mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
4755 lines
184 KiB
Zig
4755 lines
184 KiB
Zig
//! SPARCv9 codegen.
|
|
//! This lowers AIR into MIR.
|
|
//! For now this only implements medium/low code model with absolute addressing.
|
|
//! TODO add support for other code models.
|
|
const std = @import("std");
|
|
const assert = std.debug.assert;
|
|
const log = std.log.scoped(.codegen);
|
|
const math = std.math;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
const builtin = @import("builtin");
|
|
const link = @import("../../link.zig");
|
|
const Module = @import("../../Module.zig");
|
|
const TypedValue = @import("../../TypedValue.zig");
|
|
const ErrorMsg = Module.ErrorMsg;
|
|
const codegen = @import("../../codegen.zig");
|
|
const Air = @import("../../Air.zig");
|
|
const Mir = @import("Mir.zig");
|
|
const Emit = @import("Emit.zig");
|
|
const Liveness = @import("../../Liveness.zig");
|
|
const Type = @import("../../type.zig").Type;
|
|
const GenerateSymbolError = @import("../../codegen.zig").GenerateSymbolError;
|
|
const Result = @import("../../codegen.zig").Result;
|
|
const DebugInfoOutput = @import("../../codegen.zig").DebugInfoOutput;
|
|
|
|
const build_options = @import("build_options");
|
|
|
|
const bits = @import("bits.zig");
|
|
const abi = @import("abi.zig");
|
|
const errUnionPayloadOffset = codegen.errUnionPayloadOffset;
|
|
const errUnionErrorOffset = codegen.errUnionErrorOffset;
|
|
const Instruction = bits.Instruction;
|
|
const ShiftWidth = Instruction.ShiftWidth;
|
|
const RegisterManager = abi.RegisterManager;
|
|
const RegisterLock = RegisterManager.RegisterLock;
|
|
const Register = bits.Register;
|
|
const gp = abi.RegisterClass.gp;
|
|
|
|
const Self = @This();
|
|
|
|
const InnerError = error{
|
|
OutOfMemory,
|
|
CodegenFail,
|
|
OutOfRegisters,
|
|
};
|
|
|
|
const RegisterView = enum(u1) {
|
|
caller,
|
|
callee,
|
|
};
|
|
|
|
gpa: Allocator,
|
|
air: Air,
|
|
liveness: Liveness,
|
|
bin_file: *link.File,
|
|
target: *const std.Target,
|
|
mod_fn: *const Module.Fn,
|
|
code: *std.ArrayList(u8),
|
|
debug_output: DebugInfoOutput,
|
|
err_msg: ?*ErrorMsg,
|
|
args: []MCValue,
|
|
ret_mcv: MCValue,
|
|
fn_type: Type,
|
|
arg_index: usize,
|
|
src_loc: Module.SrcLoc,
|
|
stack_align: u32,
|
|
|
|
/// MIR Instructions
|
|
mir_instructions: std.MultiArrayList(Mir.Inst) = .{},
|
|
/// MIR extra data
|
|
mir_extra: std.ArrayListUnmanaged(u32) = .{},
|
|
|
|
/// Byte offset within the source file of the ending curly.
|
|
end_di_line: u32,
|
|
end_di_column: u32,
|
|
|
|
/// The value is an offset into the `Function` `code` from the beginning.
|
|
/// To perform the reloc, write 32-bit signed little-endian integer
|
|
/// which is a relative jump, based on the address following the reloc.
|
|
exitlude_jump_relocs: std.ArrayListUnmanaged(usize) = .{},
|
|
|
|
/// Whenever there is a runtime branch, we push a Branch onto this stack,
|
|
/// and pop it off when the runtime branch joins. This provides an "overlay"
|
|
/// of the table of mappings from instructions to `MCValue` from within the branch.
|
|
/// This way we can modify the `MCValue` for an instruction in different ways
|
|
/// within different branches. Special consideration is needed when a branch
|
|
/// joins with its parent, to make sure all instructions have the same MCValue
|
|
/// across each runtime branch upon joining.
|
|
branch_stack: *std.ArrayList(Branch),
|
|
|
|
// Key is the block instruction
|
|
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockData) = .{},
|
|
|
|
register_manager: RegisterManager = .{},
|
|
|
|
/// Maps offset to what is stored there.
|
|
stack: std.AutoHashMapUnmanaged(u32, StackAllocation) = .{},
|
|
|
|
/// Tracks the current instruction allocated to the condition flags
|
|
condition_flags_inst: ?Air.Inst.Index = null,
|
|
|
|
/// Tracks the current instruction allocated to the condition register
|
|
condition_register_inst: ?Air.Inst.Index = null,
|
|
|
|
/// Offset from the stack base, representing the end of the stack frame.
|
|
max_end_stack: u32 = 0,
|
|
/// Represents the current end stack offset. If there is no existing slot
|
|
/// to place a new stack allocation, it goes here, and then bumps `max_end_stack`.
|
|
next_stack_offset: u32 = 0,
|
|
|
|
/// Debug field, used to find bugs in the compiler.
|
|
air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init,
|
|
|
|
const air_bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {};
|
|
|
|
const MCValue = union(enum) {
|
|
/// No runtime bits. `void` types, empty structs, u0, enums with 1 tag, etc.
|
|
/// TODO Look into deleting this tag and using `dead` instead, since every use
|
|
/// of MCValue.none should be instead looking at the type and noticing it is 0 bits.
|
|
none,
|
|
/// Control flow will not allow this value to be observed.
|
|
unreach,
|
|
/// No more references to this value remain.
|
|
dead,
|
|
/// The value is undefined.
|
|
undef,
|
|
/// A pointer-sized integer that fits in a register.
|
|
/// If the type is a pointer, this is the pointer address in virtual address space.
|
|
immediate: u64,
|
|
/// The value is in a target-specific register.
|
|
register: Register,
|
|
/// The value is a tuple { wrapped, overflow } where
|
|
/// wrapped is stored in the register and the overflow bit is
|
|
/// stored in the C (signed) or V (unsigned) flag of the CCR.
|
|
///
|
|
/// This MCValue is only generated by a add_with_overflow or
|
|
/// sub_with_overflow instruction operating on 32- or 64-bit values.
|
|
register_with_overflow: struct {
|
|
reg: Register,
|
|
flag: struct { cond: Instruction.ICondition, ccr: Instruction.CCR },
|
|
},
|
|
/// The value is in memory at a hard-coded address.
|
|
/// If the type is a pointer, it means the pointer address is at this memory location.
|
|
memory: u64,
|
|
/// The value is one of the stack variables.
|
|
/// If the type is a pointer, it means the pointer address is in the stack at this offset.
|
|
/// Note that this stores the plain value (i.e without the effects of the stack bias).
|
|
stack_offset: u32,
|
|
/// The value is a pointer to one of the stack variables (payload is stack offset).
|
|
ptr_stack_offset: u32,
|
|
/// The value is in the specified CCR. The value is 1 (if
|
|
/// the type is u1) or true (if the type in bool) iff the
|
|
/// specified condition is true.
|
|
condition_flags: struct {
|
|
cond: Instruction.Condition,
|
|
ccr: Instruction.CCR,
|
|
},
|
|
/// The value is in the specified Register. The value is 1 (if
|
|
/// the type is u1) or true (if the type in bool) iff the
|
|
/// specified condition is true.
|
|
condition_register: struct {
|
|
cond: Instruction.RCondition,
|
|
reg: Register,
|
|
},
|
|
|
|
fn isMemory(mcv: MCValue) bool {
|
|
return switch (mcv) {
|
|
.memory, .stack_offset => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
fn isImmediate(mcv: MCValue) bool {
|
|
return switch (mcv) {
|
|
.immediate => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
fn isMutable(mcv: MCValue) bool {
|
|
return switch (mcv) {
|
|
.none => unreachable,
|
|
.unreach => unreachable,
|
|
.dead => unreachable,
|
|
|
|
.immediate,
|
|
.memory,
|
|
.condition_flags,
|
|
.condition_register,
|
|
.ptr_stack_offset,
|
|
.undef,
|
|
=> false,
|
|
|
|
.register,
|
|
.stack_offset,
|
|
=> true,
|
|
};
|
|
}
|
|
};
|
|
|
|
const Branch = struct {
|
|
inst_table: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, MCValue) = .{},
|
|
|
|
fn deinit(self: *Branch, gpa: Allocator) void {
|
|
self.inst_table.deinit(gpa);
|
|
self.* = undefined;
|
|
}
|
|
};
|
|
|
|
const StackAllocation = struct {
|
|
inst: Air.Inst.Index,
|
|
/// TODO do we need size? should be determined by inst.ty.abiSize()
|
|
size: u32,
|
|
};
|
|
|
|
const BlockData = struct {
|
|
relocs: std.ArrayListUnmanaged(Mir.Inst.Index),
|
|
/// The first break instruction encounters `null` here and chooses a
|
|
/// machine code value for the block result, populating this field.
|
|
/// Following break instructions encounter that value and use it for
|
|
/// the location to store their block results.
|
|
mcv: MCValue,
|
|
};
|
|
|
|
const CallMCValues = struct {
|
|
args: []MCValue,
|
|
return_value: MCValue,
|
|
stack_byte_count: u32,
|
|
stack_align: u32,
|
|
|
|
fn deinit(self: *CallMCValues, func: *Self) void {
|
|
func.gpa.free(self.args);
|
|
self.* = undefined;
|
|
}
|
|
};
|
|
|
|
const BigTomb = struct {
|
|
function: *Self,
|
|
inst: Air.Inst.Index,
|
|
lbt: Liveness.BigTomb,
|
|
|
|
fn feed(bt: *BigTomb, op_ref: Air.Inst.Ref) void {
|
|
const dies = bt.lbt.feed();
|
|
const op_index = Air.refToIndex(op_ref) orelse return;
|
|
if (!dies) return;
|
|
bt.function.processDeath(op_index);
|
|
}
|
|
|
|
fn finishAir(bt: *BigTomb, result: MCValue) void {
|
|
const is_used = !bt.function.liveness.isUnused(bt.inst);
|
|
if (is_used) {
|
|
log.debug("%{d} => {}", .{ bt.inst, result });
|
|
const branch = &bt.function.branch_stack.items[bt.function.branch_stack.items.len - 1];
|
|
branch.inst_table.putAssumeCapacityNoClobber(bt.inst, result);
|
|
}
|
|
bt.function.finishAirBookkeeping();
|
|
}
|
|
};
|
|
|
|
pub fn generate(
|
|
bin_file: *link.File,
|
|
src_loc: Module.SrcLoc,
|
|
module_fn: *Module.Fn,
|
|
air: Air,
|
|
liveness: Liveness,
|
|
code: *std.ArrayList(u8),
|
|
debug_output: DebugInfoOutput,
|
|
) GenerateSymbolError!Result {
|
|
if (build_options.skip_non_native and builtin.cpu.arch != bin_file.options.target.cpu.arch) {
|
|
@panic("Attempted to compile for architecture that was disabled by build configuration");
|
|
}
|
|
|
|
const mod = bin_file.options.module.?;
|
|
const fn_owner_decl = mod.declPtr(module_fn.owner_decl);
|
|
assert(fn_owner_decl.has_tv);
|
|
const fn_type = fn_owner_decl.ty;
|
|
|
|
log.debug("fn {s}", .{fn_owner_decl.name});
|
|
|
|
var branch_stack = std.ArrayList(Branch).init(bin_file.allocator);
|
|
defer {
|
|
assert(branch_stack.items.len == 1);
|
|
branch_stack.items[0].deinit(bin_file.allocator);
|
|
branch_stack.deinit();
|
|
}
|
|
try branch_stack.append(.{});
|
|
|
|
var function = Self{
|
|
.gpa = bin_file.allocator,
|
|
.air = air,
|
|
.liveness = liveness,
|
|
.target = &bin_file.options.target,
|
|
.bin_file = bin_file,
|
|
.mod_fn = module_fn,
|
|
.code = code,
|
|
.debug_output = debug_output,
|
|
.err_msg = null,
|
|
.args = undefined, // populated after `resolveCallingConventionValues`
|
|
.ret_mcv = undefined, // populated after `resolveCallingConventionValues`
|
|
.fn_type = fn_type,
|
|
.arg_index = 0,
|
|
.branch_stack = &branch_stack,
|
|
.src_loc = src_loc,
|
|
.stack_align = undefined,
|
|
.end_di_line = module_fn.rbrace_line,
|
|
.end_di_column = module_fn.rbrace_column,
|
|
};
|
|
defer function.stack.deinit(bin_file.allocator);
|
|
defer function.blocks.deinit(bin_file.allocator);
|
|
defer function.exitlude_jump_relocs.deinit(bin_file.allocator);
|
|
|
|
var call_info = function.resolveCallingConventionValues(fn_type, .callee) catch |err| switch (err) {
|
|
error.CodegenFail => return Result{ .fail = function.err_msg.? },
|
|
error.OutOfRegisters => return Result{
|
|
.fail = try ErrorMsg.create(bin_file.allocator, src_loc, "CodeGen ran out of registers. This is a bug in the Zig compiler.", .{}),
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
defer call_info.deinit(&function);
|
|
|
|
function.args = call_info.args;
|
|
function.ret_mcv = call_info.return_value;
|
|
function.stack_align = call_info.stack_align;
|
|
function.max_end_stack = call_info.stack_byte_count;
|
|
|
|
function.gen() catch |err| switch (err) {
|
|
error.CodegenFail => return Result{ .fail = function.err_msg.? },
|
|
error.OutOfRegisters => return Result{
|
|
.fail = try ErrorMsg.create(bin_file.allocator, src_loc, "CodeGen ran out of registers. This is a bug in the Zig compiler.", .{}),
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
|
|
var mir = Mir{
|
|
.instructions = function.mir_instructions.toOwnedSlice(),
|
|
.extra = try function.mir_extra.toOwnedSlice(bin_file.allocator),
|
|
};
|
|
defer mir.deinit(bin_file.allocator);
|
|
|
|
var emit = Emit{
|
|
.mir = mir,
|
|
.bin_file = bin_file,
|
|
.debug_output = debug_output,
|
|
.target = &bin_file.options.target,
|
|
.src_loc = src_loc,
|
|
.code = code,
|
|
.prev_di_pc = 0,
|
|
.prev_di_line = module_fn.lbrace_line,
|
|
.prev_di_column = module_fn.lbrace_column,
|
|
};
|
|
defer emit.deinit();
|
|
|
|
emit.emitMir() catch |err| switch (err) {
|
|
error.EmitFail => return Result{ .fail = emit.err_msg.? },
|
|
else => |e| return e,
|
|
};
|
|
|
|
if (function.err_msg) |em| {
|
|
return Result{ .fail = em };
|
|
} else {
|
|
return Result.ok;
|
|
}
|
|
}
|
|
|
|
fn gen(self: *Self) !void {
|
|
const cc = self.fn_type.fnCallingConvention();
|
|
if (cc != .Naked) {
|
|
// TODO Finish function prologue and epilogue for sparc64.
|
|
|
|
// save %sp, stack_reserved_area, %sp
|
|
const save_inst = try self.addInst(.{
|
|
.tag = .save,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = .sp,
|
|
.rs1 = .sp,
|
|
.rs2_or_imm = .{ .imm = -abi.stack_reserved_area },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .dbg_prologue_end,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
|
|
try self.genBody(self.air.getMainBody());
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .dbg_epilogue_begin,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
|
|
// exitlude jumps
|
|
if (self.exitlude_jump_relocs.items.len > 0 and
|
|
self.exitlude_jump_relocs.items[self.exitlude_jump_relocs.items.len - 1] == self.mir_instructions.len - 3)
|
|
{
|
|
// If the last Mir instruction (apart from the
|
|
// dbg_epilogue_begin) is the last exitlude jump
|
|
// relocation (which would just jump two instructions
|
|
// further), it can be safely removed
|
|
const index = self.exitlude_jump_relocs.pop();
|
|
|
|
// First, remove the delay slot, then remove
|
|
// the branch instruction itself.
|
|
self.mir_instructions.orderedRemove(index + 1);
|
|
self.mir_instructions.orderedRemove(index);
|
|
}
|
|
|
|
for (self.exitlude_jump_relocs.items) |jmp_reloc| {
|
|
self.mir_instructions.set(jmp_reloc, .{
|
|
.tag = .bpcc,
|
|
.data = .{
|
|
.branch_predict_int = .{
|
|
.ccr = .xcc,
|
|
.cond = .al,
|
|
.inst = @intCast(u32, self.mir_instructions.len),
|
|
},
|
|
},
|
|
});
|
|
}
|
|
|
|
// Backpatch stack offset
|
|
const total_stack_size = self.max_end_stack + abi.stack_reserved_area;
|
|
const stack_size = mem.alignForwardGeneric(u32, total_stack_size, self.stack_align);
|
|
if (math.cast(i13, stack_size)) |size| {
|
|
self.mir_instructions.set(save_inst, .{
|
|
.tag = .save,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = .sp,
|
|
.rs1 = .sp,
|
|
.rs2_or_imm = .{ .imm = -size },
|
|
},
|
|
},
|
|
});
|
|
} else {
|
|
// TODO for large stacks, replace the prologue with:
|
|
// setx stack_size, %g1
|
|
// save %sp, %g1, %sp
|
|
return self.fail("TODO SPARCv9: allow larger stacks", .{});
|
|
}
|
|
|
|
// return %i7 + 8
|
|
_ = try self.addInst(.{
|
|
.tag = .@"return",
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = true,
|
|
.rs1 = .i7,
|
|
.rs2_or_imm = .{ .imm = 8 },
|
|
},
|
|
},
|
|
});
|
|
|
|
// Branches in SPARC have a delay slot, that is, the instruction
|
|
// following it will unconditionally be executed.
|
|
// See: Section 3.2.3 Control Transfer in SPARCv9 manual.
|
|
// See also: https://arcb.csc.ncsu.edu/~mueller/codeopt/codeopt00/notes/delaybra.html
|
|
// TODO Find a way to fill this delay slot
|
|
// nop
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
} else {
|
|
_ = try self.addInst(.{
|
|
.tag = .dbg_prologue_end,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
|
|
try self.genBody(self.air.getMainBody());
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .dbg_epilogue_begin,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
}
|
|
|
|
// Drop them off at the rbrace.
|
|
_ = try self.addInst(.{
|
|
.tag = .dbg_line,
|
|
.data = .{ .dbg_line_column = .{
|
|
.line = self.end_di_line,
|
|
.column = self.end_di_column,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
|
|
for (body) |inst| {
|
|
const old_air_bookkeeping = self.air_bookkeeping;
|
|
try self.ensureProcessDeathCapacity(Liveness.bpi);
|
|
|
|
switch (air_tags[inst]) {
|
|
// zig fmt: off
|
|
.ptr_add => try self.airPtrArithmetic(inst, .ptr_add),
|
|
.ptr_sub => try self.airPtrArithmetic(inst, .ptr_sub),
|
|
|
|
.add => try self.airBinOp(inst, .add),
|
|
.addwrap => try self.airBinOp(inst, .addwrap),
|
|
.sub => try self.airBinOp(inst, .sub),
|
|
.subwrap => try self.airBinOp(inst, .subwrap),
|
|
.mul => try self.airBinOp(inst, .mul),
|
|
.mulwrap => try self.airBinOp(inst, .mulwrap),
|
|
.shl => try self.airBinOp(inst, .shl),
|
|
.shl_exact => try self.airBinOp(inst, .shl_exact),
|
|
.shr => try self.airBinOp(inst, .shr),
|
|
.shr_exact => try self.airBinOp(inst, .shr_exact),
|
|
.bool_and => try self.airBinOp(inst, .bool_and),
|
|
.bool_or => try self.airBinOp(inst, .bool_or),
|
|
.bit_and => try self.airBinOp(inst, .bit_and),
|
|
.bit_or => try self.airBinOp(inst, .bit_or),
|
|
.xor => try self.airBinOp(inst, .xor),
|
|
|
|
.add_sat => try self.airAddSat(inst),
|
|
.sub_sat => try self.airSubSat(inst),
|
|
.mul_sat => try self.airMulSat(inst),
|
|
.shl_sat => try self.airShlSat(inst),
|
|
.min, .max => try self.airMinMax(inst),
|
|
.rem => try self.airRem(inst),
|
|
.mod => try self.airMod(inst),
|
|
.slice => try self.airSlice(inst),
|
|
|
|
.sqrt,
|
|
.sin,
|
|
.cos,
|
|
.tan,
|
|
.exp,
|
|
.exp2,
|
|
.log,
|
|
.log2,
|
|
.log10,
|
|
.fabs,
|
|
.floor,
|
|
.ceil,
|
|
.round,
|
|
.trunc_float,
|
|
.neg,
|
|
=> try self.airUnaryMath(inst),
|
|
|
|
.add_with_overflow => try self.airAddSubWithOverflow(inst),
|
|
.sub_with_overflow => try self.airAddSubWithOverflow(inst),
|
|
.mul_with_overflow => try self.airMulWithOverflow(inst),
|
|
.shl_with_overflow => try self.airShlWithOverflow(inst),
|
|
|
|
.div_float, .div_trunc, .div_floor, .div_exact => try self.airDiv(inst),
|
|
|
|
.cmp_lt => try self.airCmp(inst, .lt),
|
|
.cmp_lte => try self.airCmp(inst, .lte),
|
|
.cmp_eq => try self.airCmp(inst, .eq),
|
|
.cmp_gte => try self.airCmp(inst, .gte),
|
|
.cmp_gt => try self.airCmp(inst, .gt),
|
|
.cmp_neq => try self.airCmp(inst, .neq),
|
|
.cmp_vector => @panic("TODO try self.airCmpVector(inst)"),
|
|
.cmp_lt_errors_len => try self.airCmpLtErrorsLen(inst),
|
|
|
|
.alloc => try self.airAlloc(inst),
|
|
.ret_ptr => try self.airRetPtr(inst),
|
|
.arg => try self.airArg(inst),
|
|
.assembly => try self.airAsm(inst),
|
|
.bitcast => try self.airBitCast(inst),
|
|
.block => try self.airBlock(inst),
|
|
.br => try self.airBr(inst),
|
|
.breakpoint => try self.airBreakpoint(),
|
|
.ret_addr => @panic("TODO try self.airRetAddr(inst)"),
|
|
.frame_addr => @panic("TODO try self.airFrameAddress(inst)"),
|
|
.fence => try self.airFence(inst),
|
|
.cond_br => try self.airCondBr(inst),
|
|
.dbg_stmt => try self.airDbgStmt(inst),
|
|
.fptrunc => @panic("TODO try self.airFptrunc(inst)"),
|
|
.fpext => @panic("TODO try self.airFpext(inst)"),
|
|
.intcast => try self.airIntCast(inst),
|
|
.trunc => try self.airTrunc(inst),
|
|
.bool_to_int => try self.airBoolToInt(inst),
|
|
.is_non_null => try self.airIsNonNull(inst),
|
|
.is_non_null_ptr => @panic("TODO try self.airIsNonNullPtr(inst)"),
|
|
.is_null => try self.airIsNull(inst),
|
|
.is_null_ptr => @panic("TODO try self.airIsNullPtr(inst)"),
|
|
.is_non_err => try self.airIsNonErr(inst),
|
|
.is_non_err_ptr => @panic("TODO try self.airIsNonErrPtr(inst)"),
|
|
.is_err => try self.airIsErr(inst),
|
|
.is_err_ptr => @panic("TODO try self.airIsErrPtr(inst)"),
|
|
.load => try self.airLoad(inst),
|
|
.loop => try self.airLoop(inst),
|
|
.not => try self.airNot(inst),
|
|
.ptrtoint => try self.airPtrToInt(inst),
|
|
.ret => try self.airRet(inst),
|
|
.ret_load => try self.airRetLoad(inst),
|
|
.store => try self.airStore(inst),
|
|
.struct_field_ptr=> @panic("TODO try self.airStructFieldPtr(inst)"),
|
|
.struct_field_val=> try self.airStructFieldVal(inst),
|
|
.array_to_slice => try self.airArrayToSlice(inst),
|
|
.int_to_float => try self.airIntToFloat(inst),
|
|
.float_to_int => try self.airFloatToInt(inst),
|
|
.cmpxchg_strong,
|
|
.cmpxchg_weak,
|
|
=> try self.airCmpxchg(inst),
|
|
.atomic_rmw => try self.airAtomicRmw(inst),
|
|
.atomic_load => try self.airAtomicLoad(inst),
|
|
.memcpy => @panic("TODO try self.airMemcpy(inst)"),
|
|
.memset => try self.airMemset(inst),
|
|
.set_union_tag => try self.airSetUnionTag(inst),
|
|
.get_union_tag => try self.airGetUnionTag(inst),
|
|
.clz => try self.airClz(inst),
|
|
.ctz => try self.airCtz(inst),
|
|
.popcount => try self.airPopcount(inst),
|
|
.byte_swap => @panic("TODO try self.airByteSwap(inst)"),
|
|
.bit_reverse => try self.airBitReverse(inst),
|
|
.tag_name => try self.airTagName(inst),
|
|
.error_name => try self.airErrorName(inst),
|
|
.splat => try self.airSplat(inst),
|
|
.select => @panic("TODO try self.airSelect(inst)"),
|
|
.shuffle => @panic("TODO try self.airShuffle(inst)"),
|
|
.reduce => @panic("TODO try self.airReduce(inst)"),
|
|
.aggregate_init => try self.airAggregateInit(inst),
|
|
.union_init => try self.airUnionInit(inst),
|
|
.prefetch => try self.airPrefetch(inst),
|
|
.mul_add => @panic("TODO try self.airMulAdd(inst)"),
|
|
.addrspace_cast => @panic("TODO try self.airAddrSpaceCast(int)"),
|
|
|
|
.@"try" => try self.airTry(inst),
|
|
.try_ptr => @panic("TODO try self.airTryPtr(inst)"),
|
|
|
|
.dbg_var_ptr,
|
|
.dbg_var_val,
|
|
=> try self.airDbgVar(inst),
|
|
|
|
.dbg_inline_begin,
|
|
.dbg_inline_end,
|
|
=> try self.airDbgInline(inst),
|
|
|
|
.dbg_block_begin,
|
|
.dbg_block_end,
|
|
=> try self.airDbgBlock(inst),
|
|
|
|
.call => try self.airCall(inst, .auto),
|
|
.call_always_tail => try self.airCall(inst, .always_tail),
|
|
.call_never_tail => try self.airCall(inst, .never_tail),
|
|
.call_never_inline => try self.airCall(inst, .never_inline),
|
|
|
|
.atomic_store_unordered => @panic("TODO try self.airAtomicStore(inst, .Unordered)"),
|
|
.atomic_store_monotonic => @panic("TODO try self.airAtomicStore(inst, .Monotonic)"),
|
|
.atomic_store_release => @panic("TODO try self.airAtomicStore(inst, .Release)"),
|
|
.atomic_store_seq_cst => @panic("TODO try self.airAtomicStore(inst, .SeqCst)"),
|
|
|
|
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
|
|
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
|
|
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
|
|
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
|
|
|
|
.field_parent_ptr => @panic("TODO try self.airFieldParentPtr(inst)"),
|
|
|
|
.switch_br => try self.airSwitch(inst),
|
|
.slice_ptr => try self.airSlicePtr(inst),
|
|
.slice_len => try self.airSliceLen(inst),
|
|
|
|
.ptr_slice_len_ptr => @panic("TODO try self.airPtrSliceLenPtr(inst)"),
|
|
.ptr_slice_ptr_ptr => @panic("TODO try self.airPtrSlicePtrPtr(inst)"),
|
|
|
|
.array_elem_val => try self.airArrayElemVal(inst),
|
|
.slice_elem_val => try self.airSliceElemVal(inst),
|
|
.slice_elem_ptr => @panic("TODO try self.airSliceElemPtr(inst)"),
|
|
.ptr_elem_val => try self.airPtrElemVal(inst),
|
|
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
|
|
|
|
.constant => unreachable, // excluded from function bodies
|
|
.const_ty => unreachable, // excluded from function bodies
|
|
.unreach => self.finishAirBookkeeping(),
|
|
|
|
.optional_payload => try self.airOptionalPayload(inst),
|
|
.optional_payload_ptr => try self.airOptionalPayloadPtr(inst),
|
|
.optional_payload_ptr_set => try self.airOptionalPayloadPtrSet(inst),
|
|
.unwrap_errunion_err => try self.airUnwrapErrErr(inst),
|
|
.unwrap_errunion_payload => try self.airUnwrapErrPayload(inst),
|
|
.unwrap_errunion_err_ptr => @panic("TODO try self.airUnwrapErrErrPtr(inst)"),
|
|
.unwrap_errunion_payload_ptr=> @panic("TODO try self.airUnwrapErrPayloadPtr(inst)"),
|
|
.errunion_payload_ptr_set => try self.airErrUnionPayloadPtrSet(inst),
|
|
.err_return_trace => @panic("TODO try self.airErrReturnTrace(inst)"),
|
|
.set_err_return_trace => @panic("TODO try self.airSetErrReturnTrace(inst)"),
|
|
.save_err_return_trace_index=> @panic("TODO try self.airSaveErrReturnTraceIndex(inst)"),
|
|
|
|
.wrap_optional => try self.airWrapOptional(inst),
|
|
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
|
|
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
|
|
|
|
.add_optimized,
|
|
.addwrap_optimized,
|
|
.sub_optimized,
|
|
.subwrap_optimized,
|
|
.mul_optimized,
|
|
.mulwrap_optimized,
|
|
.div_float_optimized,
|
|
.div_trunc_optimized,
|
|
.div_floor_optimized,
|
|
.div_exact_optimized,
|
|
.rem_optimized,
|
|
.mod_optimized,
|
|
.neg_optimized,
|
|
.cmp_lt_optimized,
|
|
.cmp_lte_optimized,
|
|
.cmp_eq_optimized,
|
|
.cmp_gte_optimized,
|
|
.cmp_gt_optimized,
|
|
.cmp_neq_optimized,
|
|
.cmp_vector_optimized,
|
|
.reduce_optimized,
|
|
.float_to_int_optimized,
|
|
=> @panic("TODO implement optimized float mode"),
|
|
|
|
.is_named_enum_value => @panic("TODO implement is_named_enum_value"),
|
|
.error_set_has_value => @panic("TODO implement error_set_has_value"),
|
|
.vector_store_elem => @panic("TODO implement vector_store_elem"),
|
|
|
|
.c_va_arg => @panic("TODO implement c_va_arg"),
|
|
.c_va_copy => @panic("TODO implement c_va_copy"),
|
|
.c_va_end => @panic("TODO implement c_va_end"),
|
|
.c_va_start => @panic("TODO implement c_va_start"),
|
|
|
|
.wasm_memory_size => unreachable,
|
|
.wasm_memory_grow => unreachable,
|
|
// zig fmt: on
|
|
}
|
|
|
|
assert(!self.register_manager.lockedRegsExist());
|
|
|
|
if (std.debug.runtime_safety) {
|
|
if (self.air_bookkeeping < old_air_bookkeeping + 1) {
|
|
std.debug.panic("in codegen.zig, handling of AIR instruction %{d} ('{}') did not do proper bookkeeping. Look for a missing call to finishAir.", .{ inst, air_tags[inst] });
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn airAddSat(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement add_sat for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airAddSubWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
|
|
const tag = self.air.instructions.items(.tag)[inst];
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const lhs = try self.resolveInst(extra.lhs);
|
|
const rhs = try self.resolveInst(extra.rhs);
|
|
const lhs_ty = self.air.typeOf(extra.lhs);
|
|
const rhs_ty = self.air.typeOf(extra.rhs);
|
|
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO implement add_with_overflow/sub_with_overflow for vectors", .{}),
|
|
.Int => {
|
|
const mod = self.bin_file.options.module.?;
|
|
assert(lhs_ty.eql(rhs_ty, mod));
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
switch (int_info.bits) {
|
|
32, 64 => {
|
|
// Only say yes if the operation is
|
|
// commutative, i.e. we can swap both of the
|
|
// operands
|
|
const lhs_immediate_ok = switch (tag) {
|
|
.add_with_overflow => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
|
|
.sub_with_overflow => false,
|
|
else => unreachable,
|
|
};
|
|
const rhs_immediate_ok = switch (tag) {
|
|
.add_with_overflow,
|
|
.sub_with_overflow,
|
|
=> rhs == .immediate and rhs.immediate <= std.math.maxInt(u12),
|
|
else => unreachable,
|
|
};
|
|
|
|
const mir_tag: Mir.Inst.Tag = switch (tag) {
|
|
.add_with_overflow => .addcc,
|
|
.sub_with_overflow => .subcc,
|
|
else => unreachable,
|
|
};
|
|
|
|
try self.spillConditionFlagsIfOccupied();
|
|
|
|
const dest = blk: {
|
|
if (rhs_immediate_ok) {
|
|
break :blk try self.binOpImmediate(mir_tag, lhs, rhs, lhs_ty, false, null);
|
|
} else if (lhs_immediate_ok) {
|
|
// swap lhs and rhs
|
|
break :blk try self.binOpImmediate(mir_tag, rhs, lhs, rhs_ty, true, null);
|
|
} else {
|
|
break :blk try self.binOpRegister(mir_tag, lhs, rhs, lhs_ty, rhs_ty, null);
|
|
}
|
|
};
|
|
|
|
const cond = switch (int_info.signedness) {
|
|
.unsigned => switch (tag) {
|
|
.add_with_overflow => Instruction.ICondition.cs,
|
|
.sub_with_overflow => Instruction.ICondition.cc,
|
|
else => unreachable,
|
|
},
|
|
.signed => Instruction.ICondition.vs,
|
|
};
|
|
|
|
const ccr = switch (int_info.bits) {
|
|
32 => Instruction.CCR.icc,
|
|
64 => Instruction.CCR.xcc,
|
|
else => unreachable,
|
|
};
|
|
|
|
break :result MCValue{ .register_with_overflow = .{
|
|
.reg = dest.register,
|
|
.flag = .{ .cond = cond, .ccr = ccr },
|
|
} };
|
|
},
|
|
else => return self.fail("TODO overflow operations on other integer sizes", .{}),
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
|
|
}
|
|
|
|
fn airAggregateInit(self: *Self, inst: Air.Inst.Index) !void {
|
|
const vector_ty = self.air.typeOfIndex(inst);
|
|
const len = vector_ty.vectorLen();
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const elements = @ptrCast([]const Air.Inst.Ref, self.air.extra[ty_pl.payload..][0..len]);
|
|
const result: MCValue = res: {
|
|
if (self.liveness.isUnused(inst)) break :res MCValue.dead;
|
|
return self.fail("TODO implement airAggregateInit for {}", .{self.target.cpu.arch});
|
|
};
|
|
|
|
if (elements.len <= Liveness.bpi - 1) {
|
|
var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
|
|
std.mem.copy(Air.Inst.Ref, &buf, elements);
|
|
return self.finishAir(inst, result, buf);
|
|
}
|
|
var bt = try self.iterateBigTomb(inst, elements.len);
|
|
for (elements) |elem| {
|
|
bt.feed(elem);
|
|
}
|
|
return bt.finishAir(result);
|
|
}
|
|
|
|
fn airAlloc(self: *Self, inst: Air.Inst.Index) !void {
|
|
const stack_offset = try self.allocMemPtr(inst);
|
|
return self.finishAir(inst, .{ .ptr_stack_offset = stack_offset }, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airArrayElemVal(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement array_elem_val for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airArrayToSlice(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const ptr_ty = self.air.typeOf(ty_op.operand);
|
|
const ptr = try self.resolveInst(ty_op.operand);
|
|
const array_ty = ptr_ty.childType();
|
|
const array_len = @intCast(u32, array_ty.arrayLen());
|
|
|
|
const ptr_bits = self.target.cpu.arch.ptrBitWidth();
|
|
const ptr_bytes = @divExact(ptr_bits, 8);
|
|
|
|
const stack_offset = try self.allocMem(inst, ptr_bytes * 2, ptr_bytes * 2);
|
|
try self.genSetStack(ptr_ty, stack_offset, ptr);
|
|
try self.genSetStack(Type.initTag(.usize), stack_offset - ptr_bytes, .{ .immediate = array_len });
|
|
break :result MCValue{ .stack_offset = stack_offset };
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airAsm(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
|
|
const is_volatile = (extra.data.flags & 0x80000000) != 0;
|
|
const clobbers_len = @truncate(u31, extra.data.flags);
|
|
var extra_i: usize = extra.end;
|
|
const outputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i .. extra_i + extra.data.outputs_len]);
|
|
extra_i += outputs.len;
|
|
const inputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i .. extra_i + extra.data.inputs_len]);
|
|
extra_i += inputs.len;
|
|
|
|
const dead = !is_volatile and self.liveness.isUnused(inst);
|
|
const result: MCValue = if (dead) .dead else result: {
|
|
if (outputs.len > 1) {
|
|
return self.fail("TODO implement codegen for asm with more than 1 output", .{});
|
|
}
|
|
|
|
const output_constraint: ?[]const u8 = for (outputs) |output| {
|
|
if (output != .none) {
|
|
return self.fail("TODO implement codegen for non-expr asm", .{});
|
|
}
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
|
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
break constraint;
|
|
} else null;
|
|
|
|
for (inputs) |input| {
|
|
const input_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
|
const constraint = std.mem.sliceTo(input_bytes, 0);
|
|
const name = std.mem.sliceTo(input_bytes[constraint.len + 1 ..], 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
if (constraint.len < 3 or constraint[0] != '{' or constraint[constraint.len - 1] != '}') {
|
|
return self.fail("unrecognized asm input constraint: '{s}'", .{constraint});
|
|
}
|
|
const reg_name = constraint[1 .. constraint.len - 1];
|
|
const reg = parseRegName(reg_name) orelse
|
|
return self.fail("unrecognized register: '{s}'", .{reg_name});
|
|
|
|
const arg_mcv = try self.resolveInst(input);
|
|
try self.register_manager.getReg(reg, null);
|
|
try self.genSetReg(self.air.typeOf(input), reg, arg_mcv);
|
|
}
|
|
|
|
{
|
|
var clobber_i: u32 = 0;
|
|
while (clobber_i < clobbers_len) : (clobber_i += 1) {
|
|
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
extra_i += clobber.len / 4 + 1;
|
|
|
|
// TODO honor these
|
|
}
|
|
}
|
|
|
|
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
|
|
|
|
if (mem.eql(u8, asm_source, "ta 0x6d")) {
|
|
_ = try self.addInst(.{
|
|
.tag = .tcc,
|
|
.data = .{
|
|
.trap = .{
|
|
.is_imm = true,
|
|
.cond = .al,
|
|
.rs2_or_imm = .{ .imm = 0x6d },
|
|
},
|
|
},
|
|
});
|
|
} else {
|
|
return self.fail("TODO implement a full SPARCv9 assembly parsing", .{});
|
|
}
|
|
|
|
if (output_constraint) |output| {
|
|
if (output.len < 4 or output[0] != '=' or output[1] != '{' or output[output.len - 1] != '}') {
|
|
return self.fail("unrecognized asm output constraint: '{s}'", .{output});
|
|
}
|
|
const reg_name = output[2 .. output.len - 1];
|
|
const reg = parseRegName(reg_name) orelse
|
|
return self.fail("unrecognized register: '{s}'", .{reg_name});
|
|
break :result MCValue{ .register = reg };
|
|
} else {
|
|
break :result MCValue{ .none = {} };
|
|
}
|
|
};
|
|
|
|
simple: {
|
|
var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
|
|
var buf_index: usize = 0;
|
|
for (outputs) |output| {
|
|
if (output == .none) continue;
|
|
|
|
if (buf_index >= buf.len) break :simple;
|
|
buf[buf_index] = output;
|
|
buf_index += 1;
|
|
}
|
|
if (buf_index + inputs.len > buf.len) break :simple;
|
|
std.mem.copy(Air.Inst.Ref, buf[buf_index..], inputs);
|
|
return self.finishAir(inst, result, buf);
|
|
}
|
|
|
|
var bt = try self.iterateBigTomb(inst, outputs.len + inputs.len);
|
|
for (outputs) |output| {
|
|
if (output == .none) continue;
|
|
|
|
bt.feed(output);
|
|
}
|
|
for (inputs) |input| {
|
|
bt.feed(input);
|
|
}
|
|
return bt.finishAir(result);
|
|
}
|
|
|
|
fn airArg(self: *Self, inst: Air.Inst.Index) !void {
|
|
const arg_index = self.arg_index;
|
|
self.arg_index += 1;
|
|
|
|
const ty = self.air.typeOfIndex(inst);
|
|
|
|
const arg = self.args[arg_index];
|
|
const mcv = blk: {
|
|
switch (arg) {
|
|
.stack_offset => |off| {
|
|
const mod = self.bin_file.options.module.?;
|
|
const abi_size = math.cast(u32, ty.abiSize(self.target.*)) orelse {
|
|
return self.fail("type '{}' too big to fit into stack frame", .{ty.fmt(mod)});
|
|
};
|
|
const offset = off + abi_size;
|
|
break :blk MCValue{ .stack_offset = offset };
|
|
},
|
|
else => break :blk arg,
|
|
}
|
|
};
|
|
|
|
try self.genArgDbgInfo(inst, mcv);
|
|
|
|
if (self.liveness.isUnused(inst))
|
|
return self.finishAirBookkeeping();
|
|
|
|
switch (mcv) {
|
|
.register => |reg| {
|
|
self.register_manager.getRegAssumeFree(reg, inst);
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
return self.finishAir(inst, mcv, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airAtomicLoad(self: *Self, inst: Air.Inst.Index) !void {
|
|
_ = self.air.instructions.items(.data)[inst].atomic_load;
|
|
|
|
return self.fail("TODO implement airAtomicLoad for {}", .{
|
|
self.target.cpu.arch,
|
|
});
|
|
}
|
|
|
|
fn airAtomicRmw(self: *Self, inst: Air.Inst.Index) !void {
|
|
_ = self.air.instructions.items(.data)[inst].pl_op;
|
|
|
|
return self.fail("TODO implement airAtomicRmw for {}", .{
|
|
self.target.cpu.arch,
|
|
});
|
|
}
|
|
|
|
fn airBinOp(self: *Self, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = try self.resolveInst(bin_op.lhs);
|
|
const rhs = try self.resolveInst(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
const rhs_ty = self.air.typeOf(bin_op.rhs);
|
|
const result: MCValue = if (self.liveness.isUnused(inst))
|
|
.dead
|
|
else
|
|
try self.binOp(tag, lhs, rhs, lhs_ty, rhs_ty, BinOpMetadata{
|
|
.lhs = bin_op.lhs,
|
|
.rhs = bin_op.rhs,
|
|
.inst = inst,
|
|
});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airBoolToInt(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = try self.resolveInst(un_op);
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else operand;
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airPtrArithmetic(self: *Self, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const lhs = try self.resolveInst(bin_op.lhs);
|
|
const rhs = try self.resolveInst(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
const rhs_ty = self.air.typeOf(bin_op.rhs);
|
|
const result: MCValue = if (self.liveness.isUnused(inst))
|
|
.dead
|
|
else
|
|
try self.binOp(tag, lhs, rhs, lhs_ty, rhs_ty, BinOpMetadata{
|
|
.lhs = bin_op.lhs,
|
|
.rhs = bin_op.rhs,
|
|
.inst = inst,
|
|
});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airBitCast(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result = try self.resolveInst(ty_op.operand);
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airBitReverse(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airBitReverse for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airBlock(self: *Self, inst: Air.Inst.Index) !void {
|
|
try self.blocks.putNoClobber(self.gpa, inst, .{
|
|
// A block is a setup to be able to jump to the end.
|
|
.relocs = .{},
|
|
// It also acts as a receptacle for break operands.
|
|
// Here we use `MCValue.none` to represent a null value so that the first
|
|
// break instruction will choose a MCValue for the block result and overwrite
|
|
// this field. Following break instructions will use that MCValue to put their
|
|
// block results.
|
|
.mcv = MCValue{ .none = {} },
|
|
});
|
|
defer self.blocks.getPtr(inst).?.relocs.deinit(self.gpa);
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
try self.genBody(body);
|
|
|
|
// relocations for `bpcc` instructions
|
|
const relocs = &self.blocks.getPtr(inst).?.relocs;
|
|
if (relocs.items.len > 0 and relocs.items[relocs.items.len - 1] == self.mir_instructions.len - 1) {
|
|
// If the last Mir instruction is the last relocation (which
|
|
// would just jump two instruction further), it can be safely
|
|
// removed
|
|
const index = relocs.pop();
|
|
|
|
// First, remove the delay slot, then remove
|
|
// the branch instruction itself.
|
|
self.mir_instructions.orderedRemove(index + 1);
|
|
self.mir_instructions.orderedRemove(index);
|
|
}
|
|
for (relocs.items) |reloc| {
|
|
try self.performReloc(reloc);
|
|
}
|
|
|
|
const result = self.blocks.getPtr(inst).?.mcv;
|
|
return self.finishAir(inst, result, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airBr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const branch = self.air.instructions.items(.data)[inst].br;
|
|
try self.br(branch.block_inst, branch.operand);
|
|
return self.finishAir(inst, .dead, .{ branch.operand, .none, .none });
|
|
}
|
|
|
|
fn airBreakpoint(self: *Self) !void {
|
|
// ta 0x01
|
|
_ = try self.addInst(.{
|
|
.tag = .tcc,
|
|
.data = .{
|
|
.trap = .{
|
|
.is_imm = true,
|
|
.cond = .al,
|
|
.rs2_or_imm = .{ .imm = 0x01 },
|
|
},
|
|
},
|
|
});
|
|
return self.finishAirBookkeeping();
|
|
}
|
|
|
|
fn airCall(self: *Self, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !void {
|
|
if (modifier == .always_tail) return self.fail("TODO implement tail calls for {}", .{self.target.cpu.arch});
|
|
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const callee = pl_op.operand;
|
|
const extra = self.air.extraData(Air.Call, pl_op.payload);
|
|
const args = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra.end .. extra.end + extra.data.args_len]);
|
|
const ty = self.air.typeOf(callee);
|
|
const fn_ty = switch (ty.zigTypeTag()) {
|
|
.Fn => ty,
|
|
.Pointer => ty.childType(),
|
|
else => unreachable,
|
|
};
|
|
|
|
var info = try self.resolveCallingConventionValues(fn_ty, .caller);
|
|
defer info.deinit(self);
|
|
|
|
// CCR is volatile across function calls
|
|
// (SCD 2.4.1, page 3P-10)
|
|
try self.spillConditionFlagsIfOccupied();
|
|
|
|
// Save caller-saved registers, but crucially *after* we save the
|
|
// compare flags as saving compare flags may require a new
|
|
// caller-saved register
|
|
for (abi.caller_preserved_regs) |reg| {
|
|
try self.register_manager.getReg(reg, null);
|
|
}
|
|
|
|
for (info.args) |mc_arg, arg_i| {
|
|
const arg = args[arg_i];
|
|
const arg_ty = self.air.typeOf(arg);
|
|
const arg_mcv = try self.resolveInst(arg);
|
|
|
|
switch (mc_arg) {
|
|
.none => continue,
|
|
.register => |reg| {
|
|
try self.register_manager.getReg(reg, null);
|
|
try self.genSetReg(arg_ty, reg, arg_mcv);
|
|
},
|
|
.stack_offset => {
|
|
return self.fail("TODO implement calling with parameters in memory", .{});
|
|
},
|
|
.ptr_stack_offset => {
|
|
return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
// Due to incremental compilation, how function calls are generated depends
|
|
// on linking.
|
|
if (self.air.value(callee)) |func_value| {
|
|
if (self.bin_file.tag == link.File.Elf.base_tag) {
|
|
if (func_value.castTag(.function)) |func_payload| {
|
|
const func = func_payload.data;
|
|
const got_addr = if (self.bin_file.cast(link.File.Elf)) |elf_file| blk: {
|
|
const atom_index = try elf_file.getOrCreateAtomForDecl(func.owner_decl);
|
|
const atom = elf_file.getAtom(atom_index);
|
|
break :blk @intCast(u32, atom.getOffsetTableAddress(elf_file));
|
|
} else unreachable;
|
|
|
|
try self.genSetReg(Type.initTag(.usize), .o7, .{ .memory = got_addr });
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .jmpl,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = .o7,
|
|
.rs1 = .o7,
|
|
.rs2_or_imm = .{ .rs2 = .g0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
// TODO Find a way to fill this delay slot
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
} else if (func_value.castTag(.extern_fn)) |_| {
|
|
return self.fail("TODO implement calling extern functions", .{});
|
|
} else {
|
|
return self.fail("TODO implement calling bitcasted functions", .{});
|
|
}
|
|
} else @panic("TODO SPARCv9 currently does not support non-ELF binaries");
|
|
} else {
|
|
assert(ty.zigTypeTag() == .Pointer);
|
|
const mcv = try self.resolveInst(callee);
|
|
try self.genSetReg(ty, .o7, mcv);
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .jmpl,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = .o7,
|
|
.rs1 = .o7,
|
|
.rs2_or_imm = .{ .rs2 = .g0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
// TODO Find a way to fill this delay slot
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
}
|
|
|
|
const result = info.return_value;
|
|
|
|
if (args.len + 1 <= Liveness.bpi - 1) {
|
|
var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
|
|
buf[0] = callee;
|
|
std.mem.copy(Air.Inst.Ref, buf[1..], args);
|
|
return self.finishAir(inst, result, buf);
|
|
}
|
|
|
|
var bt = try self.iterateBigTomb(inst, 1 + args.len);
|
|
bt.feed(callee);
|
|
for (args) |arg| {
|
|
bt.feed(arg);
|
|
}
|
|
return bt.finishAir(result);
|
|
}
|
|
|
|
fn airClz(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airClz for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airCmp(self: *Self, inst: Air.Inst.Index, op: math.CompareOperator) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const lhs = try self.resolveInst(bin_op.lhs);
|
|
const rhs = try self.resolveInst(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
|
|
var int_buffer: Type.Payload.Bits = undefined;
|
|
const int_ty = switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => unreachable, // Handled by cmp_vector.
|
|
.Enum => lhs_ty.intTagType(&int_buffer),
|
|
.Int => lhs_ty,
|
|
.Bool => Type.initTag(.u1),
|
|
.Pointer => Type.usize,
|
|
.ErrorSet => Type.initTag(.u16),
|
|
.Optional => blk: {
|
|
var opt_buffer: Type.Payload.ElemType = undefined;
|
|
const payload_ty = lhs_ty.optionalChild(&opt_buffer);
|
|
if (!payload_ty.hasRuntimeBitsIgnoreComptime()) {
|
|
break :blk Type.initTag(.u1);
|
|
} else if (lhs_ty.isPtrLikeOptional()) {
|
|
break :blk Type.usize;
|
|
} else {
|
|
return self.fail("TODO SPARCv9 cmp non-pointer optionals", .{});
|
|
}
|
|
},
|
|
.Float => return self.fail("TODO SPARCv9 cmp floats", .{}),
|
|
else => unreachable,
|
|
};
|
|
|
|
const int_info = int_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
_ = try self.binOp(.cmp_eq, lhs, rhs, int_ty, int_ty, BinOpMetadata{
|
|
.lhs = bin_op.lhs,
|
|
.rhs = bin_op.rhs,
|
|
.inst = inst,
|
|
});
|
|
|
|
try self.spillConditionFlagsIfOccupied();
|
|
self.condition_flags_inst = inst;
|
|
|
|
break :result switch (int_info.signedness) {
|
|
.signed => MCValue{ .condition_flags = .{
|
|
.cond = .{ .icond = Instruction.ICondition.fromCompareOperatorSigned(op) },
|
|
.ccr = .xcc,
|
|
} },
|
|
.unsigned => MCValue{ .condition_flags = .{
|
|
.cond = .{ .icond = Instruction.ICondition.fromCompareOperatorUnsigned(op) },
|
|
.ccr = .xcc,
|
|
} },
|
|
};
|
|
} else {
|
|
return self.fail("TODO SPARCv9 cmp for ints > 64 bits", .{});
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airCmpLtErrorsLen(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = try self.resolveInst(un_op);
|
|
_ = operand;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airCmpLtErrorsLen for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airCmpxchg(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Block, ty_pl.payload);
|
|
_ = extra;
|
|
|
|
return self.fail("TODO implement airCmpxchg for {}", .{
|
|
self.target.cpu.arch,
|
|
});
|
|
}
|
|
|
|
fn airCondBr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const condition = try self.resolveInst(pl_op.operand);
|
|
const extra = self.air.extraData(Air.CondBr, pl_op.payload);
|
|
const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len];
|
|
const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len];
|
|
const liveness_condbr = self.liveness.getCondBr(inst);
|
|
|
|
// Here we emit a branch to the false section.
|
|
const reloc: Mir.Inst.Index = try self.condBr(condition);
|
|
|
|
// If the condition dies here in this condbr instruction, process
|
|
// that death now instead of later as this has an effect on
|
|
// whether it needs to be spilled in the branches
|
|
if (self.liveness.operandDies(inst, 0)) {
|
|
const op_int = @enumToInt(pl_op.operand);
|
|
if (op_int >= Air.Inst.Ref.typed_value_map.len) {
|
|
const op_index = @intCast(Air.Inst.Index, op_int - Air.Inst.Ref.typed_value_map.len);
|
|
self.processDeath(op_index);
|
|
}
|
|
}
|
|
|
|
// Capture the state of register and stack allocation state so that we can revert to it.
|
|
const parent_next_stack_offset = self.next_stack_offset;
|
|
const parent_free_registers = self.register_manager.free_registers;
|
|
var parent_stack = try self.stack.clone(self.gpa);
|
|
defer parent_stack.deinit(self.gpa);
|
|
const parent_registers = self.register_manager.registers;
|
|
const parent_condition_flags_inst = self.condition_flags_inst;
|
|
|
|
try self.branch_stack.append(.{});
|
|
errdefer {
|
|
_ = self.branch_stack.pop();
|
|
}
|
|
|
|
try self.ensureProcessDeathCapacity(liveness_condbr.then_deaths.len);
|
|
for (liveness_condbr.then_deaths) |operand| {
|
|
self.processDeath(operand);
|
|
}
|
|
try self.genBody(then_body);
|
|
|
|
// Revert to the previous register and stack allocation state.
|
|
|
|
var saved_then_branch = self.branch_stack.pop();
|
|
defer saved_then_branch.deinit(self.gpa);
|
|
|
|
self.register_manager.registers = parent_registers;
|
|
self.condition_flags_inst = parent_condition_flags_inst;
|
|
|
|
self.stack.deinit(self.gpa);
|
|
self.stack = parent_stack;
|
|
parent_stack = .{};
|
|
|
|
self.next_stack_offset = parent_next_stack_offset;
|
|
self.register_manager.free_registers = parent_free_registers;
|
|
|
|
try self.performReloc(reloc);
|
|
const else_branch = self.branch_stack.addOneAssumeCapacity();
|
|
else_branch.* = .{};
|
|
|
|
try self.ensureProcessDeathCapacity(liveness_condbr.else_deaths.len);
|
|
for (liveness_condbr.else_deaths) |operand| {
|
|
self.processDeath(operand);
|
|
}
|
|
try self.genBody(else_body);
|
|
|
|
// At this point, each branch will possibly have conflicting values for where
|
|
// each instruction is stored. They agree, however, on which instructions are alive/dead.
|
|
// We use the first ("then") branch as canonical, and here emit
|
|
// instructions into the second ("else") branch to make it conform.
|
|
// We continue respect the data structure semantic guarantees of the else_branch so
|
|
// that we can use all the code emitting abstractions. This is why at the bottom we
|
|
// assert that parent_branch.free_registers equals the saved_then_branch.free_registers
|
|
// rather than assigning it.
|
|
const parent_branch = &self.branch_stack.items[self.branch_stack.items.len - 2];
|
|
try parent_branch.inst_table.ensureUnusedCapacity(self.gpa, else_branch.inst_table.count());
|
|
|
|
const else_slice = else_branch.inst_table.entries.slice();
|
|
const else_keys = else_slice.items(.key);
|
|
const else_values = else_slice.items(.value);
|
|
for (else_keys) |else_key, else_idx| {
|
|
const else_value = else_values[else_idx];
|
|
const canon_mcv = if (saved_then_branch.inst_table.fetchSwapRemove(else_key)) |then_entry| blk: {
|
|
// The instruction's MCValue is overridden in both branches.
|
|
log.debug("condBr put branch table (key = %{d}, value = {})", .{ else_key, then_entry.value });
|
|
parent_branch.inst_table.putAssumeCapacity(else_key, then_entry.value);
|
|
if (else_value == .dead) {
|
|
assert(then_entry.value == .dead);
|
|
continue;
|
|
}
|
|
break :blk then_entry.value;
|
|
} else blk: {
|
|
if (else_value == .dead)
|
|
continue;
|
|
// The instruction is only overridden in the else branch.
|
|
var i: usize = self.branch_stack.items.len - 2;
|
|
while (true) {
|
|
i -= 1; // If this overflows, the question is: why wasn't the instruction marked dead?
|
|
if (self.branch_stack.items[i].inst_table.get(else_key)) |mcv| {
|
|
assert(mcv != .dead);
|
|
break :blk mcv;
|
|
}
|
|
}
|
|
};
|
|
log.debug("consolidating else_entry {d} {}=>{}", .{ else_key, else_value, canon_mcv });
|
|
// TODO make sure the destination stack offset / register does not already have something
|
|
// going on there.
|
|
try self.setRegOrMem(self.air.typeOfIndex(else_key), canon_mcv, else_value);
|
|
// TODO track the new register / stack allocation
|
|
}
|
|
try parent_branch.inst_table.ensureUnusedCapacity(self.gpa, saved_then_branch.inst_table.count());
|
|
const then_slice = saved_then_branch.inst_table.entries.slice();
|
|
const then_keys = then_slice.items(.key);
|
|
const then_values = then_slice.items(.value);
|
|
for (then_keys) |then_key, then_idx| {
|
|
const then_value = then_values[then_idx];
|
|
// We already deleted the items from this table that matched the else_branch.
|
|
// So these are all instructions that are only overridden in the then branch.
|
|
parent_branch.inst_table.putAssumeCapacity(then_key, then_value);
|
|
if (then_value == .dead)
|
|
continue;
|
|
const parent_mcv = blk: {
|
|
var i: usize = self.branch_stack.items.len - 2;
|
|
while (true) {
|
|
i -= 1;
|
|
if (self.branch_stack.items[i].inst_table.get(then_key)) |mcv| {
|
|
assert(mcv != .dead);
|
|
break :blk mcv;
|
|
}
|
|
}
|
|
};
|
|
log.debug("consolidating then_entry {d} {}=>{}", .{ then_key, parent_mcv, then_value });
|
|
// TODO make sure the destination stack offset / register does not already have something
|
|
// going on there.
|
|
try self.setRegOrMem(self.air.typeOfIndex(then_key), parent_mcv, then_value);
|
|
// TODO track the new register / stack allocation
|
|
}
|
|
|
|
{
|
|
var item = self.branch_stack.pop();
|
|
item.deinit(self.gpa);
|
|
}
|
|
|
|
// We already took care of pl_op.operand earlier, so we're going
|
|
// to pass .none here
|
|
return self.finishAir(inst, .unreach, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airCtz(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airCtz for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airDbgBlock(self: *Self, inst: Air.Inst.Index) !void {
|
|
// TODO emit debug info lexical block
|
|
return self.finishAir(inst, .dead, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airDbgInline(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const function = self.air.values[ty_pl.payload].castTag(.function).?.data;
|
|
// TODO emit debug info for function change
|
|
_ = function;
|
|
return self.finishAir(inst, .dead, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airDbgStmt(self: *Self, inst: Air.Inst.Index) !void {
|
|
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .dbg_line,
|
|
.data = .{
|
|
.dbg_line_column = .{
|
|
.line = dbg_stmt.line,
|
|
.column = dbg_stmt.column,
|
|
},
|
|
},
|
|
});
|
|
|
|
return self.finishAirBookkeeping();
|
|
}
|
|
|
|
fn airDbgVar(self: *Self, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const name = self.air.nullTerminatedString(pl_op.payload);
|
|
const operand = pl_op.operand;
|
|
// TODO emit debug info for this variable
|
|
_ = name;
|
|
return self.finishAir(inst, .dead, .{ operand, .none, .none });
|
|
}
|
|
|
|
fn airDiv(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement div for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airErrorName(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = try self.resolveInst(un_op);
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else {
|
|
_ = operand;
|
|
return self.fail("TODO implement airErrorName for {}", .{self.target.cpu.arch});
|
|
};
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airErrUnionPayloadPtrSet(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .errunion_payload_ptr_set for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airFence(self: *Self, inst: Air.Inst.Index) !void {
|
|
// TODO weaken this as needed, currently this implements the strongest membar form
|
|
const fence = self.air.instructions.items(.data)[inst].fence;
|
|
_ = fence;
|
|
|
|
// membar #StoreStore | #LoadStore | #StoreLoad | #LoadLoad
|
|
_ = try self.addInst(.{
|
|
.tag = .membar,
|
|
.data = .{
|
|
.membar_mask = .{
|
|
.mmask = .{
|
|
.store_store = true,
|
|
.store_load = true,
|
|
.load_store = true,
|
|
.load_load = true,
|
|
},
|
|
},
|
|
},
|
|
});
|
|
|
|
return self.finishAir(inst, .dead, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airFloatToInt(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airFloatToInt for {}", .{
|
|
self.target.cpu.arch,
|
|
});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airGetUnionTag(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airGetUnionTag for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airIntCast(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
if (self.liveness.isUnused(inst))
|
|
return self.finishAir(inst, .dead, .{ ty_op.operand, .none, .none });
|
|
|
|
const operand_ty = self.air.typeOf(ty_op.operand);
|
|
const operand = try self.resolveInst(ty_op.operand);
|
|
const info_a = operand_ty.intInfo(self.target.*);
|
|
const info_b = self.air.typeOfIndex(inst).intInfo(self.target.*);
|
|
if (info_a.signedness != info_b.signedness)
|
|
return self.fail("TODO gen intcast sign safety in semantic analysis", .{});
|
|
|
|
if (info_a.bits == info_b.bits)
|
|
return self.finishAir(inst, operand, .{ ty_op.operand, .none, .none });
|
|
|
|
return self.fail("TODO implement intCast for {}", .{self.target.cpu.arch});
|
|
}
|
|
|
|
fn airIntToFloat(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airIntToFloat for {}", .{
|
|
self.target.cpu.arch,
|
|
});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airIsErr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const operand = try self.resolveInst(un_op);
|
|
const ty = self.air.typeOf(un_op);
|
|
break :result try self.isErr(ty, operand);
|
|
};
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airIsNonErr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const operand = try self.resolveInst(un_op);
|
|
const ty = self.air.typeOf(un_op);
|
|
break :result try self.isNonErr(ty, operand);
|
|
};
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airIsNull(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const operand = try self.resolveInst(un_op);
|
|
break :result try self.isNull(operand);
|
|
};
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airIsNonNull(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const operand = try self.resolveInst(un_op);
|
|
break :result try self.isNonNull(operand);
|
|
};
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airLoad(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const elem_ty = self.air.typeOfIndex(inst);
|
|
const elem_size = elem_ty.abiSize(self.target.*);
|
|
const result: MCValue = result: {
|
|
if (!elem_ty.hasRuntimeBits())
|
|
break :result MCValue.none;
|
|
|
|
const ptr = try self.resolveInst(ty_op.operand);
|
|
const is_volatile = self.air.typeOf(ty_op.operand).isVolatilePtr();
|
|
if (self.liveness.isUnused(inst) and !is_volatile)
|
|
break :result MCValue.dead;
|
|
|
|
const dst_mcv: MCValue = blk: {
|
|
if (elem_size <= 8 and self.reuseOperand(inst, ty_op.operand, 0, ptr)) {
|
|
// The MCValue that holds the pointer can be re-used as the value.
|
|
break :blk switch (ptr) {
|
|
.register => |r| MCValue{ .register = r },
|
|
else => ptr,
|
|
};
|
|
} else {
|
|
break :blk try self.allocRegOrMem(inst, true);
|
|
}
|
|
};
|
|
try self.load(dst_mcv, ptr, self.air.typeOf(ty_op.operand));
|
|
break :result dst_mcv;
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airLoop(self: *Self, inst: Air.Inst.Index) !void {
|
|
// A loop is a setup to be able to jump back to the beginning.
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[loop.end .. loop.end + loop.data.body_len];
|
|
const start = @intCast(u32, self.mir_instructions.len);
|
|
try self.genBody(body);
|
|
try self.jump(start);
|
|
return self.finishAirBookkeeping();
|
|
}
|
|
|
|
fn airMemset(self: *Self, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const extra = self.air.extraData(Air.Bin, pl_op.payload);
|
|
|
|
const operand = pl_op.operand;
|
|
const value = extra.data.lhs;
|
|
const length = extra.data.rhs;
|
|
_ = operand;
|
|
_ = value;
|
|
_ = length;
|
|
|
|
return self.fail("TODO implement airMemset for {}", .{self.target.cpu.arch});
|
|
}
|
|
|
|
fn airMinMax(self: *Self, inst: Air.Inst.Index) !void {
|
|
const tag = self.air.instructions.items(.tag)[inst];
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = try self.resolveInst(bin_op.lhs);
|
|
const rhs = try self.resolveInst(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
const rhs_ty = self.air.typeOf(bin_op.rhs);
|
|
|
|
const result: MCValue = if (self.liveness.isUnused(inst))
|
|
.dead
|
|
else
|
|
try self.minMax(tag, lhs, rhs, lhs_ty, rhs_ty);
|
|
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airMod(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = try self.resolveInst(bin_op.lhs);
|
|
const rhs = try self.resolveInst(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
const rhs_ty = self.air.typeOf(bin_op.rhs);
|
|
assert(lhs_ty.eql(rhs_ty, self.bin_file.options.module.?));
|
|
|
|
if (self.liveness.isUnused(inst))
|
|
return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
|
|
// TODO add safety check
|
|
|
|
// We use manual assembly emission to generate faster code
|
|
// First, ensure lhs, rhs, rem, and added are in registers
|
|
|
|
const lhs_is_register = lhs == .register;
|
|
const rhs_is_register = rhs == .register;
|
|
|
|
const lhs_reg = if (lhs_is_register)
|
|
lhs.register
|
|
else
|
|
try self.register_manager.allocReg(null, gp);
|
|
|
|
const lhs_lock = self.register_manager.lockReg(lhs_reg);
|
|
defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const rhs_reg = if (rhs_is_register)
|
|
rhs.register
|
|
else
|
|
try self.register_manager.allocReg(null, gp);
|
|
const rhs_lock = self.register_manager.lockReg(rhs_reg);
|
|
defer if (rhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs);
|
|
if (!rhs_is_register) try self.genSetReg(rhs_ty, rhs_reg, rhs);
|
|
|
|
const regs = try self.register_manager.allocRegs(2, .{ null, null }, gp);
|
|
const regs_locks = self.register_manager.lockRegsAssumeUnused(2, regs);
|
|
defer for (regs_locks) |reg| {
|
|
self.register_manager.unlockReg(reg);
|
|
};
|
|
|
|
const add_reg = regs[0];
|
|
const mod_reg = regs[1];
|
|
|
|
// mod_reg = @rem(lhs_reg, rhs_reg)
|
|
_ = try self.addInst(.{
|
|
.tag = .sdivx,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = mod_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .mulx,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = mod_reg,
|
|
.rs1 = mod_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .sub,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = mod_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .rs2 = mod_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
// add_reg = mod_reg + rhs_reg
|
|
_ = try self.addInst(.{
|
|
.tag = .add,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = add_reg,
|
|
.rs1 = mod_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
// if (add_reg == rhs_reg) add_reg = 0
|
|
_ = try self.addInst(.{
|
|
.tag = .cmp,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = add_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .movcc,
|
|
.data = .{
|
|
.conditional_move_int = .{
|
|
.is_imm = true,
|
|
.ccr = .xcc,
|
|
.cond = .{ .icond = .eq },
|
|
.rd = add_reg,
|
|
.rs2_or_imm = .{ .imm = 0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
// if (lhs_reg < 0) mod_reg = add_reg
|
|
_ = try self.addInst(.{
|
|
.tag = .movr,
|
|
.data = .{
|
|
.conditional_move_reg = .{
|
|
.is_imm = false,
|
|
.cond = .lt_zero,
|
|
.rd = mod_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .rs2 = add_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
return self.finishAir(inst, .{ .register = mod_reg }, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airMulSat(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement mul_sat for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airMulWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
|
|
//const tag = self.air.instructions.items(.tag)[inst];
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const lhs = try self.resolveInst(extra.lhs);
|
|
const rhs = try self.resolveInst(extra.rhs);
|
|
const lhs_ty = self.air.typeOf(extra.lhs);
|
|
const rhs_ty = self.air.typeOf(extra.rhs);
|
|
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO implement mul_with_overflow for vectors", .{}),
|
|
.Int => {
|
|
const mod = self.bin_file.options.module.?;
|
|
assert(lhs_ty.eql(rhs_ty, mod));
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
switch (int_info.bits) {
|
|
1...32 => {
|
|
try self.spillConditionFlagsIfOccupied();
|
|
|
|
const dest = try self.binOp(.mul, lhs, rhs, lhs_ty, rhs_ty, null);
|
|
|
|
const dest_reg = dest.register;
|
|
const dest_reg_lock = self.register_manager.lockRegAssumeUnused(dest_reg);
|
|
defer self.register_manager.unlockReg(dest_reg_lock);
|
|
|
|
const truncated_reg = try self.register_manager.allocReg(null, gp);
|
|
const truncated_reg_lock = self.register_manager.lockRegAssumeUnused(truncated_reg);
|
|
defer self.register_manager.unlockReg(truncated_reg_lock);
|
|
|
|
try self.truncRegister(
|
|
dest_reg,
|
|
truncated_reg,
|
|
int_info.signedness,
|
|
int_info.bits,
|
|
);
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .cmp,
|
|
.data = .{ .arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = dest_reg,
|
|
.rs2_or_imm = .{ .rs2 = truncated_reg },
|
|
} },
|
|
});
|
|
|
|
const cond = Instruction.ICondition.ne;
|
|
const ccr = Instruction.CCR.xcc;
|
|
|
|
break :result MCValue{ .register_with_overflow = .{
|
|
.reg = truncated_reg,
|
|
.flag = .{ .cond = cond, .ccr = ccr },
|
|
} };
|
|
},
|
|
// XXX DO NOT call __multi3 directly as it'll result in us doing six multiplications,
|
|
// which is far more than strictly necessary
|
|
33...64 => return self.fail("TODO copy compiler-rt's mulddi3 for a 64x64->128 multiply", .{}),
|
|
else => return self.fail("TODO overflow operations on other integer sizes", .{}),
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
|
|
}
|
|
|
|
fn airNot(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const operand = try self.resolveInst(ty_op.operand);
|
|
const operand_ty = self.air.typeOf(ty_op.operand);
|
|
switch (operand) {
|
|
.dead => unreachable,
|
|
.unreach => unreachable,
|
|
.condition_flags => |op| {
|
|
break :result MCValue{
|
|
.condition_flags = .{
|
|
.cond = op.cond.negate(),
|
|
.ccr = op.ccr,
|
|
},
|
|
};
|
|
},
|
|
else => {
|
|
switch (operand_ty.zigTypeTag()) {
|
|
.Bool => {
|
|
const op_reg = switch (operand) {
|
|
.register => |r| r,
|
|
else => try self.copyToTmpRegister(operand_ty, operand),
|
|
};
|
|
const reg_lock = self.register_manager.lockRegAssumeUnused(op_reg);
|
|
defer self.register_manager.unlockReg(reg_lock);
|
|
|
|
const dest_reg = blk: {
|
|
if (operand == .register and self.reuseOperand(inst, ty_op.operand, 0, operand)) {
|
|
break :blk op_reg;
|
|
}
|
|
|
|
const reg = try self.register_manager.allocReg(null, gp);
|
|
break :blk reg;
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .xor,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = op_reg,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
},
|
|
},
|
|
});
|
|
|
|
break :result MCValue{ .register = dest_reg };
|
|
},
|
|
.Vector => return self.fail("TODO bitwise not for vectors", .{}),
|
|
.Int => {
|
|
const int_info = operand_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
const op_reg = switch (operand) {
|
|
.register => |r| r,
|
|
else => try self.copyToTmpRegister(operand_ty, operand),
|
|
};
|
|
const reg_lock = self.register_manager.lockRegAssumeUnused(op_reg);
|
|
defer self.register_manager.unlockReg(reg_lock);
|
|
|
|
const dest_reg = blk: {
|
|
if (operand == .register and self.reuseOperand(inst, ty_op.operand, 0, operand)) {
|
|
break :blk op_reg;
|
|
}
|
|
|
|
const reg = try self.register_manager.allocReg(null, gp);
|
|
break :blk reg;
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .not,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = dest_reg,
|
|
.rs2_or_imm = .{ .rs2 = op_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
try self.truncRegister(dest_reg, dest_reg, int_info.signedness, int_info.bits);
|
|
|
|
break :result MCValue{ .register = dest_reg };
|
|
} else {
|
|
return self.fail("TODO sparc64 not on integers > u64/i64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .optional_payload for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airOptionalPayloadPtr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .optional_payload_ptr for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airOptionalPayloadPtrSet(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .optional_payload_ptr_set for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airPopcount(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airPopcount for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airPrefetch(self: *Self, inst: Air.Inst.Index) !void {
|
|
const prefetch = self.air.instructions.items(.data)[inst].prefetch;
|
|
// TODO Emit a PREFETCH/IPREFETCH as necessary, see A.7 and A.42
|
|
return self.finishAir(inst, MCValue.dead, .{ prefetch.ptr, .none, .none });
|
|
}
|
|
|
|
fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) !void {
|
|
const is_volatile = false; // TODO
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (!is_volatile and self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement ptr_elem_val for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement ptr_elem_ptr for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
|
|
}
|
|
|
|
fn airPtrToInt(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const result = try self.resolveInst(un_op);
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airRem(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = try self.resolveInst(bin_op.lhs);
|
|
const rhs = try self.resolveInst(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
const rhs_ty = self.air.typeOf(bin_op.rhs);
|
|
|
|
// TODO add safety check
|
|
|
|
// result = lhs - @divTrunc(lhs, rhs) * rhs
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) blk: {
|
|
break :blk .dead;
|
|
} else blk: {
|
|
const tmp0 = try self.binOp(.div_trunc, lhs, rhs, lhs_ty, rhs_ty, null);
|
|
const tmp1 = try self.binOp(.mul, tmp0, rhs, lhs_ty, rhs_ty, null);
|
|
break :blk try self.binOp(.sub, lhs, tmp1, lhs_ty, rhs_ty, null);
|
|
};
|
|
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airRet(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = try self.resolveInst(un_op);
|
|
try self.ret(operand);
|
|
return self.finishAir(inst, .dead, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airRetLoad(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const ptr = try self.resolveInst(un_op);
|
|
_ = ptr;
|
|
return self.fail("TODO implement airRetLoad for {}", .{self.target.cpu.arch});
|
|
//return self.finishAir(inst, .dead, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airRetPtr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const stack_offset = try self.allocMemPtr(inst);
|
|
return self.finishAir(inst, .{ .ptr_stack_offset = stack_offset }, .{ .none, .none, .none });
|
|
}
|
|
|
|
fn airSetUnionTag(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
_ = bin_op;
|
|
return self.fail("TODO implement airSetUnionTag for {}", .{self.target.cpu.arch});
|
|
}
|
|
|
|
fn airShlSat(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement shl_sat for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airShlWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const lhs = try self.resolveInst(extra.lhs);
|
|
const rhs = try self.resolveInst(extra.rhs);
|
|
const lhs_ty = self.air.typeOf(extra.lhs);
|
|
const rhs_ty = self.air.typeOf(extra.rhs);
|
|
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO implement mul_with_overflow for vectors", .{}),
|
|
.Int => {
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
try self.spillConditionFlagsIfOccupied();
|
|
|
|
const lhs_lock: ?RegisterLock = if (lhs == .register)
|
|
self.register_manager.lockRegAssumeUnused(lhs.register)
|
|
else
|
|
null;
|
|
// TODO this currently crashes stage1
|
|
// defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
// Increase shift amount (i.e, rhs) by shamt_bits - int_info.bits
|
|
// e.g if shifting a i48 then use sr*x (shamt_bits == 64) but increase rhs by 16
|
|
// and if shifting a i24 then use sr* (shamt_bits == 32) but increase rhs by 8
|
|
const new_rhs = switch (int_info.bits) {
|
|
1...31 => if (rhs == .immediate) MCValue{
|
|
.immediate = rhs.immediate + 32 - int_info.bits,
|
|
} else try self.binOp(.add, rhs, .{ .immediate = 32 - int_info.bits }, rhs_ty, rhs_ty, null),
|
|
33...63 => if (rhs == .immediate) MCValue{
|
|
.immediate = rhs.immediate + 64 - int_info.bits,
|
|
} else try self.binOp(.add, rhs, .{ .immediate = 64 - int_info.bits }, rhs_ty, rhs_ty, null),
|
|
32, 64 => rhs,
|
|
else => unreachable,
|
|
};
|
|
|
|
const new_rhs_lock: ?RegisterLock = if (new_rhs == .register)
|
|
self.register_manager.lockRegAssumeUnused(new_rhs.register)
|
|
else
|
|
null;
|
|
// TODO this currently crashes stage1
|
|
// defer if (new_rhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const dest = try self.binOp(.shl, lhs, new_rhs, lhs_ty, rhs_ty, null);
|
|
const dest_reg = dest.register;
|
|
const dest_reg_lock = self.register_manager.lockRegAssumeUnused(dest_reg);
|
|
defer self.register_manager.unlockReg(dest_reg_lock);
|
|
|
|
const shr = try self.binOp(.shr, dest, new_rhs, lhs_ty, rhs_ty, null);
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .cmp,
|
|
.data = .{ .arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = dest_reg,
|
|
.rs2_or_imm = .{ .rs2 = shr.register },
|
|
} },
|
|
});
|
|
|
|
const cond = Instruction.ICondition.ne;
|
|
const ccr = switch (int_info.bits) {
|
|
1...32 => Instruction.CCR.icc,
|
|
33...64 => Instruction.CCR.xcc,
|
|
else => unreachable,
|
|
};
|
|
|
|
// TODO Those should really be written as defers, however stage1 currently
|
|
// panics when those are turned into defer statements so those are
|
|
// written here at the end as ordinary statements.
|
|
// Because of that, on failure, the lock on those registers wouldn't be
|
|
// released.
|
|
if (lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
if (new_rhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
break :result MCValue{ .register_with_overflow = .{
|
|
.reg = dest_reg,
|
|
.flag = .{ .cond = cond, .ccr = ccr },
|
|
} };
|
|
} else {
|
|
return self.fail("TODO overflow operations on other integer sizes", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
|
|
}
|
|
|
|
fn airSlice(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const ptr = try self.resolveInst(bin_op.lhs);
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const len = try self.resolveInst(bin_op.rhs);
|
|
const len_ty = self.air.typeOf(bin_op.rhs);
|
|
|
|
const ptr_bits = self.target.cpu.arch.ptrBitWidth();
|
|
const ptr_bytes = @divExact(ptr_bits, 8);
|
|
|
|
const stack_offset = try self.allocMem(inst, ptr_bytes * 2, ptr_bytes * 2);
|
|
try self.genSetStack(ptr_ty, stack_offset, ptr);
|
|
try self.genSetStack(len_ty, stack_offset - ptr_bytes, len);
|
|
break :result MCValue{ .stack_offset = stack_offset };
|
|
};
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) !void {
|
|
const is_volatile = false; // TODO
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
|
|
if (!is_volatile and self.liveness.isUnused(inst)) return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
const result: MCValue = result: {
|
|
const slice_mcv = try self.resolveInst(bin_op.lhs);
|
|
const index_mcv = try self.resolveInst(bin_op.rhs);
|
|
|
|
const slice_ty = self.air.typeOf(bin_op.lhs);
|
|
const elem_ty = slice_ty.childType();
|
|
const elem_size = elem_ty.abiSize(self.target.*);
|
|
|
|
var buf: Type.SlicePtrFieldTypeBuffer = undefined;
|
|
const slice_ptr_field_type = slice_ty.slicePtrFieldType(&buf);
|
|
|
|
const index_lock: ?RegisterLock = if (index_mcv == .register)
|
|
self.register_manager.lockRegAssumeUnused(index_mcv.register)
|
|
else
|
|
null;
|
|
defer if (index_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const base_mcv: MCValue = switch (slice_mcv) {
|
|
.stack_offset => |off| .{ .register = try self.copyToTmpRegister(slice_ptr_field_type, .{ .stack_offset = off }) },
|
|
else => return self.fail("TODO slice_elem_val when slice is {}", .{slice_mcv}),
|
|
};
|
|
const base_lock = self.register_manager.lockRegAssumeUnused(base_mcv.register);
|
|
defer self.register_manager.unlockReg(base_lock);
|
|
|
|
switch (elem_size) {
|
|
else => {
|
|
// TODO skip the ptr_add emission entirely and use native addressing modes
|
|
// i.e sllx/mulx then R+R or scale immediate then R+I
|
|
const dest = try self.allocRegOrMem(inst, true);
|
|
const addr = try self.binOp(.ptr_add, base_mcv, index_mcv, slice_ptr_field_type, Type.usize, null);
|
|
try self.load(dest, addr, slice_ptr_field_type);
|
|
|
|
break :result dest;
|
|
},
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airSliceLen(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const ptr_bits = self.target.cpu.arch.ptrBitWidth();
|
|
const ptr_bytes = @divExact(ptr_bits, 8);
|
|
const mcv = try self.resolveInst(ty_op.operand);
|
|
switch (mcv) {
|
|
.dead, .unreach, .none => unreachable,
|
|
.register => unreachable, // a slice doesn't fit in one register
|
|
.stack_offset => |off| {
|
|
break :result MCValue{ .stack_offset = off - ptr_bytes };
|
|
},
|
|
.memory => |addr| {
|
|
break :result MCValue{ .memory = addr + ptr_bytes };
|
|
},
|
|
else => return self.fail("TODO implement slice_len for {}", .{mcv}),
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airSlicePtr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const mcv = try self.resolveInst(ty_op.operand);
|
|
switch (mcv) {
|
|
.dead, .unreach, .none => unreachable,
|
|
.register => unreachable, // a slice doesn't fit in one register
|
|
.stack_offset => |off| {
|
|
break :result MCValue{ .stack_offset = off };
|
|
},
|
|
.memory => |addr| {
|
|
break :result MCValue{ .memory = addr };
|
|
},
|
|
else => return self.fail("TODO implement slice_len for {}", .{mcv}),
|
|
}
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airSplat(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airSplat for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airStore(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const ptr = try self.resolveInst(bin_op.lhs);
|
|
const value = try self.resolveInst(bin_op.rhs);
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const value_ty = self.air.typeOf(bin_op.rhs);
|
|
|
|
try self.store(ptr, value, ptr_ty, value_ty);
|
|
|
|
return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u8) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result = try self.structFieldPtr(inst, ty_op.operand, index);
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.StructField, ty_pl.payload).data;
|
|
const operand = extra.struct_operand;
|
|
const index = extra.field_index;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const mcv = try self.resolveInst(operand);
|
|
const struct_ty = self.air.typeOf(operand);
|
|
const struct_field_offset = @intCast(u32, struct_ty.structFieldOffset(index, self.target.*));
|
|
|
|
switch (mcv) {
|
|
.dead, .unreach => unreachable,
|
|
.stack_offset => |off| {
|
|
break :result MCValue{ .stack_offset = off - struct_field_offset };
|
|
},
|
|
.memory => |addr| {
|
|
break :result MCValue{ .memory = addr + struct_field_offset };
|
|
},
|
|
.register_with_overflow => |rwo| {
|
|
switch (index) {
|
|
0 => {
|
|
// get wrapped value: return register
|
|
break :result MCValue{ .register = rwo.reg };
|
|
},
|
|
1 => {
|
|
// TODO return special MCValue condition flags
|
|
// get overflow bit: set register to C flag
|
|
// resp. V flag
|
|
const dest_reg = try self.register_manager.allocReg(null, gp);
|
|
|
|
// TODO handle floating point CCRs
|
|
assert(rwo.flag.ccr == .xcc or rwo.flag.ccr == .icc);
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = dest_reg,
|
|
.rs2_or_imm = .{ .rs2 = .g0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .movcc,
|
|
.data = .{
|
|
.conditional_move_int = .{
|
|
.ccr = rwo.flag.ccr,
|
|
.cond = .{ .icond = rwo.flag.cond },
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
},
|
|
},
|
|
});
|
|
|
|
break :result MCValue{ .register = dest_reg };
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
else => return self.fail("TODO implement codegen struct_field_val for {}", .{mcv}),
|
|
}
|
|
};
|
|
|
|
return self.finishAir(inst, result, .{ extra.struct_operand, .none, .none });
|
|
}
|
|
|
|
fn airSubSat(self: *Self, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement sub_sat for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
|
|
}
|
|
|
|
fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
|
|
_ = inst;
|
|
return self.fail("TODO implement switch for {}", .{self.target.cpu.arch});
|
|
}
|
|
|
|
fn airTagName(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = try self.resolveInst(un_op);
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else {
|
|
_ = operand;
|
|
return self.fail("TODO implement airTagName for {}", .{self.target.cpu.arch});
|
|
};
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airTrunc(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = try self.resolveInst(ty_op.operand);
|
|
const operand_ty = self.air.typeOf(ty_op.operand);
|
|
const dest_ty = self.air.typeOfIndex(inst);
|
|
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else blk: {
|
|
break :blk try self.trunc(inst, operand, operand_ty, dest_ty);
|
|
};
|
|
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airTry(self: *Self, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const extra = self.air.extraData(Air.Try, pl_op.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
const result: MCValue = result: {
|
|
const error_union_ty = self.air.typeOf(pl_op.operand);
|
|
const error_union = try self.resolveInst(pl_op.operand);
|
|
const is_err_result = try self.isErr(error_union_ty, error_union);
|
|
const reloc = try self.condBr(is_err_result);
|
|
|
|
try self.genBody(body);
|
|
|
|
try self.performReloc(reloc);
|
|
break :result try self.errUnionPayload(error_union, error_union_ty);
|
|
};
|
|
return self.finishAir(inst, result, .{ pl_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airUnaryMath(self: *Self, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst))
|
|
.dead
|
|
else
|
|
return self.fail("TODO implement airUnaryMath for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ un_op, .none, .none });
|
|
}
|
|
|
|
fn airUnionInit(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
|
|
_ = extra;
|
|
return self.fail("TODO implement airUnionInit for {}", .{self.target.cpu.arch});
|
|
}
|
|
|
|
fn airUnwrapErrErr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const error_union_ty = self.air.typeOf(ty_op.operand);
|
|
const payload_ty = error_union_ty.errorUnionPayload();
|
|
const mcv = try self.resolveInst(ty_op.operand);
|
|
if (!payload_ty.hasRuntimeBits()) break :result mcv;
|
|
|
|
return self.fail("TODO implement unwrap error union error for non-empty payloads", .{});
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airUnwrapErrPayload(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const error_union_ty = self.air.typeOf(ty_op.operand);
|
|
const payload_ty = error_union_ty.errorUnionPayload();
|
|
if (!payload_ty.hasRuntimeBits()) break :result MCValue.none;
|
|
|
|
return self.fail("TODO implement unwrap error union payload for non-empty payloads", .{});
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
/// E to E!T
|
|
fn airWrapErrUnionErr(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const error_union_ty = self.air.getRefType(ty_op.ty);
|
|
const payload_ty = error_union_ty.errorUnionPayload();
|
|
const mcv = try self.resolveInst(ty_op.operand);
|
|
if (!payload_ty.hasRuntimeBits()) break :result mcv;
|
|
|
|
return self.fail("TODO implement wrap errunion error for non-empty payloads", .{});
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
/// T to E!T
|
|
fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement wrap errunion payload for {}", .{self.target.cpu.arch});
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
fn airWrapOptional(self: *Self, inst: Air.Inst.Index) !void {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const optional_ty = self.air.typeOfIndex(inst);
|
|
|
|
// Optional with a zero-bit payload type is just a boolean true
|
|
if (optional_ty.abiSize(self.target.*) == 1)
|
|
break :result MCValue{ .immediate = 1 };
|
|
|
|
return self.fail("TODO implement wrap optional for {}", .{self.target.cpu.arch});
|
|
};
|
|
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
|
|
}
|
|
|
|
// Common helper functions
|
|
|
|
fn addInst(self: *Self, inst: Mir.Inst) error{OutOfMemory}!Mir.Inst.Index {
|
|
const gpa = self.gpa;
|
|
try self.mir_instructions.ensureUnusedCapacity(gpa, 1);
|
|
const result_index = @intCast(Air.Inst.Index, self.mir_instructions.len);
|
|
self.mir_instructions.appendAssumeCapacity(inst);
|
|
return result_index;
|
|
}
|
|
|
|
fn allocMem(self: *Self, inst: Air.Inst.Index, abi_size: u32, abi_align: u32) !u32 {
|
|
if (abi_align > self.stack_align)
|
|
self.stack_align = abi_align;
|
|
// TODO find a free slot instead of always appending
|
|
const offset = mem.alignForwardGeneric(u32, self.next_stack_offset, abi_align) + abi_size;
|
|
self.next_stack_offset = offset;
|
|
if (self.next_stack_offset > self.max_end_stack)
|
|
self.max_end_stack = self.next_stack_offset;
|
|
try self.stack.putNoClobber(self.gpa, offset, .{
|
|
.inst = inst,
|
|
.size = abi_size,
|
|
});
|
|
return offset;
|
|
}
|
|
|
|
/// Use a pointer instruction as the basis for allocating stack memory.
|
|
fn allocMemPtr(self: *Self, inst: Air.Inst.Index) !u32 {
|
|
const elem_ty = self.air.typeOfIndex(inst).elemType();
|
|
|
|
if (!elem_ty.hasRuntimeBits()) {
|
|
// As this stack item will never be dereferenced at runtime,
|
|
// return the stack offset 0. Stack offset 0 will be where all
|
|
// zero-sized stack allocations live as non-zero-sized
|
|
// allocations will always have an offset > 0.
|
|
return @as(u32, 0);
|
|
}
|
|
|
|
const abi_size = math.cast(u32, elem_ty.abiSize(self.target.*)) orelse {
|
|
const mod = self.bin_file.options.module.?;
|
|
return self.fail("type '{}' too big to fit into stack frame", .{elem_ty.fmt(mod)});
|
|
};
|
|
// TODO swap this for inst.ty.ptrAlign
|
|
const abi_align = elem_ty.abiAlignment(self.target.*);
|
|
return self.allocMem(inst, abi_size, abi_align);
|
|
}
|
|
|
|
fn allocRegOrMem(self: *Self, inst: Air.Inst.Index, reg_ok: bool) !MCValue {
|
|
const elem_ty = self.air.typeOfIndex(inst);
|
|
const abi_size = math.cast(u32, elem_ty.abiSize(self.target.*)) orelse {
|
|
const mod = self.bin_file.options.module.?;
|
|
return self.fail("type '{}' too big to fit into stack frame", .{elem_ty.fmt(mod)});
|
|
};
|
|
const abi_align = elem_ty.abiAlignment(self.target.*);
|
|
if (abi_align > self.stack_align)
|
|
self.stack_align = abi_align;
|
|
|
|
if (reg_ok) {
|
|
// Make sure the type can fit in a register before we try to allocate one.
|
|
if (abi_size <= 8) {
|
|
if (self.register_manager.tryAllocReg(inst, gp)) |reg| {
|
|
return MCValue{ .register = reg };
|
|
}
|
|
}
|
|
}
|
|
const stack_offset = try self.allocMem(inst, abi_size, abi_align);
|
|
return MCValue{ .stack_offset = stack_offset };
|
|
}
|
|
|
|
const BinOpMetadata = struct {
|
|
inst: Air.Inst.Index,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: Air.Inst.Ref,
|
|
};
|
|
|
|
/// For all your binary operation needs, this function will generate
|
|
/// the corresponding Mir instruction(s). Returns the location of the
|
|
/// result.
|
|
///
|
|
/// If the binary operation itself happens to be an Air instruction,
|
|
/// pass the corresponding index in the inst parameter. That helps
|
|
/// this function do stuff like reusing operands.
|
|
///
|
|
/// This function does not do any lowering to Mir itself, but instead
|
|
/// looks at the lhs and rhs and determines which kind of lowering
|
|
/// would be best suitable and then delegates the lowering to other
|
|
/// functions.
|
|
fn binOp(
|
|
self: *Self,
|
|
tag: Air.Inst.Tag,
|
|
lhs: MCValue,
|
|
rhs: MCValue,
|
|
lhs_ty: Type,
|
|
rhs_ty: Type,
|
|
metadata: ?BinOpMetadata,
|
|
) InnerError!MCValue {
|
|
const mod = self.bin_file.options.module.?;
|
|
switch (tag) {
|
|
.add,
|
|
.sub,
|
|
.mul,
|
|
.bit_and,
|
|
.bit_or,
|
|
.xor,
|
|
.cmp_eq,
|
|
=> {
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Float => return self.fail("TODO binary operations on floats", .{}),
|
|
.Vector => return self.fail("TODO binary operations on vectors", .{}),
|
|
.Int => {
|
|
assert(lhs_ty.eql(rhs_ty, mod));
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
// Only say yes if the operation is
|
|
// commutative, i.e. we can swap both of the
|
|
// operands
|
|
const lhs_immediate_ok = switch (tag) {
|
|
.add => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
|
|
.mul => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
|
|
.bit_and => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
|
|
.bit_or => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
|
|
.xor => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
|
|
.sub, .cmp_eq => false,
|
|
else => unreachable,
|
|
};
|
|
const rhs_immediate_ok = switch (tag) {
|
|
.add,
|
|
.sub,
|
|
.mul,
|
|
.bit_and,
|
|
.bit_or,
|
|
.xor,
|
|
.cmp_eq,
|
|
=> rhs == .immediate and rhs.immediate <= std.math.maxInt(u12),
|
|
else => unreachable,
|
|
};
|
|
|
|
const mir_tag: Mir.Inst.Tag = switch (tag) {
|
|
.add => .add,
|
|
.sub => .sub,
|
|
.mul => .mulx,
|
|
.bit_and => .@"and",
|
|
.bit_or => .@"or",
|
|
.xor => .xor,
|
|
.cmp_eq => .cmp,
|
|
else => unreachable,
|
|
};
|
|
|
|
if (rhs_immediate_ok) {
|
|
return try self.binOpImmediate(mir_tag, lhs, rhs, lhs_ty, false, metadata);
|
|
} else if (lhs_immediate_ok) {
|
|
// swap lhs and rhs
|
|
return try self.binOpImmediate(mir_tag, rhs, lhs, rhs_ty, true, metadata);
|
|
} else {
|
|
// TODO convert large immediates to register before adding
|
|
return try self.binOpRegister(mir_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
}
|
|
} else {
|
|
return self.fail("TODO binary operations on int with bits > 64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
.addwrap,
|
|
.subwrap,
|
|
.mulwrap,
|
|
=> {
|
|
const base_tag: Air.Inst.Tag = switch (tag) {
|
|
.addwrap => .add,
|
|
.subwrap => .sub,
|
|
.mulwrap => .mul,
|
|
else => unreachable,
|
|
};
|
|
|
|
// Generate the base operation
|
|
const result = try self.binOp(base_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
|
|
// Truncate if necessary
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO binary operations on vectors", .{}),
|
|
.Int => {
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
const result_reg = result.register;
|
|
try self.truncRegister(result_reg, result_reg, int_info.signedness, int_info.bits);
|
|
return result;
|
|
} else {
|
|
return self.fail("TODO binary operations on integers > u64/i64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
.div_trunc => {
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO binary operations on vectors", .{}),
|
|
.Int => {
|
|
assert(lhs_ty.eql(rhs_ty, mod));
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
const rhs_immediate_ok = switch (tag) {
|
|
.div_trunc => rhs == .immediate and rhs.immediate <= std.math.maxInt(u12),
|
|
else => unreachable,
|
|
};
|
|
|
|
const mir_tag: Mir.Inst.Tag = switch (tag) {
|
|
.div_trunc => switch (int_info.signedness) {
|
|
.signed => Mir.Inst.Tag.sdivx,
|
|
.unsigned => Mir.Inst.Tag.udivx,
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
if (rhs_immediate_ok) {
|
|
return try self.binOpImmediate(mir_tag, lhs, rhs, lhs_ty, true, metadata);
|
|
} else {
|
|
return try self.binOpRegister(mir_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
}
|
|
} else {
|
|
return self.fail("TODO binary operations on int with bits > 64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
.ptr_add => {
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Pointer => {
|
|
const ptr_ty = lhs_ty;
|
|
const elem_ty = switch (ptr_ty.ptrSize()) {
|
|
.One => ptr_ty.childType().childType(), // ptr to array, so get array element type
|
|
else => ptr_ty.childType(),
|
|
};
|
|
const elem_size = elem_ty.abiSize(self.target.*);
|
|
|
|
if (elem_size == 1) {
|
|
const base_tag: Mir.Inst.Tag = switch (tag) {
|
|
.ptr_add => .add,
|
|
else => unreachable,
|
|
};
|
|
|
|
return try self.binOpRegister(base_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
} else {
|
|
// convert the offset into a byte offset by
|
|
// multiplying it with elem_size
|
|
|
|
const offset = try self.binOp(.mul, rhs, .{ .immediate = elem_size }, Type.usize, Type.usize, null);
|
|
const addr = try self.binOp(tag, lhs, offset, Type.initTag(.manyptr_u8), Type.usize, null);
|
|
return addr;
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
.bool_and,
|
|
.bool_or,
|
|
=> {
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Bool => {
|
|
assert(lhs != .immediate); // should have been handled by Sema
|
|
assert(rhs != .immediate); // should have been handled by Sema
|
|
|
|
const mir_tag: Mir.Inst.Tag = switch (tag) {
|
|
.bool_and => .@"and",
|
|
.bool_or => .@"or",
|
|
else => unreachable,
|
|
};
|
|
|
|
return try self.binOpRegister(mir_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
.shl,
|
|
.shr,
|
|
=> {
|
|
const base_tag: Air.Inst.Tag = switch (tag) {
|
|
.shl => .shl_exact,
|
|
.shr => .shr_exact,
|
|
else => unreachable,
|
|
};
|
|
|
|
// Generate the base operation
|
|
const result = try self.binOp(base_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
|
|
// Truncate if necessary
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO binary operations on vectors", .{}),
|
|
.Int => {
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
// 32 and 64 bit operands doesn't need truncating
|
|
if (int_info.bits == 32 or int_info.bits == 64) return result;
|
|
|
|
const result_reg = result.register;
|
|
try self.truncRegister(result_reg, result_reg, int_info.signedness, int_info.bits);
|
|
return result;
|
|
} else {
|
|
return self.fail("TODO binary operations on integers > u64/i64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
.shl_exact,
|
|
.shr_exact,
|
|
=> {
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Vector => return self.fail("TODO binary operations on vectors", .{}),
|
|
.Int => {
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
const rhs_immediate_ok = rhs == .immediate;
|
|
|
|
const mir_tag: Mir.Inst.Tag = switch (tag) {
|
|
.shl_exact => if (int_info.bits <= 32) Mir.Inst.Tag.sll else Mir.Inst.Tag.sllx,
|
|
.shr_exact => switch (int_info.signedness) {
|
|
.signed => if (int_info.bits <= 32) Mir.Inst.Tag.sra else Mir.Inst.Tag.srax,
|
|
.unsigned => if (int_info.bits <= 32) Mir.Inst.Tag.srl else Mir.Inst.Tag.srlx,
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
if (rhs_immediate_ok) {
|
|
return try self.binOpImmediate(mir_tag, lhs, rhs, lhs_ty, false, metadata);
|
|
} else {
|
|
return try self.binOpRegister(mir_tag, lhs, rhs, lhs_ty, rhs_ty, metadata);
|
|
}
|
|
} else {
|
|
return self.fail("TODO binary operations on int with bits > 64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
|
|
else => return self.fail("TODO implement {} binOp for SPARCv9", .{tag}),
|
|
}
|
|
}
|
|
|
|
/// Don't call this function directly. Use binOp instead.
|
|
///
|
|
/// Calling this function signals an intention to generate a Mir
|
|
/// instruction of the form
|
|
///
|
|
/// op dest, lhs, #rhs_imm
|
|
///
|
|
/// Set lhs_and_rhs_swapped to true iff inst.bin_op.lhs corresponds to
|
|
/// rhs and vice versa. This parameter is only used when metadata != null.
|
|
///
|
|
/// Asserts that generating an instruction of that form is possible.
|
|
fn binOpImmediate(
|
|
self: *Self,
|
|
mir_tag: Mir.Inst.Tag,
|
|
lhs: MCValue,
|
|
rhs: MCValue,
|
|
lhs_ty: Type,
|
|
lhs_and_rhs_swapped: bool,
|
|
metadata: ?BinOpMetadata,
|
|
) !MCValue {
|
|
const lhs_is_register = lhs == .register;
|
|
|
|
const lhs_lock: ?RegisterLock = if (lhs_is_register)
|
|
self.register_manager.lockReg(lhs.register)
|
|
else
|
|
null;
|
|
defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
|
|
const lhs_reg = if (lhs_is_register) lhs.register else blk: {
|
|
const track_inst: ?Air.Inst.Index = if (metadata) |md| inst: {
|
|
break :inst Air.refToIndex(
|
|
if (lhs_and_rhs_swapped) md.rhs else md.lhs,
|
|
).?;
|
|
} else null;
|
|
|
|
const reg = try self.register_manager.allocReg(track_inst, gp);
|
|
|
|
if (track_inst) |inst| {
|
|
const mcv = .{ .register = reg };
|
|
log.debug("binOpRegister move lhs %{d} to register: {} -> {}", .{ inst, lhs, mcv });
|
|
branch.inst_table.putAssumeCapacity(inst, mcv);
|
|
|
|
// If we're moving a condition flag MCV to register,
|
|
// mark it as free.
|
|
if (lhs == .condition_flags) {
|
|
assert(self.condition_flags_inst.? == inst);
|
|
self.condition_flags_inst = null;
|
|
}
|
|
}
|
|
|
|
break :blk reg;
|
|
};
|
|
const new_lhs_lock = self.register_manager.lockReg(lhs_reg);
|
|
defer if (new_lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const dest_reg = switch (mir_tag) {
|
|
.cmp => undefined, // cmp has no destination register
|
|
else => if (metadata) |md| blk: {
|
|
if (lhs_is_register and self.reuseOperand(
|
|
md.inst,
|
|
if (lhs_and_rhs_swapped) md.rhs else md.lhs,
|
|
if (lhs_and_rhs_swapped) 1 else 0,
|
|
lhs,
|
|
)) {
|
|
break :blk lhs_reg;
|
|
} else {
|
|
break :blk try self.register_manager.allocReg(md.inst, gp);
|
|
}
|
|
} else blk: {
|
|
break :blk try self.register_manager.allocReg(null, gp);
|
|
},
|
|
};
|
|
|
|
if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs);
|
|
|
|
const mir_data: Mir.Inst.Data = switch (mir_tag) {
|
|
.add,
|
|
.addcc,
|
|
.@"and",
|
|
.@"or",
|
|
.xor,
|
|
.xnor,
|
|
.mulx,
|
|
.sdivx,
|
|
.udivx,
|
|
.sub,
|
|
.subcc,
|
|
=> .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .imm = @intCast(u12, rhs.immediate) },
|
|
},
|
|
},
|
|
.sll,
|
|
.srl,
|
|
.sra,
|
|
=> .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .imm = @intCast(u5, rhs.immediate) },
|
|
},
|
|
},
|
|
.sllx,
|
|
.srlx,
|
|
.srax,
|
|
=> .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .imm = @intCast(u6, rhs.immediate) },
|
|
},
|
|
},
|
|
.cmp => .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = true,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .imm = @intCast(u12, rhs.immediate) },
|
|
},
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = mir_tag,
|
|
.data = mir_data,
|
|
});
|
|
|
|
return MCValue{ .register = dest_reg };
|
|
}
|
|
|
|
/// Don't call this function directly. Use binOp instead.
|
|
///
|
|
/// Calling this function signals an intention to generate a Mir
|
|
/// instruction of the form
|
|
///
|
|
/// op dest, lhs, rhs
|
|
///
|
|
/// Asserts that generating an instruction of that form is possible.
|
|
fn binOpRegister(
|
|
self: *Self,
|
|
mir_tag: Mir.Inst.Tag,
|
|
lhs: MCValue,
|
|
rhs: MCValue,
|
|
lhs_ty: Type,
|
|
rhs_ty: Type,
|
|
metadata: ?BinOpMetadata,
|
|
) !MCValue {
|
|
const lhs_is_register = lhs == .register;
|
|
const rhs_is_register = rhs == .register;
|
|
|
|
const lhs_lock: ?RegisterLock = if (lhs_is_register)
|
|
self.register_manager.lockReg(lhs.register)
|
|
else
|
|
null;
|
|
defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const rhs_lock: ?RegisterLock = if (rhs_is_register)
|
|
self.register_manager.lockReg(rhs.register)
|
|
else
|
|
null;
|
|
defer if (rhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
|
|
const lhs_reg = if (lhs_is_register) lhs.register else blk: {
|
|
const track_inst: ?Air.Inst.Index = if (metadata) |md| inst: {
|
|
break :inst Air.refToIndex(md.lhs).?;
|
|
} else null;
|
|
|
|
const reg = try self.register_manager.allocReg(track_inst, gp);
|
|
if (track_inst) |inst| {
|
|
const mcv = .{ .register = reg };
|
|
log.debug("binOpRegister move lhs %{d} to register: {} -> {}", .{ inst, lhs, mcv });
|
|
branch.inst_table.putAssumeCapacity(inst, mcv);
|
|
|
|
// If we're moving a condition flag MCV to register,
|
|
// mark it as free.
|
|
if (lhs == .condition_flags) {
|
|
assert(self.condition_flags_inst.? == inst);
|
|
self.condition_flags_inst = null;
|
|
}
|
|
}
|
|
|
|
break :blk reg;
|
|
};
|
|
const new_lhs_lock = self.register_manager.lockReg(lhs_reg);
|
|
defer if (new_lhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const rhs_reg = if (rhs_is_register) rhs.register else blk: {
|
|
const track_inst: ?Air.Inst.Index = if (metadata) |md| inst: {
|
|
break :inst Air.refToIndex(md.rhs).?;
|
|
} else null;
|
|
|
|
const reg = try self.register_manager.allocReg(track_inst, gp);
|
|
if (track_inst) |inst| {
|
|
const mcv = .{ .register = reg };
|
|
log.debug("binOpRegister move rhs %{d} to register: {} -> {}", .{ inst, rhs, mcv });
|
|
branch.inst_table.putAssumeCapacity(inst, mcv);
|
|
|
|
// If we're moving a condition flag MCV to register,
|
|
// mark it as free.
|
|
if (rhs == .condition_flags) {
|
|
assert(self.condition_flags_inst.? == inst);
|
|
self.condition_flags_inst = null;
|
|
}
|
|
}
|
|
|
|
break :blk reg;
|
|
};
|
|
const new_rhs_lock = self.register_manager.lockReg(rhs_reg);
|
|
defer if (new_rhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const dest_reg = switch (mir_tag) {
|
|
.cmp => undefined, // cmp has no destination register
|
|
else => if (metadata) |md| blk: {
|
|
if (lhs_is_register and self.reuseOperand(md.inst, md.lhs, 0, lhs)) {
|
|
break :blk lhs_reg;
|
|
} else if (rhs_is_register and self.reuseOperand(md.inst, md.rhs, 1, rhs)) {
|
|
break :blk rhs_reg;
|
|
} else {
|
|
break :blk try self.register_manager.allocReg(md.inst, gp);
|
|
}
|
|
} else blk: {
|
|
break :blk try self.register_manager.allocReg(null, gp);
|
|
},
|
|
};
|
|
|
|
if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs);
|
|
if (!rhs_is_register) try self.genSetReg(rhs_ty, rhs_reg, rhs);
|
|
|
|
const mir_data: Mir.Inst.Data = switch (mir_tag) {
|
|
.add,
|
|
.addcc,
|
|
.@"and",
|
|
.@"or",
|
|
.xor,
|
|
.xnor,
|
|
.mulx,
|
|
.sdivx,
|
|
.udivx,
|
|
.sub,
|
|
.subcc,
|
|
=> .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = dest_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
.sll,
|
|
.srl,
|
|
.sra,
|
|
.sllx,
|
|
.srlx,
|
|
.srax,
|
|
=> .{
|
|
.shift = .{
|
|
.is_imm = false,
|
|
.rd = dest_reg,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
.cmp => .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = lhs_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = mir_tag,
|
|
.data = mir_data,
|
|
});
|
|
|
|
return MCValue{ .register = dest_reg };
|
|
}
|
|
|
|
fn br(self: *Self, block: Air.Inst.Index, operand: Air.Inst.Ref) !void {
|
|
const block_data = self.blocks.getPtr(block).?;
|
|
|
|
if (self.air.typeOf(operand).hasRuntimeBits()) {
|
|
const operand_mcv = try self.resolveInst(operand);
|
|
const block_mcv = block_data.mcv;
|
|
if (block_mcv == .none) {
|
|
block_data.mcv = switch (operand_mcv) {
|
|
.none, .dead, .unreach => unreachable,
|
|
.register, .stack_offset, .memory => operand_mcv,
|
|
.immediate => blk: {
|
|
const new_mcv = try self.allocRegOrMem(block, true);
|
|
try self.setRegOrMem(self.air.typeOfIndex(block), new_mcv, operand_mcv);
|
|
break :blk new_mcv;
|
|
},
|
|
else => return self.fail("TODO implement block_data.mcv = operand_mcv for {}", .{operand_mcv}),
|
|
};
|
|
} else {
|
|
try self.setRegOrMem(self.air.typeOfIndex(block), block_mcv, operand_mcv);
|
|
}
|
|
}
|
|
return self.brVoid(block);
|
|
}
|
|
|
|
fn brVoid(self: *Self, block: Air.Inst.Index) !void {
|
|
const block_data = self.blocks.getPtr(block).?;
|
|
|
|
// Emit a jump with a relocation. It will be patched up after the block ends.
|
|
try block_data.relocs.ensureUnusedCapacity(self.gpa, 1);
|
|
|
|
const br_index = try self.addInst(.{
|
|
.tag = .bpcc,
|
|
.data = .{
|
|
.branch_predict_int = .{
|
|
.ccr = .xcc,
|
|
.cond = .al,
|
|
.inst = undefined, // Will be filled by performReloc
|
|
},
|
|
},
|
|
});
|
|
|
|
// TODO Find a way to fill this delay slot
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
|
|
block_data.relocs.appendAssumeCapacity(br_index);
|
|
}
|
|
|
|
fn condBr(self: *Self, condition: MCValue) !Mir.Inst.Index {
|
|
// Here we either emit a BPcc for branching on CCR content,
|
|
// or emit a BPr to branch on register content.
|
|
const reloc: Mir.Inst.Index = switch (condition) {
|
|
.condition_flags => |flags| try self.addInst(.{
|
|
.tag = .bpcc,
|
|
.data = .{
|
|
.branch_predict_int = .{
|
|
.ccr = flags.ccr,
|
|
// Here we map to the opposite condition because the jump is to the false branch.
|
|
.cond = flags.cond.icond.negate(),
|
|
.inst = undefined, // Will be filled by performReloc
|
|
},
|
|
},
|
|
}),
|
|
.condition_register => |reg| try self.addInst(.{
|
|
.tag = .bpr,
|
|
.data = .{
|
|
.branch_predict_reg = .{
|
|
.rs1 = reg.reg,
|
|
// Here we map to the opposite condition because the jump is to the false branch.
|
|
.cond = reg.cond.negate(),
|
|
.inst = undefined, // Will be filled by performReloc
|
|
},
|
|
},
|
|
}),
|
|
else => blk: {
|
|
const reg = switch (condition) {
|
|
.register => |r| r,
|
|
else => try self.copyToTmpRegister(Type.bool, condition),
|
|
};
|
|
|
|
break :blk try self.addInst(.{
|
|
.tag = .bpr,
|
|
.data = .{
|
|
.branch_predict_reg = .{
|
|
.cond = .eq_zero,
|
|
.rs1 = reg,
|
|
.inst = undefined, // populated later through performReloc
|
|
},
|
|
},
|
|
});
|
|
},
|
|
};
|
|
|
|
// Regardless of the branch type that's emitted, we need to reserve
|
|
// a space for the delay slot.
|
|
// TODO Find a way to fill this delay slot
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
|
|
return reloc;
|
|
}
|
|
|
|
/// Copies a value to a register without tracking the register. The register is not considered
|
|
/// allocated. A second call to `copyToTmpRegister` may return the same register.
|
|
/// This can have a side effect of spilling instructions to the stack to free up a register.
|
|
fn copyToTmpRegister(self: *Self, ty: Type, mcv: MCValue) !Register {
|
|
const reg = try self.register_manager.allocReg(null, gp);
|
|
try self.genSetReg(ty, reg, mcv);
|
|
return reg;
|
|
}
|
|
|
|
fn ensureProcessDeathCapacity(self: *Self, additional_count: usize) !void {
|
|
const table = &self.branch_stack.items[self.branch_stack.items.len - 1].inst_table;
|
|
try table.ensureUnusedCapacity(self.gpa, additional_count);
|
|
}
|
|
|
|
/// Given an error union, returns the payload
|
|
fn errUnionPayload(self: *Self, error_union_mcv: MCValue, error_union_ty: Type) !MCValue {
|
|
const err_ty = error_union_ty.errorUnionSet();
|
|
const payload_ty = error_union_ty.errorUnionPayload();
|
|
if (err_ty.errorSetIsEmpty()) {
|
|
return error_union_mcv;
|
|
}
|
|
if (!payload_ty.hasRuntimeBitsIgnoreComptime()) {
|
|
return MCValue.none;
|
|
}
|
|
|
|
const payload_offset = @intCast(u32, errUnionPayloadOffset(payload_ty, self.target.*));
|
|
switch (error_union_mcv) {
|
|
.register => return self.fail("TODO errUnionPayload for registers", .{}),
|
|
.stack_offset => |off| {
|
|
return MCValue{ .stack_offset = off - payload_offset };
|
|
},
|
|
.memory => |addr| {
|
|
return MCValue{ .memory = addr + payload_offset };
|
|
},
|
|
else => unreachable, // invalid MCValue for an error union
|
|
}
|
|
}
|
|
|
|
fn fail(self: *Self, comptime format: []const u8, args: anytype) InnerError {
|
|
@setCold(true);
|
|
assert(self.err_msg == null);
|
|
self.err_msg = try ErrorMsg.create(self.bin_file.allocator, self.src_loc, format, args);
|
|
return error.CodegenFail;
|
|
}
|
|
|
|
/// Called when there are no operands, and the instruction is always unreferenced.
|
|
fn finishAirBookkeeping(self: *Self) void {
|
|
if (std.debug.runtime_safety) {
|
|
self.air_bookkeeping += 1;
|
|
}
|
|
}
|
|
|
|
fn finishAir(self: *Self, inst: Air.Inst.Index, result: MCValue, operands: [Liveness.bpi - 1]Air.Inst.Ref) void {
|
|
var tomb_bits = self.liveness.getTombBits(inst);
|
|
for (operands) |op| {
|
|
const dies = @truncate(u1, tomb_bits) != 0;
|
|
tomb_bits >>= 1;
|
|
if (!dies) continue;
|
|
const op_int = @enumToInt(op);
|
|
if (op_int < Air.Inst.Ref.typed_value_map.len) continue;
|
|
const op_index = @intCast(Air.Inst.Index, op_int - Air.Inst.Ref.typed_value_map.len);
|
|
self.processDeath(op_index);
|
|
}
|
|
const is_used = @truncate(u1, tomb_bits) == 0;
|
|
if (is_used) {
|
|
log.debug("%{d} => {}", .{ inst, result });
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
branch.inst_table.putAssumeCapacityNoClobber(inst, result);
|
|
|
|
switch (result) {
|
|
.register => |reg| {
|
|
// In some cases (such as bitcast), an operand
|
|
// may be the same MCValue as the result. If
|
|
// that operand died and was a register, it
|
|
// was freed by processDeath. We have to
|
|
// "re-allocate" the register.
|
|
if (self.register_manager.isRegFree(reg)) {
|
|
self.register_manager.getRegAssumeFree(reg, inst);
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
self.finishAirBookkeeping();
|
|
}
|
|
|
|
fn genArgDbgInfo(self: Self, inst: Air.Inst.Index, mcv: MCValue) !void {
|
|
const arg = self.air.instructions.items(.data)[inst].arg;
|
|
const ty = self.air.getRefType(arg.ty);
|
|
const name = self.mod_fn.getParamName(self.bin_file.options.module.?, arg.src_index);
|
|
|
|
switch (self.debug_output) {
|
|
.dwarf => |dw| switch (mcv) {
|
|
.register => |reg| try dw.genArgDbgInfo(name, ty, self.mod_fn.owner_decl, .{
|
|
.register = reg.dwarfLocOp(),
|
|
}),
|
|
else => {},
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
// TODO replace this to call to extern memcpy
|
|
fn genInlineMemcpy(
|
|
self: *Self,
|
|
src: Register,
|
|
dst: Register,
|
|
len: Register,
|
|
tmp: Register,
|
|
) !void {
|
|
// Here we assume that len > 0.
|
|
// Also we do the copy from end -> start address to save a register.
|
|
|
|
// sub len, 1, len
|
|
_ = try self.addInst(.{
|
|
.tag = .sub,
|
|
.data = .{ .arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rs1 = len,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
.rd = len,
|
|
} },
|
|
});
|
|
|
|
// loop:
|
|
// ldub [src + len], tmp
|
|
_ = try self.addInst(.{
|
|
.tag = .ldub,
|
|
.data = .{ .arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rs1 = src,
|
|
.rs2_or_imm = .{ .rs2 = len },
|
|
.rd = tmp,
|
|
} },
|
|
});
|
|
|
|
// stb tmp, [dst + len]
|
|
_ = try self.addInst(.{
|
|
.tag = .stb,
|
|
.data = .{ .arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rs1 = dst,
|
|
.rs2_or_imm = .{ .rs2 = len },
|
|
.rd = tmp,
|
|
} },
|
|
});
|
|
|
|
// brnz len, loop
|
|
_ = try self.addInst(.{
|
|
.tag = .bpr,
|
|
.data = .{ .branch_predict_reg = .{
|
|
.cond = .ne_zero,
|
|
.rs1 = len,
|
|
.inst = @intCast(u32, self.mir_instructions.len - 2),
|
|
} },
|
|
});
|
|
|
|
// Delay slot:
|
|
// sub len, 1, len
|
|
_ = try self.addInst(.{
|
|
.tag = .sub,
|
|
.data = .{ .arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rs1 = len,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
.rd = len,
|
|
} },
|
|
});
|
|
|
|
// end:
|
|
}
|
|
|
|
fn genLoad(self: *Self, value_reg: Register, addr_reg: Register, comptime off_type: type, off: off_type, abi_size: u64) !void {
|
|
assert(off_type == Register or off_type == i13);
|
|
|
|
const is_imm = (off_type == i13);
|
|
const rs2_or_imm = if (is_imm) .{ .imm = off } else .{ .rs2 = off };
|
|
|
|
switch (abi_size) {
|
|
1, 2, 4, 8 => {
|
|
const tag: Mir.Inst.Tag = switch (abi_size) {
|
|
1 => .ldub,
|
|
2 => .lduh,
|
|
4 => .lduw,
|
|
8 => .ldx,
|
|
else => unreachable, // unexpected abi size
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = tag,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = is_imm,
|
|
.rd = value_reg,
|
|
.rs1 = addr_reg,
|
|
.rs2_or_imm = rs2_or_imm,
|
|
},
|
|
},
|
|
});
|
|
},
|
|
3, 5, 6, 7 => return self.fail("TODO: genLoad for more abi_sizes", .{}),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn genSetReg(self: *Self, ty: Type, reg: Register, mcv: MCValue) InnerError!void {
|
|
switch (mcv) {
|
|
.dead => unreachable,
|
|
.unreach, .none => return, // Nothing to do.
|
|
.condition_flags => |op| {
|
|
const condition = op.cond;
|
|
const ccr = op.ccr;
|
|
|
|
// TODO handle floating point CCRs
|
|
assert(ccr == .xcc or ccr == .icc);
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .rs2 = .g0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .movcc,
|
|
.data = .{
|
|
.conditional_move_int = .{
|
|
.ccr = ccr,
|
|
.cond = condition,
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
.condition_register => |op| {
|
|
const condition = op.cond;
|
|
const register = op.reg;
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .rs2 = .g0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .movr,
|
|
.data = .{
|
|
.conditional_move_reg = .{
|
|
.cond = condition,
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs1 = register,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
.undef => {
|
|
if (!self.wantSafety())
|
|
return; // The already existing value will do just fine.
|
|
// Write the debug undefined value.
|
|
return self.genSetReg(ty, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa });
|
|
},
|
|
.ptr_stack_offset => |off| {
|
|
const real_offset = off + abi.stack_bias + abi.stack_reserved_area;
|
|
const simm13 = math.cast(i13, real_offset) orelse
|
|
return self.fail("TODO larger stack offsets: {}", .{real_offset});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .add,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs1 = .sp,
|
|
.rs2_or_imm = .{ .imm = simm13 },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
.immediate => |x| {
|
|
if (x <= math.maxInt(u12)) {
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = true,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .imm = @truncate(u12, x) },
|
|
},
|
|
},
|
|
});
|
|
} else if (x <= math.maxInt(u32)) {
|
|
_ = try self.addInst(.{
|
|
.tag = .sethi,
|
|
.data = .{
|
|
.sethi = .{
|
|
.rd = reg,
|
|
.imm = @truncate(u22, x >> 10),
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .@"or",
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .imm = @truncate(u10, x) },
|
|
},
|
|
},
|
|
});
|
|
} else if (x <= math.maxInt(u44)) {
|
|
try self.genSetReg(ty, reg, .{ .immediate = @truncate(u32, x >> 12) });
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .sllx,
|
|
.data = .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .imm = 12 },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .@"or",
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .imm = @truncate(u12, x) },
|
|
},
|
|
},
|
|
});
|
|
} else {
|
|
// Need to allocate a temporary register to load 64-bit immediates.
|
|
const tmp_reg = try self.register_manager.allocReg(null, gp);
|
|
|
|
try self.genSetReg(ty, tmp_reg, .{ .immediate = @truncate(u32, x) });
|
|
try self.genSetReg(ty, reg, .{ .immediate = @truncate(u32, x >> 32) });
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .sllx,
|
|
.data = .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = reg,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .imm = 32 },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .@"or",
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = false,
|
|
.rd = reg,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .rs2 = tmp_reg },
|
|
},
|
|
},
|
|
});
|
|
}
|
|
},
|
|
.register => |src_reg| {
|
|
// If the registers are the same, nothing to do.
|
|
if (src_reg.id() == reg.id())
|
|
return;
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = reg,
|
|
.rs2_or_imm = .{ .rs2 = src_reg },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
.register_with_overflow => unreachable,
|
|
.memory => |addr| {
|
|
// The value is in memory at a hard-coded address.
|
|
// If the type is a pointer, it means the pointer address is at this memory location.
|
|
try self.genSetReg(ty, reg, .{ .immediate = addr });
|
|
try self.genLoad(reg, reg, i13, 0, ty.abiSize(self.target.*));
|
|
},
|
|
.stack_offset => |off| {
|
|
const real_offset = off + abi.stack_bias + abi.stack_reserved_area;
|
|
const simm13 = math.cast(i13, real_offset) orelse
|
|
return self.fail("TODO larger stack offsets: {}", .{real_offset});
|
|
try self.genLoad(reg, .sp, i13, simm13, ty.abiSize(self.target.*));
|
|
},
|
|
}
|
|
}
|
|
|
|
fn genSetStack(self: *Self, ty: Type, stack_offset: u32, mcv: MCValue) InnerError!void {
|
|
const abi_size = ty.abiSize(self.target.*);
|
|
switch (mcv) {
|
|
.dead => unreachable,
|
|
.unreach, .none => return, // Nothing to do.
|
|
.undef => {
|
|
if (!self.wantSafety())
|
|
return; // The already existing value will do just fine.
|
|
// TODO Upgrade this to a memset call when we have that available.
|
|
switch (ty.abiSize(self.target.*)) {
|
|
1 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaa }),
|
|
2 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaa }),
|
|
4 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaa }),
|
|
8 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
|
|
else => return self.fail("TODO implement memset", .{}),
|
|
}
|
|
},
|
|
.condition_flags,
|
|
.condition_register,
|
|
.immediate,
|
|
.ptr_stack_offset,
|
|
=> {
|
|
const reg = try self.copyToTmpRegister(ty, mcv);
|
|
return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
|
|
},
|
|
.register => |reg| {
|
|
const real_offset = stack_offset + abi.stack_bias + abi.stack_reserved_area;
|
|
const simm13 = math.cast(i13, real_offset) orelse
|
|
return self.fail("TODO larger stack offsets: {}", .{real_offset});
|
|
return self.genStore(reg, .sp, i13, simm13, abi_size);
|
|
},
|
|
.register_with_overflow => |rwo| {
|
|
const reg_lock = self.register_manager.lockReg(rwo.reg);
|
|
defer if (reg_lock) |locked_reg| self.register_manager.unlockReg(locked_reg);
|
|
|
|
const wrapped_ty = ty.structFieldType(0);
|
|
try self.genSetStack(wrapped_ty, stack_offset, .{ .register = rwo.reg });
|
|
|
|
const overflow_bit_ty = ty.structFieldType(1);
|
|
const overflow_bit_offset = @intCast(u32, ty.structFieldOffset(1, self.target.*));
|
|
const cond_reg = try self.register_manager.allocReg(null, gp);
|
|
|
|
// TODO handle floating point CCRs
|
|
assert(rwo.flag.ccr == .xcc or rwo.flag.ccr == .icc);
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = cond_reg,
|
|
.rs2_or_imm = .{ .rs2 = .g0 },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .movcc,
|
|
.data = .{
|
|
.conditional_move_int = .{
|
|
.ccr = rwo.flag.ccr,
|
|
.cond = .{ .icond = rwo.flag.cond },
|
|
.is_imm = true,
|
|
.rd = cond_reg,
|
|
.rs2_or_imm = .{ .imm = 1 },
|
|
},
|
|
},
|
|
});
|
|
try self.genSetStack(overflow_bit_ty, stack_offset - overflow_bit_offset, .{
|
|
.register = cond_reg,
|
|
});
|
|
},
|
|
.memory, .stack_offset => {
|
|
switch (mcv) {
|
|
.stack_offset => |off| {
|
|
if (stack_offset == off)
|
|
return; // Copy stack variable to itself; nothing to do.
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
if (abi_size <= 8) {
|
|
const reg = try self.copyToTmpRegister(ty, mcv);
|
|
return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
|
|
} else {
|
|
var ptr_ty_payload: Type.Payload.ElemType = .{
|
|
.base = .{ .tag = .single_mut_pointer },
|
|
.data = ty,
|
|
};
|
|
const ptr_ty = Type.initPayload(&ptr_ty_payload.base);
|
|
|
|
const regs = try self.register_manager.allocRegs(4, .{ null, null, null, null }, gp);
|
|
const regs_locks = self.register_manager.lockRegsAssumeUnused(4, regs);
|
|
defer for (regs_locks) |reg| {
|
|
self.register_manager.unlockReg(reg);
|
|
};
|
|
|
|
const src_reg = regs[0];
|
|
const dst_reg = regs[1];
|
|
const len_reg = regs[2];
|
|
const tmp_reg = regs[3];
|
|
|
|
switch (mcv) {
|
|
.stack_offset => |off| try self.genSetReg(ptr_ty, src_reg, .{ .ptr_stack_offset = off }),
|
|
.memory => |addr| try self.genSetReg(Type.usize, src_reg, .{ .immediate = addr }),
|
|
else => unreachable,
|
|
}
|
|
|
|
try self.genSetReg(ptr_ty, dst_reg, .{ .ptr_stack_offset = stack_offset });
|
|
try self.genSetReg(Type.usize, len_reg, .{ .immediate = abi_size });
|
|
try self.genInlineMemcpy(src_reg, dst_reg, len_reg, tmp_reg);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
fn genStore(self: *Self, value_reg: Register, addr_reg: Register, comptime off_type: type, off: off_type, abi_size: u64) !void {
|
|
assert(off_type == Register or off_type == i13);
|
|
|
|
const is_imm = (off_type == i13);
|
|
const rs2_or_imm = if (is_imm) .{ .imm = off } else .{ .rs2 = off };
|
|
|
|
switch (abi_size) {
|
|
1, 2, 4, 8 => {
|
|
const tag: Mir.Inst.Tag = switch (abi_size) {
|
|
1 => .stb,
|
|
2 => .sth,
|
|
4 => .stw,
|
|
8 => .stx,
|
|
else => unreachable, // unexpected abi size
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = tag,
|
|
.data = .{
|
|
.arithmetic_3op = .{
|
|
.is_imm = is_imm,
|
|
.rd = value_reg,
|
|
.rs1 = addr_reg,
|
|
.rs2_or_imm = rs2_or_imm,
|
|
},
|
|
},
|
|
});
|
|
},
|
|
3, 5, 6, 7 => return self.fail("TODO: genLoad for more abi_sizes", .{}),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn genTypedValue(self: *Self, typed_value: TypedValue) InnerError!MCValue {
|
|
var tv = typed_value;
|
|
log.debug("genTypedValue: ty = {}, val = {}", .{ tv.ty.fmtDebug(), tv.val.fmtDebug() });
|
|
|
|
if (tv.val.castTag(.runtime_value)) |rt| {
|
|
tv.val = rt.data;
|
|
}
|
|
|
|
if (tv.val.isUndef())
|
|
return MCValue{ .undef = {} };
|
|
|
|
if (tv.val.castTag(.decl_ref)) |payload| {
|
|
return self.lowerDeclRef(tv, payload.data);
|
|
}
|
|
if (tv.val.castTag(.decl_ref_mut)) |payload| {
|
|
return self.lowerDeclRef(tv, payload.data.decl_index);
|
|
}
|
|
const target = self.target.*;
|
|
|
|
switch (tv.ty.zigTypeTag()) {
|
|
.Pointer => switch (tv.ty.ptrSize()) {
|
|
.Slice => {},
|
|
else => {
|
|
switch (tv.val.tag()) {
|
|
.int_u64 => {
|
|
return MCValue{ .immediate = tv.val.toUnsignedInt(target) };
|
|
},
|
|
else => {},
|
|
}
|
|
},
|
|
},
|
|
.Bool => {
|
|
return MCValue{ .immediate = @boolToInt(tv.val.toBool()) };
|
|
},
|
|
.Int => {
|
|
const info = tv.ty.intInfo(self.target.*);
|
|
if (info.bits <= 64) {
|
|
const unsigned = switch (info.signedness) {
|
|
.signed => blk: {
|
|
const signed = tv.val.toSignedInt(target);
|
|
break :blk @bitCast(u64, signed);
|
|
},
|
|
.unsigned => tv.val.toUnsignedInt(target),
|
|
};
|
|
|
|
return MCValue{ .immediate = unsigned };
|
|
} else {
|
|
return self.fail("TODO implement int genTypedValue of > 64 bits", .{});
|
|
}
|
|
},
|
|
.Optional => {
|
|
if (tv.ty.isPtrLikeOptional()) {
|
|
if (tv.val.isNull())
|
|
return MCValue{ .immediate = 0 };
|
|
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
return self.genTypedValue(.{
|
|
.ty = tv.ty.optionalChild(&buf),
|
|
.val = tv.val,
|
|
});
|
|
} else if (tv.ty.abiSize(self.target.*) == 1) {
|
|
return MCValue{ .immediate = @boolToInt(tv.val.isNull()) };
|
|
}
|
|
},
|
|
.Enum => {
|
|
if (tv.val.castTag(.enum_field_index)) |field_index| {
|
|
switch (tv.ty.tag()) {
|
|
.enum_simple => {
|
|
return MCValue{ .immediate = field_index.data };
|
|
},
|
|
.enum_full, .enum_nonexhaustive => {
|
|
const enum_full = tv.ty.cast(Type.Payload.EnumFull).?.data;
|
|
if (enum_full.values.count() != 0) {
|
|
const tag_val = enum_full.values.keys()[field_index.data];
|
|
return self.genTypedValue(.{ .ty = enum_full.tag_ty, .val = tag_val });
|
|
} else {
|
|
return MCValue{ .immediate = field_index.data };
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
} else {
|
|
var int_tag_buffer: Type.Payload.Bits = undefined;
|
|
const int_tag_ty = tv.ty.intTagType(&int_tag_buffer);
|
|
return self.genTypedValue(.{ .ty = int_tag_ty, .val = tv.val });
|
|
}
|
|
},
|
|
.ErrorSet => {
|
|
const err_name = tv.val.castTag(.@"error").?.data.name;
|
|
const module = self.bin_file.options.module.?;
|
|
const global_error_set = module.global_error_set;
|
|
const error_index = global_error_set.get(err_name).?;
|
|
return MCValue{ .immediate = error_index };
|
|
},
|
|
.ErrorUnion => {
|
|
const error_type = tv.ty.errorUnionSet();
|
|
const payload_type = tv.ty.errorUnionPayload();
|
|
|
|
if (tv.val.castTag(.eu_payload)) |pl| {
|
|
if (!payload_type.hasRuntimeBits()) {
|
|
// We use the error type directly as the type.
|
|
return MCValue{ .immediate = 0 };
|
|
}
|
|
|
|
_ = pl;
|
|
return self.fail("TODO implement error union const of type '{}' (non-error)", .{tv.ty.fmtDebug()});
|
|
} else {
|
|
if (!payload_type.hasRuntimeBits()) {
|
|
// We use the error type directly as the type.
|
|
return self.genTypedValue(.{ .ty = error_type, .val = tv.val });
|
|
}
|
|
|
|
return self.fail("TODO implement error union const of type '{}' (error)", .{tv.ty.fmtDebug()});
|
|
}
|
|
},
|
|
.ComptimeInt => unreachable, // semantic analysis prevents this
|
|
.ComptimeFloat => unreachable, // semantic analysis prevents this
|
|
.Type => unreachable,
|
|
.EnumLiteral => unreachable,
|
|
.Void => unreachable,
|
|
.NoReturn => unreachable,
|
|
.Undefined => unreachable,
|
|
.Null => unreachable,
|
|
.Opaque => unreachable,
|
|
else => {},
|
|
}
|
|
|
|
return self.fail("TODO implement const of type '{}'", .{tv.ty.fmtDebug()});
|
|
}
|
|
|
|
fn getResolvedInstValue(self: *Self, inst: Air.Inst.Index) MCValue {
|
|
// Treat each stack item as a "layer" on top of the previous one.
|
|
var i: usize = self.branch_stack.items.len;
|
|
while (true) {
|
|
i -= 1;
|
|
if (self.branch_stack.items[i].inst_table.get(inst)) |mcv| {
|
|
log.debug("getResolvedInstValue %{} => {}", .{ inst, mcv });
|
|
assert(mcv != .dead);
|
|
return mcv;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn isErr(self: *Self, ty: Type, operand: MCValue) !MCValue {
|
|
const error_type = ty.errorUnionSet();
|
|
const payload_type = ty.errorUnionPayload();
|
|
|
|
if (!error_type.hasRuntimeBits()) {
|
|
return MCValue{ .immediate = 0 }; // always false
|
|
} else if (!payload_type.hasRuntimeBits()) {
|
|
if (error_type.abiSize(self.target.*) <= 8) {
|
|
const reg_mcv: MCValue = switch (operand) {
|
|
.register => operand,
|
|
else => .{ .register = try self.copyToTmpRegister(error_type, operand) },
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .cmp,
|
|
.data = .{ .arithmetic_2op = .{
|
|
.is_imm = true,
|
|
.rs1 = reg_mcv.register,
|
|
.rs2_or_imm = .{ .imm = 0 },
|
|
} },
|
|
});
|
|
|
|
return MCValue{ .condition_flags = .{ .cond = .{ .icond = .gu }, .ccr = .xcc } };
|
|
} else {
|
|
return self.fail("TODO isErr for errors with size > 8", .{});
|
|
}
|
|
} else {
|
|
return self.fail("TODO isErr for non-empty payloads", .{});
|
|
}
|
|
}
|
|
|
|
fn isNonErr(self: *Self, ty: Type, operand: MCValue) !MCValue {
|
|
// Call isErr, then negate the result.
|
|
const is_err_result = try self.isErr(ty, operand);
|
|
switch (is_err_result) {
|
|
.condition_flags => |op| {
|
|
return MCValue{ .condition_flags = .{ .cond = op.cond.negate(), .ccr = op.ccr } };
|
|
},
|
|
.immediate => |imm| {
|
|
assert(imm == 0);
|
|
return MCValue{ .immediate = 1 };
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn isNull(self: *Self, operand: MCValue) !MCValue {
|
|
_ = operand;
|
|
// Here you can specialize this instruction if it makes sense to, otherwise the default
|
|
// will call isNonNull and invert the result.
|
|
return self.fail("TODO call isNonNull and invert the result", .{});
|
|
}
|
|
|
|
fn isNonNull(self: *Self, operand: MCValue) !MCValue {
|
|
// Call isNull, then negate the result.
|
|
const is_null_result = try self.isNull(operand);
|
|
switch (is_null_result) {
|
|
.condition_flags => |op| {
|
|
return MCValue{ .condition_flags = .{ .cond = op.cond.negate(), .ccr = op.ccr } };
|
|
},
|
|
.immediate => |imm| {
|
|
assert(imm == 0);
|
|
return MCValue{ .immediate = 1 };
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn iterateBigTomb(self: *Self, inst: Air.Inst.Index, operand_count: usize) !BigTomb {
|
|
try self.ensureProcessDeathCapacity(operand_count + 1);
|
|
return BigTomb{
|
|
.function = self,
|
|
.inst = inst,
|
|
.lbt = self.liveness.iterateBigTomb(inst),
|
|
};
|
|
}
|
|
|
|
/// Send control flow to `inst`.
|
|
fn jump(self: *Self, inst: Mir.Inst.Index) !void {
|
|
_ = try self.addInst(.{
|
|
.tag = .bpcc,
|
|
.data = .{
|
|
.branch_predict_int = .{
|
|
.cond = .al,
|
|
.ccr = .xcc,
|
|
.inst = inst,
|
|
},
|
|
},
|
|
});
|
|
|
|
// TODO find out a way to fill this delay slot
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
}
|
|
|
|
fn load(self: *Self, dst_mcv: MCValue, ptr: MCValue, ptr_ty: Type) InnerError!void {
|
|
const elem_ty = ptr_ty.elemType();
|
|
const elem_size = elem_ty.abiSize(self.target.*);
|
|
|
|
switch (ptr) {
|
|
.none => unreachable,
|
|
.undef => unreachable,
|
|
.unreach => unreachable,
|
|
.dead => unreachable,
|
|
.condition_flags,
|
|
.condition_register,
|
|
.register_with_overflow,
|
|
=> unreachable, // cannot hold an address
|
|
.immediate => |imm| try self.setRegOrMem(elem_ty, dst_mcv, .{ .memory = imm }),
|
|
.ptr_stack_offset => |off| try self.setRegOrMem(elem_ty, dst_mcv, .{ .stack_offset = off }),
|
|
.register => |addr_reg| {
|
|
const addr_reg_lock = self.register_manager.lockReg(addr_reg);
|
|
defer if (addr_reg_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
switch (dst_mcv) {
|
|
.dead => unreachable,
|
|
.undef => unreachable,
|
|
.condition_flags => unreachable,
|
|
.register => |dst_reg| {
|
|
try self.genLoad(dst_reg, addr_reg, i13, 0, elem_size);
|
|
},
|
|
.stack_offset => |off| {
|
|
if (elem_size <= 8) {
|
|
const tmp_reg = try self.register_manager.allocReg(null, gp);
|
|
const tmp_reg_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
|
|
defer self.register_manager.unlockReg(tmp_reg_lock);
|
|
|
|
try self.load(.{ .register = tmp_reg }, ptr, ptr_ty);
|
|
try self.genSetStack(elem_ty, off, MCValue{ .register = tmp_reg });
|
|
} else {
|
|
const regs = try self.register_manager.allocRegs(3, .{ null, null, null }, gp);
|
|
const regs_locks = self.register_manager.lockRegsAssumeUnused(3, regs);
|
|
defer for (regs_locks) |reg| {
|
|
self.register_manager.unlockReg(reg);
|
|
};
|
|
|
|
const src_reg = addr_reg;
|
|
const dst_reg = regs[0];
|
|
const len_reg = regs[1];
|
|
const tmp_reg = regs[2];
|
|
|
|
try self.genSetReg(ptr_ty, dst_reg, .{ .ptr_stack_offset = off });
|
|
try self.genSetReg(Type.usize, len_reg, .{ .immediate = elem_size });
|
|
try self.genInlineMemcpy(src_reg, dst_reg, len_reg, tmp_reg);
|
|
}
|
|
},
|
|
else => return self.fail("TODO load from register into {}", .{dst_mcv}),
|
|
}
|
|
},
|
|
.memory,
|
|
.stack_offset,
|
|
=> {
|
|
const addr_reg = try self.copyToTmpRegister(ptr_ty, ptr);
|
|
try self.load(dst_mcv, .{ .register = addr_reg }, ptr_ty);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn lowerDeclRef(self: *Self, tv: TypedValue, decl_index: Module.Decl.Index) InnerError!MCValue {
|
|
// TODO this feels clunky. Perhaps we should check for it in `genTypedValue`?
|
|
if (tv.ty.zigTypeTag() == .Pointer) blk: {
|
|
if (tv.ty.castPtrToFn()) |_| break :blk;
|
|
if (!tv.ty.elemType2().hasRuntimeBits()) {
|
|
return MCValue.none;
|
|
}
|
|
}
|
|
|
|
const mod = self.bin_file.options.module.?;
|
|
const decl = mod.declPtr(decl_index);
|
|
|
|
mod.markDeclAlive(decl);
|
|
if (self.bin_file.cast(link.File.Elf)) |elf_file| {
|
|
const atom_index = try elf_file.getOrCreateAtomForDecl(decl_index);
|
|
const atom = elf_file.getAtom(atom_index);
|
|
return MCValue{ .memory = atom.getOffsetTableAddress(elf_file) };
|
|
} else {
|
|
return self.fail("TODO codegen non-ELF const Decl pointer", .{});
|
|
}
|
|
}
|
|
|
|
fn minMax(
|
|
self: *Self,
|
|
tag: Air.Inst.Tag,
|
|
lhs: MCValue,
|
|
rhs: MCValue,
|
|
lhs_ty: Type,
|
|
rhs_ty: Type,
|
|
) InnerError!MCValue {
|
|
const mod = self.bin_file.options.module.?;
|
|
assert(lhs_ty.eql(rhs_ty, mod));
|
|
switch (lhs_ty.zigTypeTag()) {
|
|
.Float => return self.fail("TODO min/max on floats", .{}),
|
|
.Vector => return self.fail("TODO min/max on vectors", .{}),
|
|
.Int => {
|
|
const int_info = lhs_ty.intInfo(self.target.*);
|
|
if (int_info.bits <= 64) {
|
|
// TODO skip register setting when one of the operands
|
|
// is a small (fits in i13) immediate.
|
|
const rhs_is_register = rhs == .register;
|
|
const rhs_reg = if (rhs_is_register)
|
|
rhs.register
|
|
else
|
|
try self.register_manager.allocReg(null, gp);
|
|
const rhs_lock = self.register_manager.lockReg(rhs_reg);
|
|
defer if (rhs_lock) |reg| self.register_manager.unlockReg(reg);
|
|
if (!rhs_is_register) try self.genSetReg(rhs_ty, rhs_reg, rhs);
|
|
|
|
const result_reg = try self.register_manager.allocReg(null, gp);
|
|
const result_lock = self.register_manager.lockReg(result_reg);
|
|
defer if (result_lock) |reg| self.register_manager.unlockReg(reg);
|
|
try self.genSetReg(lhs_ty, result_reg, lhs);
|
|
|
|
const cond_choose_rhs: Instruction.ICondition = switch (tag) {
|
|
.max => switch (int_info.signedness) {
|
|
.signed => Instruction.ICondition.gt,
|
|
.unsigned => Instruction.ICondition.gu,
|
|
},
|
|
.min => switch (int_info.signedness) {
|
|
.signed => Instruction.ICondition.lt,
|
|
.unsigned => Instruction.ICondition.cs,
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .cmp,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = result_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
_ = try self.addInst(.{
|
|
.tag = .movcc,
|
|
.data = .{
|
|
.conditional_move_int = .{
|
|
.is_imm = false,
|
|
.ccr = .xcc,
|
|
.cond = .{ .icond = cond_choose_rhs },
|
|
.rd = result_reg,
|
|
.rs2_or_imm = .{ .rs2 = rhs_reg },
|
|
},
|
|
},
|
|
});
|
|
|
|
return MCValue{ .register = result_reg };
|
|
} else {
|
|
return self.fail("TODO min/max on integers > u64/i64", .{});
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn parseRegName(name: []const u8) ?Register {
|
|
if (@hasDecl(Register, "parseRegName")) {
|
|
return Register.parseRegName(name);
|
|
}
|
|
return std.meta.stringToEnum(Register, name);
|
|
}
|
|
|
|
fn performReloc(self: *Self, inst: Mir.Inst.Index) !void {
|
|
const tag = self.mir_instructions.items(.tag)[inst];
|
|
switch (tag) {
|
|
.bpcc => self.mir_instructions.items(.data)[inst].branch_predict_int.inst = @intCast(Mir.Inst.Index, self.mir_instructions.len),
|
|
.bpr => self.mir_instructions.items(.data)[inst].branch_predict_reg.inst = @intCast(Mir.Inst.Index, self.mir_instructions.len),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
/// Asserts there is already capacity to insert into top branch inst_table.
|
|
fn processDeath(self: *Self, inst: Air.Inst.Index) void {
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
if (air_tags[inst] == .constant) return; // Constants are immortal.
|
|
// When editing this function, note that the logic must synchronize with `reuseOperand`.
|
|
const prev_value = self.getResolvedInstValue(inst);
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
branch.inst_table.putAssumeCapacity(inst, .dead);
|
|
log.debug("%{} death: {} -> .dead", .{ inst, prev_value });
|
|
switch (prev_value) {
|
|
.register => |reg| {
|
|
self.register_manager.freeReg(reg);
|
|
},
|
|
.register_with_overflow => |rwo| {
|
|
self.register_manager.freeReg(rwo.reg);
|
|
self.condition_flags_inst = null;
|
|
},
|
|
.condition_flags => {
|
|
self.condition_flags_inst = null;
|
|
},
|
|
else => {}, // TODO process stack allocation death
|
|
}
|
|
}
|
|
|
|
/// Caller must call `CallMCValues.deinit`.
|
|
fn resolveCallingConventionValues(self: *Self, fn_ty: Type, role: RegisterView) !CallMCValues {
|
|
const cc = fn_ty.fnCallingConvention();
|
|
const param_types = try self.gpa.alloc(Type, fn_ty.fnParamLen());
|
|
defer self.gpa.free(param_types);
|
|
fn_ty.fnParamTypes(param_types);
|
|
var result: CallMCValues = .{
|
|
.args = try self.gpa.alloc(MCValue, param_types.len),
|
|
// These undefined values must be populated before returning from this function.
|
|
.return_value = undefined,
|
|
.stack_byte_count = undefined,
|
|
.stack_align = undefined,
|
|
};
|
|
errdefer self.gpa.free(result.args);
|
|
|
|
const ret_ty = fn_ty.fnReturnType();
|
|
|
|
switch (cc) {
|
|
.Naked => {
|
|
assert(result.args.len == 0);
|
|
result.return_value = .{ .unreach = {} };
|
|
result.stack_byte_count = 0;
|
|
result.stack_align = 1;
|
|
return result;
|
|
},
|
|
.Unspecified, .C => {
|
|
// SPARC Compliance Definition 2.4.1, Chapter 3
|
|
// Low-Level System Information (64-bit psABI) - Function Calling Sequence
|
|
|
|
var next_register: usize = 0;
|
|
var next_stack_offset: u32 = 0;
|
|
|
|
// The caller puts the argument in %o0-%o5, which becomes %i0-%i5 inside the callee.
|
|
const argument_registers = switch (role) {
|
|
.caller => abi.c_abi_int_param_regs_caller_view,
|
|
.callee => abi.c_abi_int_param_regs_callee_view,
|
|
};
|
|
|
|
for (param_types) |ty, i| {
|
|
const param_size = @intCast(u32, ty.abiSize(self.target.*));
|
|
if (param_size <= 8) {
|
|
if (next_register < argument_registers.len) {
|
|
result.args[i] = .{ .register = argument_registers[next_register] };
|
|
next_register += 1;
|
|
} else {
|
|
result.args[i] = .{ .stack_offset = next_stack_offset };
|
|
next_register += next_stack_offset;
|
|
}
|
|
} else if (param_size <= 16) {
|
|
if (next_register < argument_registers.len - 1) {
|
|
return self.fail("TODO MCValues with 2 registers", .{});
|
|
} else if (next_register < argument_registers.len) {
|
|
return self.fail("TODO MCValues split register + stack", .{});
|
|
} else {
|
|
result.args[i] = .{ .stack_offset = next_stack_offset };
|
|
next_register += next_stack_offset;
|
|
}
|
|
} else {
|
|
result.args[i] = .{ .stack_offset = next_stack_offset };
|
|
next_register += next_stack_offset;
|
|
}
|
|
}
|
|
|
|
result.stack_byte_count = next_stack_offset;
|
|
result.stack_align = 16;
|
|
|
|
if (ret_ty.zigTypeTag() == .NoReturn) {
|
|
result.return_value = .{ .unreach = {} };
|
|
} else if (!ret_ty.hasRuntimeBits()) {
|
|
result.return_value = .{ .none = {} };
|
|
} else {
|
|
const ret_ty_size = @intCast(u32, ret_ty.abiSize(self.target.*));
|
|
// The callee puts the return values in %i0-%i3, which becomes %o0-%o3 inside the caller.
|
|
if (ret_ty_size <= 8) {
|
|
result.return_value = switch (role) {
|
|
.caller => .{ .register = abi.c_abi_int_return_regs_caller_view[0] },
|
|
.callee => .{ .register = abi.c_abi_int_return_regs_callee_view[0] },
|
|
};
|
|
} else {
|
|
return self.fail("TODO support more return values for sparc64", .{});
|
|
}
|
|
}
|
|
},
|
|
else => return self.fail("TODO implement function parameters for {} on sparc64", .{cc}),
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
fn resolveInst(self: *Self, inst: Air.Inst.Ref) InnerError!MCValue {
|
|
// First section of indexes correspond to a set number of constant values.
|
|
const ref_int = @enumToInt(inst);
|
|
if (ref_int < Air.Inst.Ref.typed_value_map.len) {
|
|
const tv = Air.Inst.Ref.typed_value_map[ref_int];
|
|
if (!tv.ty.hasRuntimeBitsIgnoreComptime() and !tv.ty.isError()) {
|
|
return MCValue{ .none = {} };
|
|
}
|
|
return self.genTypedValue(tv);
|
|
}
|
|
|
|
// If the type has no codegen bits, no need to store it.
|
|
const inst_ty = self.air.typeOf(inst);
|
|
if (!inst_ty.hasRuntimeBitsIgnoreComptime() and !inst_ty.isError())
|
|
return MCValue{ .none = {} };
|
|
|
|
const inst_index = @intCast(Air.Inst.Index, ref_int - Air.Inst.Ref.typed_value_map.len);
|
|
switch (self.air.instructions.items(.tag)[inst_index]) {
|
|
.constant => {
|
|
// Constants have static lifetimes, so they are always memoized in the outer most table.
|
|
const branch = &self.branch_stack.items[0];
|
|
const gop = try branch.inst_table.getOrPut(self.gpa, inst_index);
|
|
if (!gop.found_existing) {
|
|
const ty_pl = self.air.instructions.items(.data)[inst_index].ty_pl;
|
|
gop.value_ptr.* = try self.genTypedValue(.{
|
|
.ty = inst_ty,
|
|
.val = self.air.values[ty_pl.payload],
|
|
});
|
|
}
|
|
return gop.value_ptr.*;
|
|
},
|
|
.const_ty => unreachable,
|
|
else => return self.getResolvedInstValue(inst_index),
|
|
}
|
|
}
|
|
|
|
fn ret(self: *Self, mcv: MCValue) !void {
|
|
const ret_ty = self.fn_type.fnReturnType();
|
|
try self.setRegOrMem(ret_ty, self.ret_mcv, mcv);
|
|
|
|
// Just add space for a branch instruction, patch this later
|
|
const index = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
|
|
// Reserve space for the delay slot too
|
|
// TODO find out a way to fill this
|
|
_ = try self.addInst(.{
|
|
.tag = .nop,
|
|
.data = .{ .nop = {} },
|
|
});
|
|
try self.exitlude_jump_relocs.append(self.gpa, index);
|
|
}
|
|
|
|
fn reuseOperand(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, op_index: Liveness.OperandInt, mcv: MCValue) bool {
|
|
if (!self.liveness.operandDies(inst, op_index))
|
|
return false;
|
|
|
|
switch (mcv) {
|
|
.register => |reg| {
|
|
// If it's in the registers table, need to associate the register with the
|
|
// new instruction.
|
|
if (RegisterManager.indexOfRegIntoTracked(reg)) |index| {
|
|
if (!self.register_manager.isRegFree(reg)) {
|
|
self.register_manager.registers[index] = inst;
|
|
}
|
|
}
|
|
log.debug("%{d} => {} (reused)", .{ inst, reg });
|
|
},
|
|
.stack_offset => |off| {
|
|
log.debug("%{d} => stack offset {d} (reused)", .{ inst, off });
|
|
},
|
|
else => return false,
|
|
}
|
|
|
|
// Prevent the operand deaths processing code from deallocating it.
|
|
self.liveness.clearOperandDeath(inst, op_index);
|
|
|
|
// That makes us responsible for doing the rest of the stuff that processDeath would have done.
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
branch.inst_table.putAssumeCapacity(Air.refToIndex(operand).?, .dead);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Sets the value without any modifications to register allocation metadata or stack allocation metadata.
|
|
fn setRegOrMem(self: *Self, ty: Type, loc: MCValue, val: MCValue) !void {
|
|
switch (loc) {
|
|
.none => return,
|
|
.register => |reg| return self.genSetReg(ty, reg, val),
|
|
.stack_offset => |off| return self.genSetStack(ty, off, val),
|
|
.memory => {
|
|
return self.fail("TODO implement setRegOrMem for memory", .{});
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
/// Save the current instruction stored in the condition flags if
|
|
/// occupied
|
|
fn spillConditionFlagsIfOccupied(self: *Self) !void {
|
|
if (self.condition_flags_inst) |inst_to_save| {
|
|
const mcv = self.getResolvedInstValue(inst_to_save);
|
|
const new_mcv = switch (mcv) {
|
|
.condition_flags => try self.allocRegOrMem(inst_to_save, true),
|
|
.register_with_overflow => try self.allocRegOrMem(inst_to_save, false),
|
|
else => unreachable, // mcv doesn't occupy the compare flags
|
|
};
|
|
|
|
try self.setRegOrMem(self.air.typeOfIndex(inst_to_save), new_mcv, mcv);
|
|
log.debug("spilling {d} to mcv {any}", .{ inst_to_save, new_mcv });
|
|
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
try branch.inst_table.put(self.gpa, inst_to_save, new_mcv);
|
|
|
|
self.condition_flags_inst = null;
|
|
|
|
// TODO consolidate with register manager and spillInstruction
|
|
// this call should really belong in the register manager!
|
|
switch (mcv) {
|
|
.register_with_overflow => |rwo| self.register_manager.freeReg(rwo.reg),
|
|
else => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn spillInstruction(self: *Self, reg: Register, inst: Air.Inst.Index) !void {
|
|
const stack_mcv = try self.allocRegOrMem(inst, false);
|
|
log.debug("spilling {d} to stack mcv {any}", .{ inst, stack_mcv });
|
|
const reg_mcv = self.getResolvedInstValue(inst);
|
|
assert(reg == reg_mcv.register);
|
|
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
|
try branch.inst_table.put(self.gpa, inst, stack_mcv);
|
|
try self.genSetStack(self.air.typeOfIndex(inst), stack_mcv.stack_offset, reg_mcv);
|
|
}
|
|
|
|
fn store(self: *Self, ptr: MCValue, value: MCValue, ptr_ty: Type, value_ty: Type) InnerError!void {
|
|
const abi_size = value_ty.abiSize(self.target.*);
|
|
|
|
switch (ptr) {
|
|
.none => unreachable,
|
|
.undef => unreachable,
|
|
.unreach => unreachable,
|
|
.dead => unreachable,
|
|
.condition_flags,
|
|
.condition_register,
|
|
.register_with_overflow,
|
|
=> unreachable, // cannot hold an address
|
|
.immediate => |imm| {
|
|
try self.setRegOrMem(value_ty, .{ .memory = imm }, value);
|
|
},
|
|
.ptr_stack_offset => |off| {
|
|
try self.genSetStack(value_ty, off, value);
|
|
},
|
|
.register => |addr_reg| {
|
|
const addr_reg_lock = self.register_manager.lockReg(addr_reg);
|
|
defer if (addr_reg_lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
switch (value) {
|
|
.register => |value_reg| {
|
|
try self.genStore(value_reg, addr_reg, i13, 0, abi_size);
|
|
},
|
|
else => {
|
|
return self.fail("TODO implement copying of memory", .{});
|
|
},
|
|
}
|
|
},
|
|
.memory,
|
|
.stack_offset,
|
|
=> {
|
|
const addr_reg = try self.copyToTmpRegister(ptr_ty, ptr);
|
|
try self.store(.{ .register = addr_reg }, value, ptr_ty, value_ty);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn structFieldPtr(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, index: u32) !MCValue {
|
|
return if (self.liveness.isUnused(inst)) .dead else result: {
|
|
const mcv = try self.resolveInst(operand);
|
|
const ptr_ty = self.air.typeOf(operand);
|
|
const struct_ty = ptr_ty.childType();
|
|
const struct_field_offset = @intCast(u32, struct_ty.structFieldOffset(index, self.target.*));
|
|
switch (mcv) {
|
|
.ptr_stack_offset => |off| {
|
|
break :result MCValue{ .ptr_stack_offset = off - struct_field_offset };
|
|
},
|
|
else => {
|
|
const offset_reg = try self.copyToTmpRegister(ptr_ty, .{
|
|
.immediate = struct_field_offset,
|
|
});
|
|
const offset_reg_lock = self.register_manager.lockRegAssumeUnused(offset_reg);
|
|
defer self.register_manager.unlockReg(offset_reg_lock);
|
|
|
|
const addr_reg = try self.copyToTmpRegister(ptr_ty, mcv);
|
|
const addr_reg_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
|
|
defer self.register_manager.unlockReg(addr_reg_lock);
|
|
|
|
const dest = try self.binOp(
|
|
.add,
|
|
.{ .register = addr_reg },
|
|
.{ .register = offset_reg },
|
|
Type.usize,
|
|
Type.usize,
|
|
null,
|
|
);
|
|
|
|
break :result dest;
|
|
},
|
|
}
|
|
};
|
|
}
|
|
|
|
fn trunc(
|
|
self: *Self,
|
|
maybe_inst: ?Air.Inst.Index,
|
|
operand: MCValue,
|
|
operand_ty: Type,
|
|
dest_ty: Type,
|
|
) !MCValue {
|
|
const info_a = operand_ty.intInfo(self.target.*);
|
|
const info_b = dest_ty.intInfo(self.target.*);
|
|
|
|
if (info_b.bits <= 64) {
|
|
const operand_reg = switch (operand) {
|
|
.register => |r| r,
|
|
else => operand_reg: {
|
|
if (info_a.bits <= 64) {
|
|
const reg = try self.copyToTmpRegister(operand_ty, operand);
|
|
break :operand_reg reg;
|
|
} else {
|
|
return self.fail("TODO load least significant word into register", .{});
|
|
}
|
|
},
|
|
};
|
|
const lock = self.register_manager.lockReg(operand_reg);
|
|
defer if (lock) |reg| self.register_manager.unlockReg(reg);
|
|
|
|
const dest_reg = if (maybe_inst) |inst| blk: {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
|
|
if (operand == .register and self.reuseOperand(inst, ty_op.operand, 0, operand)) {
|
|
break :blk operand_reg;
|
|
} else {
|
|
const reg = try self.register_manager.allocReg(inst, gp);
|
|
break :blk reg;
|
|
}
|
|
} else blk: {
|
|
const reg = try self.register_manager.allocReg(null, gp);
|
|
break :blk reg;
|
|
};
|
|
|
|
try self.truncRegister(operand_reg, dest_reg, info_b.signedness, info_b.bits);
|
|
|
|
return MCValue{ .register = dest_reg };
|
|
} else {
|
|
return self.fail("TODO: truncate to ints > 64 bits", .{});
|
|
}
|
|
}
|
|
|
|
fn truncRegister(
|
|
self: *Self,
|
|
operand_reg: Register,
|
|
dest_reg: Register,
|
|
int_signedness: std.builtin.Signedness,
|
|
int_bits: u16,
|
|
) !void {
|
|
switch (int_bits) {
|
|
1...31, 33...63 => {
|
|
_ = try self.addInst(.{
|
|
.tag = .sllx,
|
|
.data = .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = operand_reg,
|
|
.rs2_or_imm = .{ .imm = @intCast(u6, 64 - int_bits) },
|
|
},
|
|
},
|
|
});
|
|
_ = try self.addInst(.{
|
|
.tag = switch (int_signedness) {
|
|
.signed => .srax,
|
|
.unsigned => .srlx,
|
|
},
|
|
.data = .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = dest_reg,
|
|
.rs2_or_imm = .{ .imm = @intCast(u6, int_bits) },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
32 => {
|
|
_ = try self.addInst(.{
|
|
.tag = switch (int_signedness) {
|
|
.signed => .sra,
|
|
.unsigned => .srl,
|
|
},
|
|
.data = .{
|
|
.shift = .{
|
|
.is_imm = true,
|
|
.rd = dest_reg,
|
|
.rs1 = operand_reg,
|
|
.rs2_or_imm = .{ .imm = 0 },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
64 => {
|
|
if (dest_reg == operand_reg)
|
|
return; // Copy register to itself; nothing to do.
|
|
_ = try self.addInst(.{
|
|
.tag = .mov,
|
|
.data = .{
|
|
.arithmetic_2op = .{
|
|
.is_imm = false,
|
|
.rs1 = dest_reg,
|
|
.rs2_or_imm = .{ .rs2 = operand_reg },
|
|
},
|
|
},
|
|
});
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
/// TODO support scope overrides. Also note this logic is duplicated with `Module.wantSafety`.
|
|
fn wantSafety(self: *Self) bool {
|
|
return switch (self.bin_file.options.optimize_mode) {
|
|
.Debug => true,
|
|
.ReleaseSafe => true,
|
|
.ReleaseFast => false,
|
|
.ReleaseSmall => false,
|
|
};
|
|
}
|