zig/lib/std/math/complex/sqrt.zig
expikr 0c70d9c714 use Peer Type Resolution for standalone complex fn
use peer type resolution

Update complex.zig

Revert "use peer type resolution"

This reverts commit 1bc681ca5b36d2b55b5efab5a5dbec7e8a17332e.

Revert "Update pow.zig"

This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f.

Update pow.zig

Revert "Update pow.zig"

This reverts commit 521153d1ef004d627c785f2d3fe5e6497dc15073.

Update pow.zig
2024-01-14 18:09:17 -08:00

147 lines
4.2 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csqrtf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csqrt.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the square root of z. The real and imaginary parts of the result have the same sign
/// as the imaginary part of z.
pub fn sqrt(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => sqrt32(z),
f64 => sqrt64(z),
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
};
}
fn sqrt32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
if (x == 0 and y == 0) {
return Complex(f32).init(0, y);
}
if (math.isInf(y)) {
return Complex(f32).init(math.inf(f32), y);
}
if (math.isNan(x)) {
// raise invalid if y is not nan
const t = (y - y) / (y - y);
return Complex(f32).init(x, t);
}
if (math.isInf(x)) {
// sqrt(inf + i nan) = inf + nan i
// sqrt(inf + iy) = inf + i0
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f32).init(@abs(x - y), math.copysign(x, y));
} else {
return Complex(f32).init(x, math.copysign(y - y, y));
}
}
// y = nan special case is handled fine below
// double-precision avoids overflow with correct rounding.
const dx = @as(f64, x);
const dy = @as(f64, y);
if (dx >= 0) {
const t = @sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@as(f32, @floatCast(t)),
@as(f32, @floatCast(dy / (2.0 * t))),
);
} else {
const t = @sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@as(f32, @floatCast(@abs(y) / (2.0 * t))),
@as(f32, @floatCast(math.copysign(t, y))),
);
}
}
fn sqrt64(z: Complex(f64)) Complex(f64) {
// may encounter overflow for im,re >= DBL_MAX / (1 + sqrt(2))
const threshold = 0x1.a827999fcef32p+1022;
var x = z.re;
var y = z.im;
if (x == 0 and y == 0) {
return Complex(f64).init(0, y);
}
if (math.isInf(y)) {
return Complex(f64).init(math.inf(f64), y);
}
if (math.isNan(x)) {
// raise invalid if y is not nan
const t = (y - y) / (y - y);
return Complex(f64).init(x, t);
}
if (math.isInf(x)) {
// sqrt(inf + i nan) = inf + nan i
// sqrt(inf + iy) = inf + i0
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f64).init(@abs(x - y), math.copysign(x, y));
} else {
return Complex(f64).init(x, math.copysign(y - y, y));
}
}
// y = nan special case is handled fine below
// scale to avoid overflow
var scale = false;
if (@abs(x) >= threshold or @abs(y) >= threshold) {
x *= 0.25;
y *= 0.25;
scale = true;
}
var result: Complex(f64) = undefined;
if (x >= 0) {
const t = @sqrt((x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(t, y / (2.0 * t));
} else {
const t = @sqrt((-x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(@abs(y) / (2.0 * t), math.copysign(t, y));
}
if (scale) {
result.re *= 2;
result.im *= 2;
}
return result;
}
const epsilon = 0.0001;
test "complex.csqrt32" {
const a = Complex(f32).init(5, 3);
const c = sqrt(a);
try testing.expect(math.approxEqAbs(f32, c.re, 2.327117, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 0.644574, epsilon));
}
test "complex.csqrt64" {
const a = Complex(f64).init(5, 3);
const c = sqrt(a);
try testing.expect(math.approxEqAbs(f64, c.re, 2.3271175190399496, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 0.6445742373246469, epsilon));
}