zig/src/Liveness.zig
mlugg ff37ccd298 Air: store interned values in Air.Inst.Ref
Previously, interned values were represented as AIR instructions using
the `interned` tag. Now, the AIR ref directly encodes the InternPool
index. The encoding works as follows:
* If the ref matches one of the static values, it corresponds to the same InternPool index.
* Otherwise, if the MSB is 0, the ref corresponds to an InternPool index.
* Otherwise, if the MSB is 1, the ref corresponds to an AIR instruction index (after removing the MSB).

Note that since most static InternPool indices are low values (the
exceptions being `.none` and `.var_args_param_type`), the first rule is
almost a nop.
2023-06-27 01:21:32 -07:00

1935 lines
69 KiB
Zig

//! For each AIR instruction, we want to know:
//! * Is the instruction unreferenced (e.g. dies immediately)?
//! * For each of its operands, does the operand die with this instruction (e.g. is
//! this the last reference to it)?
//! Some instructions are special, such as:
//! * Conditional Branches
//! * Switch Branches
const std = @import("std");
const log = std.log.scoped(.liveness);
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Log2Int = std.math.Log2Int;
const Liveness = @This();
const trace = @import("tracy.zig").trace;
const Air = @import("Air.zig");
const InternPool = @import("InternPool.zig");
pub const Verify = @import("Liveness/Verify.zig");
/// This array is split into sets of 4 bits per AIR instruction.
/// The MSB (0bX000) is whether the instruction is unreferenced.
/// The LSB (0b000X) is the first operand, and so on, up to 3 operands. A set bit means the
/// operand dies after this instruction.
/// Instructions which need more data to track liveness have special handling via the
/// `special` table.
tomb_bits: []usize,
/// Sparse table of specially handled instructions. The value is an index into the `extra`
/// array. The meaning of the data depends on the AIR tag.
/// * `cond_br` - points to a `CondBr` in `extra` at this index.
/// * `try`, `try_ptr` - points to a `CondBr` in `extra` at this index. The error path (the block
/// in the instruction) is considered the "else" path, and the rest of the block the "then".
/// * `switch_br` - points to a `SwitchBr` in `extra` at this index.
/// * `block` - points to a `Block` in `extra` at this index.
/// * `asm`, `call`, `aggregate_init` - the value is a set of bits which are the extra tomb
/// bits of operands.
/// The main tomb bits are still used and the extra ones are starting with the lsb of the
/// value here.
special: std.AutoHashMapUnmanaged(Air.Inst.Index, u32),
/// Auxiliary data. The way this data is interpreted is determined contextually.
extra: []const u32,
/// Trailing is the set of instructions whose lifetimes end at the start of the then branch,
/// followed by the set of instructions whose lifetimes end at the start of the else branch.
pub const CondBr = struct {
then_death_count: u32,
else_death_count: u32,
};
/// Trailing is:
/// * For each case in the same order as in the AIR:
/// - case_death_count: u32
/// - Air.Inst.Index for each `case_death_count`: set of instructions whose lifetimes
/// end at the start of this case.
/// * Air.Inst.Index for each `else_death_count`: set of instructions whose lifetimes
/// end at the start of the else case.
pub const SwitchBr = struct {
else_death_count: u32,
};
/// Trailing is the set of instructions which die in the block. Note that these are not additional
/// deaths (they are all recorded as normal within the block), but backends may use this information
/// as a more efficient way to track which instructions are still alive after a block.
pub const Block = struct {
death_count: u32,
};
/// Liveness analysis runs in several passes. Each pass iterates backwards over instructions in
/// bodies, and recurses into bodies.
const LivenessPass = enum {
/// In this pass, we perform some basic analysis of loops to gain information the main pass
/// needs. In particular, for every `loop`, we track the following information:
/// * Every block which the loop body contains a `br` to.
/// * Every operand referenced within the loop body but created outside the loop.
/// This gives the main analysis pass enough information to determine the full set of
/// instructions which need to be alive when a loop repeats. This data is TEMPORARILY stored in
/// `a.extra`. It is not re-added to `extra` by the main pass, since it is not useful to
/// backends.
loop_analysis,
/// This pass performs the main liveness analysis, setting up tombs and extra data while
/// considering control flow etc.
main_analysis,
};
/// Each analysis pass may wish to pass data through calls. A pointer to a `LivenessPassData(pass)`
/// stored on the stack is passed through calls to `analyzeInst` etc.
fn LivenessPassData(comptime pass: LivenessPass) type {
return switch (pass) {
.loop_analysis => struct {
/// The set of blocks which are exited with a `br` instruction at some point within this
/// body and which we are currently within.
breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .{},
/// The set of operands for which we have seen at least one usage but not their birth.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .{},
fn deinit(self: *@This(), gpa: Allocator) void {
self.breaks.deinit(gpa);
self.live_set.deinit(gpa);
}
},
.main_analysis => struct {
/// Every `block` currently under analysis.
block_scopes: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockScope) = .{},
/// The set of instructions currently alive in the current control
/// flow branch.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .{},
/// The extra data initialized by the `loop_analysis` pass for this pass to consume.
/// Owned by this struct during this pass.
old_extra: std.ArrayListUnmanaged(u32) = .{},
const BlockScope = struct {
/// The set of instructions which are alive upon a `br` to this block.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
};
fn deinit(self: *@This(), gpa: Allocator) void {
var it = self.block_scopes.valueIterator();
while (it.next()) |block| {
block.live_set.deinit(gpa);
}
self.block_scopes.deinit(gpa);
self.live_set.deinit(gpa);
self.old_extra.deinit(gpa);
}
},
};
}
pub fn analyze(gpa: Allocator, air: Air, intern_pool: *const InternPool) Allocator.Error!Liveness {
const tracy = trace(@src());
defer tracy.end();
var a: Analysis = .{
.gpa = gpa,
.air = air,
.tomb_bits = try gpa.alloc(
usize,
(air.instructions.len * bpi + @bitSizeOf(usize) - 1) / @bitSizeOf(usize),
),
.extra = .{},
.special = .{},
.intern_pool = intern_pool,
};
errdefer gpa.free(a.tomb_bits);
errdefer a.special.deinit(gpa);
defer a.extra.deinit(gpa);
@memset(a.tomb_bits, 0);
const main_body = air.getMainBody();
{
var data: LivenessPassData(.loop_analysis) = .{};
defer data.deinit(gpa);
try analyzeBody(&a, .loop_analysis, &data, main_body);
}
{
var data: LivenessPassData(.main_analysis) = .{};
defer data.deinit(gpa);
data.old_extra = a.extra;
a.extra = .{};
try analyzeBody(&a, .main_analysis, &data, main_body);
assert(data.live_set.count() == 0);
}
return .{
.tomb_bits = a.tomb_bits,
.special = a.special,
.extra = try a.extra.toOwnedSlice(gpa),
};
}
pub fn getTombBits(l: Liveness, inst: Air.Inst.Index) Bpi {
const usize_index = (inst * bpi) / @bitSizeOf(usize);
return @as(Bpi, @truncate(l.tomb_bits[usize_index] >>
@as(Log2Int(usize), @intCast((inst % (@bitSizeOf(usize) / bpi)) * bpi))));
}
pub fn isUnused(l: Liveness, inst: Air.Inst.Index) bool {
const usize_index = (inst * bpi) / @bitSizeOf(usize);
const mask = @as(usize, 1) <<
@as(Log2Int(usize), @intCast((inst % (@bitSizeOf(usize) / bpi)) * bpi + (bpi - 1)));
return (l.tomb_bits[usize_index] & mask) != 0;
}
pub fn operandDies(l: Liveness, inst: Air.Inst.Index, operand: OperandInt) bool {
assert(operand < bpi - 1);
const usize_index = (inst * bpi) / @bitSizeOf(usize);
const mask = @as(usize, 1) <<
@as(Log2Int(usize), @intCast((inst % (@bitSizeOf(usize) / bpi)) * bpi + operand));
return (l.tomb_bits[usize_index] & mask) != 0;
}
pub fn clearOperandDeath(l: Liveness, inst: Air.Inst.Index, operand: OperandInt) void {
assert(operand < bpi - 1);
const usize_index = (inst * bpi) / @bitSizeOf(usize);
const mask = @as(usize, 1) <<
@as(Log2Int(usize), @intCast((inst % (@bitSizeOf(usize) / bpi)) * bpi + operand));
l.tomb_bits[usize_index] &= ~mask;
}
const OperandCategory = enum {
/// The operand lives on, but this instruction cannot possibly mutate memory.
none,
/// The operand lives on and this instruction can mutate memory.
write,
/// The operand dies at this instruction.
tomb,
/// The operand lives on, and this instruction is noreturn.
noret,
/// This instruction is too complicated for analysis, no information is available.
complex,
};
/// Given an instruction that we are examining, and an operand that we are looking for,
/// returns a classification.
pub fn categorizeOperand(
l: Liveness,
air: Air,
inst: Air.Inst.Index,
operand: Air.Inst.Index,
ip: *const InternPool,
) OperandCategory {
const air_tags = air.instructions.items(.tag);
const air_datas = air.instructions.items(.data);
const operand_ref = Air.indexToRef(operand);
switch (air_tags[inst]) {
.add,
.add_safe,
.add_wrap,
.add_sat,
.add_optimized,
.sub,
.sub_safe,
.sub_wrap,
.sub_sat,
.sub_optimized,
.mul,
.mul_safe,
.mul_wrap,
.mul_sat,
.mul_optimized,
.div_float,
.div_trunc,
.div_floor,
.div_exact,
.rem,
.mod,
.bit_and,
.bit_or,
.xor,
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
.bool_and,
.bool_or,
.array_elem_val,
.slice_elem_val,
.ptr_elem_val,
.shl,
.shl_exact,
.shl_sat,
.shr,
.shr_exact,
.min,
.max,
.div_float_optimized,
.div_trunc_optimized,
.div_floor_optimized,
.div_exact_optimized,
.rem_optimized,
.mod_optimized,
.neg_optimized,
.cmp_lt_optimized,
.cmp_lte_optimized,
.cmp_eq_optimized,
.cmp_gte_optimized,
.cmp_gt_optimized,
.cmp_neq_optimized,
=> {
const o = air_datas[inst].bin_op;
if (o.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
if (o.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
return .none;
},
.store,
.store_safe,
.atomic_store_unordered,
.atomic_store_monotonic,
.atomic_store_release,
.atomic_store_seq_cst,
.set_union_tag,
.memset,
.memset_safe,
.memcpy,
=> {
const o = air_datas[inst].bin_op;
if (o.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
if (o.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .write);
return .write;
},
.vector_store_elem => {
const o = air_datas[inst].vector_store_elem;
const extra = air.extraData(Air.Bin, o.payload).data;
if (o.vector_ptr == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
if (extra.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
if (extra.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 2, .none);
return .write;
},
.arg,
.alloc,
.inferred_alloc,
.inferred_alloc_comptime,
.ret_ptr,
.trap,
.breakpoint,
.dbg_stmt,
.dbg_inline_begin,
.dbg_inline_end,
.dbg_block_begin,
.dbg_block_end,
.unreach,
.ret_addr,
.frame_addr,
.wasm_memory_size,
.err_return_trace,
.save_err_return_trace_index,
.c_va_start,
.work_item_id,
.work_group_size,
.work_group_id,
=> return .none,
.fence => return .write,
.not,
.bitcast,
.load,
.fpext,
.fptrunc,
.intcast,
.trunc,
.optional_payload,
.optional_payload_ptr,
.wrap_optional,
.unwrap_errunion_payload,
.unwrap_errunion_err,
.unwrap_errunion_payload_ptr,
.unwrap_errunion_err_ptr,
.wrap_errunion_payload,
.wrap_errunion_err,
.slice_ptr,
.slice_len,
.ptr_slice_len_ptr,
.ptr_slice_ptr_ptr,
.struct_field_ptr_index_0,
.struct_field_ptr_index_1,
.struct_field_ptr_index_2,
.struct_field_ptr_index_3,
.array_to_slice,
.int_from_float,
.int_from_float_optimized,
.float_from_int,
.get_union_tag,
.clz,
.ctz,
.popcount,
.byte_swap,
.bit_reverse,
.splat,
.error_set_has_value,
.addrspace_cast,
.c_va_arg,
.c_va_copy,
=> {
const o = air_datas[inst].ty_op;
if (o.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.optional_payload_ptr_set,
.errunion_payload_ptr_set,
=> {
const o = air_datas[inst].ty_op;
if (o.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
return .write;
},
.is_null,
.is_non_null,
.is_null_ptr,
.is_non_null_ptr,
.is_err,
.is_non_err,
.is_err_ptr,
.is_non_err_ptr,
.int_from_ptr,
.int_from_bool,
.is_named_enum_value,
.tag_name,
.error_name,
.sqrt,
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
.fabs,
.floor,
.ceil,
.round,
.trunc_float,
.neg,
.cmp_lt_errors_len,
.c_va_end,
=> {
const o = air_datas[inst].un_op;
if (o == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.ret,
.ret_load,
=> {
const o = air_datas[inst].un_op;
if (o == operand_ref) return matchOperandSmallIndex(l, inst, 0, .noret);
return .noret;
},
.set_err_return_trace => {
const o = air_datas[inst].un_op;
if (o == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
return .write;
},
.add_with_overflow,
.sub_with_overflow,
.mul_with_overflow,
.shl_with_overflow,
.ptr_add,
.ptr_sub,
.ptr_elem_ptr,
.slice_elem_ptr,
.slice,
=> {
const ty_pl = air_datas[inst].ty_pl;
const extra = air.extraData(Air.Bin, ty_pl.payload).data;
if (extra.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
if (extra.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
return .none;
},
.dbg_var_ptr,
.dbg_var_val,
=> {
const o = air_datas[inst].pl_op.operand;
if (o == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.prefetch => {
const prefetch = air_datas[inst].prefetch;
if (prefetch.ptr == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.call, .call_always_tail, .call_never_tail, .call_never_inline => {
const inst_data = air_datas[inst].pl_op;
const callee = inst_data.operand;
const extra = air.extraData(Air.Call, inst_data.payload);
const args = @as([]const Air.Inst.Ref, @ptrCast(air.extra[extra.end..][0..extra.data.args_len]));
if (args.len + 1 <= bpi - 1) {
if (callee == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
for (args, 0..) |arg, i| {
if (arg == operand_ref) return matchOperandSmallIndex(l, inst, @as(OperandInt, @intCast(i + 1)), .write);
}
return .write;
}
var bt = l.iterateBigTomb(inst);
if (bt.feed()) {
if (callee == operand_ref) return .tomb;
} else {
if (callee == operand_ref) return .write;
}
for (args) |arg| {
if (bt.feed()) {
if (arg == operand_ref) return .tomb;
} else {
if (arg == operand_ref) return .write;
}
}
return .write;
},
.select => {
const pl_op = air_datas[inst].pl_op;
const extra = air.extraData(Air.Bin, pl_op.payload).data;
if (pl_op.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
if (extra.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
if (extra.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 2, .none);
return .none;
},
.shuffle => {
const extra = air.extraData(Air.Shuffle, air_datas[inst].ty_pl.payload).data;
if (extra.a == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
if (extra.b == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
return .none;
},
.reduce, .reduce_optimized => {
const reduce = air_datas[inst].reduce;
if (reduce.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.cmp_vector, .cmp_vector_optimized => {
const extra = air.extraData(Air.VectorCmp, air_datas[inst].ty_pl.payload).data;
if (extra.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
if (extra.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
return .none;
},
.aggregate_init => {
const ty_pl = air_datas[inst].ty_pl;
const aggregate_ty = air.getRefType(ty_pl.ty);
const len = @as(usize, @intCast(aggregate_ty.arrayLenIp(ip)));
const elements = @as([]const Air.Inst.Ref, @ptrCast(air.extra[ty_pl.payload..][0..len]));
if (elements.len <= bpi - 1) {
for (elements, 0..) |elem, i| {
if (elem == operand_ref) return matchOperandSmallIndex(l, inst, @as(OperandInt, @intCast(i)), .none);
}
return .none;
}
var bt = l.iterateBigTomb(inst);
for (elements) |elem| {
if (bt.feed()) {
if (elem == operand_ref) return .tomb;
} else {
if (elem == operand_ref) return .write;
}
}
return .write;
},
.union_init => {
const extra = air.extraData(Air.UnionInit, air_datas[inst].ty_pl.payload).data;
if (extra.init == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.struct_field_ptr, .struct_field_val => {
const extra = air.extraData(Air.StructField, air_datas[inst].ty_pl.payload).data;
if (extra.struct_operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.field_parent_ptr => {
const extra = air.extraData(Air.FieldParentPtr, air_datas[inst].ty_pl.payload).data;
if (extra.field_ptr == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.cmpxchg_strong, .cmpxchg_weak => {
const extra = air.extraData(Air.Cmpxchg, air_datas[inst].ty_pl.payload).data;
if (extra.ptr == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
if (extra.expected_value == operand_ref) return matchOperandSmallIndex(l, inst, 1, .write);
if (extra.new_value == operand_ref) return matchOperandSmallIndex(l, inst, 2, .write);
return .write;
},
.mul_add => {
const pl_op = air_datas[inst].pl_op;
const extra = air.extraData(Air.Bin, pl_op.payload).data;
if (extra.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
if (extra.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .none);
if (pl_op.operand == operand_ref) return matchOperandSmallIndex(l, inst, 2, .none);
return .none;
},
.atomic_load => {
const ptr = air_datas[inst].atomic_load.ptr;
if (ptr == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
.atomic_rmw => {
const pl_op = air_datas[inst].pl_op;
const extra = air.extraData(Air.AtomicRmw, pl_op.payload).data;
if (pl_op.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
if (extra.operand == operand_ref) return matchOperandSmallIndex(l, inst, 1, .write);
return .write;
},
.br => {
const br = air_datas[inst].br;
if (br.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .noret);
return .noret;
},
.assembly => {
return .complex;
},
.block => {
const extra = air.extraData(Air.Block, air_datas[inst].ty_pl.payload);
const body = air.extra[extra.end..][0..extra.data.body_len];
if (body.len == 1 and air_tags[body[0]] == .cond_br) {
// Peephole optimization for "panic-like" conditionals, which have
// one empty branch and another which calls a `noreturn` function.
// This allows us to infer that safety checks do not modify memory,
// as far as control flow successors are concerned.
const inst_data = air_datas[body[0]].pl_op;
const cond_extra = air.extraData(Air.CondBr, inst_data.payload);
if (inst_data.operand == operand_ref and operandDies(l, body[0], 0))
return .tomb;
if (cond_extra.data.then_body_len > 2 or cond_extra.data.else_body_len > 2)
return .complex;
const then_body = air.extra[cond_extra.end..][0..cond_extra.data.then_body_len];
const else_body = air.extra[cond_extra.end + cond_extra.data.then_body_len ..][0..cond_extra.data.else_body_len];
if (then_body.len > 1 and air_tags[then_body[1]] != .unreach)
return .complex;
if (else_body.len > 1 and air_tags[else_body[1]] != .unreach)
return .complex;
var operand_live: bool = true;
for (&[_]u32{ then_body[0], else_body[0] }) |cond_inst| {
if (l.categorizeOperand(air, cond_inst, operand, ip) == .tomb)
operand_live = false;
switch (air_tags[cond_inst]) {
.br => { // Breaks immediately back to block
const br = air_datas[cond_inst].br;
if (br.block_inst != inst)
return .complex;
},
.call => {}, // Calls a noreturn function
else => return .complex,
}
}
return if (operand_live) .none else .tomb;
}
return .complex;
},
.@"try" => {
return .complex;
},
.try_ptr => {
return .complex;
},
.loop => {
return .complex;
},
.cond_br => {
return .complex;
},
.switch_br => {
return .complex;
},
.wasm_memory_grow => {
const pl_op = air_datas[inst].pl_op;
if (pl_op.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
return .none;
},
}
}
fn matchOperandSmallIndex(
l: Liveness,
inst: Air.Inst.Index,
operand: OperandInt,
default: OperandCategory,
) OperandCategory {
if (operandDies(l, inst, operand)) {
return .tomb;
} else {
return default;
}
}
/// Higher level API.
pub const CondBrSlices = struct {
then_deaths: []const Air.Inst.Index,
else_deaths: []const Air.Inst.Index,
};
pub fn getCondBr(l: Liveness, inst: Air.Inst.Index) CondBrSlices {
var index: usize = l.special.get(inst) orelse return .{
.then_deaths = &.{},
.else_deaths = &.{},
};
const then_death_count = l.extra[index];
index += 1;
const else_death_count = l.extra[index];
index += 1;
const then_deaths = l.extra[index..][0..then_death_count];
index += then_death_count;
return .{
.then_deaths = then_deaths,
.else_deaths = l.extra[index..][0..else_death_count],
};
}
/// Indexed by case number as they appear in AIR.
/// Else is the last element.
pub const SwitchBrTable = struct {
deaths: []const []const Air.Inst.Index,
};
/// Caller owns the memory.
pub fn getSwitchBr(l: Liveness, gpa: Allocator, inst: Air.Inst.Index, cases_len: u32) Allocator.Error!SwitchBrTable {
var index: usize = l.special.get(inst) orelse return SwitchBrTable{
.deaths = &.{},
};
const else_death_count = l.extra[index];
index += 1;
var deaths = std.ArrayList([]const Air.Inst.Index).init(gpa);
defer deaths.deinit();
try deaths.ensureTotalCapacity(cases_len + 1);
var case_i: u32 = 0;
while (case_i < cases_len - 1) : (case_i += 1) {
const case_death_count: u32 = l.extra[index];
index += 1;
const case_deaths = l.extra[index..][0..case_death_count];
index += case_death_count;
deaths.appendAssumeCapacity(case_deaths);
}
{
// Else
const else_deaths = l.extra[index..][0..else_death_count];
deaths.appendAssumeCapacity(else_deaths);
}
return SwitchBrTable{
.deaths = try deaths.toOwnedSlice(),
};
}
/// Note that this information is technically redundant, but is useful for
/// backends nonetheless: see `Block`.
pub const BlockSlices = struct {
deaths: []const Air.Inst.Index,
};
pub fn getBlock(l: Liveness, inst: Air.Inst.Index) BlockSlices {
const index: usize = l.special.get(inst) orelse return .{
.deaths = &.{},
};
const death_count = l.extra[index];
const deaths = l.extra[index + 1 ..][0..death_count];
return .{
.deaths = deaths,
};
}
pub const LoopSlice = struct {
deaths: []const Air.Inst.Index,
};
pub fn deinit(l: *Liveness, gpa: Allocator) void {
gpa.free(l.tomb_bits);
gpa.free(l.extra);
l.special.deinit(gpa);
l.* = undefined;
}
pub fn iterateBigTomb(l: Liveness, inst: Air.Inst.Index) BigTomb {
return .{
.tomb_bits = l.getTombBits(inst),
.extra_start = l.special.get(inst) orelse 0,
.extra_offset = 0,
.extra = l.extra,
.bit_index = 0,
.reached_end = false,
};
}
/// How many tomb bits per AIR instruction.
pub const bpi = 4;
pub const Bpi = std.meta.Int(.unsigned, bpi);
pub const OperandInt = std.math.Log2Int(Bpi);
/// Useful for decoders of Liveness information.
pub const BigTomb = struct {
tomb_bits: Liveness.Bpi,
bit_index: u32,
extra_start: u32,
extra_offset: u32,
extra: []const u32,
reached_end: bool,
/// Returns whether the next operand dies.
pub fn feed(bt: *BigTomb) bool {
if (bt.reached_end) return false;
const this_bit_index = bt.bit_index;
bt.bit_index += 1;
const small_tombs = bpi - 1;
if (this_bit_index < small_tombs) {
const dies = @as(u1, @truncate(bt.tomb_bits >> @as(Liveness.OperandInt, @intCast(this_bit_index)))) != 0;
return dies;
}
const big_bit_index = this_bit_index - small_tombs;
while (big_bit_index - bt.extra_offset * 31 >= 31) {
if (@as(u1, @truncate(bt.extra[bt.extra_start + bt.extra_offset] >> 31)) != 0) {
bt.reached_end = true;
return false;
}
bt.extra_offset += 1;
}
const dies = @as(u1, @truncate(bt.extra[bt.extra_start + bt.extra_offset] >>
@as(u5, @intCast(big_bit_index - bt.extra_offset * 31)))) != 0;
return dies;
}
};
/// In-progress data; on successful analysis converted into `Liveness`.
const Analysis = struct {
gpa: Allocator,
air: Air,
intern_pool: *const InternPool,
tomb_bits: []usize,
special: std.AutoHashMapUnmanaged(Air.Inst.Index, u32),
extra: std.ArrayListUnmanaged(u32),
fn storeTombBits(a: *Analysis, inst: Air.Inst.Index, tomb_bits: Bpi) void {
const usize_index = (inst * bpi) / @bitSizeOf(usize);
a.tomb_bits[usize_index] |= @as(usize, tomb_bits) <<
@as(Log2Int(usize), @intCast((inst % (@bitSizeOf(usize) / bpi)) * bpi));
}
fn addExtra(a: *Analysis, extra: anytype) Allocator.Error!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try a.extra.ensureUnusedCapacity(a.gpa, fields.len);
return addExtraAssumeCapacity(a, extra);
}
fn addExtraAssumeCapacity(a: *Analysis, extra: anytype) u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result = @as(u32, @intCast(a.extra.items.len));
inline for (fields) |field| {
a.extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
else => @compileError("bad field type"),
});
}
return result;
}
};
fn analyzeBody(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
body: []const Air.Inst.Index,
) Allocator.Error!void {
var i: usize = body.len;
while (i != 0) {
i -= 1;
const inst = body[i];
try analyzeInst(a, pass, data, inst);
}
}
fn analyzeInst(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) Allocator.Error!void {
const ip = a.intern_pool;
const inst_tags = a.air.instructions.items(.tag);
const inst_datas = a.air.instructions.items(.data);
switch (inst_tags[inst]) {
.add,
.add_safe,
.add_optimized,
.add_wrap,
.add_sat,
.sub,
.sub_safe,
.sub_optimized,
.sub_wrap,
.sub_sat,
.mul,
.mul_safe,
.mul_optimized,
.mul_wrap,
.mul_sat,
.div_float,
.div_float_optimized,
.div_trunc,
.div_trunc_optimized,
.div_floor,
.div_floor_optimized,
.div_exact,
.div_exact_optimized,
.rem,
.rem_optimized,
.mod,
.mod_optimized,
.bit_and,
.bit_or,
.xor,
.cmp_lt,
.cmp_lt_optimized,
.cmp_lte,
.cmp_lte_optimized,
.cmp_eq,
.cmp_eq_optimized,
.cmp_gte,
.cmp_gte_optimized,
.cmp_gt,
.cmp_gt_optimized,
.cmp_neq,
.cmp_neq_optimized,
.bool_and,
.bool_or,
.store,
.store_safe,
.array_elem_val,
.slice_elem_val,
.ptr_elem_val,
.shl,
.shl_exact,
.shl_sat,
.shr,
.shr_exact,
.atomic_store_unordered,
.atomic_store_monotonic,
.atomic_store_release,
.atomic_store_seq_cst,
.set_union_tag,
.min,
.max,
.memset,
.memset_safe,
.memcpy,
=> {
const o = inst_datas[inst].bin_op;
return analyzeOperands(a, pass, data, inst, .{ o.lhs, o.rhs, .none });
},
.vector_store_elem => {
const o = inst_datas[inst].vector_store_elem;
const extra = a.air.extraData(Air.Bin, o.payload).data;
return analyzeOperands(a, pass, data, inst, .{ o.vector_ptr, extra.lhs, extra.rhs });
},
.arg,
.alloc,
.ret_ptr,
.breakpoint,
.dbg_stmt,
.dbg_inline_begin,
.dbg_inline_end,
.dbg_block_begin,
.dbg_block_end,
.fence,
.ret_addr,
.frame_addr,
.wasm_memory_size,
.err_return_trace,
.save_err_return_trace_index,
.c_va_start,
.work_item_id,
.work_group_size,
.work_group_id,
=> return analyzeOperands(a, pass, data, inst, .{ .none, .none, .none }),
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.trap,
.unreach,
=> return analyzeFuncEnd(a, pass, data, inst, .{ .none, .none, .none }),
.not,
.bitcast,
.load,
.fpext,
.fptrunc,
.intcast,
.trunc,
.optional_payload,
.optional_payload_ptr,
.optional_payload_ptr_set,
.errunion_payload_ptr_set,
.wrap_optional,
.unwrap_errunion_payload,
.unwrap_errunion_err,
.unwrap_errunion_payload_ptr,
.unwrap_errunion_err_ptr,
.wrap_errunion_payload,
.wrap_errunion_err,
.slice_ptr,
.slice_len,
.ptr_slice_len_ptr,
.ptr_slice_ptr_ptr,
.struct_field_ptr_index_0,
.struct_field_ptr_index_1,
.struct_field_ptr_index_2,
.struct_field_ptr_index_3,
.array_to_slice,
.int_from_float,
.int_from_float_optimized,
.float_from_int,
.get_union_tag,
.clz,
.ctz,
.popcount,
.byte_swap,
.bit_reverse,
.splat,
.error_set_has_value,
.addrspace_cast,
.c_va_arg,
.c_va_copy,
=> {
const o = inst_datas[inst].ty_op;
return analyzeOperands(a, pass, data, inst, .{ o.operand, .none, .none });
},
.is_null,
.is_non_null,
.is_null_ptr,
.is_non_null_ptr,
.is_err,
.is_non_err,
.is_err_ptr,
.is_non_err_ptr,
.int_from_ptr,
.int_from_bool,
.is_named_enum_value,
.tag_name,
.error_name,
.sqrt,
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
.fabs,
.floor,
.ceil,
.round,
.trunc_float,
.neg,
.neg_optimized,
.cmp_lt_errors_len,
.set_err_return_trace,
.c_va_end,
=> {
const operand = inst_datas[inst].un_op;
return analyzeOperands(a, pass, data, inst, .{ operand, .none, .none });
},
.ret,
.ret_load,
=> {
const operand = inst_datas[inst].un_op;
return analyzeFuncEnd(a, pass, data, inst, .{ operand, .none, .none });
},
.add_with_overflow,
.sub_with_overflow,
.mul_with_overflow,
.shl_with_overflow,
.ptr_add,
.ptr_sub,
.ptr_elem_ptr,
.slice_elem_ptr,
.slice,
=> {
const ty_pl = inst_datas[inst].ty_pl;
const extra = a.air.extraData(Air.Bin, ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.lhs, extra.rhs, .none });
},
.dbg_var_ptr,
.dbg_var_val,
=> {
const operand = inst_datas[inst].pl_op.operand;
return analyzeOperands(a, pass, data, inst, .{ operand, .none, .none });
},
.prefetch => {
const prefetch = inst_datas[inst].prefetch;
return analyzeOperands(a, pass, data, inst, .{ prefetch.ptr, .none, .none });
},
.call, .call_always_tail, .call_never_tail, .call_never_inline => {
const inst_data = inst_datas[inst].pl_op;
const callee = inst_data.operand;
const extra = a.air.extraData(Air.Call, inst_data.payload);
const args = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra[extra.end..][0..extra.data.args_len]));
if (args.len + 1 <= bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (bpi - 1);
buf[0] = callee;
@memcpy(buf[1..][0..args.len], args);
return analyzeOperands(a, pass, data, inst, buf);
}
var big = try AnalyzeBigOperands(pass).init(a, data, inst, args.len + 1);
defer big.deinit();
var i: usize = args.len;
while (i > 0) {
i -= 1;
try big.feed(args[i]);
}
try big.feed(callee);
return big.finish();
},
.select => {
const pl_op = inst_datas[inst].pl_op;
const extra = a.air.extraData(Air.Bin, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, extra.lhs, extra.rhs });
},
.shuffle => {
const extra = a.air.extraData(Air.Shuffle, inst_datas[inst].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.a, extra.b, .none });
},
.reduce, .reduce_optimized => {
const reduce = inst_datas[inst].reduce;
return analyzeOperands(a, pass, data, inst, .{ reduce.operand, .none, .none });
},
.cmp_vector, .cmp_vector_optimized => {
const extra = a.air.extraData(Air.VectorCmp, inst_datas[inst].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.lhs, extra.rhs, .none });
},
.aggregate_init => {
const ty_pl = inst_datas[inst].ty_pl;
const aggregate_ty = a.air.getRefType(ty_pl.ty);
const len = @as(usize, @intCast(aggregate_ty.arrayLenIp(ip)));
const elements = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra[ty_pl.payload..][0..len]));
if (elements.len <= bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (bpi - 1);
@memcpy(buf[0..elements.len], elements);
return analyzeOperands(a, pass, data, inst, buf);
}
var big = try AnalyzeBigOperands(pass).init(a, data, inst, elements.len);
defer big.deinit();
var i: usize = elements.len;
while (i > 0) {
i -= 1;
try big.feed(elements[i]);
}
return big.finish();
},
.union_init => {
const extra = a.air.extraData(Air.UnionInit, inst_datas[inst].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.init, .none, .none });
},
.struct_field_ptr, .struct_field_val => {
const extra = a.air.extraData(Air.StructField, inst_datas[inst].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.struct_operand, .none, .none });
},
.field_parent_ptr => {
const extra = a.air.extraData(Air.FieldParentPtr, inst_datas[inst].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.field_ptr, .none, .none });
},
.cmpxchg_strong, .cmpxchg_weak => {
const extra = a.air.extraData(Air.Cmpxchg, inst_datas[inst].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.ptr, extra.expected_value, extra.new_value });
},
.mul_add => {
const pl_op = inst_datas[inst].pl_op;
const extra = a.air.extraData(Air.Bin, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.lhs, extra.rhs, pl_op.operand });
},
.atomic_load => {
const ptr = inst_datas[inst].atomic_load.ptr;
return analyzeOperands(a, pass, data, inst, .{ ptr, .none, .none });
},
.atomic_rmw => {
const pl_op = inst_datas[inst].pl_op;
const extra = a.air.extraData(Air.AtomicRmw, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, extra.operand, .none });
},
.br => return analyzeInstBr(a, pass, data, inst),
.assembly => {
const extra = a.air.extraData(Air.Asm, inst_datas[inst].ty_pl.payload);
var extra_i: usize = extra.end;
const outputs = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra[extra_i..][0..extra.data.outputs_len]));
extra_i += outputs.len;
const inputs = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra[extra_i..][0..extra.data.inputs_len]));
extra_i += inputs.len;
const num_operands = simple: {
var buf = [1]Air.Inst.Ref{.none} ** (bpi - 1);
var buf_index: usize = 0;
for (outputs) |output| {
if (output != .none) {
if (buf_index < buf.len) buf[buf_index] = output;
buf_index += 1;
}
}
if (buf_index + inputs.len > buf.len) {
break :simple buf_index + inputs.len;
}
@memcpy(buf[buf_index..][0..inputs.len], inputs);
return analyzeOperands(a, pass, data, inst, buf);
};
var big = try AnalyzeBigOperands(pass).init(a, data, inst, num_operands);
defer big.deinit();
var i: usize = inputs.len;
while (i > 0) {
i -= 1;
try big.feed(inputs[i]);
}
i = outputs.len;
while (i > 0) {
i -= 1;
if (outputs[i] != .none) {
try big.feed(outputs[i]);
}
}
return big.finish();
},
.block => return analyzeInstBlock(a, pass, data, inst),
.loop => return analyzeInstLoop(a, pass, data, inst),
.@"try" => return analyzeInstCondBr(a, pass, data, inst, .@"try"),
.try_ptr => return analyzeInstCondBr(a, pass, data, inst, .try_ptr),
.cond_br => return analyzeInstCondBr(a, pass, data, inst, .cond_br),
.switch_br => return analyzeInstSwitchBr(a, pass, data, inst),
.wasm_memory_grow => {
const pl_op = inst_datas[inst].pl_op;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, .none, .none });
},
}
}
/// Every instruction should hit this (after handling any nested bodies), in every pass. In the
/// initial pass, it is responsible for marking deaths of the (first three) operands and noticing
/// immediate deaths.
fn analyzeOperands(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
operands: [bpi - 1]Air.Inst.Ref,
) Allocator.Error!void {
const gpa = a.gpa;
const ip = a.intern_pool;
switch (pass) {
.loop_analysis => {
_ = data.live_set.remove(inst);
for (operands) |op_ref| {
const operand = Air.refToIndexAllowNone(op_ref) orelse continue;
_ = try data.live_set.put(gpa, operand, {});
}
},
.main_analysis => {
const usize_index = (inst * bpi) / @bitSizeOf(usize);
// This logic must synchronize with `will_die_immediately` in `AnalyzeBigOperands.init`.
const immediate_death = if (data.live_set.remove(inst)) blk: {
log.debug("[{}] %{}: removed from live set", .{ pass, inst });
break :blk false;
} else blk: {
log.debug("[{}] %{}: immediate death", .{ pass, inst });
break :blk true;
};
var tomb_bits: Bpi = @as(Bpi, @intFromBool(immediate_death)) << (bpi - 1);
// If our result is unused and the instruction doesn't need to be lowered, backends will
// skip the lowering of this instruction, so we don't want to record uses of operands.
// That way, we can mark as many instructions as possible unused.
if (!immediate_death or a.air.mustLower(inst, ip)) {
// Note that it's important we iterate over the operands backwards, so that if a dying
// operand is used multiple times we mark its last use as its death.
var i = operands.len;
while (i > 0) {
i -= 1;
const op_ref = operands[i];
const operand = Air.refToIndexAllowNone(op_ref) orelse continue;
const mask = @as(Bpi, 1) << @as(OperandInt, @intCast(i));
if ((try data.live_set.fetchPut(gpa, operand, {})) == null) {
log.debug("[{}] %{}: added %{} to live set (operand dies here)", .{ pass, inst, operand });
tomb_bits |= mask;
}
}
}
a.tomb_bits[usize_index] |= @as(usize, tomb_bits) <<
@as(Log2Int(usize), @intCast((inst % (@bitSizeOf(usize) / bpi)) * bpi));
},
}
}
/// Like `analyzeOperands`, but for an instruction which returns from a function, so should
/// effectively kill every remaining live value other than its operands.
fn analyzeFuncEnd(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
operands: [bpi - 1]Air.Inst.Ref,
) Allocator.Error!void {
switch (pass) {
.loop_analysis => {
// No operands need to be alive if we're returning from the function, so we don't need
// to touch `breaks` here even though this is sort of like a break to the top level.
},
.main_analysis => {
data.live_set.clearRetainingCapacity();
},
}
return analyzeOperands(a, pass, data, inst, operands);
}
fn analyzeInstBr(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const br = inst_datas[inst].br;
const gpa = a.gpa;
switch (pass) {
.loop_analysis => {
try data.breaks.put(gpa, br.block_inst, {});
},
.main_analysis => {
const block_scope = data.block_scopes.get(br.block_inst).?; // we should always be breaking from an enclosing block
const new_live_set = try block_scope.live_set.clone(gpa);
data.live_set.deinit(gpa);
data.live_set = new_live_set;
},
}
return analyzeOperands(a, pass, data, inst, .{ br.operand, .none, .none });
}
fn analyzeInstBlock(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const ty_pl = inst_datas[inst].ty_pl;
const extra = a.air.extraData(Air.Block, ty_pl.payload);
const body = a.air.extra[extra.end..][0..extra.data.body_len];
const gpa = a.gpa;
// We actually want to do `analyzeOperands` *first*, since our result logically doesn't
// exist until the block body ends (and we're iterating backwards)
try analyzeOperands(a, pass, data, inst, .{ .none, .none, .none });
switch (pass) {
.loop_analysis => {
try analyzeBody(a, pass, data, body);
_ = data.breaks.remove(inst);
},
.main_analysis => {
log.debug("[{}] %{}: block live set is {}", .{ pass, inst, fmtInstSet(&data.live_set) });
try data.block_scopes.put(gpa, inst, .{
.live_set = try data.live_set.clone(gpa),
});
defer {
log.debug("[{}] %{}: popped block scope", .{ pass, inst });
var scope = data.block_scopes.fetchRemove(inst).?.value;
scope.live_set.deinit(gpa);
}
log.debug("[{}] %{}: pushed new block scope", .{ pass, inst });
try analyzeBody(a, pass, data, body);
// If the block is noreturn, block deaths not only aren't useful, they're impossible to
// find: there could be more stuff alive after the block than before it!
if (!a.intern_pool.isNoReturn(a.air.getRefType(ty_pl.ty).ip_index)) {
// The block kills the difference in the live sets
const block_scope = data.block_scopes.get(inst).?;
const num_deaths = data.live_set.count() - block_scope.live_set.count();
try a.extra.ensureUnusedCapacity(gpa, num_deaths + std.meta.fields(Block).len);
const extra_index = a.addExtraAssumeCapacity(Block{
.death_count = num_deaths,
});
var measured_num: u32 = 0;
var it = data.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
if (!block_scope.live_set.contains(alive)) {
// Dies in block
a.extra.appendAssumeCapacity(alive);
measured_num += 1;
}
}
assert(measured_num == num_deaths); // post-live-set should be a subset of pre-live-set
try a.special.put(gpa, inst, extra_index);
log.debug("[{}] %{}: block deaths are {}", .{
pass,
inst,
fmtInstList(a.extra.items[extra_index + 1 ..][0..num_deaths]),
});
}
},
}
}
fn analyzeInstLoop(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const extra = a.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
const body = a.air.extra[extra.end..][0..extra.data.body_len];
const gpa = a.gpa;
try analyzeOperands(a, pass, data, inst, .{ .none, .none, .none });
switch (pass) {
.loop_analysis => {
var old_breaks = data.breaks.move();
defer old_breaks.deinit(gpa);
var old_live = data.live_set.move();
defer old_live.deinit(gpa);
try analyzeBody(a, pass, data, body);
const num_breaks = data.breaks.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_breaks);
const extra_index = @as(u32, @intCast(a.extra.items.len));
a.extra.appendAssumeCapacity(num_breaks);
var it = data.breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
a.extra.appendAssumeCapacity(block_inst);
}
log.debug("[{}] %{}: includes breaks to {}", .{ pass, inst, fmtInstSet(&data.breaks) });
// Now we put the live operands from the loop body in too
const num_live = data.live_set.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_live);
a.extra.appendAssumeCapacity(num_live);
it = data.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
a.extra.appendAssumeCapacity(alive);
}
log.debug("[{}] %{}: maintain liveness of {}", .{ pass, inst, fmtInstSet(&data.live_set) });
try a.special.put(gpa, inst, extra_index);
// Add back operands which were previously alive
it = old_live.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
// And the same for breaks
it = old_breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
try data.breaks.put(gpa, block_inst, {});
}
},
.main_analysis => {
const extra_idx = a.special.fetchRemove(inst).?.value; // remove because this data does not exist after analysis
const num_breaks = data.old_extra.items[extra_idx];
const breaks = data.old_extra.items[extra_idx + 1 ..][0..num_breaks];
const num_loop_live = data.old_extra.items[extra_idx + num_breaks + 1];
const loop_live = data.old_extra.items[extra_idx + num_breaks + 2 ..][0..num_loop_live];
// This is necessarily not in the same control flow branch, because loops are noreturn
data.live_set.clearRetainingCapacity();
try data.live_set.ensureUnusedCapacity(gpa, @as(u32, @intCast(loop_live.len)));
for (loop_live) |alive| {
data.live_set.putAssumeCapacity(alive, {});
}
log.debug("[{}] %{}: block live set is {}", .{ pass, inst, fmtInstSet(&data.live_set) });
for (breaks) |block_inst| {
// We might break to this block, so include every operand that the block needs alive
const block_scope = data.block_scopes.get(block_inst).?;
var it = block_scope.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
}
try analyzeBody(a, pass, data, body);
},
}
}
/// Despite its name, this function is used for analysis of not only `cond_br` instructions, but
/// also `try` and `try_ptr`, which are highly related. The `inst_type` parameter indicates which
/// type of instruction `inst` points to.
fn analyzeInstCondBr(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
comptime inst_type: enum { cond_br, @"try", try_ptr },
) !void {
const inst_datas = a.air.instructions.items(.data);
const gpa = a.gpa;
const extra = switch (inst_type) {
.cond_br => a.air.extraData(Air.CondBr, inst_datas[inst].pl_op.payload),
.@"try" => a.air.extraData(Air.Try, inst_datas[inst].pl_op.payload),
.try_ptr => a.air.extraData(Air.TryPtr, inst_datas[inst].ty_pl.payload),
};
const condition = switch (inst_type) {
.cond_br, .@"try" => inst_datas[inst].pl_op.operand,
.try_ptr => extra.data.ptr,
};
const then_body = switch (inst_type) {
.cond_br => a.air.extra[extra.end..][0..extra.data.then_body_len],
else => {}, // we won't use this
};
const else_body = switch (inst_type) {
.cond_br => a.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len],
.@"try", .try_ptr => a.air.extra[extra.end..][0..extra.data.body_len],
};
switch (pass) {
.loop_analysis => {
switch (inst_type) {
.cond_br => try analyzeBody(a, pass, data, then_body),
.@"try", .try_ptr => {},
}
try analyzeBody(a, pass, data, else_body);
},
.main_analysis => {
switch (inst_type) {
.cond_br => try analyzeBody(a, pass, data, then_body),
.@"try", .try_ptr => {}, // The "then body" is just the remainder of this block
}
var then_live = data.live_set.move();
defer then_live.deinit(gpa);
try analyzeBody(a, pass, data, else_body);
var else_live = data.live_set.move();
defer else_live.deinit(gpa);
// Operands which are alive in one branch but not the other need to die at the start of
// the peer branch.
var then_mirrored_deaths: std.ArrayListUnmanaged(Air.Inst.Index) = .{};
defer then_mirrored_deaths.deinit(gpa);
var else_mirrored_deaths: std.ArrayListUnmanaged(Air.Inst.Index) = .{};
defer else_mirrored_deaths.deinit(gpa);
// Note: this invalidates `else_live`, but expands `then_live` to be their union
{
var it = then_live.keyIterator();
while (it.next()) |key| {
const death = key.*;
if (else_live.remove(death)) continue; // removing makes the loop below faster
// If this is a `try`, the "then body" (rest of the branch) might have
// referenced our result. We want to avoid killing this value in the else branch
// if that's the case, since it only exists in the (fake) then branch.
switch (inst_type) {
.cond_br => {},
.@"try", .try_ptr => if (death == inst) continue,
}
try else_mirrored_deaths.append(gpa, death);
}
// Since we removed common stuff above, `else_live` is now only operands
// which are *only* alive in the else branch
it = else_live.keyIterator();
while (it.next()) |key| {
const death = key.*;
try then_mirrored_deaths.append(gpa, death);
// Make `then_live` contain the full live set (i.e. union of both)
try then_live.put(gpa, death, {});
}
}
log.debug("[{}] %{}: 'then' branch mirrored deaths are {}", .{ pass, inst, fmtInstList(then_mirrored_deaths.items) });
log.debug("[{}] %{}: 'else' branch mirrored deaths are {}", .{ pass, inst, fmtInstList(else_mirrored_deaths.items) });
data.live_set.deinit(gpa);
data.live_set = then_live.move(); // Really the union of both live sets
log.debug("[{}] %{}: new live set is {}", .{ pass, inst, fmtInstSet(&data.live_set) });
// Write the mirrored deaths to `extra`
const then_death_count = @as(u32, @intCast(then_mirrored_deaths.items.len));
const else_death_count = @as(u32, @intCast(else_mirrored_deaths.items.len));
try a.extra.ensureUnusedCapacity(gpa, std.meta.fields(CondBr).len + then_death_count + else_death_count);
const extra_index = a.addExtraAssumeCapacity(CondBr{
.then_death_count = then_death_count,
.else_death_count = else_death_count,
});
a.extra.appendSliceAssumeCapacity(then_mirrored_deaths.items);
a.extra.appendSliceAssumeCapacity(else_mirrored_deaths.items);
try a.special.put(gpa, inst, extra_index);
},
}
try analyzeOperands(a, pass, data, inst, .{ condition, .none, .none });
}
fn analyzeInstSwitchBr(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const pl_op = inst_datas[inst].pl_op;
const condition = pl_op.operand;
const switch_br = a.air.extraData(Air.SwitchBr, pl_op.payload);
const gpa = a.gpa;
const ncases = switch_br.data.cases_len;
switch (pass) {
.loop_analysis => {
var air_extra_index: usize = switch_br.end;
for (0..ncases) |_| {
const case = a.air.extraData(Air.SwitchBr.Case, air_extra_index);
const case_body = a.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
air_extra_index = case.end + case.data.items_len + case_body.len;
try analyzeBody(a, pass, data, case_body);
}
{ // else
const else_body = a.air.extra[air_extra_index..][0..switch_br.data.else_body_len];
try analyzeBody(a, pass, data, else_body);
}
},
.main_analysis => {
// This is, all in all, just a messier version of the `cond_br` logic. If you're trying
// to understand it, I encourage looking at `analyzeInstCondBr` first.
const DeathSet = std.AutoHashMapUnmanaged(Air.Inst.Index, void);
const DeathList = std.ArrayListUnmanaged(Air.Inst.Index);
var case_live_sets = try gpa.alloc(std.AutoHashMapUnmanaged(Air.Inst.Index, void), ncases + 1); // +1 for else
defer gpa.free(case_live_sets);
@memset(case_live_sets, .{});
defer for (case_live_sets) |*live_set| live_set.deinit(gpa);
var air_extra_index: usize = switch_br.end;
for (case_live_sets[0..ncases]) |*live_set| {
const case = a.air.extraData(Air.SwitchBr.Case, air_extra_index);
const case_body = a.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
air_extra_index = case.end + case.data.items_len + case_body.len;
try analyzeBody(a, pass, data, case_body);
live_set.* = data.live_set.move();
}
{ // else
const else_body = a.air.extra[air_extra_index..][0..switch_br.data.else_body_len];
try analyzeBody(a, pass, data, else_body);
case_live_sets[ncases] = data.live_set.move();
}
const mirrored_deaths = try gpa.alloc(DeathList, ncases + 1);
defer gpa.free(mirrored_deaths);
@memset(mirrored_deaths, .{});
defer for (mirrored_deaths) |*md| md.deinit(gpa);
{
var all_alive: DeathSet = .{};
defer all_alive.deinit(gpa);
for (case_live_sets) |*live_set| {
try all_alive.ensureUnusedCapacity(gpa, live_set.count());
var it = live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
all_alive.putAssumeCapacity(alive, {});
}
}
for (mirrored_deaths, case_live_sets) |*mirrored, *live_set| {
var it = all_alive.keyIterator();
while (it.next()) |key| {
const alive = key.*;
if (!live_set.contains(alive)) {
// Should die at the start of this branch
try mirrored.append(gpa, alive);
}
}
}
for (mirrored_deaths, 0..) |mirrored, i| {
log.debug("[{}] %{}: case {} mirrored deaths are {}", .{ pass, inst, i, fmtInstList(mirrored.items) });
}
data.live_set.deinit(gpa);
data.live_set = all_alive.move();
log.debug("[{}] %{}: new live set is {}", .{ pass, inst, fmtInstSet(&data.live_set) });
}
const else_death_count = @as(u32, @intCast(mirrored_deaths[ncases].items.len));
const extra_index = try a.addExtra(SwitchBr{
.else_death_count = else_death_count,
});
for (mirrored_deaths[0..ncases]) |mirrored| {
const num = @as(u32, @intCast(mirrored.items.len));
try a.extra.ensureUnusedCapacity(gpa, num + 1);
a.extra.appendAssumeCapacity(num);
a.extra.appendSliceAssumeCapacity(mirrored.items);
}
try a.extra.ensureUnusedCapacity(gpa, else_death_count);
a.extra.appendSliceAssumeCapacity(mirrored_deaths[ncases].items);
try a.special.put(gpa, inst, extra_index);
},
}
try analyzeOperands(a, pass, data, inst, .{ condition, .none, .none });
}
fn AnalyzeBigOperands(comptime pass: LivenessPass) type {
return struct {
a: *Analysis,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
operands_remaining: u32,
small: [bpi - 1]Air.Inst.Ref = .{.none} ** (bpi - 1),
extra_tombs: []u32,
// Only used in `LivenessPass.main_analysis`
will_die_immediately: bool,
const Self = @This();
fn init(
a: *Analysis,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
total_operands: usize,
) !Self {
const extra_operands = @as(u32, @intCast(total_operands)) -| (bpi - 1);
const max_extra_tombs = (extra_operands + 30) / 31;
const extra_tombs: []u32 = switch (pass) {
.loop_analysis => &.{},
.main_analysis => try a.gpa.alloc(u32, max_extra_tombs),
};
errdefer a.gpa.free(extra_tombs);
@memset(extra_tombs, 0);
const will_die_immediately: bool = switch (pass) {
.loop_analysis => false, // track everything, since we don't have full liveness information yet
.main_analysis => !data.live_set.contains(inst),
};
return .{
.a = a,
.data = data,
.inst = inst,
.operands_remaining = @as(u32, @intCast(total_operands)),
.extra_tombs = extra_tombs,
.will_die_immediately = will_die_immediately,
};
}
/// Must be called with operands in reverse order.
fn feed(big: *Self, op_ref: Air.Inst.Ref) !void {
const ip = big.a.intern_pool;
// Note that after this, `operands_remaining` becomes the index of the current operand
big.operands_remaining -= 1;
if (big.operands_remaining < bpi - 1) {
big.small[big.operands_remaining] = op_ref;
return;
}
const operand = Air.refToIndex(op_ref) orelse return;
// If our result is unused and the instruction doesn't need to be lowered, backends will
// skip the lowering of this instruction, so we don't want to record uses of operands.
// That way, we can mark as many instructions as possible unused.
if (big.will_die_immediately and !big.a.air.mustLower(big.inst, ip)) return;
const extra_byte = (big.operands_remaining - (bpi - 1)) / 31;
const extra_bit = @as(u5, @intCast(big.operands_remaining - (bpi - 1) - extra_byte * 31));
const gpa = big.a.gpa;
switch (pass) {
.loop_analysis => {
_ = try big.data.live_set.put(gpa, operand, {});
},
.main_analysis => {
if ((try big.data.live_set.fetchPut(gpa, operand, {})) == null) {
log.debug("[{}] %{}: added %{} to live set (operand dies here)", .{ pass, big.inst, operand });
big.extra_tombs[extra_byte] |= @as(u32, 1) << extra_bit;
}
},
}
}
fn finish(big: *Self) !void {
const gpa = big.a.gpa;
std.debug.assert(big.operands_remaining == 0);
switch (pass) {
.loop_analysis => {},
.main_analysis => {
// Note that the MSB is set on the final tomb to indicate the terminal element. This
// allows for an optimisation where we only add as many extra tombs as are needed to
// represent the dying operands. Each pass modifies operand bits and so needs to write
// back, so let's figure out how many extra tombs we really need. Note that we always
// keep at least one.
var num: usize = big.extra_tombs.len;
while (num > 1) {
if (@as(u31, @truncate(big.extra_tombs[num - 1])) != 0) {
// Some operand dies here
break;
}
num -= 1;
}
// Mark final tomb
big.extra_tombs[num - 1] |= @as(u32, 1) << 31;
const extra_tombs = big.extra_tombs[0..num];
const extra_index = @as(u32, @intCast(big.a.extra.items.len));
try big.a.extra.appendSlice(gpa, extra_tombs);
try big.a.special.put(gpa, big.inst, extra_index);
},
}
try analyzeOperands(big.a, pass, big.data, big.inst, big.small);
}
fn deinit(big: *Self) void {
big.a.gpa.free(big.extra_tombs);
}
};
}
fn fmtInstSet(set: *const std.AutoHashMapUnmanaged(Air.Inst.Index, void)) FmtInstSet {
return .{ .set = set };
}
const FmtInstSet = struct {
set: *const std.AutoHashMapUnmanaged(Air.Inst.Index, void),
pub fn format(val: FmtInstSet, comptime _: []const u8, _: std.fmt.FormatOptions, w: anytype) !void {
if (val.set.count() == 0) {
try w.writeAll("[no instructions]");
return;
}
var it = val.set.keyIterator();
try w.print("%{}", .{it.next().?.*});
while (it.next()) |key| {
try w.print(" %{}", .{key.*});
}
}
};
fn fmtInstList(list: []const Air.Inst.Index) FmtInstList {
return .{ .list = list };
}
const FmtInstList = struct {
list: []const Air.Inst.Index,
pub fn format(val: FmtInstList, comptime _: []const u8, _: std.fmt.FormatOptions, w: anytype) !void {
if (val.list.len == 0) {
try w.writeAll("[no instructions]");
return;
}
try w.print("%{}", .{val.list[0]});
for (val.list[1..]) |inst| {
try w.print(" %{}", .{inst});
}
}
};