zig/src/codegen/spirv.zig
2023-02-01 16:01:43 +01:00

1162 lines
50 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const Air = @import("../Air.zig");
const Zir = @import("../Zir.zig");
const Liveness = @import("../Liveness.zig");
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const SpvModule = @import("spirv/Module.zig");
const SpvSection = @import("spirv/Section.zig");
const SpvType = @import("spirv/type.zig").Type;
const SpvAssembler = @import("spirv/Assembler.zig");
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
const IncomingBlock = struct {
src_label_id: IdRef,
break_value_id: IdRef,
};
pub const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
label_id: IdRef,
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
});
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
pub const DeclGen = struct {
/// A general-purpose allocator that can be used for any allocations for this DeclGen.
gpa: Allocator,
/// The Zig module that we are generating decls for.
module: *Module,
/// The SPIR-V module that instructions should be emitted into.
spv: *SpvModule,
/// The decl we are currently generating code for.
decl_index: Decl.Index,
/// The intermediate code of the declaration we are currently generating. Note: If
/// the declaration is not a function, this value will be undefined!
air: Air,
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
/// Note: If the declaration is not a function, this value will be undefined!
liveness: Liveness,
ids: *const std.AutoHashMap(Decl.Index, IdResult),
/// An array of function argument result-ids. Each index corresponds with the
/// function argument of the same index.
args: std.ArrayListUnmanaged(IdRef) = .{},
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap = .{},
/// We need to keep track of result ids for block labels, as well as the 'incoming'
/// blocks for a block.
blocks: BlockMap = .{},
/// The label of the SPIR-V block we are currently generating.
current_block_label_id: IdRef,
/// The code (prologue and body) for the function we are currently generating code for.
func: SpvModule.Fn = .{},
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
/// Memory is owned by `module.gpa`.
error_msg: ?*Module.ErrorMsg,
/// Possible errors the `genDecl` function may return.
const Error = error{ CodegenFail, OutOfMemory };
/// This structure is used to return information about a type typically used for
/// arithmetic operations. These types may either be integers, floats, or a vector
/// of these. Most scalar operations also work on vectors, so we can easily represent
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points
/// for which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing
/// type. **Note**: this may **also** include power-of-2 integers for which the
/// relevant capability is not enabled), but still within the limits of the largest
/// natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// This is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// Whether the type is a vector.
is_vector: bool,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
/// only set when `gen` is called.
pub fn init(
allocator: Allocator,
module: *Module,
spv: *SpvModule,
ids: *const std.AutoHashMap(Decl.Index, IdResult),
) DeclGen {
return .{
.gpa = allocator,
.module = module,
.spv = spv,
.decl_index = undefined,
.air = undefined,
.liveness = undefined,
.ids = ids,
.next_arg_index = undefined,
.current_block_label_id = undefined,
.error_msg = undefined,
};
}
/// Generate the code for `decl`. If a reportable error occurred during code generation,
/// a message is returned by this function. Callee owns the memory. If this function
/// returns such a reportable error, it is valid to be called again for a different decl.
pub fn gen(self: *DeclGen, decl_index: Decl.Index, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
// Reset internal resources, we don't want to re-allocate these.
self.decl_index = decl_index;
self.air = air;
self.liveness = liveness;
self.args.items.len = 0;
self.next_arg_index = 0;
self.inst_results.clearRetainingCapacity();
self.blocks.clearRetainingCapacity();
self.current_block_label_id = undefined;
self.func.reset();
self.error_msg = null;
self.genDecl() catch |err| switch (err) {
error.CodegenFail => return self.error_msg,
else => |others| {
// There might be an error that happened *after* self.error_msg
// was already allocated, so be sure to free it.
if (self.error_msg) |error_msg| {
error_msg.deinit(self.module.gpa);
}
return others;
},
};
return null;
}
/// Free resources owned by the DeclGen.
pub fn deinit(self: *DeclGen) void {
self.args.deinit(self.gpa);
self.inst_results.deinit(self.gpa);
self.blocks.deinit(self.gpa);
self.func.deinit(self.gpa);
}
/// Return the target which we are currently compiling for.
pub fn getTarget(self: *DeclGen) std.Target {
return self.module.getTarget();
}
pub fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const src = LazySrcLoc.nodeOffset(0);
const src_loc = src.toSrcLoc(self.module.declPtr(self.decl_index));
assert(self.error_msg == null);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
return error.CodegenFail;
}
pub fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
return self.fail("TODO (SPIR-V): " ++ format, args);
}
/// Fetch the result-id for a previously generated instruction or constant.
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef {
if (self.air.value(inst)) |val| {
return self.genConstant(self.air.typeOf(inst), val);
}
const index = Air.refToIndex(inst).?;
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
}
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
/// block we are currently generating.
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
/// keep track of the previous block.
fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void {
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id });
self.current_block_label_id = label_id.toRef();
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
const target = self.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *DeclGen) u16 {
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
const target = self.getTarget();
return switch (ty.zigTypeTag()) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.is_vector = false,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.Float => ArithmeticTypeInfo{
.bits = ty.floatBits(target),
.is_vector = false,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.Int => blk: {
const int_info = ty.intInfo(target);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{
.bits = int_info.bits,
.is_vector = false,
.signedness = int_info.signedness,
.class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer,
};
},
// As of yet, there is no vector support in the self-hosted compiler.
.Vector => self.todo("implement arithmeticTypeInfo for Vector", .{}),
// TODO: For which types is this the case?
else => self.todo("implement arithmeticTypeInfo for {}", .{ty.fmtDebug()}),
};
}
/// Generate a constant representing `val`.
/// TODO: Deduplication?
fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!IdRef {
if (ty.zigTypeTag() == .Fn) {
const fn_decl_index = switch (val.tag()) {
.extern_fn => val.castTag(.extern_fn).?.data.owner_decl,
.function => val.castTag(.function).?.data.owner_decl,
else => unreachable,
};
const decl = self.module.declPtr(fn_decl_index);
self.module.markDeclAlive(decl);
return self.ids.get(fn_decl_index).?.toRef();
}
const target = self.getTarget();
const section = &self.spv.sections.types_globals_constants;
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
if (val.isUndef()) {
try section.emit(self.spv.gpa, .OpUndef, .{ .id_result_type = result_type_id, .id_result = result_id });
return result_id.toRef();
}
switch (ty.zigTypeTag()) {
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.todo("implement composite int constants for {}", .{ty.fmtDebug()});
};
// We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
// SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
// might need to be updated.
assert(self.largestSupportedIntBits() <= @bitSizeOf(u64));
// Note, value is required to be sign-extended, so we don't need to mask off the upper bits.
// See https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Literal
var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt(target)) else val.toUnsignedInt(target);
const value: spec.LiteralContextDependentNumber = switch (backing_bits) {
1...32 => .{ .uint32 = @truncate(u32, int_bits) },
33...64 => .{ .uint64 = int_bits },
else => unreachable,
};
try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_type_id,
.id_result = result_id,
.value = value,
});
},
.Bool => {
const operands = .{ .id_result_type = result_type_id, .id_result = result_id };
if (val.toBool()) {
try section.emit(self.spv.gpa, .OpConstantTrue, operands);
} else {
try section.emit(self.spv.gpa, .OpConstantFalse, operands);
}
},
.Float => {
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
// would have exited at resolveTypeId(ty).
const value: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
// Prevent upcasting to f32 by bitcasting and writing as a uint32.
16 => .{ .uint32 = @bitCast(u16, val.toFloat(f16)) },
32 => .{ .float32 = val.toFloat(f32) },
64 => .{ .float64 = val.toFloat(f64) },
128 => unreachable, // Filtered out in the call to resolveTypeId.
// TODO: Insert case for long double when the layout for that is determined?
else => unreachable,
};
try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_type_id,
.id_result = result_id,
.value = value,
});
},
.Vector => switch (val.tag()) {
.aggregate => {
const elem_vals = val.castTag(.aggregate).?.data;
const vector_len = @intCast(usize, ty.vectorLen());
const elem_ty = ty.elemType();
const elem_refs = try self.gpa.alloc(IdRef, vector_len);
defer self.gpa.free(elem_refs);
for (elem_refs) |*elem, i| {
elem.* = try self.genConstant(elem_ty, elem_vals[i]);
}
try section.emit(self.spv.gpa, .OpConstantComposite, .{
.id_result_type = result_type_id,
.id_result = result_id,
.constituents = elem_refs,
});
},
else => unreachable, // TODO
},
.Void => unreachable,
.Fn => unreachable,
else => return self.todo("constant generation of type {}", .{ty.fmtDebug()}),
}
return result_id.toRef();
}
/// Turn a Zig type into a SPIR-V Type, and return its type result-id.
fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType {
const type_ref = try self.resolveType(ty);
return self.spv.typeResultId(type_ref);
}
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
fn resolveType(self: *DeclGen, ty: Type) Error!SpvType.Ref {
const target = self.getTarget();
return switch (ty.zigTypeTag()) {
.Void => try self.spv.resolveType(SpvType.initTag(.void)),
.Bool => blk: {
// TODO: SPIR-V booleans are opaque. For local variables this is fine, but for structs
// members we want to use integer types instead.
break :blk try self.spv.resolveType(SpvType.initTag(.bool));
},
.Int => blk: {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// TODO: Integers too big for any native type are represented as "composite integers":
// An array of largestSupportedIntBits.
return self.todo("Implement composite int type {}", .{ty.fmtDebug()});
};
const payload = try self.spv.arena.create(SpvType.Payload.Int);
payload.* = .{
.width = backing_bits,
.signedness = int_info.signedness,
};
break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
},
.Float => blk: {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
const payload = try self.spv.arena.create(SpvType.Payload.Float);
payload.* = .{
.width = bits,
};
break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
},
.Fn => blk: {
// We only support C-calling-convention functions for now, no varargs.
if (ty.fnCallingConvention() != .C)
return self.fail("Unsupported calling convention for SPIR-V", .{});
if (ty.fnIsVarArgs())
return self.fail("VarArgs functions are unsupported for SPIR-V", .{});
const param_types = try self.spv.arena.alloc(SpvType.Ref, ty.fnParamLen());
for (param_types) |*param, i| {
param.* = try self.resolveType(ty.fnParamType(i));
}
const return_type = try self.resolveType(ty.fnReturnType());
const payload = try self.spv.arena.create(SpvType.Payload.Function);
payload.* = .{ .return_type = return_type, .parameters = param_types };
break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
},
.Pointer => blk: {
const payload = try self.spv.arena.create(SpvType.Payload.Pointer);
payload.* = .{
.storage_class = spirvStorageClass(ty.ptrAddressSpace()),
.child_type = try self.resolveType(ty.elemType()),
.array_stride = 0,
// Note: only available in Kernels!
.alignment = null,
.max_byte_offset = null,
};
break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
},
.Vector => blk: {
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
// which work on them), so simply use those.
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
// is adequate at all for this.
// TODO: Properly verify sizes and child type.
const payload = try self.spv.arena.create(SpvType.Payload.Vector);
payload.* = .{
.component_type = try self.resolveType(ty.elemType()),
.component_count = @intCast(u32, ty.vectorLen()),
};
break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
},
.Null,
.Undefined,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Type,
=> unreachable, // Must be comptime.
else => |tag| return self.todo("Implement zig type '{}'", .{tag}),
};
}
fn spirvStorageClass(as: std.builtin.AddressSpace) spec.StorageClass {
return switch (as) {
.generic => .Generic, // TODO: Disallow?
.gs, .fs, .ss => unreachable,
.shared => .Workgroup,
.local => .Private,
.global, .param, .constant, .flash, .flash1, .flash2, .flash3, .flash4, .flash5 => unreachable,
};
}
fn genDecl(self: *DeclGen) !void {
const result_id = self.ids.get(self.decl_index).?;
const decl = self.module.declPtr(self.decl_index);
if (decl.val.castTag(.function)) |_| {
assert(decl.ty.zigTypeTag() == .Fn);
const prototype_id = try self.resolveTypeId(decl.ty);
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveTypeId(decl.ty.fnReturnType()),
.id_result = result_id,
.function_control = .{}, // TODO: We can set inline here if the type requires it.
.function_type = prototype_id.toRef(),
});
const params = decl.ty.fnParamLen();
var i: usize = 0;
try self.args.ensureUnusedCapacity(self.gpa, params);
while (i < params) : (i += 1) {
const param_type_id = try self.resolveTypeId(decl.ty.fnParamType(i));
const arg_result_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = param_type_id,
.id_result = arg_result_id,
});
self.args.appendAssumeCapacity(arg_result_id.toRef());
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocId();
// The root block of a function declaration should appear before OpVariable instructions,
// so it is generated into the function's prologue.
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label_id = root_block_id.toRef();
const main_body = self.air.getMainBody();
try self.genBody(main_body);
// Append the actual code into the functions section.
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(self.func);
} else {
// TODO
// return self.todo("generate decl type {}", .{decl.ty.zigTypeTag()});
}
}
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
for (body) |inst| {
try self.genInst(inst);
}
}
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
const air_tags = self.air.instructions.items(.tag);
const result_id = switch (air_tags[inst]) {
// zig fmt: off
.add, .addwrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd),
.sub, .subwrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub),
.mul, .mulwrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul),
.shuffle => try self.airShuffle(inst),
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
.not => try self.airNot(inst),
.cmp_eq => try self.airCmp(inst, .OpFOrdEqual, .OpLogicalEqual, .OpIEqual),
.cmp_neq => try self.airCmp(inst, .OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual),
.cmp_gt => try self.airCmp(inst, .OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan),
.cmp_gte => try self.airCmp(inst, .OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual),
.cmp_lt => try self.airCmp(inst, .OpFOrdLessThan, .OpSLessThan, .OpULessThan),
.cmp_lte => try self.airCmp(inst, .OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual),
.arg => self.airArg(),
.alloc => try self.airAlloc(inst),
.block => (try self.airBlock(inst)) orelse return,
.load => try self.airLoad(inst),
.br => return self.airBr(inst),
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.constant => unreachable,
.dbg_stmt => return self.airDbgStmt(inst),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst),
.store => return self.airStore(inst),
.unreach => return self.airUnreach(),
.assembly => (try self.airAssembly(inst)) orelse return,
.dbg_var_ptr => return,
.dbg_var_val => return,
.dbg_block_begin => return,
.dbg_block_end => return,
// zig fmt: on
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
};
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
}
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !IdRef {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst));
try self.func.body.emit(self.spv.gpa, opcode, .{
.id_result_type = result_type_id,
.id_result = result_id,
.operand_1 = lhs_id,
.operand_2 = rhs_id,
});
return result_id.toRef();
}
fn airArithOp(
self: *DeclGen,
inst: Air.Inst.Index,
comptime fop: Opcode,
comptime sop: Opcode,
comptime uop: Opcode,
) !IdRef {
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
// the result to be the same as the LHS and RHS, which matches SPIR-V.
const ty = self.air.typeOfIndex(inst);
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
assert(self.air.typeOf(bin_op.lhs).eql(ty, self.module));
assert(self.air.typeOf(bin_op.rhs).eql(ty, self.module));
// Binary operations are generally applicable to both scalar and vector operations
// in SPIR-V, but int and float versions of operations require different opcodes.
const info = try self.arithmeticTypeInfo(ty);
const opcode_index: usize = switch (info.class) {
.composite_integer => {
return self.todo("binary operations for composite integers", .{});
},
.strange_integer => {
return self.todo("binary operations for strange integers", .{});
},
.integer => switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
},
.float => 0,
else => unreachable,
};
const operands = .{
.id_result_type = result_type_id,
.id_result = result_id,
.operand_1 = lhs_id,
.operand_2 = rhs_id,
};
switch (opcode_index) {
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
else => unreachable,
}
// TODO: Trap on overflow? Probably going to be annoying.
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
return result_id.toRef();
}
fn airShuffle(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
const ty = self.air.typeOfIndex(inst);
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
const a = try self.resolve(extra.a);
const b = try self.resolve(extra.b);
const mask = self.air.values[extra.mask];
const mask_len = extra.mask_len;
const a_len = self.air.typeOf(extra.a).vectorLen();
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
// Similar to LLVM, SPIR-V uses indices larger than the length of the first vector
// to index into the second vector.
try self.func.body.emitRaw(self.spv.gpa, .OpVectorShuffle, 4 + mask_len);
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdRef, a);
self.func.body.writeOperand(spec.IdRef, b);
var i: usize = 0;
while (i < mask_len) : (i += 1) {
var buf: Value.ElemValueBuffer = undefined;
const elem = mask.elemValueBuffer(self.module, i, &buf);
if (elem.isUndef()) {
self.func.body.writeOperand(spec.LiteralInteger, 0xFFFF_FFFF);
} else {
const int = elem.toSignedInt(self.getTarget());
const unsigned = if (int >= 0) @intCast(u32, int) else @intCast(u32, ~int + a_len);
self.func.body.writeOperand(spec.LiteralInteger, unsigned);
}
}
return result_id.toRef();
}
fn airCmp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !IdRef {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(Type.initTag(.bool));
const op_ty = self.air.typeOf(bin_op.lhs);
assert(op_ty.eql(self.air.typeOf(bin_op.rhs), self.module));
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V,
// but int and float versions of operations require different opcodes.
const info = try self.arithmeticTypeInfo(op_ty);
const opcode_index: usize = switch (info.class) {
.composite_integer => {
return self.todo("binary operations for composite integers", .{});
},
.strange_integer => {
return self.todo("comparison for strange integers", .{});
},
.float => 0,
.bool => 1,
.integer => switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
},
};
const operands = .{
.id_result_type = result_type_id,
.id_result = result_id,
.operand_1 = lhs_id,
.operand_2 = rhs_id,
};
switch (opcode_index) {
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
else => unreachable,
}
return result_id.toRef();
}
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(Type.initTag(.bool));
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
.id_result_type = result_type_id,
.id_result = result_id,
.operand = operand_id,
});
return result_id.toRef();
}
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
const ty = self.air.typeOfIndex(inst);
const result_type_id = try self.resolveTypeId(ty);
const result_id = self.spv.allocId();
// Rather than generating into code here, we're just going to generate directly into the functions section so that
// variable declarations appear in the first block of the function.
const storage_class = spirvStorageClass(ty.ptrAddressSpace());
const section = if (storage_class == .Function)
&self.func.prologue
else
&self.spv.sections.types_globals_constants;
try section.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = result_type_id,
.id_result = result_id,
.storage_class = storage_class,
});
return result_id.toRef();
}
fn airArg(self: *DeclGen) IdRef {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
// In AIR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const label_id = self.spv.allocId();
// 4 chosen as arbitrary initial capacity.
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.gpa, 4);
try self.blocks.putNoClobber(self.gpa, inst, .{
.label_id = label_id.toRef(),
.incoming_blocks = &incoming_blocks,
});
defer {
assert(self.blocks.remove(inst));
incoming_blocks.deinit(self.gpa);
}
const ty = self.air.typeOfIndex(inst);
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
const body = self.air.extra[extra.end..][0..extra.data.body_len];
try self.genBody(body);
try self.beginSpvBlock(label_id);
// If this block didn't produce a value, simply return here.
if (!ty.hasRuntimeBits())
return null;
// Combine the result from the blocks using the Phi instruction.
const result_id = self.spv.allocId();
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
// are not allowed to be created from a phi node, and throw an error for those.
const result_type_id = try self.resolveTypeId(ty);
_ = result_type_id;
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...
for (incoming_blocks.items) |incoming| {
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id });
}
return result_id.toRef();
}
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const br = self.air.instructions.items(.data)[inst].br;
const block = self.blocks.get(br.block_inst).?;
const operand_ty = self.air.typeOf(br.operand);
if (operand_ty.hasRuntimeBits()) {
const operand_id = try self.resolve(br.operand);
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
try block.incoming_blocks.append(self.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
}
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id });
}
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
const condition_id = try self.resolve(pl_op.operand);
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
const then_label_id = self.spv.allocId();
const else_label_id = self.spv.allocId();
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
// but i don't know if those will always resolve to the same block.
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label_id.toRef(),
.false_label = else_label_id.toRef(),
});
try self.beginSpvBlock(then_label_id);
try self.genBody(then_body);
try self.beginSpvBlock(else_label_id);
try self.genBody(else_body);
}
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
const src_fname_id = try self.spv.resolveSourceFileName(self.module.declPtr(self.decl_index));
try self.func.body.emit(self.spv.gpa, .OpLine, .{
.file = src_fname_id,
.line = dbg_stmt.line,
.column = dbg_stmt.column,
});
}
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const ty = self.air.typeOfIndex(inst);
const result_type_id = try self.resolveTypeId(ty);
const result_id = self.spv.allocId();
const access = spec.MemoryAccess.Extended{
.Volatile = ty.isVolatilePtr(),
};
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = result_type_id,
.id_result = result_id,
.pointer = operand_id,
.memory_access = access,
});
return result_id.toRef();
}
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body = self.air.extra[loop.end..][0..loop.data.body_len];
const loop_label_id = self.spv.allocId();
// Jump to the loop entry point
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id.toRef() });
// TODO: Look into OpLoopMerge.
try self.beginSpvBlock(loop_label_id);
try self.genBody(body);
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id.toRef() });
}
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
const operand = self.air.instructions.items(.data)[inst].un_op;
const operand_ty = self.air.typeOf(operand);
if (operand_ty.hasRuntimeBits()) {
const operand_id = try self.resolve(operand);
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
} else {
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const dst_ptr_id = try self.resolve(bin_op.lhs);
const src_val_id = try self.resolve(bin_op.rhs);
const lhs_ty = self.air.typeOf(bin_op.lhs);
const access = spec.MemoryAccess.Extended{
.Volatile = lhs_ty.isVolatilePtr(),
};
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = dst_ptr_id,
.object = src_val_id,
.memory_access = access,
});
}
fn airUnreach(self: *DeclGen) !void {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
fn airAssembly(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
const is_volatile = @truncate(u1, extra.data.flags >> 31) != 0;
const clobbers_len = @truncate(u31, extra.data.flags);
if (!is_volatile and self.liveness.isUnused(inst)) return null;
var extra_i: usize = extra.end;
const outputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.outputs_len]);
extra_i += outputs.len;
const inputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.inputs_len]);
extra_i += inputs.len;
if (outputs.len > 1) {
return self.todo("implement inline asm with more than 1 output", .{});
}
var output_extra_i = extra_i;
for (outputs) |output| {
if (output != .none) {
return self.todo("implement inline asm with non-returned output", .{});
}
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record output and use it somewhere.
}
var input_extra_i = extra_i;
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record input and use it somewhere.
_ = input;
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
extra_i += clobber.len / 4 + 1;
// TODO: Record clobber and use it somewhere.
}
}
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
var as = SpvAssembler{
.gpa = self.gpa,
.src = asm_source,
.spv = self.spv,
.func = &self.func,
};
defer as.deinit();
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
input_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const value = try self.resolve(input);
try as.value_map.put(as.gpa, name, .{ .value = value });
}
as.assemble() catch |err| switch (err) {
error.AssembleFail => {
// TODO: For now the compiler only supports a single error message per decl,
// so to translate the possible multiple errors from the assembler, emit
// them as notes here.
// TODO: Translate proper error locations.
assert(as.errors.items.len != 0);
assert(self.error_msg == null);
const loc = LazySrcLoc.nodeOffset(0);
const src_loc = loc.toSrcLoc(self.module.declPtr(self.decl_index));
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
const notes = try self.module.gpa.alloc(Module.ErrorMsg, as.errors.items.len);
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
{
errdefer self.module.gpa.free(notes);
var i: usize = 0;
errdefer for (notes[0..i]) |*note| {
note.deinit(self.module.gpa);
};
while (i < as.errors.items.len) : (i += 1) {
notes[i] = try Module.ErrorMsg.init(self.module.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
}
}
self.error_msg.?.notes = notes;
return error.CodegenFail;
},
else => |others| return others,
};
for (outputs) |output| {
_ = output;
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const result = as.value_map.get(name) orelse return {
return self.fail("invalid asm output '{s}'", .{name});
};
switch (result) {
.just_declared, .unresolved_forward_reference => unreachable,
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
.value => |ref| return ref,
}
// TODO: Multiple results
}
return null;
}
};