mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
Conflicts: * build.zig * lib/std/array_list.zig * lib/std/c/ast.zig * lib/std/c/parse.zig * lib/std/os/bits/linux.zig
1277 lines
48 KiB
Zig
1277 lines
48 KiB
Zig
// SPDX-License-Identifier: MIT
|
|
// Copyright (c) 2015-2021 Zig Contributors
|
|
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
|
|
// The MIT license requires this copyright notice to be included in all copies
|
|
// and substantial portions of the software.
|
|
const std = @import("std.zig");
|
|
const debug = std.debug;
|
|
const assert = debug.assert;
|
|
const testing = std.testing;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
|
|
/// A contiguous, growable list of items in memory.
|
|
/// This is a wrapper around an array of T values. Initialize with `init`.
|
|
///
|
|
/// This struct internally stores a `std.mem.Allocator` for memory management.
|
|
/// To manually specify an allocator with each method call see `ArrayListUnmanaged`.
|
|
pub fn ArrayList(comptime T: type) type {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
|
|
/// A contiguous, growable list of arbitrarily aligned items in memory.
|
|
/// This is a wrapper around an array of T values aligned to `alignment`-byte
|
|
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
|
|
/// Initialize with `init`.
|
|
///
|
|
/// This struct internally stores a `std.mem.Allocator` for memory management.
|
|
/// To manually specify an allocator with each method call see `ArrayListAlignedUnmanaged`.
|
|
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
/// Contents of the list. Pointers to elements in this slice are
|
|
/// **invalid after resizing operations** on the ArrayList, unless the
|
|
/// operation explicitly either: (1) states otherwise or (2) lists the
|
|
/// invalidated pointers.
|
|
///
|
|
/// The allocator used determines how element pointers are
|
|
/// invalidated, so the behavior may vary between lists. To avoid
|
|
/// illegal behavior, take into account the above paragraph plus the
|
|
/// explicit statements given in each method.
|
|
items: Slice,
|
|
/// How many T values this list can hold without allocating
|
|
/// additional memory.
|
|
capacity: usize,
|
|
allocator: *Allocator,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn init(allocator: *Allocator) Self {
|
|
return Self{
|
|
.items = &[_]T{},
|
|
.capacity = 0,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
/// Initialize with capacity to hold at least `num` elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self.init(allocator);
|
|
|
|
const new_memory = try self.allocator.allocAdvanced(T, alignment, num, .at_least);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: Self) void {
|
|
self.allocator.free(self.allocatedSlice());
|
|
}
|
|
|
|
pub const span = @compileError("deprecated: use `items` field directly");
|
|
pub const toSlice = @compileError("deprecated: use `items` field directly");
|
|
pub const toSliceConst = @compileError("deprecated: use `items` field directly");
|
|
pub const at = @compileError("deprecated: use `list.items[i]`");
|
|
pub const ptrAt = @compileError("deprecated: use `&list.items[i]`");
|
|
pub const setOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.items[i] = item`");
|
|
pub const set = @compileError("deprecated: use `list.items[i] = item`");
|
|
pub const swapRemoveOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.swapRemove(i)`");
|
|
|
|
/// ArrayList takes ownership of the passed in slice. The slice must have been
|
|
/// allocated with `allocator`.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn fromOwnedSlice(allocator: *Allocator, slice: Slice) Self {
|
|
return Self{
|
|
.items = slice,
|
|
.capacity = slice.len,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
/// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields
|
|
/// of this ArrayList. This ArrayList retains ownership of underlying memory.
|
|
/// Deprecated: use `moveToUnmanaged` which has different semantics.
|
|
pub fn toUnmanaged(self: Self) ArrayListAlignedUnmanaged(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity };
|
|
}
|
|
|
|
/// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields
|
|
/// of this ArrayList. Empties this ArrayList.
|
|
pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) {
|
|
const allocator = self.allocator;
|
|
const result = .{ .items = self.items, .capacity = self.capacity };
|
|
self.* = init(allocator);
|
|
return result;
|
|
}
|
|
|
|
/// The caller owns the returned memory. Empties this ArrayList.
|
|
pub fn toOwnedSlice(self: *Self) Slice {
|
|
const allocator = self.allocator;
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = init(allocator);
|
|
return result;
|
|
}
|
|
|
|
/// The caller owns the returned memory. Empties this ArrayList.
|
|
pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) ![:sentinel]T {
|
|
try self.append(sentinel);
|
|
const result = self.toOwnedSlice();
|
|
return result[0 .. result.len - 1 :sentinel];
|
|
}
|
|
|
|
/// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insert(self: *Self, n: usize, item: T) !void {
|
|
try self.ensureUnusedCapacity(1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, i: usize, items: []const T) !void {
|
|
try self.ensureUnusedCapacity(items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Replace range of elements `list[start..start+len]` with `new_items`.
|
|
/// Grows list if `len < new_items.len`.
|
|
/// Shrinks list if `len > new_items.len`.
|
|
/// Invalidates pointers if this ArrayList is resized.
|
|
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) !void {
|
|
const after_range = start + len;
|
|
const range = self.items[start..after_range];
|
|
|
|
if (range.len == new_items.len)
|
|
mem.copy(T, range, new_items)
|
|
else if (range.len < new_items.len) {
|
|
const first = new_items[0..range.len];
|
|
const rest = new_items[range.len..];
|
|
|
|
mem.copy(T, range, first);
|
|
try self.insertSlice(after_range, rest);
|
|
} else {
|
|
mem.copy(T, range, new_items);
|
|
const after_subrange = start + new_items.len;
|
|
|
|
for (self.items[after_range..]) |item, i| {
|
|
self.items[after_subrange..][i] = item;
|
|
}
|
|
|
|
self.items.len -= len - new_items.len;
|
|
}
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, item: T) !void {
|
|
const new_item_ptr = try self.addOne();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but assert `self.capacity`
|
|
/// is sufficient to hold an additional item. **Does not**
|
|
/// invalidate pointers.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i`, shift elements after index
|
|
/// `i` forward, and return the removed element.
|
|
/// Asserts the array has at least one item.
|
|
/// Invalidates pointers to end of list.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, items: []const T) !void {
|
|
try self.ensureUnusedCapacity(items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is already
|
|
/// enough to store the new items. **Does not** invalidate pointers.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
pub usingnamespace if (T != u8) struct {} else struct {
|
|
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
|
|
|
|
/// Initializes a Writer which will append to the list.
|
|
pub fn writer(self: *Self) Writer {
|
|
return .{ .context = self };
|
|
}
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
|
|
fn appendWrite(self: *Self, m: []const u8) !usize {
|
|
try self.appendSlice(m);
|
|
return m.len;
|
|
}
|
|
};
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Asserts the capacity is enough. **Does not** invalidate pointers.
|
|
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
|
|
const new_len = self.items.len + n;
|
|
assert(new_len <= self.capacity);
|
|
mem.set(T, self.items.ptr[self.items.len..new_len], value);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, new_len: usize) !void {
|
|
try self.ensureTotalCapacity(new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// May invalidate element pointers.
|
|
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = self.allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
/// Reduce length to `new_len`.
|
|
/// Invalidates pointers for the elements `items[new_len..]`.
|
|
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Deprecated: call `ensureUnusedCapacity` or `ensureTotalCapacity`.
|
|
pub const ensureCapacity = ensureTotalCapacity;
|
|
|
|
/// Modify the array so that it can hold at least `new_capacity` items.
|
|
/// Invalidates pointers if additional memory is needed.
|
|
pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
// TODO This can be optimized to avoid needlessly copying undefined memory.
|
|
const new_memory = try self.allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Modify the array so that it can hold at least `additional_count` **more** items.
|
|
/// Invalidates pointers if additional memory is needed.
|
|
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) !void {
|
|
return self.ensureTotalCapacity(self.items.len + additional_count);
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values. **Does not** invalidate pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list resized.
|
|
pub fn addOne(self: *Self) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureTotalCapacity(newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// **Does not** invalidate element pointers.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// Resizes list if `self.capacity` is not large enough.
|
|
pub fn addManyAsArray(self: *Self, comptime n: usize) !*[n]T {
|
|
const prev_len = self.items.len;
|
|
try self.resize(self.items.len + n);
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// **Does not** invalidate element pointers.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
|
|
assert(self.items.len + n <= self.capacity);
|
|
const prev_len = self.items.len;
|
|
self.items.len += n;
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
/// Invalidates pointers to the removed element.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list, or
|
|
/// return `null` if list is empty.
|
|
/// Invalidates pointers to the removed element, if any.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
/// Returns a slice of all the items plus the extra capacity, whose memory
|
|
/// contents are `undefined`.
|
|
pub fn allocatedSlice(self: Self) Slice {
|
|
// For a nicer API, `items.len` is the length, not the capacity.
|
|
// This requires "unsafe" slicing.
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
|
|
/// Returns a slice of only the extra capacity after items.
|
|
/// This can be useful for writing directly into an ArrayList.
|
|
/// Note that such an operation must be followed up with a direct
|
|
/// modification of `self.items.len`.
|
|
pub fn unusedCapacitySlice(self: Self) Slice {
|
|
return self.allocatedSlice()[self.items.len..];
|
|
}
|
|
};
|
|
}
|
|
|
|
/// An ArrayList, but the allocator is passed as a parameter to the relevant functions
|
|
/// rather than stored in the struct itself. The same allocator **must** be used throughout
|
|
/// the entire lifetime of an ArrayListUnmanaged. Initialize directly or with
|
|
/// `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn ArrayListUnmanaged(comptime T: type) type {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
|
|
/// An ArrayListAligned, but the allocator is passed as a parameter to the relevant
|
|
/// functions rather than stored in the struct itself. The same allocator **must**
|
|
/// be used throughout the entire lifetime of an ArrayListAlignedUnmanaged.
|
|
/// Initialize directly or with `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
/// Contents of the list. Pointers to elements in this slice are
|
|
/// **invalid after resizing operations** on the ArrayList, unless the
|
|
/// operation explicitly either: (1) states otherwise or (2) lists the
|
|
/// invalidated pointers.
|
|
///
|
|
/// The allocator used determines how element pointers are
|
|
/// invalidated, so the behavior may vary between lists. To avoid
|
|
/// illegal behavior, take into account the above paragraph plus the
|
|
/// explicit statements given in each method.
|
|
items: Slice = &[_]T{},
|
|
/// How many T values this list can hold without allocating
|
|
/// additional memory.
|
|
capacity: usize = 0,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self{};
|
|
|
|
const new_memory = try allocator.allocAdvanced(T, alignment, num, .at_least);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: *Self, allocator: *Allocator) void {
|
|
allocator.free(self.allocatedSlice());
|
|
self.* = undefined;
|
|
}
|
|
|
|
/// Convert this list into an analogous memory-managed one.
|
|
/// The returned list has ownership of the underlying memory.
|
|
pub fn toManaged(self: *Self, allocator: *Allocator) ArrayListAligned(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self, allocator: *Allocator) Slice {
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = Self{};
|
|
return result;
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSliceSentinel(self: *Self, allocator: *Allocator, comptime sentinel: T) ![:sentinel]T {
|
|
try self.append(allocator, sentinel);
|
|
const result = self.toOwnedSlice(allocator);
|
|
return result[0 .. result.len - 1 :sentinel];
|
|
}
|
|
|
|
/// Insert `item` at index `n`. Moves `list[n .. list.len]`
|
|
/// to higher indices to make room.
|
|
/// This operation is O(N).
|
|
pub fn insert(self: *Self, allocator: *Allocator, n: usize, item: T) !void {
|
|
try self.ensureUnusedCapacity(allocator, 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i`. Moves `list[i .. list.len]` to
|
|
/// higher indicices make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, allocator: *Allocator, i: usize, items: []const T) !void {
|
|
try self.ensureUnusedCapacity(allocator, items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Replace range of elements `list[start..start+len]` with `new_items`
|
|
/// Grows list if `len < new_items.len`.
|
|
/// Shrinks list if `len > new_items.len`
|
|
/// Invalidates pointers if this ArrayList is resized.
|
|
pub fn replaceRange(self: *Self, allocator: *Allocator, start: usize, len: usize, new_items: []const T) !void {
|
|
var managed = self.toManaged(allocator);
|
|
try managed.replaceRange(start, len, new_items);
|
|
self.* = managed.toUnmanaged();
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, allocator: *Allocator, item: T) !void {
|
|
const new_item_ptr = try self.addOne(allocator);
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item. Invalidates pointers to
|
|
/// last element.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// Invalidates pointers to last element.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, allocator: *Allocator, items: []const T) !void {
|
|
try self.ensureUnusedCapacity(allocator, items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is enough
|
|
/// to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, allocator: *Allocator, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(allocator, self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// **Does not** invalidate pointers.
|
|
/// Asserts the capacity is enough.
|
|
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
|
|
const new_len = self.items.len + n;
|
|
assert(new_len <= self.capacity);
|
|
mem.set(T, self.items.ptr[self.items.len..new_len], value);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items, if any.
|
|
pub fn resize(self: *Self, allocator: *Allocator, new_len: usize) !void {
|
|
try self.ensureTotalCapacity(allocator, new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
pub fn shrinkAndFree(self: *Self, allocator: *Allocator, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
/// Reduce length to `new_len`.
|
|
/// Invalidates pointers to elements `items[new_len..]`.
|
|
/// Keeps capacity the same.
|
|
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Deprecated: call `ensureUnusedCapacity` or `ensureTotalCapacity`.
|
|
pub const ensureCapacity = ensureTotalCapacity;
|
|
|
|
/// Modify the array so that it can hold at least `new_capacity` items.
|
|
/// Invalidates pointers if additional memory is needed.
|
|
pub fn ensureTotalCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
const new_memory = try allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Modify the array so that it can hold at least `additional_count` **more** items.
|
|
/// Invalidates pointers if additional memory is needed.
|
|
pub fn ensureUnusedCapacity(
|
|
self: *Self,
|
|
allocator: *Allocator,
|
|
additional_count: usize,
|
|
) !void {
|
|
return self.ensureTotalCapacity(allocator, self.items.len + additional_count);
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values.
|
|
/// **Does not** invalidate pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list resized.
|
|
pub fn addOne(self: *Self, allocator: *Allocator) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureTotalCapacity(allocator, newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// **Does not** invalidate pointers.
|
|
/// The returned pointer becomes invalid when the list resized.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addManyAsArray(self: *Self, allocator: *Allocator, comptime n: usize) !*[n]T {
|
|
const prev_len = self.items.len;
|
|
try self.resize(allocator, self.items.len + n);
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// **Does not** invalidate pointers.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
|
|
assert(self.items.len + n <= self.capacity);
|
|
const prev_len = self.items.len;
|
|
self.items.len += n;
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
/// Invalidates pointers to last element.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
/// Invalidates pointers to last element.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
/// For a nicer API, `items.len` is the length, not the capacity.
|
|
/// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.init" {
|
|
{
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity == 0);
|
|
}
|
|
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity == 0);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.initCapacity" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = try ArrayList(i8).initCapacity(a, 200);
|
|
defer list.deinit();
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity >= 200);
|
|
}
|
|
{
|
|
var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
|
|
defer list.deinit(a);
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity >= 200);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.basic" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
list.append(@intCast(i32, i + 1)) catch unreachable;
|
|
}
|
|
}
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
testing.expect(list.items[i] == @intCast(i32, i + 1));
|
|
}
|
|
}
|
|
|
|
for (list.items) |v, i| {
|
|
testing.expect(v == @intCast(i32, i + 1));
|
|
}
|
|
|
|
testing.expect(list.pop() == 10);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
|
|
testing.expect(list.items.len == 12);
|
|
testing.expect(list.pop() == 3);
|
|
testing.expect(list.pop() == 2);
|
|
testing.expect(list.pop() == 1);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{}) catch unreachable;
|
|
testing.expect(list.items.len == 9);
|
|
|
|
// can only set on indices < self.items.len
|
|
list.items[7] = 33;
|
|
list.items[8] = 42;
|
|
|
|
testing.expect(list.pop() == 42);
|
|
testing.expect(list.pop() == 33);
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
list.append(a, @intCast(i32, i + 1)) catch unreachable;
|
|
}
|
|
}
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
testing.expect(list.items[i] == @intCast(i32, i + 1));
|
|
}
|
|
}
|
|
|
|
for (list.items) |v, i| {
|
|
testing.expect(v == @intCast(i32, i + 1));
|
|
}
|
|
|
|
testing.expect(list.pop() == 10);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
|
|
testing.expect(list.items.len == 12);
|
|
testing.expect(list.pop() == 3);
|
|
testing.expect(list.pop() == 2);
|
|
testing.expect(list.pop() == 1);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(a, &[_]i32{}) catch unreachable;
|
|
testing.expect(list.items.len == 9);
|
|
|
|
// can only set on indices < self.items.len
|
|
list.items[7] = 33;
|
|
list.items[8] = 42;
|
|
|
|
testing.expect(list.pop() == 42);
|
|
testing.expect(list.pop() == 33);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.appendNTimes" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.appendNTimes(2, 10);
|
|
testing.expectEqual(@as(usize, 10), list.items.len);
|
|
for (list.items) |element| {
|
|
testing.expectEqual(@as(i32, 2), element);
|
|
}
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
|
|
try list.appendNTimes(a, 2, 10);
|
|
testing.expectEqual(@as(usize, 10), list.items.len);
|
|
for (list.items) |element| {
|
|
testing.expectEqual(@as(i32, 2), element);
|
|
}
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.appendNTimes with failing allocator" {
|
|
const a = testing.failing_allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.orderedRemove" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
|
|
testing.expectEqual(@as(i32, 5), list.items[3]);
|
|
testing.expectEqual(@as(usize, 6), list.items.len);
|
|
|
|
//remove from end
|
|
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
|
|
testing.expectEqual(@as(usize, 5), list.items.len);
|
|
|
|
//remove from front
|
|
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
|
|
testing.expectEqual(@as(i32, 2), list.items[0]);
|
|
testing.expectEqual(@as(usize, 4), list.items.len);
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
|
|
try list.append(a, 1);
|
|
try list.append(a, 2);
|
|
try list.append(a, 3);
|
|
try list.append(a, 4);
|
|
try list.append(a, 5);
|
|
try list.append(a, 6);
|
|
try list.append(a, 7);
|
|
|
|
//remove from middle
|
|
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
|
|
testing.expectEqual(@as(i32, 5), list.items[3]);
|
|
testing.expectEqual(@as(usize, 6), list.items.len);
|
|
|
|
//remove from end
|
|
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
|
|
testing.expectEqual(@as(usize, 5), list.items.len);
|
|
|
|
//remove from front
|
|
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
|
|
testing.expectEqual(@as(i32, 2), list.items[0]);
|
|
testing.expectEqual(@as(usize, 4), list.items.len);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.swapRemove" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expect(list.swapRemove(3) == 4);
|
|
testing.expect(list.items[3] == 7);
|
|
testing.expect(list.items.len == 6);
|
|
|
|
//remove from end
|
|
testing.expect(list.swapRemove(5) == 6);
|
|
testing.expect(list.items.len == 5);
|
|
|
|
//remove from front
|
|
testing.expect(list.swapRemove(0) == 1);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items.len == 4);
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
|
|
try list.append(a, 1);
|
|
try list.append(a, 2);
|
|
try list.append(a, 3);
|
|
try list.append(a, 4);
|
|
try list.append(a, 5);
|
|
try list.append(a, 6);
|
|
try list.append(a, 7);
|
|
|
|
//remove from middle
|
|
testing.expect(list.swapRemove(3) == 4);
|
|
testing.expect(list.items[3] == 7);
|
|
testing.expect(list.items.len == 6);
|
|
|
|
//remove from end
|
|
testing.expect(list.swapRemove(5) == 6);
|
|
testing.expect(list.items.len == 5);
|
|
|
|
//remove from front
|
|
testing.expect(list.swapRemove(0) == 1);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items.len == 4);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.insert" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.insert(0, 5);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items[1] == 1);
|
|
testing.expect(list.items[2] == 2);
|
|
testing.expect(list.items[3] == 3);
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
|
|
try list.append(a, 1);
|
|
try list.append(a, 2);
|
|
try list.append(a, 3);
|
|
try list.insert(a, 0, 5);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items[1] == 1);
|
|
testing.expect(list.items[2] == 2);
|
|
testing.expect(list.items[3] == 3);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.insertSlice" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.insertSlice(1, &[_]i32{ 9, 8 });
|
|
testing.expect(list.items[0] == 1);
|
|
testing.expect(list.items[1] == 9);
|
|
testing.expect(list.items[2] == 8);
|
|
testing.expect(list.items[3] == 2);
|
|
testing.expect(list.items[4] == 3);
|
|
testing.expect(list.items[5] == 4);
|
|
|
|
const items = [_]i32{1};
|
|
try list.insertSlice(0, items[0..0]);
|
|
testing.expect(list.items.len == 6);
|
|
testing.expect(list.items[0] == 1);
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
defer list.deinit(a);
|
|
|
|
try list.append(a, 1);
|
|
try list.append(a, 2);
|
|
try list.append(a, 3);
|
|
try list.append(a, 4);
|
|
try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
|
|
testing.expect(list.items[0] == 1);
|
|
testing.expect(list.items[1] == 9);
|
|
testing.expect(list.items[2] == 8);
|
|
testing.expect(list.items[3] == 2);
|
|
testing.expect(list.items[4] == 3);
|
|
testing.expect(list.items[5] == 4);
|
|
|
|
const items = [_]i32{1};
|
|
try list.insertSlice(a, 0, items[0..0]);
|
|
testing.expect(list.items.len == 6);
|
|
testing.expect(list.items[0] == 1);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.replaceRange" {
|
|
var arena = std.heap.ArenaAllocator.init(testing.allocator);
|
|
defer arena.deinit();
|
|
const a = &arena.allocator;
|
|
|
|
const init = [_]i32{ 1, 2, 3, 4, 5 };
|
|
const new = [_]i32{ 0, 0, 0 };
|
|
|
|
const result_zero = [_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 };
|
|
const result_eq = [_]i32{ 1, 0, 0, 0, 5 };
|
|
const result_le = [_]i32{ 1, 0, 0, 0, 4, 5 };
|
|
const result_gt = [_]i32{ 1, 0, 0, 0 };
|
|
|
|
{
|
|
var list_zero = ArrayList(i32).init(a);
|
|
var list_eq = ArrayList(i32).init(a);
|
|
var list_lt = ArrayList(i32).init(a);
|
|
var list_gt = ArrayList(i32).init(a);
|
|
|
|
try list_zero.appendSlice(&init);
|
|
try list_eq.appendSlice(&init);
|
|
try list_lt.appendSlice(&init);
|
|
try list_gt.appendSlice(&init);
|
|
|
|
try list_zero.replaceRange(1, 0, &new);
|
|
try list_eq.replaceRange(1, 3, &new);
|
|
try list_lt.replaceRange(1, 2, &new);
|
|
|
|
// after_range > new_items.len in function body
|
|
testing.expect(1 + 4 > new.len);
|
|
try list_gt.replaceRange(1, 4, &new);
|
|
|
|
testing.expectEqualSlices(i32, list_zero.items, &result_zero);
|
|
testing.expectEqualSlices(i32, list_eq.items, &result_eq);
|
|
testing.expectEqualSlices(i32, list_lt.items, &result_le);
|
|
testing.expectEqualSlices(i32, list_gt.items, &result_gt);
|
|
}
|
|
{
|
|
var list_zero = ArrayListUnmanaged(i32){};
|
|
var list_eq = ArrayListUnmanaged(i32){};
|
|
var list_lt = ArrayListUnmanaged(i32){};
|
|
var list_gt = ArrayListUnmanaged(i32){};
|
|
|
|
try list_zero.appendSlice(a, &init);
|
|
try list_eq.appendSlice(a, &init);
|
|
try list_lt.appendSlice(a, &init);
|
|
try list_gt.appendSlice(a, &init);
|
|
|
|
try list_zero.replaceRange(a, 1, 0, &new);
|
|
try list_eq.replaceRange(a, 1, 3, &new);
|
|
try list_lt.replaceRange(a, 1, 2, &new);
|
|
|
|
// after_range > new_items.len in function body
|
|
testing.expect(1 + 4 > new.len);
|
|
try list_gt.replaceRange(a, 1, 4, &new);
|
|
|
|
testing.expectEqualSlices(i32, list_zero.items, &result_zero);
|
|
testing.expectEqualSlices(i32, list_eq.items, &result_eq);
|
|
testing.expectEqualSlices(i32, list_lt.items, &result_le);
|
|
testing.expectEqualSlices(i32, list_gt.items, &result_gt);
|
|
}
|
|
}
|
|
|
|
const Item = struct {
|
|
integer: i32,
|
|
sub_items: ArrayList(Item),
|
|
};
|
|
|
|
const ItemUnmanaged = struct {
|
|
integer: i32,
|
|
sub_items: ArrayListUnmanaged(ItemUnmanaged),
|
|
};
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged: ArrayList(T) of struct T" {
|
|
const a = std.testing.allocator;
|
|
{
|
|
var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(a) };
|
|
defer root.sub_items.deinit();
|
|
try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(a) });
|
|
testing.expect(root.sub_items.items[0].integer == 42);
|
|
}
|
|
{
|
|
var root = ItemUnmanaged{ .integer = 1, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} };
|
|
defer root.sub_items.deinit(a);
|
|
try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} });
|
|
testing.expect(root.sub_items.items[0].integer == 42);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList(u8)/ArrayListAligned implements writer" {
|
|
const a = testing.allocator;
|
|
|
|
{
|
|
var buffer = ArrayList(u8).init(a);
|
|
defer buffer.deinit();
|
|
|
|
const x: i32 = 42;
|
|
const y: i32 = 1234;
|
|
try buffer.writer().print("x: {}\ny: {}\n", .{ x, y });
|
|
|
|
testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
|
|
}
|
|
{
|
|
var list = ArrayListAligned(u8, 2).init(a);
|
|
defer list.deinit();
|
|
|
|
const writer = list.writer();
|
|
try writer.writeAll("a");
|
|
try writer.writeAll("bc");
|
|
try writer.writeAll("d");
|
|
try writer.writeAll("efg");
|
|
|
|
testing.expectEqualSlices(u8, list.items, "abcdefg");
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.shrink still sets length on error.OutOfMemory" {
|
|
// use an arena allocator to make sure realloc returns error.OutOfMemory
|
|
var arena = std.heap.ArenaAllocator.init(testing.allocator);
|
|
defer arena.deinit();
|
|
const a = &arena.allocator;
|
|
|
|
{
|
|
var list = ArrayList(i32).init(a);
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
|
|
list.shrinkAndFree(1);
|
|
testing.expect(list.items.len == 1);
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(i32){};
|
|
|
|
try list.append(a, 1);
|
|
try list.append(a, 2);
|
|
try list.append(a, 3);
|
|
|
|
list.shrinkAndFree(a, 1);
|
|
testing.expect(list.items.len == 1);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.addManyAsArray" {
|
|
const a = std.testing.allocator;
|
|
{
|
|
var list = ArrayList(u8).init(a);
|
|
defer list.deinit();
|
|
|
|
(try list.addManyAsArray(4)).* = "aoeu".*;
|
|
try list.ensureTotalCapacity(8);
|
|
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
|
|
|
|
testing.expectEqualSlices(u8, list.items, "aoeuasdf");
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(u8){};
|
|
defer list.deinit(a);
|
|
|
|
(try list.addManyAsArray(a, 4)).* = "aoeu".*;
|
|
try list.ensureTotalCapacity(a, 8);
|
|
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
|
|
|
|
testing.expectEqualSlices(u8, list.items, "aoeuasdf");
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList/ArrayListUnmanaged.toOwnedSliceSentinel" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = ArrayList(u8).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.appendSlice("foobar");
|
|
|
|
const result = try list.toOwnedSliceSentinel(0);
|
|
defer a.free(result);
|
|
testing.expectEqualStrings(result, mem.spanZ(result.ptr));
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(u8){};
|
|
defer list.deinit(a);
|
|
|
|
try list.appendSlice(a, "foobar");
|
|
|
|
const result = try list.toOwnedSliceSentinel(a, 0);
|
|
defer a.free(result);
|
|
testing.expectEqualStrings(result, mem.spanZ(result.ptr));
|
|
}
|
|
}
|
|
|
|
test "ArrayListAligned/ArrayListAlignedUnmanaged accepts unaligned slices" {
|
|
const a = testing.allocator;
|
|
{
|
|
var list = std.ArrayListAligned(u8, 8).init(a);
|
|
defer list.deinit();
|
|
|
|
try list.appendSlice(&.{ 0, 1, 2, 3 });
|
|
try list.insertSlice(2, &.{ 4, 5, 6, 7 });
|
|
try list.replaceRange(1, 3, &.{ 8, 9 });
|
|
|
|
testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
|
|
}
|
|
{
|
|
var list = std.ArrayListAlignedUnmanaged(u8, 8){};
|
|
defer list.deinit(a);
|
|
|
|
try list.appendSlice(a, &.{ 0, 1, 2, 3 });
|
|
try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 });
|
|
try list.replaceRange(a, 1, 3, &.{ 8, 9 });
|
|
|
|
testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
|
|
}
|
|
}
|