zig/src/codegen/wasm.zig
Luuk de Gram ff5774d93d
Refactor link/wasm.zig to use offset table
This refactor inserts an offset table into wasm's data section
where each offset points to the actual data region.
This means we can keep offset indexes consistant and do not
have to perform any computer to determine where in the data section
something like a static string exists. Instead during runtime
it will load the data offset onto the stack.
2021-04-08 22:47:08 +02:00

1048 lines
40 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;
const assert = std.debug.assert;
const testing = std.testing;
const leb = std.leb;
const mem = std.mem;
const wasm = std.wasm;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const ir = @import("../ir.zig");
const Inst = ir.Inst;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const Compilation = @import("../Compilation.zig");
const AnyMCValue = @import("../codegen.zig").AnyMCValue;
const LazySrcLoc = Module.LazySrcLoc;
const link = @import("../link.zig");
const TypedValue = @import("../TypedValue.zig");
/// Wasm Value, created when generating an instruction
const WValue = union(enum) {
/// May be referenced but is unused
none: void,
/// Index of the local variable
local: u32,
/// Instruction holding a constant `Value`
constant: *Inst,
/// Offset position in the list of bytecode instructions
code_offset: usize,
/// The label of the block, used by breaks to find its relative distance
block_idx: u32,
};
/// Wasm ops, but without input/output/signedness information
/// Used for `buildOpcode`
const Op = enum {
@"unreachable",
nop,
block,
loop,
@"if",
@"else",
end,
br,
br_if,
br_table,
@"return",
call,
call_indirect,
drop,
select,
local_get,
local_set,
local_tee,
global_get,
global_set,
load,
store,
memory_size,
memory_grow,
@"const",
eqz,
eq,
ne,
lt,
gt,
le,
ge,
clz,
ctz,
popcnt,
add,
sub,
mul,
div,
rem,
@"and",
@"or",
xor,
shl,
shr,
rotl,
rotr,
abs,
neg,
ceil,
floor,
trunc,
nearest,
sqrt,
min,
max,
copysign,
wrap,
convert,
demote,
promote,
reinterpret,
extend,
};
/// Contains the settings needed to create an `Opcode` using `buildOpcode`.
///
/// The fields correspond to the opcode name. Here is an example
/// i32_trunc_f32_s
/// ^ ^ ^ ^
/// | | | |
/// valtype1 | | |
/// = .i32 | | |
/// | | |
/// op | |
/// = .trunc | |
/// | |
/// valtype2 |
/// = .f32 |
/// |
/// width |
/// = null |
/// |
/// signed
/// = true
///
/// There can be missing fields, here are some more examples:
/// i64_load8_u
/// --> .{ .valtype1 = .i64, .op = .load, .width = 8, signed = false }
/// i32_mul
/// --> .{ .valtype1 = .i32, .op = .trunc }
/// nop
/// --> .{ .op = .nop }
const OpcodeBuildArguments = struct {
/// First valtype in the opcode (usually represents the type of the output)
valtype1: ?wasm.Valtype = null,
/// The operation (e.g. call, unreachable, div, min, sqrt, etc.)
op: Op,
/// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s)
width: ?u8 = null,
/// Second valtype in the opcode name (usually represents the type of the input)
valtype2: ?wasm.Valtype = null,
/// Signedness of the op
signedness: ?std.builtin.Signedness = null,
};
/// Helper function that builds an Opcode given the arguments needed
fn buildOpcode(args: OpcodeBuildArguments) wasm.Opcode {
switch (args.op) {
.@"unreachable" => return .@"unreachable",
.nop => return .nop,
.block => return .block,
.loop => return .loop,
.@"if" => return .@"if",
.@"else" => return .@"else",
.end => return .end,
.br => return .br,
.br_if => return .br_if,
.br_table => return .br_table,
.@"return" => return .@"return",
.call => return .call,
.call_indirect => return .call_indirect,
.drop => return .drop,
.select => return .select,
.local_get => return .local_get,
.local_set => return .local_set,
.local_tee => return .local_tee,
.global_get => return .global_get,
.global_set => return .global_set,
.load => if (args.width) |width| switch (width) {
8 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u,
.i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u,
.f32, .f64 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u,
.i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u,
.f32, .f64 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u,
.i32, .f32, .f64 => unreachable,
},
else => unreachable,
} else switch (args.valtype1.?) {
.i32 => return .i32_load,
.i64 => return .i64_load,
.f32 => return .f32_load,
.f64 => return .f64_load,
},
.store => if (args.width) |width| {
switch (width) {
8 => switch (args.valtype1.?) {
.i32 => return .i32_store8,
.i64 => return .i64_store8,
.f32, .f64 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => return .i32_store16,
.i64 => return .i64_store16,
.f32, .f64 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => return .i64_store32,
.i32, .f32, .f64 => unreachable,
},
else => unreachable,
}
} else {
switch (args.valtype1.?) {
.i32 => return .i32_store,
.i64 => return .i64_store,
.f32 => return .f32_store,
.f64 => return .f64_store,
}
},
.memory_size => return .memory_size,
.memory_grow => return .memory_grow,
.@"const" => switch (args.valtype1.?) {
.i32 => return .i32_const,
.i64 => return .i64_const,
.f32 => return .f32_const,
.f64 => return .f64_const,
},
.eqz => switch (args.valtype1.?) {
.i32 => return .i32_eqz,
.i64 => return .i64_eqz,
.f32, .f64 => unreachable,
},
.eq => switch (args.valtype1.?) {
.i32 => return .i32_eq,
.i64 => return .i64_eq,
.f32 => return .f32_eq,
.f64 => return .f64_eq,
},
.ne => switch (args.valtype1.?) {
.i32 => return .i32_ne,
.i64 => return .i64_ne,
.f32 => return .f32_ne,
.f64 => return .f64_ne,
},
.lt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u,
.i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u,
.f32 => return .f32_lt,
.f64 => return .f64_lt,
},
.gt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u,
.i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u,
.f32 => return .f32_gt,
.f64 => return .f64_gt,
},
.le => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u,
.i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u,
.f32 => return .f32_le,
.f64 => return .f64_le,
},
.ge => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u,
.i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u,
.f32 => return .f32_ge,
.f64 => return .f64_ge,
},
.clz => switch (args.valtype1.?) {
.i32 => return .i32_clz,
.i64 => return .i64_clz,
.f32, .f64 => unreachable,
},
.ctz => switch (args.valtype1.?) {
.i32 => return .i32_ctz,
.i64 => return .i64_ctz,
.f32, .f64 => unreachable,
},
.popcnt => switch (args.valtype1.?) {
.i32 => return .i32_popcnt,
.i64 => return .i64_popcnt,
.f32, .f64 => unreachable,
},
.add => switch (args.valtype1.?) {
.i32 => return .i32_add,
.i64 => return .i64_add,
.f32 => return .f32_add,
.f64 => return .f64_add,
},
.sub => switch (args.valtype1.?) {
.i32 => return .i32_sub,
.i64 => return .i64_sub,
.f32 => return .f32_sub,
.f64 => return .f64_sub,
},
.mul => switch (args.valtype1.?) {
.i32 => return .i32_mul,
.i64 => return .i64_mul,
.f32 => return .f32_mul,
.f64 => return .f64_mul,
},
.div => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u,
.i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u,
.f32 => return .f32_div,
.f64 => return .f64_div,
},
.rem => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u,
.i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u,
.f32, .f64 => unreachable,
},
.@"and" => switch (args.valtype1.?) {
.i32 => return .i32_and,
.i64 => return .i64_and,
.f32, .f64 => unreachable,
},
.@"or" => switch (args.valtype1.?) {
.i32 => return .i32_or,
.i64 => return .i64_or,
.f32, .f64 => unreachable,
},
.xor => switch (args.valtype1.?) {
.i32 => return .i32_xor,
.i64 => return .i64_xor,
.f32, .f64 => unreachable,
},
.shl => switch (args.valtype1.?) {
.i32 => return .i32_shl,
.i64 => return .i64_shl,
.f32, .f64 => unreachable,
},
.shr => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u,
.i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u,
.f32, .f64 => unreachable,
},
.rotl => switch (args.valtype1.?) {
.i32 => return .i32_rotl,
.i64 => return .i64_rotl,
.f32, .f64 => unreachable,
},
.rotr => switch (args.valtype1.?) {
.i32 => return .i32_rotr,
.i64 => return .i64_rotr,
.f32, .f64 => unreachable,
},
.abs => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_abs,
.f64 => return .f64_abs,
},
.neg => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_neg,
.f64 => return .f64_neg,
},
.ceil => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_ceil,
.f64 => return .f64_ceil,
},
.floor => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_floor,
.f64 => return .f64_floor,
},
.trunc => switch (args.valtype1.?) {
.i32 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => unreachable,
.f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u,
.f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u,
},
.i64 => unreachable,
.f32 => return .f32_trunc,
.f64 => return .f64_trunc,
},
.nearest => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_nearest,
.f64 => return .f64_nearest,
},
.sqrt => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_sqrt,
.f64 => return .f64_sqrt,
},
.min => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_min,
.f64 => return .f64_min,
},
.max => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_max,
.f64 => return .f64_max,
},
.copysign => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_copysign,
.f64 => return .f64_copysign,
},
.wrap => switch (args.valtype1.?) {
.i32 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => return .i32_wrap_i64,
.f32, .f64 => unreachable,
},
.i64, .f32, .f64 => unreachable,
},
.convert => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u,
.f32, .f64 => unreachable,
},
.f64 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u,
.f32, .f64 => unreachable,
},
},
.demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable,
.promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable,
.reinterpret => switch (args.valtype1.?) {
.i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable,
.i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable,
.f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable,
.f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable,
},
.extend => switch (args.valtype1.?) {
.i32 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable,
else => unreachable,
},
.i64 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable,
32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable,
else => unreachable,
},
.f32, .f64 => unreachable,
},
}
}
test "Wasm - buildOpcode" {
// Make sure buildOpcode is referenced, and test some examples
const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 });
const end = buildOpcode(.{ .op = .end });
const local_get = buildOpcode(.{ .op = .local_get });
const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed });
const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 });
testing.expectEqual(@as(wasm.Opcode, .i32_const), i32_const);
testing.expectEqual(@as(wasm.Opcode, .end), end);
testing.expectEqual(@as(wasm.Opcode, .local_get), local_get);
testing.expectEqual(@as(wasm.Opcode, .i64_extend32_s), i64_extend32_s);
testing.expectEqual(@as(wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64);
}
pub const Result = union(enum) {
/// The codegen bytes have been appended to `Context.code`
appended: void,
/// The data is managed externally and are part of the `Result`
externally_managed: []const u8,
};
/// Hashmap to store generated `WValue` for each `Inst`
pub const ValueTable = std.AutoHashMapUnmanaged(*Inst, WValue);
/// Code represents the `Code` section of wasm that
/// belongs to a function
pub const Context = struct {
/// Reference to the function declaration the code
/// section belongs to
decl: *Decl,
gpa: *mem.Allocator,
/// Table to save `WValue`'s generated by an `Inst`
values: ValueTable,
/// `bytes` contains the wasm bytecode belonging to the 'code' section.
code: ArrayList(u8),
/// Contains the generated function type bytecode for the current function
/// found in `decl`
func_type_data: ArrayList(u8),
/// The index the next local generated will have
/// NOTE: arguments share the index with locals therefore the first variable
/// will have the index that comes after the last argument's index
local_index: u32 = 0,
/// If codegen fails, an error messages will be allocated and saved in `err_msg`
err_msg: *Module.ErrorMsg,
/// Current block depth. Used to calculate the relative difference between a break
/// and block
block_depth: u32 = 0,
/// List of all locals' types generated throughout this declaration
/// used to emit locals count at start of 'code' section.
locals: std.ArrayListUnmanaged(u8),
/// The Target we're emitting (used to call intInfo)
target: std.Target,
const InnerError = error{
OutOfMemory,
CodegenFail,
/// Can occur when dereferencing a pointer that points to a `Decl` of which the analysis has failed
AnalysisFail,
};
pub fn deinit(self: *Context) void {
self.values.deinit(self.gpa);
self.locals.deinit(self.gpa);
self.* = undefined;
}
/// Sets `err_msg` on `Context` and returns `error.CodegemFail` which is caught in link/Wasm.zig
fn fail(self: *Context, src: LazySrcLoc, comptime fmt: []const u8, args: anytype) InnerError {
const src_loc = src.toSrcLocWithDecl(self.decl);
self.err_msg = try Module.ErrorMsg.create(self.gpa, src_loc, fmt, args);
return error.CodegenFail;
}
/// Resolves the `WValue` for the given instruction `inst`
/// When the given instruction has a `Value`, it returns a constant instead
fn resolveInst(self: Context, inst: *Inst) WValue {
if (!inst.ty.hasCodeGenBits()) return .none;
if (inst.value()) |_| {
return WValue{ .constant = inst };
}
return self.values.get(inst).?; // Instruction does not dominate all uses!
}
/// Using a given `Type`, returns the corresponding wasm Valtype
fn typeToValtype(self: *Context, src: LazySrcLoc, ty: Type) InnerError!wasm.Valtype {
return switch (ty.zigTypeTag()) {
.Float => blk: {
const bits = ty.floatBits(self.target);
if (bits == 16 or bits == 32) break :blk wasm.Valtype.f32;
if (bits == 64) break :blk wasm.Valtype.f64;
return self.fail(src, "Float bit size not supported by wasm: '{d}'", .{bits});
},
.Int => blk: {
const info = ty.intInfo(self.target);
if (info.bits <= 32) break :blk wasm.Valtype.i32;
if (info.bits > 32 and info.bits <= 64) break :blk wasm.Valtype.i64;
return self.fail(src, "Integer bit size not supported by wasm: '{d}'", .{info.bits});
},
.Bool, .Pointer => wasm.Valtype.i32,
else => self.fail(src, "TODO - Wasm valtype for type '{s}'", .{ty.tag()}),
};
}
/// Using a given `Type`, returns the byte representation of its wasm value type
fn genValtype(self: *Context, src: LazySrcLoc, ty: Type) InnerError!u8 {
return wasm.valtype(try self.typeToValtype(src, ty));
}
/// Using a given `Type`, returns the corresponding wasm value type
/// Differently from `genValtype` this also allows `void` to create a block
/// with no return type
fn genBlockType(self: *Context, src: LazySrcLoc, ty: Type) InnerError!u8 {
return switch (ty.tag()) {
.void, .noreturn => wasm.block_empty,
else => self.genValtype(src, ty),
};
}
/// Writes the bytecode depending on the given `WValue` in `val`
fn emitWValue(self: *Context, val: WValue) InnerError!void {
const writer = self.code.writer();
switch (val) {
.block_idx => unreachable,
.none, .code_offset => {},
.local => |idx| {
try writer.writeByte(wasm.opcode(.local_get));
try leb.writeULEB128(writer, idx);
},
.constant => |inst| try self.emitConstant(inst.castTag(.constant).?), // creates a new constant onto the stack
}
}
fn genFunctype(self: *Context) InnerError!void {
const ty = self.decl.typed_value.most_recent.typed_value.ty;
const writer = self.func_type_data.writer();
try writer.writeByte(wasm.function_type);
// param types
try leb.writeULEB128(writer, @intCast(u32, ty.fnParamLen()));
if (ty.fnParamLen() != 0) {
const params = try self.gpa.alloc(Type, ty.fnParamLen());
defer self.gpa.free(params);
ty.fnParamTypes(params);
for (params) |param_type| {
// Can we maybe get the source index of each param?
const val_type = try self.genValtype(.{ .node_offset = 0 }, param_type);
try writer.writeByte(val_type);
}
}
// return type
const return_type = ty.fnReturnType();
switch (return_type.tag()) {
.void, .noreturn => try leb.writeULEB128(writer, @as(u32, 0)),
else => |ret_type| {
try leb.writeULEB128(writer, @as(u32, 1));
// Can we maybe get the source index of the return type?
const val_type = try self.genValtype(.{ .node_offset = 0 }, return_type);
try writer.writeByte(val_type);
},
}
}
/// Generates the wasm bytecode for the function declaration belonging to `Context`
pub fn gen(self: *Context, typed_value: TypedValue) InnerError!Result {
switch (typed_value.ty.zigTypeTag()) {
.Fn => {
try self.genFunctype();
// Write instructions
// TODO: check for and handle death of instructions
const mod_fn = blk: {
if (typed_value.val.castTag(.function)) |func| break :blk func.data;
if (typed_value.val.castTag(.extern_fn)) |ext_fn| return Result.appended; // don't need code body for extern functions
unreachable;
};
// Reserve space to write the size after generating the code as well as space for locals count
try self.code.resize(10);
try self.genBody(mod_fn.body);
// finally, write our local types at the 'offset' position
{
leb.writeUnsignedFixed(5, self.code.items[5..10], @intCast(u32, self.locals.items.len));
// offset into 'code' section where we will put our locals types
var local_offset: usize = 10;
// emit the actual locals amount
for (self.locals.items) |local| {
var buf: [6]u8 = undefined;
leb.writeUnsignedFixed(5, buf[0..5], @as(u32, 1));
buf[5] = local;
try self.code.insertSlice(local_offset, &buf);
local_offset += 6;
}
}
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.end));
// Fill in the size of the generated code to the reserved space at the
// beginning of the buffer.
const size = self.code.items.len - 5 + self.decl.fn_link.wasm.idx_refs.items.len * 5;
leb.writeUnsignedFixed(5, self.code.items[0..5], @intCast(u32, size));
// codegen data has been appended to `code`
return Result.appended;
},
.Array => {
if (typed_value.val.castTag(.bytes)) |payload| {
if (typed_value.ty.sentinel()) |sentinel| {
try self.code.appendSlice(payload.data);
switch (try self.gen(.{
.ty = typed_value.ty.elemType(),
.val = sentinel,
})) {
.appended => return Result.appended,
.externally_managed => |data| {
try self.code.appendSlice(data);
return Result.appended;
},
}
}
return Result{ .externally_managed = payload.data };
} else return self.fail(.{ .node_offset = 0 }, "TODO implement gen for more kinds of arrays", .{});
},
.Int => {
const info = typed_value.ty.intInfo(self.target);
if (info.bits == 8 and info.signedness == .unsigned) {
const int_byte = typed_value.val.toUnsignedInt();
try self.code.append(@intCast(u8, int_byte));
return Result.appended;
}
return self.fail(.{ .node_offset = 0 }, "TODO: Implement codegen for int type: '{}'", .{typed_value.ty});
},
else => |tag| return self.fail(.{ .node_offset = 0 }, "TODO: Implement zig type codegen for type: '{s}'", .{tag}),
}
}
fn genInst(self: *Context, inst: *Inst) InnerError!WValue {
return switch (inst.tag) {
.add => self.genBinOp(inst.castTag(.add).?, .add),
.alloc => self.genAlloc(inst.castTag(.alloc).?),
.arg => self.genArg(inst.castTag(.arg).?),
.block => self.genBlock(inst.castTag(.block).?),
.breakpoint => self.genBreakpoint(inst.castTag(.breakpoint).?),
.br => self.genBr(inst.castTag(.br).?),
.call => self.genCall(inst.castTag(.call).?),
.bit_or => self.genBinOp(inst.castTag(.bit_or).?, .@"or"),
.bit_and => self.genBinOp(inst.castTag(.bit_and).?, .@"and"),
.bool_or => self.genBinOp(inst.castTag(.bool_or).?, .@"or"),
.bool_and => self.genBinOp(inst.castTag(.bool_and).?, .@"and"),
.cmp_eq => self.genCmp(inst.castTag(.cmp_eq).?, .eq),
.cmp_gte => self.genCmp(inst.castTag(.cmp_gte).?, .gte),
.cmp_gt => self.genCmp(inst.castTag(.cmp_gt).?, .gt),
.cmp_lte => self.genCmp(inst.castTag(.cmp_lte).?, .lte),
.cmp_lt => self.genCmp(inst.castTag(.cmp_lt).?, .lt),
.cmp_neq => self.genCmp(inst.castTag(.cmp_neq).?, .neq),
.condbr => self.genCondBr(inst.castTag(.condbr).?),
.constant => unreachable,
.dbg_stmt => WValue.none,
.load => self.genLoad(inst.castTag(.load).?),
.loop => self.genLoop(inst.castTag(.loop).?),
.mul => self.genBinOp(inst.castTag(.mul).?, .mul),
.div => self.genBinOp(inst.castTag(.div).?, .div),
.xor => self.genBinOp(inst.castTag(.xor).?, .xor),
.not => self.genNot(inst.castTag(.not).?),
.ret => self.genRet(inst.castTag(.ret).?),
.retvoid => WValue.none,
.store => self.genStore(inst.castTag(.store).?),
.sub => self.genBinOp(inst.castTag(.sub).?, .sub),
.unreach => self.genUnreachable(inst.castTag(.unreach).?),
else => self.fail(inst.src, "TODO: Implement wasm inst: {s}", .{inst.tag}),
};
}
fn genBody(self: *Context, body: ir.Body) InnerError!void {
for (body.instructions) |inst| {
const result = try self.genInst(inst);
try self.values.putNoClobber(self.gpa, inst, result);
}
}
fn genRet(self: *Context, inst: *Inst.UnOp) InnerError!WValue {
// TODO: Implement tail calls
const operand = self.resolveInst(inst.operand);
try self.emitWValue(operand);
return .none;
}
fn genCall(self: *Context, inst: *Inst.Call) InnerError!WValue {
const func_inst = inst.func.castTag(.constant).?;
const func_val = inst.func.value().?;
const target = blk: {
if (func_val.castTag(.function)) |func| {
break :blk func.data.owner_decl;
} else if (func_val.castTag(.extern_fn)) |ext_fn| {
break :blk ext_fn.data;
}
return self.fail(inst.base.src, "Expected a function, but instead found type '{s}'", .{func_val.tag()});
};
for (inst.args) |arg| {
const arg_val = self.resolveInst(arg);
try self.emitWValue(arg_val);
}
try self.code.append(wasm.opcode(.call));
// The function index immediate argument will be filled in using this data
// in link.Wasm.flush().
try self.decl.fn_link.wasm.idx_refs.append(self.gpa, .{
.offset = @intCast(u32, self.code.items.len),
.decl = target,
});
return .none;
}
fn genAlloc(self: *Context, inst: *Inst.NoOp) InnerError!WValue {
const elem_type = inst.base.ty.elemType();
const valtype = try self.genValtype(inst.base.src, elem_type);
try self.locals.append(self.gpa, valtype);
defer self.local_index += 1;
return WValue{ .local = self.local_index };
}
fn genStore(self: *Context, inst: *Inst.BinOp) InnerError!WValue {
const writer = self.code.writer();
const lhs = self.resolveInst(inst.lhs);
const rhs = self.resolveInst(inst.rhs);
try self.emitWValue(rhs);
try writer.writeByte(wasm.opcode(.local_set));
try leb.writeULEB128(writer, lhs.local);
return .none;
}
fn genLoad(self: *Context, inst: *Inst.UnOp) InnerError!WValue {
return self.resolveInst(inst.operand);
}
fn genArg(self: *Context, inst: *Inst.Arg) InnerError!WValue {
// arguments share the index with locals
defer self.local_index += 1;
return WValue{ .local = self.local_index };
}
fn genBinOp(self: *Context, inst: *Inst.BinOp, op: Op) InnerError!WValue {
const lhs = self.resolveInst(inst.lhs);
const rhs = self.resolveInst(inst.rhs);
try self.emitWValue(lhs);
try self.emitWValue(rhs);
const opcode: wasm.Opcode = buildOpcode(.{
.op = op,
.valtype1 = try self.typeToValtype(inst.base.src, inst.base.ty),
.signedness = if (inst.base.ty.isSignedInt()) .signed else .unsigned,
});
try self.code.append(wasm.opcode(opcode));
return .none;
}
fn emitConstant(self: *Context, inst: *Inst.Constant) InnerError!void {
const writer = self.code.writer();
switch (inst.base.ty.zigTypeTag()) {
.Int => {
// write opcode
const opcode: wasm.Opcode = buildOpcode(.{
.op = .@"const",
.valtype1 = try self.typeToValtype(inst.base.src, inst.base.ty),
});
try writer.writeByte(wasm.opcode(opcode));
// write constant
switch (inst.base.ty.intInfo(self.target).signedness) {
.signed => try leb.writeILEB128(writer, inst.val.toSignedInt()),
.unsigned => try leb.writeILEB128(writer, inst.val.toUnsignedInt()),
}
},
.Bool => {
// write opcode
try writer.writeByte(wasm.opcode(.i32_const));
// write constant
try leb.writeILEB128(writer, inst.val.toSignedInt());
},
.Float => {
// write opcode
const opcode: wasm.Opcode = buildOpcode(.{
.op = .@"const",
.valtype1 = try self.typeToValtype(inst.base.src, inst.base.ty),
});
try writer.writeByte(wasm.opcode(opcode));
// write constant
switch (inst.base.ty.floatBits(self.target)) {
0...32 => try writer.writeIntLittle(u32, @bitCast(u32, inst.val.toFloat(f32))),
64 => try writer.writeIntLittle(u64, @bitCast(u64, inst.val.toFloat(f64))),
else => |bits| return self.fail(inst.base.src, "Wasm TODO: emitConstant for float with {d} bits", .{bits}),
}
},
.Pointer => {
if (inst.val.castTag(.decl_ref)) |payload| {
const decl = payload.data;
// offset into the offset table within the 'data' section
const ptr_width = self.target.cpu.arch.ptrBitWidth() / 8;
try writer.writeByte(wasm.opcode(.i32_const));
try leb.writeULEB128(writer, decl.link.wasm.offset_index * ptr_width);
// memory instruction followed by their memarg immediate
// memarg ::== x:u32, y:u32 => {align x, offset y}
try writer.writeByte(wasm.opcode(.i32_load));
try leb.writeULEB128(writer, @as(u32, 0));
try leb.writeULEB128(writer, @as(u32, 0));
} else return self.fail(inst.base.src, "Wasm TODO: emitConstant for other const pointer tag {s}", .{inst.val.tag()});
},
.Void => {},
else => |ty| return self.fail(inst.base.src, "Wasm TODO: emitConstant for zigTypeTag {s}", .{ty}),
}
}
fn genBlock(self: *Context, block: *Inst.Block) InnerError!WValue {
const block_ty = try self.genBlockType(block.base.src, block.base.ty);
try self.startBlock(.block, block_ty, null);
block.codegen = .{
// we don't use relocs, so using `relocs` is illegal behaviour.
.relocs = undefined,
// Here we set the current block idx, so breaks know the depth to jump
// to when breaking out.
.mcv = @bitCast(AnyMCValue, WValue{ .block_idx = self.block_depth }),
};
try self.genBody(block.body);
try self.endBlock();
return .none;
}
/// appends a new wasm block to the code section and increases the `block_depth` by 1
fn startBlock(self: *Context, block_type: wasm.Opcode, valtype: u8, with_offset: ?usize) !void {
self.block_depth += 1;
if (with_offset) |offset| {
try self.code.insert(offset, wasm.opcode(block_type));
try self.code.insert(offset + 1, valtype);
} else {
try self.code.append(wasm.opcode(block_type));
try self.code.append(valtype);
}
}
/// Ends the current wasm block and decreases the `block_depth` by 1
fn endBlock(self: *Context) !void {
try self.code.append(wasm.opcode(.end));
self.block_depth -= 1;
}
fn genLoop(self: *Context, loop: *Inst.Loop) InnerError!WValue {
const loop_ty = try self.genBlockType(loop.base.src, loop.base.ty);
try self.startBlock(.loop, loop_ty, null);
try self.genBody(loop.body);
// breaking to the index of a loop block will continue the loop instead
try self.code.append(wasm.opcode(.br));
try leb.writeULEB128(self.code.writer(), @as(u32, 0));
try self.endBlock();
return .none;
}
fn genCondBr(self: *Context, condbr: *Inst.CondBr) InnerError!WValue {
const condition = self.resolveInst(condbr.condition);
const writer = self.code.writer();
// TODO: Handle death instructions for then and else body
// insert blocks at the position of `offset` so
// the condition can jump to it
const offset = switch (condition) {
.code_offset => |offset| offset,
else => blk: {
const offset = self.code.items.len;
try self.emitWValue(condition);
break :blk offset;
},
};
const block_ty = try self.genBlockType(condbr.base.src, condbr.base.ty);
try self.startBlock(.block, block_ty, offset);
// we inserted the block in front of the condition
// so now check if condition matches. If not, break outside this block
// and continue with the then codepath
try writer.writeByte(wasm.opcode(.br_if));
try leb.writeULEB128(writer, @as(u32, 0));
try self.genBody(condbr.else_body);
try self.endBlock();
// Outer block that matches the condition
try self.genBody(condbr.then_body);
return .none;
}
fn genCmp(self: *Context, inst: *Inst.BinOp, op: std.math.CompareOperator) InnerError!WValue {
const ty = inst.lhs.ty.tag();
// save offset, so potential conditions can insert blocks in front of
// the comparison that we can later jump back to
const offset = self.code.items.len;
const lhs = self.resolveInst(inst.lhs);
const rhs = self.resolveInst(inst.rhs);
try self.emitWValue(lhs);
try self.emitWValue(rhs);
const opcode: wasm.Opcode = buildOpcode(.{
.valtype1 = try self.typeToValtype(inst.base.src, inst.lhs.ty),
.op = switch (op) {
.lt => .lt,
.lte => .le,
.eq => .eq,
.neq => .ne,
.gte => .ge,
.gt => .gt,
},
.signedness = inst.lhs.ty.intInfo(self.target).signedness,
});
try self.code.append(wasm.opcode(opcode));
return WValue{ .code_offset = offset };
}
fn genBr(self: *Context, br: *Inst.Br) InnerError!WValue {
// if operand has codegen bits we should break with a value
if (br.operand.ty.hasCodeGenBits()) {
const operand = self.resolveInst(br.operand);
try self.emitWValue(operand);
}
// every block contains a `WValue` with its block index.
// We then determine how far we have to jump to it by substracting it from current block depth
const wvalue = @bitCast(WValue, br.block.codegen.mcv);
const idx: u32 = self.block_depth - wvalue.block_idx;
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.br));
try leb.writeULEB128(writer, idx);
return .none;
}
fn genNot(self: *Context, not: *Inst.UnOp) InnerError!WValue {
const offset = self.code.items.len;
const operand = self.resolveInst(not.operand);
try self.emitWValue(operand);
// wasm does not have booleans nor the `not` instruction, therefore compare with 0
// to create the same logic
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.i32_const));
try leb.writeILEB128(writer, @as(i32, 0));
try writer.writeByte(wasm.opcode(.i32_eq));
return WValue{ .code_offset = offset };
}
fn genBreakpoint(self: *Context, breakpoint: *Inst.NoOp) InnerError!WValue {
// unsupported by wasm itself. Can be implemented once we support DWARF
// for wasm
return .none;
}
fn genUnreachable(self: *Context, unreach: *Inst.NoOp) InnerError!WValue {
try self.code.append(wasm.opcode(.@"unreachable"));
return .none;
}
};