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var boxed: [msg.len + sealedBox.seal_length]u8 = undefined;
try crypto.randomBytes(&msg);
var kp = try box.KeyPair.create(null);
try sealedBox.seal(boxed[0..], msg[0..], kp.public_key);
try sealedBox.open(msg2[0..], boxed[0..], kp);
}