Move ed25519 key pairs to a KeyPair structure

This commit is contained in:
Frank Denis 2020-10-25 21:55:05 +01:00
parent 28fb97f188
commit 0c7a99b38d
2 changed files with 65 additions and 63 deletions

View File

@ -5,6 +5,7 @@
// and substantial portions of the software.
const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const fmt = std.fmt;
const mem = std.mem;
const Sha512 = std.crypto.hash.sha2.Sha512;
@ -15,8 +16,8 @@ pub const Ed25519 = struct {
pub const Curve = @import("edwards25519.zig").Edwards25519;
/// Length (in bytes) of a seed required to create a key pair.
pub const seed_length = 32;
/// Length (in bytes) of a compressed key pair.
pub const keypair_length = 64;
/// Length (in bytes) of a compressed secret key.
pub const secret_length = 64;
/// Length (in bytes) of a compressed public key.
pub const public_length = 32;
/// Length (in bytes) of a signature.
@ -24,46 +25,61 @@ pub const Ed25519 = struct {
/// Length (in bytes) of optional random bytes, for non-deterministic signatures.
pub const noise_length = 32;
/// Derive a key pair from a secret seed.
///
/// As in RFC 8032, an Ed25519 public key is generated by hashing
/// the secret key using the SHA-512 function, and interpreting the
/// bit-swapped, clamped lower-half of the output as the secret scalar.
///
/// For this reason, an EdDSA secret key is commonly called a seed,
/// from which the actual secret is derived.
pub fn createKeyPair(seed: ?[seed_length]u8) ![keypair_length]u8 {
const sk = seed orelse sk: {
var random_seed: [seed_length]u8 = undefined;
try crypto.randomBytes(&random_seed);
break :sk random_seed;
};
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(&sk);
h.final(&az);
const p = try Curve.basePoint.clampedMul(az[0..32].*);
var keypair: [keypair_length]u8 = undefined;
mem.copy(u8, &keypair, &sk);
mem.copy(u8, keypair[seed_length..], &p.toBytes());
return keypair;
}
/// An Ed25519 key pair.
pub const KeyPair = struct {
/// Public part.
public_key: [public_length]u8,
/// Secret part. What we expose as a secret key is, under the hood, the concatenation of the seed and the public key.
secret_key: [secret_length]u8,
/// Return the public key for a given key pair.
pub fn publicKey(key_pair: [keypair_length]u8) [public_length]u8 {
var public_key: [public_length]u8 = undefined;
mem.copy(u8, public_key[0..], key_pair[seed_length..]);
return public_key;
}
/// Derive a key pair from an optional secret seed.
///
/// As in RFC 8032, an Ed25519 public key is generated by hashing
/// the secret key using the SHA-512 function, and interpreting the
/// bit-swapped, clamped lower-half of the output as the secret scalar.
///
/// For this reason, an EdDSA secret key is commonly called a seed,
/// from which the actual secret is derived.
pub fn create(seed: ?[seed_length]u8) !KeyPair {
const ss = seed orelse ss: {
var random_seed: [seed_length]u8 = undefined;
try crypto.randomBytes(&random_seed);
break :ss random_seed;
};
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(&ss);
h.final(&az);
const p = try Curve.basePoint.clampedMul(az[0..32].*);
var sk: [secret_length]u8 = undefined;
mem.copy(u8, &sk, &ss);
const pk = p.toBytes();
mem.copy(u8, sk[seed_length..], &pk);
return KeyPair{ .public_key = pk, .secret_key = sk };
}
/// Create a KeyPair from a secret key.
pub fn fromSecretKey(secret_key: [secret_length]u8) KeyPair {
return KeyPair{
.secret_key = secret_key,
.public_key = secret_key[seed_length..].*,
};
}
};
/// Sign a message using a key pair, and optional random noise.
/// Having noise creates non-standard, non-deterministic signatures,
/// but has been proven to increase resilience against fault attacks.
pub fn sign(msg: []const u8, key_pair: [keypair_length]u8, noise: ?[noise_length]u8) ![signature_length]u8 {
const public_key = key_pair[32..];
pub fn sign(msg: []const u8, key_pair: KeyPair, noise: ?[noise_length]u8) ![signature_length]u8 {
const seed = key_pair.secret_key[0..seed_length];
const public_key = key_pair.secret_key[seed_length..];
if (!mem.eql(u8, public_key, &key_pair.public_key)) {
return error.KeyMismatch;
}
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(key_pair[0..seed_length]);
h.update(seed);
h.final(&az);
h = Sha512.init(.{});
@ -192,50 +208,44 @@ pub const Ed25519 = struct {
test "ed25519 key pair creation" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.createKeyPair(seed);
const key_pair = try Ed25519.KeyPair.create(seed);
var buf: [256]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
const public_key = Ed25519.publicKey(key_pair);
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{public_key}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair.secret_key}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair.public_key}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
}
test "ed25519 signature" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.createKeyPair(seed);
const key_pair = try Ed25519.KeyPair.create(seed);
const sig = try Ed25519.sign("test", key_pair, null);
var buf: [128]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{sig}), "10A442B4A80CC4225B154F43BEF28D2472CA80221951262EB8E0DF9091575E2687CC486E77263C3418C757522D54F84B0359236ABBBD4ACD20DC297FDCA66808");
const public_key = Ed25519.publicKey(key_pair);
try Ed25519.verify(sig, "test", public_key);
std.testing.expectError(error.InvalidSignature, Ed25519.verify(sig, "TEST", public_key));
try Ed25519.verify(sig, "test", key_pair.public_key);
std.testing.expectError(error.InvalidSignature, Ed25519.verify(sig, "TEST", key_pair.public_key));
}
test "ed25519 batch verification" {
var i: usize = 0;
while (i < 100) : (i += 1) {
var seed: [32]u8 = undefined;
try std.crypto.randomBytes(&seed);
const key_pair = try Ed25519.createKeyPair(seed);
const key_pair = try Ed25519.KeyPair.create(null);
var msg1: [32]u8 = undefined;
var msg2: [32]u8 = undefined;
try std.crypto.randomBytes(&msg1);
try std.crypto.randomBytes(&msg2);
const sig1 = try Ed25519.sign(&msg1, key_pair, null);
const sig2 = try Ed25519.sign(&msg2, key_pair, null);
const public_key = Ed25519.publicKey(key_pair);
var signature_batch = [_]Ed25519.BatchElement{
Ed25519.BatchElement{
.sig = sig1,
.msg = &msg1,
.public_key = public_key,
.public_key = key_pair.public_key,
},
Ed25519.BatchElement{
.sig = sig2,
.msg = &msg2,
.public_key = public_key,
.public_key = key_pair.public_key,
},
};
try Ed25519.verifyBatch(2, signature_batch);

View File

@ -124,10 +124,8 @@ pub fn benchmarkKeyExchange(comptime DhKeyExchange: anytype, comptime exchange_c
const signatures = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
pub fn benchmarkSignature(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
var seed: [Signature.seed_length]u8 = undefined;
prng.random.bytes(seed[0..]);
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.createKeyPair(seed);
const key_pair = try Signature.KeyPair.create(null);
var timer = try Timer.start();
const start = timer.lap();
@ -149,11 +147,8 @@ pub fn benchmarkSignature(comptime Signature: anytype, comptime signatures_count
const signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
var seed: [Signature.seed_length]u8 = undefined;
prng.random.bytes(seed[0..]);
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.createKeyPair(seed);
const public_key = Signature.publicKey(key_pair);
const key_pair = try Signature.KeyPair.create(null);
const sig = try Signature.sign(&msg, key_pair, null);
var timer = try Timer.start();
@ -161,7 +156,7 @@ pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime sign
{
var i: usize = 0;
while (i < signatures_count) : (i += 1) {
try Signature.verify(sig, &msg, public_key);
try Signature.verify(sig, &msg, key_pair.public_key);
mem.doNotOptimizeAway(&sig);
}
}
@ -176,16 +171,13 @@ pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime sign
const batch_signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
pub fn benchmarkBatchSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
var seed: [Signature.seed_length]u8 = undefined;
prng.random.bytes(seed[0..]);
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.createKeyPair(seed);
const public_key = Signature.publicKey(key_pair);
const key_pair = try Signature.KeyPair.create(null);
const sig = try Signature.sign(&msg, key_pair, null);
var batch: [64]Signature.BatchElement = undefined;
for (batch) |*element| {
element.* = Signature.BatchElement{ .sig = sig, .msg = &msg, .public_key = public_key };
element.* = Signature.BatchElement{ .sig = sig, .msg = &msg, .public_key = key_pair.public_key };
}
var timer = try Timer.start();