zig/lib/std/math/complex/sinh.zig
expikr 0c70d9c714 use Peer Type Resolution for standalone complex fn
use peer type resolution

Update complex.zig

Revert "use peer type resolution"

This reverts commit 1bc681ca5b36d2b55b5efab5a5dbec7e8a17332e.

Revert "Update pow.zig"

This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f.

Update pow.zig

Revert "Update pow.zig"

This reverts commit 521153d1ef004d627c785f2d3fe5e6497dc15073.

Update pow.zig
2024-01-14 18:09:17 -08:00

172 lines
5.2 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinhf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinh.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
/// Returns the hyperbolic sine of z.
pub fn sinh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => sinh32(z),
f64 => sinh64(z),
else => @compileError("tan not implemented for " ++ @typeName(z)),
};
}
fn sinh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @as(u32, @bitCast(x));
const ix = hx & 0x7fffffff;
const hy = @as(u32, @bitCast(y));
const iy = hy & 0x7fffffff;
if (ix < 0x7f800000 and iy < 0x7f800000) {
if (iy == 0) {
return Complex(f32).init(math.sinh(x), y);
}
// small x: normal case
if (ix < 0x41100000) {
return Complex(f32).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
}
// |x|>= 9, so cosh(x) ~= exp(|x|)
if (ix < 0x42b17218) {
// x < 88.7: exp(|x|) won't overflow
const h = @exp(@abs(x)) * 0.5;
return Complex(f32).init(math.copysign(h, x) * @cos(y), h * @sin(y));
}
// x < 192.7: scale to avoid overflow
else if (ix < 0x4340b1e7) {
const v = Complex(f32).init(@abs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f32).init(r.re * math.copysign(@as(f32, 1.0), x), r.im);
}
// x >= 192.7: result always overflows
else {
const h = 0x1p127 * x;
return Complex(f32).init(h * @cos(y), h * h * @sin(y));
}
}
if (ix == 0 and iy >= 0x7f800000) {
return Complex(f32).init(math.copysign(@as(f32, 0.0), x * (y - y)), y - y);
}
if (iy == 0 and ix >= 0x7f800000) {
if (hx & 0x7fffff == 0) {
return Complex(f32).init(x, y);
}
return Complex(f32).init(x, math.copysign(@as(f32, 0.0), y));
}
if (ix < 0x7f800000 and iy >= 0x7f800000) {
return Complex(f32).init(y - y, x * (y - y));
}
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
if (iy >= 0x7f800000) {
return Complex(f32).init(x * x, x * (y - y));
}
return Complex(f32).init(x * @cos(y), math.inf(f32) * @sin(y));
}
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
}
fn sinh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx: u64 = @bitCast(x);
const hx: u32 = @intCast(fx >> 32);
const lx: u32 = @truncate(fx);
const ix = hx & 0x7fffffff;
const fy: u64 = @bitCast(y);
const hy: u32 = @intCast(fy >> 32);
const ly: u32 = @truncate(fy);
const iy = hy & 0x7fffffff;
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
if (iy | ly == 0) {
return Complex(f64).init(math.sinh(x), y);
}
// small x: normal case
if (ix < 0x40360000) {
return Complex(f64).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
}
// |x|>= 22, so cosh(x) ~= exp(|x|)
if (ix < 0x40862e42) {
// x < 710: exp(|x|) won't overflow
const h = @exp(@abs(x)) * 0.5;
return Complex(f64).init(math.copysign(h, x) * @cos(y), h * @sin(y));
}
// x < 1455: scale to avoid overflow
else if (ix < 0x4096bbaa) {
const v = Complex(f64).init(@abs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f64).init(r.re * math.copysign(@as(f64, 1.0), x), r.im);
}
// x >= 1455: result always overflows
else {
const h = 0x1p1023 * x;
return Complex(f64).init(h * @cos(y), h * h * @sin(y));
}
}
if (ix | lx == 0 and iy >= 0x7ff00000) {
return Complex(f64).init(math.copysign(@as(f64, 0.0), x * (y - y)), y - y);
}
if (iy | ly == 0 and ix >= 0x7ff00000) {
if ((hx & 0xfffff) | lx == 0) {
return Complex(f64).init(x, y);
}
return Complex(f64).init(x, math.copysign(@as(f64, 0.0), y));
}
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
return Complex(f64).init(y - y, x * (y - y));
}
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
if (iy >= 0x7ff00000) {
return Complex(f64).init(x * x, x * (y - y));
}
return Complex(f64).init(x * @cos(y), math.inf(f64) * @sin(y));
}
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
}
const epsilon = 0.0001;
test "complex.csinh32" {
const a = Complex(f32).init(5, 3);
const c = sinh(a);
try testing.expect(math.approxEqAbs(f32, c.re, -73.460617, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 10.472508, epsilon));
}
test "complex.csinh64" {
const a = Complex(f64).init(5, 3);
const c = sinh(a);
try testing.expect(math.approxEqAbs(f64, c.re, -73.460617, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 10.472508, epsilon));
}