zig/lib/std/math/complex/atan.zig
expikr 0c70d9c714 use Peer Type Resolution for standalone complex fn
use peer type resolution

Update complex.zig

Revert "use peer type resolution"

This reverts commit 1bc681ca5b36d2b55b5efab5a5dbec7e8a17332e.

Revert "Update pow.zig"

This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f.

Update pow.zig

Revert "Update pow.zig"

This reverts commit 521153d1ef004d627c785f2d3fe5e6497dc15073.

Update pow.zig
2024-01-14 18:09:17 -08:00

138 lines
3.2 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/catanf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/catan.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the arc-tangent of z.
pub fn atan(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => atan32(z),
f64 => atan64(z),
else => @compileError("atan not implemented for " ++ @typeName(z)),
};
}
fn redupif32(x: f32) f32 {
const DP1 = 3.140625;
const DP2 = 9.67502593994140625e-4;
const DP3 = 1.509957990978376432e-7;
var t = x / math.pi;
if (t >= 0.0) {
t += 0.5;
} else {
t -= 0.5;
}
const u = @as(f32, @floatFromInt(@as(i32, @intFromFloat(t))));
return ((x - u * DP1) - u * DP2) - t * DP3;
}
fn atan32(z: Complex(f32)) Complex(f32) {
const maxnum = 1.0e38;
const x = z.re;
const y = z.im;
if ((x == 0.0) and (y > 1.0)) {
// overflow
return Complex(f32).init(maxnum, maxnum);
}
const x2 = x * x;
var a = 1.0 - x2 - (y * y);
if (a == 0.0) {
// overflow
return Complex(f32).init(maxnum, maxnum);
}
var t = 0.5 * math.atan2(2.0 * x, a);
const w = redupif32(t);
t = y - 1.0;
a = x2 + t * t;
if (a == 0.0) {
// overflow
return Complex(f32).init(maxnum, maxnum);
}
t = y + 1.0;
a = (x2 + (t * t)) / a;
return Complex(f32).init(w, 0.25 * @log(a));
}
fn redupif64(x: f64) f64 {
const DP1 = 3.14159265160560607910;
const DP2 = 1.98418714791870343106e-9;
const DP3 = 1.14423774522196636802e-17;
var t = x / math.pi;
if (t >= 0.0) {
t += 0.5;
} else {
t -= 0.5;
}
const u = @as(f64, @floatFromInt(@as(i64, @intFromFloat(t))));
return ((x - u * DP1) - u * DP2) - t * DP3;
}
fn atan64(z: Complex(f64)) Complex(f64) {
const maxnum = 1.0e308;
const x = z.re;
const y = z.im;
if ((x == 0.0) and (y > 1.0)) {
// overflow
return Complex(f64).init(maxnum, maxnum);
}
const x2 = x * x;
var a = 1.0 - x2 - (y * y);
if (a == 0.0) {
// overflow
return Complex(f64).init(maxnum, maxnum);
}
var t = 0.5 * math.atan2(2.0 * x, a);
const w = redupif64(t);
t = y - 1.0;
a = x2 + t * t;
if (a == 0.0) {
// overflow
return Complex(f64).init(maxnum, maxnum);
}
t = y + 1.0;
a = (x2 + (t * t)) / a;
return Complex(f64).init(w, 0.25 * @log(a));
}
const epsilon = 0.0001;
test "complex.catan32" {
const a = Complex(f32).init(5, 3);
const c = atan(a);
try testing.expect(math.approxEqAbs(f32, c.re, 1.423679, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 0.086569, epsilon));
}
test "complex.catan64" {
const a = Complex(f64).init(5, 3);
const c = atan(a);
try testing.expect(math.approxEqAbs(f64, c.re, 1.423679, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 0.086569, epsilon));
}