zig/src/Compilation.zig
Andrew Kelley f54471b54c compiler: miscellaneous branch progress
implement builtin.zig file population for all modules rather than
assuming there is only one global builtin.zig module.

move some fields from link.File to Compilation
move some fields from Module to Compilation

compute debug_format in global Compilation config resolution

wire up C compilation to the concept of owner modules

make whole cache mode call link.File.createEmpty() instead of
link.File.open()
2024-01-01 17:51:19 -07:00

6339 lines
248 KiB
Zig

const Compilation = @This();
const std = @import("std");
const builtin = @import("builtin");
const mem = std.mem;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const log = std.log.scoped(.compilation);
const Target = std.Target;
const ThreadPool = std.Thread.Pool;
const WaitGroup = std.Thread.WaitGroup;
const ErrorBundle = std.zig.ErrorBundle;
const Value = @import("value.zig").Value;
const Type = @import("type.zig").Type;
const target_util = @import("target.zig");
const Package = @import("Package.zig");
const link = @import("link.zig");
const tracy = @import("tracy.zig");
const trace = tracy.trace;
const build_options = @import("build_options");
const LibCInstallation = @import("libc_installation.zig").LibCInstallation;
const glibc = @import("glibc.zig");
const musl = @import("musl.zig");
const mingw = @import("mingw.zig");
const libunwind = @import("libunwind.zig");
const libcxx = @import("libcxx.zig");
const wasi_libc = @import("wasi_libc.zig");
const fatal = @import("main.zig").fatal;
const clangMain = @import("main.zig").clangMain;
const Module = @import("Module.zig");
const InternPool = @import("InternPool.zig");
const Cache = std.Build.Cache;
const c_codegen = @import("codegen/c.zig");
const libtsan = @import("libtsan.zig");
const Zir = @import("Zir.zig");
const Autodoc = @import("Autodoc.zig");
const Color = @import("main.zig").Color;
const resinator = @import("resinator.zig");
const Builtin = @import("Builtin.zig");
pub const Config = @import("Compilation/Config.zig");
/// General-purpose allocator. Used for both temporary and long-term storage.
gpa: Allocator,
/// Arena-allocated memory, mostly used during initialization. However, it can be used
/// for other things requiring the same lifetime as the `Compilation`.
arena: std.heap.ArenaAllocator,
/// Not every Compilation compiles .zig code! For example you could do `zig build-exe foo.o`.
/// TODO: rename to zcu: ?*Zcu
module: ?*Module,
/// Contains different state depending on whether the Compilation uses
/// incremental or whole cache mode.
cache_use: CacheUse,
/// All compilations have a root module because this is where some important
/// settings are stored, such as target and optimization mode. This module
/// might not have any .zig code associated with it, however.
root_mod: *Package.Module,
/// User-specified settings that have all the defaults resolved into concrete values.
config: Config,
/// The main output file.
/// In whole cache mode, this is null except for during the body of the update
/// function. In incremental cache mode, this is a long-lived object.
/// In both cases, this is `null` when `-fno-emit-bin` is used.
bin_file: ?*link.File,
/// The root path for the dynamic linker and system libraries (as well as frameworks on Darwin)
sysroot: ?[]const u8,
/// This is `null` when not building a Windows DLL, or when `-fno-emit-implib` is used.
implib_emit: ?Emit,
/// This is non-null when `-femit-docs` is provided.
docs_emit: ?Emit,
root_name: [:0]const u8,
include_compiler_rt: bool,
objects: []Compilation.LinkObject,
/// Needed only for passing -F args to clang.
framework_dirs: []const []const u8,
/// These are *always* dynamically linked. Static libraries will be
/// provided as positional arguments.
system_libs: std.StringArrayHashMapUnmanaged(SystemLib),
version: ?std.SemanticVersion,
libc_installation: ?*const LibCInstallation,
skip_linker_dependencies: bool,
no_builtin: bool,
function_sections: bool,
data_sections: bool,
c_object_table: std.AutoArrayHashMapUnmanaged(*CObject, void) = .{},
win32_resource_table: if (build_options.only_core_functionality) void else std.AutoArrayHashMapUnmanaged(*Win32Resource, void) =
if (build_options.only_core_functionality) {} else .{},
link_error_flags: link.File.ErrorFlags = .{},
lld_errors: std.ArrayListUnmanaged(LldError) = .{},
work_queue: std.fifo.LinearFifo(Job, .Dynamic),
anon_work_queue: std.fifo.LinearFifo(Job, .Dynamic),
/// These jobs are to invoke the Clang compiler to create an object file, which
/// gets linked with the Compilation.
c_object_work_queue: std.fifo.LinearFifo(*CObject, .Dynamic),
/// These jobs are to invoke the RC compiler to create a compiled resource file (.res), which
/// gets linked with the Compilation.
win32_resource_work_queue: if (build_options.only_core_functionality) void else std.fifo.LinearFifo(*Win32Resource, .Dynamic),
/// These jobs are to tokenize, parse, and astgen files, which may be outdated
/// since the last compilation, as well as scan for `@import` and queue up
/// additional jobs corresponding to those new files.
astgen_work_queue: std.fifo.LinearFifo(*Module.File, .Dynamic),
/// These jobs are to inspect the file system stat() and if the embedded file has changed
/// on disk, mark the corresponding Decl outdated and queue up an `analyze_decl`
/// task for it.
embed_file_work_queue: std.fifo.LinearFifo(*Module.EmbedFile, .Dynamic),
/// The ErrorMsg memory is owned by the `CObject`, using Compilation's general purpose allocator.
/// This data is accessed by multiple threads and is protected by `mutex`.
failed_c_objects: std.AutoArrayHashMapUnmanaged(*CObject, *CObject.Diag.Bundle) = .{},
/// The ErrorBundle memory is owned by the `Win32Resource`, using Compilation's general purpose allocator.
/// This data is accessed by multiple threads and is protected by `mutex`.
failed_win32_resources: if (build_options.only_core_functionality) void else std.AutoArrayHashMapUnmanaged(*Win32Resource, ErrorBundle) =
if (build_options.only_core_functionality) {} else .{},
/// Miscellaneous things that can fail.
misc_failures: std.AutoArrayHashMapUnmanaged(MiscTask, MiscError) = .{},
/// When this is `true` it means invoking clang as a sub-process is expected to inherit
/// stdin, stdout, stderr, and if it returns non success, to forward the exit code.
/// Otherwise we attempt to parse the error messages and expose them via the Compilation API.
/// This is `true` for `zig cc`, `zig c++`, and `zig translate-c`.
clang_passthrough_mode: bool,
clang_preprocessor_mode: ClangPreprocessorMode,
/// Whether to print clang argvs to stdout.
verbose_cc: bool,
verbose_air: bool,
verbose_intern_pool: bool,
verbose_generic_instances: bool,
verbose_llvm_ir: ?[]const u8,
verbose_llvm_bc: ?[]const u8,
verbose_cimport: bool,
verbose_llvm_cpu_features: bool,
verbose_link: bool,
disable_c_depfile: bool,
time_report: bool,
stack_report: bool,
debug_compiler_runtime_libs: bool,
debug_compile_errors: bool,
job_queued_compiler_rt_lib: bool = false,
job_queued_compiler_rt_obj: bool = false,
job_queued_update_builtin_zig: bool,
alloc_failure_occurred: bool = false,
formatted_panics: bool = false,
last_update_was_cache_hit: bool = false,
c_source_files: []const CSourceFile,
rc_source_files: []const RcSourceFile,
cache_parent: *Cache,
/// Path to own executable for invoking `zig clang`.
self_exe_path: ?[]const u8,
zig_lib_directory: Directory,
local_cache_directory: Directory,
global_cache_directory: Directory,
libc_include_dir_list: []const []const u8,
libc_framework_dir_list: []const []const u8,
rc_include_dir_list: []const []const u8,
thread_pool: *ThreadPool,
/// Populated when we build the libc++ static library. A Job to build this is placed in the queue
/// and resolved before calling linker.flush().
libcxx_static_lib: ?CRTFile = null,
/// Populated when we build the libc++abi static library. A Job to build this is placed in the queue
/// and resolved before calling linker.flush().
libcxxabi_static_lib: ?CRTFile = null,
/// Populated when we build the libunwind static library. A Job to build this is placed in the queue
/// and resolved before calling linker.flush().
libunwind_static_lib: ?CRTFile = null,
/// Populated when we build the TSAN static library. A Job to build this is placed in the queue
/// and resolved before calling linker.flush().
tsan_static_lib: ?CRTFile = null,
/// Populated when we build the libc static library. A Job to build this is placed in the queue
/// and resolved before calling linker.flush().
libc_static_lib: ?CRTFile = null,
/// Populated when we build the libcompiler_rt static library. A Job to build this is indicated
/// by setting `job_queued_compiler_rt_lib` and resolved before calling linker.flush().
compiler_rt_lib: ?CRTFile = null,
/// Populated when we build the compiler_rt_obj object. A Job to build this is indicated
/// by setting `job_queued_compiler_rt_obj` and resolved before calling linker.flush().
compiler_rt_obj: ?CRTFile = null,
glibc_so_files: ?glibc.BuiltSharedObjects = null,
/// For example `Scrt1.o` and `libc_nonshared.a`. These are populated after building libc from source,
/// The set of needed CRT (C runtime) files differs depending on the target and compilation settings.
/// The key is the basename, and the value is the absolute path to the completed build artifact.
crt_files: std.StringHashMapUnmanaged(CRTFile) = .{},
/// This is for stage1 and should be deleted upon completion of self-hosting.
/// Don't use this for anything other than stage1 compatibility.
color: Color = .auto,
/// How many lines of reference trace should be included per compile error.
/// Null means only show snippet on first error.
reference_trace: ?u32 = null,
libcxx_abi_version: libcxx.AbiVersion = libcxx.AbiVersion.default,
/// This mutex guards all `Compilation` mutable state.
mutex: std.Thread.Mutex = .{},
test_filter: ?[]const u8,
test_name_prefix: ?[]const u8,
emit_asm: ?EmitLoc,
emit_llvm_ir: ?EmitLoc,
emit_llvm_bc: ?EmitLoc,
work_queue_wait_group: WaitGroup = .{},
astgen_wait_group: WaitGroup = .{},
llvm_opt_bisect_limit: c_int,
pub const Emit = struct {
/// Where the output will go.
directory: Directory,
/// Path to the output file, relative to `directory`.
sub_path: []const u8,
/// Returns the full path to `basename` if it were in the same directory as the
/// `Emit` sub_path.
pub fn basenamePath(emit: Emit, arena: Allocator, basename: [:0]const u8) ![:0]const u8 {
const full_path = if (emit.directory.path) |p|
try std.fs.path.join(arena, &[_][]const u8{ p, emit.sub_path })
else
emit.sub_path;
if (std.fs.path.dirname(full_path)) |dirname| {
return try std.fs.path.joinZ(arena, &.{ dirname, basename });
} else {
return basename;
}
}
};
pub const default_stack_protector_buffer_size = target_util.default_stack_protector_buffer_size;
pub const SemaError = Module.SemaError;
pub const CRTFile = struct {
lock: Cache.Lock,
full_object_path: []const u8,
pub fn deinit(self: *CRTFile, gpa: Allocator) void {
self.lock.release();
gpa.free(self.full_object_path);
self.* = undefined;
}
};
/// Supported languages for "zig clang -x <lang>".
/// Loosely based on llvm-project/clang/include/clang/Driver/Types.def
pub const LangToExt = std.ComptimeStringMap(FileExt, .{
.{ "c", .c },
.{ "c-header", .h },
.{ "c++", .cpp },
.{ "c++-header", .h },
.{ "objective-c", .m },
.{ "objective-c-header", .h },
.{ "objective-c++", .mm },
.{ "objective-c++-header", .h },
.{ "assembler", .assembly },
.{ "assembler-with-cpp", .assembly_with_cpp },
.{ "cuda", .cu },
});
/// For passing to a C compiler.
pub const CSourceFile = struct {
/// Many C compiler flags are determined by settings contained in the owning Module.
owner: *Package.Module,
src_path: []const u8,
extra_flags: []const []const u8 = &.{},
/// Same as extra_flags except they are not added to the Cache hash.
cache_exempt_flags: []const []const u8 = &.{},
/// This field is non-null if and only if the language was explicitly set
/// with "-x lang".
ext: ?FileExt = null,
};
/// For passing to resinator.
pub const RcSourceFile = struct {
owner: *Package.Module,
src_path: []const u8,
extra_flags: []const []const u8 = &.{},
};
pub const RcIncludes = enum {
/// Use MSVC if available, fall back to MinGW.
any,
/// Use MSVC include paths (MSVC install + Windows SDK, must be present on the system).
msvc,
/// Use MinGW include paths (distributed with Zig).
gnu,
/// Do not use any autodetected include paths.
none,
};
const Job = union(enum) {
/// Write the constant value for a Decl to the output file.
codegen_decl: InternPool.DeclIndex,
/// Write the machine code for a function to the output file.
/// This will either be a non-generic `func_decl` or a `func_instance`.
codegen_func: InternPool.Index,
/// Render the .h file snippet for the Decl.
emit_h_decl: InternPool.DeclIndex,
/// The Decl needs to be analyzed and possibly export itself.
/// It may have already be analyzed, or it may have been determined
/// to be outdated; in this case perform semantic analysis again.
analyze_decl: InternPool.DeclIndex,
/// The source file containing the Decl has been updated, and so the
/// Decl may need its line number information updated in the debug info.
update_line_number: InternPool.DeclIndex,
/// The main source file for the module needs to be analyzed.
analyze_mod: *Package.Module,
/// one of the glibc static objects
glibc_crt_file: glibc.CRTFile,
/// all of the glibc shared objects
glibc_shared_objects,
/// one of the musl static objects
musl_crt_file: musl.CRTFile,
/// one of the mingw-w64 static objects
mingw_crt_file: mingw.CRTFile,
/// libunwind.a, usually needed when linking libc
libunwind: void,
libcxx: void,
libcxxabi: void,
libtsan: void,
/// needed when not linking libc and using LLVM for code generation because it generates
/// calls to, for example, memcpy and memset.
zig_libc: void,
/// one of WASI libc static objects
wasi_libc_crt_file: wasi_libc.CRTFile,
/// The value is the index into `system_libs`.
windows_import_lib: usize,
};
pub const CObject = struct {
/// Relative to cwd. Owned by arena.
src: CSourceFile,
status: union(enum) {
new,
success: struct {
/// The outputted result. Owned by gpa.
object_path: []u8,
/// This is a file system lock on the cache hash manifest representing this
/// object. It prevents other invocations of the Zig compiler from interfering
/// with this object until released.
lock: Cache.Lock,
},
/// There will be a corresponding ErrorMsg in Compilation.failed_c_objects.
failure,
/// A transient failure happened when trying to compile the C Object; it may
/// succeed if we try again. There may be a corresponding ErrorMsg in
/// Compilation.failed_c_objects. If there is not, the failure is out of memory.
failure_retryable,
},
pub const Diag = struct {
level: u32 = 0,
category: u32 = 0,
msg: []const u8 = &.{},
src_loc: SrcLoc = .{},
src_ranges: []const SrcRange = &.{},
sub_diags: []const Diag = &.{},
pub const SrcLoc = struct {
file: u32 = 0,
line: u32 = 0,
column: u32 = 0,
offset: u32 = 0,
};
pub const SrcRange = struct {
start: SrcLoc = .{},
end: SrcLoc = .{},
};
pub fn deinit(diag: *Diag, gpa: Allocator) void {
gpa.free(diag.msg);
gpa.free(diag.src_ranges);
for (diag.sub_diags) |sub_diag| {
var sub_diag_mut = sub_diag;
sub_diag_mut.deinit(gpa);
}
gpa.free(diag.sub_diags);
diag.* = undefined;
}
pub fn count(diag: Diag) u32 {
var total: u32 = 1;
for (diag.sub_diags) |sub_diag| total += sub_diag.count();
return total;
}
pub fn addToErrorBundle(diag: Diag, eb: *ErrorBundle.Wip, bundle: Bundle, note: *u32) !void {
const err_msg = try eb.addErrorMessage(try diag.toErrorMessage(eb, bundle, 0));
eb.extra.items[note.*] = @intFromEnum(err_msg);
note.* += 1;
for (diag.sub_diags) |sub_diag| try sub_diag.addToErrorBundle(eb, bundle, note);
}
pub fn toErrorMessage(
diag: Diag,
eb: *ErrorBundle.Wip,
bundle: Bundle,
notes_len: u32,
) !ErrorBundle.ErrorMessage {
var start = diag.src_loc.offset;
var end = diag.src_loc.offset;
for (diag.src_ranges) |src_range| {
if (src_range.start.file == diag.src_loc.file and
src_range.start.line == diag.src_loc.line)
{
start = @min(src_range.start.offset, start);
}
if (src_range.end.file == diag.src_loc.file and
src_range.end.line == diag.src_loc.line)
{
end = @max(src_range.end.offset, end);
}
}
const file_name = bundle.file_names.get(diag.src_loc.file) orelse "";
const source_line = source_line: {
if (diag.src_loc.offset == 0 or diag.src_loc.column == 0) break :source_line 0;
const file = std.fs.cwd().openFile(file_name, .{}) catch break :source_line 0;
defer file.close();
file.seekTo(diag.src_loc.offset + 1 - diag.src_loc.column) catch break :source_line 0;
var line = std.ArrayList(u8).init(eb.gpa);
defer line.deinit();
file.reader().readUntilDelimiterArrayList(&line, '\n', 1 << 10) catch break :source_line 0;
break :source_line try eb.addString(line.items);
};
return .{
.msg = try eb.addString(diag.msg),
.src_loc = try eb.addSourceLocation(.{
.src_path = try eb.addString(file_name),
.line = diag.src_loc.line -| 1,
.column = diag.src_loc.column -| 1,
.span_start = start,
.span_main = diag.src_loc.offset,
.span_end = end + 1,
.source_line = source_line,
}),
.notes_len = notes_len,
};
}
pub const Bundle = struct {
file_names: std.AutoArrayHashMapUnmanaged(u32, []const u8) = .{},
category_names: std.AutoArrayHashMapUnmanaged(u32, []const u8) = .{},
diags: []Diag = &.{},
pub fn destroy(bundle: *Bundle, gpa: Allocator) void {
for (bundle.file_names.values()) |file_name| gpa.free(file_name);
for (bundle.category_names.values()) |category_name| gpa.free(category_name);
for (bundle.diags) |*diag| diag.deinit(gpa);
gpa.free(bundle.diags);
gpa.destroy(bundle);
}
pub fn parse(gpa: Allocator, path: []const u8) !*Bundle {
const BitcodeReader = @import("codegen/llvm/BitcodeReader.zig");
const BlockId = enum(u32) {
Meta = 8,
Diag,
_,
};
const RecordId = enum(u32) {
Version = 1,
DiagInfo,
SrcRange,
DiagFlag,
CatName,
FileName,
FixIt,
_,
};
const WipDiag = struct {
level: u32 = 0,
category: u32 = 0,
msg: []const u8 = &.{},
src_loc: SrcLoc = .{},
src_ranges: std.ArrayListUnmanaged(SrcRange) = .{},
sub_diags: std.ArrayListUnmanaged(Diag) = .{},
fn deinit(wip_diag: *@This(), allocator: Allocator) void {
allocator.free(wip_diag.msg);
wip_diag.src_ranges.deinit(allocator);
for (wip_diag.sub_diags.items) |*sub_diag| sub_diag.deinit(allocator);
wip_diag.sub_diags.deinit(allocator);
wip_diag.* = undefined;
}
};
const file = try std.fs.cwd().openFile(path, .{});
defer file.close();
var br = std.io.bufferedReader(file.reader());
const reader = br.reader();
var bc = BitcodeReader.init(gpa, .{ .reader = reader.any() });
defer bc.deinit();
var file_names: std.AutoArrayHashMapUnmanaged(u32, []const u8) = .{};
errdefer {
for (file_names.values()) |file_name| gpa.free(file_name);
file_names.deinit(gpa);
}
var category_names: std.AutoArrayHashMapUnmanaged(u32, []const u8) = .{};
errdefer {
for (category_names.values()) |category_name| gpa.free(category_name);
category_names.deinit(gpa);
}
var stack: std.ArrayListUnmanaged(WipDiag) = .{};
defer {
for (stack.items) |*wip_diag| wip_diag.deinit(gpa);
stack.deinit(gpa);
}
try stack.append(gpa, .{});
try bc.checkMagic("DIAG");
while (try bc.next()) |item| switch (item) {
.start_block => |block| switch (@as(BlockId, @enumFromInt(block.id))) {
.Meta => if (stack.items.len > 0) try bc.skipBlock(block),
.Diag => try stack.append(gpa, .{}),
_ => try bc.skipBlock(block),
},
.record => |record| switch (@as(RecordId, @enumFromInt(record.id))) {
.Version => if (record.operands[0] != 2) return error.InvalidVersion,
.DiagInfo => {
const top = &stack.items[stack.items.len - 1];
top.level = @intCast(record.operands[0]);
top.src_loc = .{
.file = @intCast(record.operands[1]),
.line = @intCast(record.operands[2]),
.column = @intCast(record.operands[3]),
.offset = @intCast(record.operands[4]),
};
top.category = @intCast(record.operands[5]);
top.msg = try gpa.dupe(u8, record.blob);
},
.SrcRange => try stack.items[stack.items.len - 1].src_ranges.append(gpa, .{
.start = .{
.file = @intCast(record.operands[0]),
.line = @intCast(record.operands[1]),
.column = @intCast(record.operands[2]),
.offset = @intCast(record.operands[3]),
},
.end = .{
.file = @intCast(record.operands[4]),
.line = @intCast(record.operands[5]),
.column = @intCast(record.operands[6]),
.offset = @intCast(record.operands[7]),
},
}),
.DiagFlag => {},
.CatName => {
try category_names.ensureUnusedCapacity(gpa, 1);
category_names.putAssumeCapacity(
@intCast(record.operands[0]),
try gpa.dupe(u8, record.blob),
);
},
.FileName => {
try file_names.ensureUnusedCapacity(gpa, 1);
file_names.putAssumeCapacity(
@intCast(record.operands[0]),
try gpa.dupe(u8, record.blob),
);
},
.FixIt => {},
_ => {},
},
.end_block => |block| switch (@as(BlockId, @enumFromInt(block.id))) {
.Meta => {},
.Diag => {
var wip_diag = stack.pop();
errdefer wip_diag.deinit(gpa);
const src_ranges = try wip_diag.src_ranges.toOwnedSlice(gpa);
errdefer gpa.free(src_ranges);
const sub_diags = try wip_diag.sub_diags.toOwnedSlice(gpa);
errdefer {
for (sub_diags) |*sub_diag| sub_diag.deinit(gpa);
gpa.free(sub_diags);
}
try stack.items[stack.items.len - 1].sub_diags.append(gpa, .{
.level = wip_diag.level,
.category = wip_diag.category,
.msg = wip_diag.msg,
.src_loc = wip_diag.src_loc,
.src_ranges = src_ranges,
.sub_diags = sub_diags,
});
},
_ => {},
},
};
const bundle = try gpa.create(Bundle);
assert(stack.items.len == 1);
bundle.* = .{
.file_names = file_names,
.category_names = category_names,
.diags = try stack.items[0].sub_diags.toOwnedSlice(gpa),
};
return bundle;
}
pub fn addToErrorBundle(bundle: Bundle, eb: *ErrorBundle.Wip) !void {
for (bundle.diags) |diag| {
const notes_len = diag.count() - 1;
try eb.addRootErrorMessage(try diag.toErrorMessage(eb, bundle, notes_len));
if (notes_len > 0) {
var note = try eb.reserveNotes(notes_len);
for (diag.sub_diags) |sub_diag|
try sub_diag.addToErrorBundle(eb, bundle, &note);
}
}
}
};
};
/// Returns if there was failure.
pub fn clearStatus(self: *CObject, gpa: Allocator) bool {
switch (self.status) {
.new => return false,
.failure, .failure_retryable => {
self.status = .new;
return true;
},
.success => |*success| {
gpa.free(success.object_path);
success.lock.release();
self.status = .new;
return false;
},
}
}
pub fn destroy(self: *CObject, gpa: Allocator) void {
_ = self.clearStatus(gpa);
gpa.destroy(self);
}
};
pub const Win32Resource = struct {
/// Relative to cwd. Owned by arena.
src: union(enum) {
rc: RcSourceFile,
manifest: []const u8,
},
status: union(enum) {
new,
success: struct {
/// The outputted result. Owned by gpa.
res_path: []u8,
/// This is a file system lock on the cache hash manifest representing this
/// object. It prevents other invocations of the Zig compiler from interfering
/// with this object until released.
lock: Cache.Lock,
},
/// There will be a corresponding ErrorMsg in Compilation.failed_win32_resources.
failure,
/// A transient failure happened when trying to compile the resource file; it may
/// succeed if we try again. There may be a corresponding ErrorMsg in
/// Compilation.failed_win32_resources. If there is not, the failure is out of memory.
failure_retryable,
},
/// Returns true if there was failure.
pub fn clearStatus(self: *Win32Resource, gpa: Allocator) bool {
switch (self.status) {
.new => return false,
.failure, .failure_retryable => {
self.status = .new;
return true;
},
.success => |*success| {
gpa.free(success.res_path);
success.lock.release();
self.status = .new;
return false;
},
}
}
pub fn destroy(self: *Win32Resource, gpa: Allocator) void {
_ = self.clearStatus(gpa);
gpa.destroy(self);
}
};
pub const MiscTask = enum {
write_builtin_zig,
glibc_crt_file,
glibc_shared_objects,
musl_crt_file,
mingw_crt_file,
windows_import_lib,
libunwind,
libcxx,
libcxxabi,
libtsan,
wasi_libc_crt_file,
compiler_rt,
zig_libc,
analyze_mod,
@"musl crti.o",
@"musl crtn.o",
@"musl crt1.o",
@"musl rcrt1.o",
@"musl Scrt1.o",
@"musl libc.a",
@"musl libc.so",
@"wasi crt1-reactor.o",
@"wasi crt1-command.o",
@"wasi libc.a",
@"libwasi-emulated-process-clocks.a",
@"libwasi-emulated-getpid.a",
@"libwasi-emulated-mman.a",
@"libwasi-emulated-signal.a",
@"glibc crti.o",
@"glibc crtn.o",
@"glibc Scrt1.o",
@"glibc libc_nonshared.a",
@"glibc shared object",
@"mingw-w64 crt2.o",
@"mingw-w64 dllcrt2.o",
@"mingw-w64 mingw32.lib",
@"mingw-w64 msvcrt-os.lib",
@"mingw-w64 mingwex.lib",
@"mingw-w64 uuid.lib",
};
pub const MiscError = struct {
/// Allocated with gpa.
msg: []u8,
children: ?ErrorBundle = null,
pub fn deinit(misc_err: *MiscError, gpa: Allocator) void {
gpa.free(misc_err.msg);
if (misc_err.children) |*children| {
children.deinit(gpa);
}
misc_err.* = undefined;
}
};
pub const LldError = struct {
/// Allocated with gpa.
msg: []const u8,
context_lines: []const []const u8 = &.{},
pub fn deinit(self: *LldError, gpa: Allocator) void {
for (self.context_lines) |line| {
gpa.free(line);
}
gpa.free(self.context_lines);
gpa.free(self.msg);
}
};
pub const Directory = Cache.Directory;
pub const EmitLoc = struct {
/// If this is `null` it means the file will be output to the cache directory.
/// When provided, both the open file handle and the path name must outlive the `Compilation`.
directory: ?Compilation.Directory,
/// This may not have sub-directories in it.
basename: []const u8,
};
pub const cache_helpers = struct {
pub fn addResolvedTarget(
hh: *Cache.HashHelper,
resolved_target: Package.Module.ResolvedTarget,
) void {
const target = resolved_target.result;
hh.add(target.cpu.arch);
hh.addBytes(target.cpu.model.name);
hh.add(target.cpu.features.ints);
hh.add(target.os.tag);
hh.add(target.os.getVersionRange());
hh.add(target.abi);
hh.add(target.ofmt);
hh.add(resolved_target.is_native_os);
hh.add(resolved_target.is_native_abi);
}
pub fn addEmitLoc(hh: *Cache.HashHelper, emit_loc: EmitLoc) void {
hh.addBytes(emit_loc.basename);
}
pub fn addOptionalEmitLoc(hh: *Cache.HashHelper, optional_emit_loc: ?EmitLoc) void {
hh.add(optional_emit_loc != null);
addEmitLoc(hh, optional_emit_loc orelse return);
}
pub fn addOptionalDebugFormat(hh: *Cache.HashHelper, x: ?Config.DebugFormat) void {
hh.add(x != null);
addDebugFormat(hh, x orelse return);
}
pub fn addDebugFormat(hh: *Cache.HashHelper, x: Config.DebugFormat) void {
const tag: @typeInfo(Config.DebugFormat).Union.tag_type.? = x;
hh.add(tag);
switch (x) {
.strip, .code_view => {},
.dwarf => |f| hh.add(f),
}
}
pub fn hashCSource(self: *Cache.Manifest, c_source: CSourceFile) !void {
_ = try self.addFile(c_source.src_path, null);
// Hash the extra flags, with special care to call addFile for file parameters.
// TODO this logic can likely be improved by utilizing clang_options_data.zig.
const file_args = [_][]const u8{"-include"};
var arg_i: usize = 0;
while (arg_i < c_source.extra_flags.len) : (arg_i += 1) {
const arg = c_source.extra_flags[arg_i];
self.hash.addBytes(arg);
for (file_args) |file_arg| {
if (mem.eql(u8, file_arg, arg) and arg_i + 1 < c_source.extra_flags.len) {
arg_i += 1;
_ = try self.addFile(c_source.extra_flags[arg_i], null);
}
}
}
}
};
pub const ClangPreprocessorMode = enum {
no,
/// This means we are doing `zig cc -E -o <path>`.
yes,
/// This means we are doing `zig cc -E`.
stdout,
};
pub const Framework = link.File.MachO.Framework;
pub const SystemLib = link.SystemLib;
pub const CacheMode = enum { incremental, whole };
const CacheUse = union(CacheMode) {
incremental: *Incremental,
whole: *Whole,
const Whole = struct {
/// This is a pointer to a local variable inside `update()`.
cache_manifest: ?*Cache.Manifest = null,
cache_manifest_mutex: std.Thread.Mutex = .{},
/// null means -fno-emit-bin.
/// This is mutable memory allocated into the Compilation-lifetime arena (`arena`)
/// of exactly the correct size for "o/[digest]/[basename]".
/// The basename is of the outputted binary file in case we don't know the directory yet.
bin_sub_path: ?[]u8,
/// Same as `bin_sub_path` but for implibs.
implib_sub_path: ?[]u8,
docs_sub_path: ?[]u8,
lf_open_opts: link.File.OpenOptions,
tmp_artifact_directory: ?Cache.Directory,
};
const Incremental = struct {
/// Where build artifacts and incremental compilation metadata serialization go.
artifact_directory: Compilation.Directory,
};
};
pub const LinkObject = struct {
path: []const u8,
must_link: bool = false,
// When the library is passed via a positional argument, it will be
// added as a full path. If it's `-l<lib>`, then just the basename.
//
// Consistent with `withLOption` variable name in lld ELF driver.
loption: bool = false,
};
pub const InitOptions = struct {
zig_lib_directory: Directory,
local_cache_directory: Directory,
global_cache_directory: Directory,
thread_pool: *ThreadPool,
self_exe_path: ?[]const u8 = null,
/// Options that have been resolved by calling `resolveDefaults`.
config: Compilation.Config,
root_mod: *Package.Module,
/// Normally, `main_mod` and `root_mod` are the same. The exception is `zig
/// test`, in which `root_mod` is the test runner, and `main_mod` is the
/// user's source file which has the tests.
main_mod: ?*Package.Module,
/// This is provided so that the API user has a chance to tweak the
/// per-module settings of the standard library.
std_mod: *Package.Module,
root_name: []const u8,
sysroot: ?[]const u8 = null,
/// `null` means to not emit a binary file.
emit_bin: ?EmitLoc,
/// `null` means to not emit a C header file.
emit_h: ?EmitLoc = null,
/// `null` means to not emit assembly.
emit_asm: ?EmitLoc = null,
/// `null` means to not emit LLVM IR.
emit_llvm_ir: ?EmitLoc = null,
/// `null` means to not emit LLVM module bitcode.
emit_llvm_bc: ?EmitLoc = null,
/// `null` means to not emit docs.
emit_docs: ?EmitLoc = null,
/// `null` means to not emit an import lib.
emit_implib: ?EmitLoc = null,
dll_export_fns: ?bool = false,
/// Normally when using LLD to link, Zig uses a file named "lld.id" in the
/// same directory as the output binary which contains the hash of the link
/// operation, allowing Zig to skip linking when the hash would be unchanged.
/// In the case that the output binary is being emitted into a directory which
/// is externally modified - essentially anything other than zig-cache - then
/// this flag would be set to disable this machinery to avoid false positives.
disable_lld_caching: bool = false,
cache_mode: CacheMode = .incremental,
lib_dirs: []const []const u8 = &[0][]const u8{},
rpath_list: []const []const u8 = &[0][]const u8{},
symbol_wrap_set: std.StringArrayHashMapUnmanaged(void) = .{},
c_source_files: []const CSourceFile = &.{},
rc_source_files: []const RcSourceFile = &.{},
manifest_file: ?[]const u8 = null,
rc_includes: RcIncludes = .any,
link_objects: []LinkObject = &[0]LinkObject{},
framework_dirs: []const []const u8 = &[0][]const u8{},
frameworks: []const Framework = &.{},
system_lib_names: []const []const u8 = &.{},
system_lib_infos: []const SystemLib = &.{},
/// These correspond to the WASI libc emulated subcomponents including:
/// * process clocks
/// * getpid
/// * mman
/// * signal
wasi_emulated_libs: []const wasi_libc.CRTFile = &.{},
/// This means that if the output mode is an executable it will be a
/// Position Independent Executable. If the output mode is not an
/// executable this field is ignored.
want_compiler_rt: ?bool = null,
want_lto: ?bool = null,
formatted_panics: ?bool = null,
rdynamic: bool = false,
function_sections: bool = false,
data_sections: bool = false,
no_builtin: bool = false,
time_report: bool = false,
stack_report: bool = false,
link_eh_frame_hdr: bool = false,
link_emit_relocs: bool = false,
linker_script: ?[]const u8 = null,
version_script: ?[]const u8 = null,
soname: ?[]const u8 = null,
linker_gc_sections: ?bool = null,
linker_allow_shlib_undefined: ?bool = null,
linker_bind_global_refs_locally: ?bool = null,
linker_import_symbols: bool = false,
linker_import_table: bool = false,
linker_export_table: bool = false,
linker_initial_memory: ?u64 = null,
linker_max_memory: ?u64 = null,
linker_global_base: ?u64 = null,
linker_export_symbol_names: []const []const u8 = &.{},
linker_print_gc_sections: bool = false,
linker_print_icf_sections: bool = false,
linker_print_map: bool = false,
llvm_opt_bisect_limit: i32 = -1,
each_lib_rpath: ?bool = null,
build_id: ?std.zig.BuildId = null,
disable_c_depfile: bool = false,
linker_z_nodelete: bool = false,
linker_z_notext: bool = false,
linker_z_defs: bool = false,
linker_z_origin: bool = false,
linker_z_now: bool = true,
linker_z_relro: bool = true,
linker_z_nocopyreloc: bool = false,
linker_z_common_page_size: ?u64 = null,
linker_z_max_page_size: ?u64 = null,
linker_tsaware: bool = false,
linker_nxcompat: bool = false,
linker_dynamicbase: bool = true,
linker_compress_debug_sections: ?link.File.Elf.CompressDebugSections = null,
linker_module_definition_file: ?[]const u8 = null,
linker_sort_section: ?link.File.Elf.SortSection = null,
major_subsystem_version: ?u32 = null,
minor_subsystem_version: ?u32 = null,
clang_passthrough_mode: bool = false,
verbose_cc: bool = false,
verbose_link: bool = false,
verbose_air: bool = false,
verbose_intern_pool: bool = false,
verbose_generic_instances: bool = false,
verbose_llvm_ir: ?[]const u8 = null,
verbose_llvm_bc: ?[]const u8 = null,
verbose_cimport: bool = false,
verbose_llvm_cpu_features: bool = false,
debug_compiler_runtime_libs: bool = false,
debug_compile_errors: bool = false,
/// Normally when you create a `Compilation`, Zig will automatically build
/// and link in required dependencies, such as compiler-rt and libc. When
/// building such dependencies themselves, this flag must be set to avoid
/// infinite recursion.
skip_linker_dependencies: bool = false,
hash_style: link.File.Elf.HashStyle = .both,
entry: ?[]const u8 = null,
force_undefined_symbols: std.StringArrayHashMapUnmanaged(void) = .{},
stack_size: ?u64 = null,
image_base: ?u64 = null,
version: ?std.SemanticVersion = null,
compatibility_version: ?std.SemanticVersion = null,
libc_installation: ?*const LibCInstallation = null,
clang_preprocessor_mode: ClangPreprocessorMode = .no,
/// This is for stage1 and should be deleted upon completion of self-hosting.
color: Color = .auto,
reference_trace: ?u32 = null,
test_filter: ?[]const u8 = null,
test_name_prefix: ?[]const u8 = null,
test_runner_path: ?[]const u8 = null,
subsystem: ?std.Target.SubSystem = null,
/// (Zig compiler development) Enable dumping linker's state as JSON.
enable_link_snapshots: bool = false,
/// (Darwin) Install name of the dylib
install_name: ?[]const u8 = null,
/// (Darwin) Path to entitlements file
entitlements: ?[]const u8 = null,
/// (Darwin) size of the __PAGEZERO segment
pagezero_size: ?u64 = null,
/// (Darwin) set minimum space for future expansion of the load commands
headerpad_size: ?u32 = null,
/// (Darwin) set enough space as if all paths were MATPATHLEN
headerpad_max_install_names: bool = false,
/// (Darwin) remove dylibs that are unreachable by the entry point or exported symbols
dead_strip_dylibs: bool = false,
libcxx_abi_version: libcxx.AbiVersion = libcxx.AbiVersion.default,
/// (Windows) PDB source path prefix to instruct the linker how to resolve relative
/// paths when consolidating CodeView streams into a single PDB file.
pdb_source_path: ?[]const u8 = null,
/// (Windows) PDB output path
pdb_out_path: ?[]const u8 = null,
error_limit: ?Compilation.Module.ErrorInt = null,
};
fn addModuleTableToCacheHash(
gpa: Allocator,
arena: Allocator,
hash: *Cache.HashHelper,
root_mod: *Package.Module,
hash_type: union(enum) { path_bytes, files: *Cache.Manifest },
) (error{OutOfMemory} || std.os.GetCwdError)!void {
var seen_table: std.AutoArrayHashMapUnmanaged(*Package.Module, void) = .{};
try seen_table.put(gpa, root_mod, {});
const SortByName = struct {
names: []const []const u8,
pub fn lessThan(ctx: @This(), lhs_index: usize, rhs_index: usize) bool {
const lhs_key = ctx.names[lhs_index];
const rhs_key = ctx.names[rhs_index];
return mem.lessThan(u8, lhs_key, rhs_key);
}
};
var i: usize = 0;
while (i < seen_table.count()) : (i += 1) {
const mod = seen_table.keys()[i];
cache_helpers.addResolvedTarget(hash, mod.resolved_target);
hash.add(mod.optimize_mode);
hash.add(mod.code_model);
hash.add(mod.single_threaded);
hash.add(mod.error_tracing);
hash.add(mod.valgrind);
hash.add(mod.pic);
hash.add(mod.strip);
hash.add(mod.omit_frame_pointer);
hash.add(mod.stack_check);
hash.add(mod.red_zone);
hash.add(mod.sanitize_c);
hash.add(mod.sanitize_thread);
switch (hash_type) {
.path_bytes => {
hash.addBytes(mod.root_src_path);
hash.addOptionalBytes(mod.root.root_dir.path);
hash.addBytes(mod.root.sub_path);
},
.files => |man| {
const pkg_zig_file = try mod.root.joinString(arena, mod.root_src_path);
_ = try man.addFile(pkg_zig_file, null);
},
}
mod.deps.sortUnstable(SortByName{ .names = mod.deps.keys() });
hash.addListOfBytes(mod.deps.keys());
const deps = mod.deps.values();
try seen_table.ensureUnusedCapacity(gpa, deps.len);
for (deps) |dep| seen_table.putAssumeCapacity(dep, {});
}
}
pub fn create(gpa: Allocator, options: InitOptions) !*Compilation {
const output_mode = options.config.output_mode;
const is_dyn_lib = switch (output_mode) {
.Obj, .Exe => false,
.Lib => options.config.link_mode == .Dynamic,
};
const is_exe_or_dyn_lib = switch (output_mode) {
.Obj => false,
.Lib => is_dyn_lib,
.Exe => true,
};
if (options.linker_export_table and options.linker_import_table) {
return error.ExportTableAndImportTableConflict;
}
const have_zcu = options.root_mod.root_src_path.len != 0;
const comp: *Compilation = comp: {
// For allocations that have the same lifetime as Compilation. This
// arena is used only during this initialization and then is freed in
// deinit().
var arena_allocator = std.heap.ArenaAllocator.init(gpa);
errdefer arena_allocator.deinit();
const arena = arena_allocator.allocator();
// We put the `Compilation` itself in the arena. Freeing the arena will free the module.
// It's initialized later after we prepare the initialization options.
const comp = try arena.create(Compilation);
const root_name = try arena.dupeZ(u8, options.root_name);
const use_llvm = options.config.use_llvm;
// TODO: once we support incremental compilation for the LLVM backend via
// saving the LLVM module into a bitcode file and restoring it, along with
// compiler state, the second clause here can be removed so that incremental
// cache mode is used for LLVM backend too. We need some fuzz testing before
// that can be enabled.
const cache_mode = if ((use_llvm or !have_zcu) and !options.disable_lld_caching)
CacheMode.whole
else
options.cache_mode;
const any_unwind_tables = options.config.any_unwind_tables;
const link_eh_frame_hdr = options.link_eh_frame_hdr or any_unwind_tables;
const build_id = options.build_id orelse .none;
const link_libc = options.config.link_libc;
const dll_export_fns = options.dll_export_fns orelse (is_dyn_lib or options.rdynamic);
const libc_dirs = try detectLibCIncludeDirs(
arena,
options.zig_lib_directory.path.?,
options.root_mod.resolved_target.result,
options.root_mod.resolved_target.is_native_abi,
link_libc,
options.libc_installation,
);
// The include directories used when preprocessing .rc files are separate from the
// target. Which include directories are used is determined by `options.rc_includes`.
//
// Note: It should be okay that the include directories used when compiling .rc
// files differ from the include directories used when compiling the main
// binary, since the .res format is not dependent on anything ABI-related. The
// only relevant differences would be things like `#define` constants being
// different in the MinGW headers vs the MSVC headers, but any such
// differences would likely be a MinGW bug.
const rc_dirs = b: {
// Set the includes to .none here when there are no rc files to compile
var includes = if (options.rc_source_files.len > 0) options.rc_includes else .none;
const target = options.root_mod.resolved_target.result;
if (!options.root_mod.resolved_target.is_native_os or target.os.tag != .windows) {
switch (includes) {
// MSVC can't be found when the host isn't Windows, so short-circuit.
.msvc => return error.WindowsSdkNotFound,
// Skip straight to gnu since we won't be able to detect
// MSVC on non-Windows hosts.
.any => includes = .gnu,
.none, .gnu => {},
}
}
while (true) switch (includes) {
.any, .msvc => break :b detectLibCIncludeDirs(
arena,
options.zig_lib_directory.path.?,
.{
.cpu = target.cpu,
.os = target.os,
.abi = .msvc,
.ofmt = target.ofmt,
},
options.root_mod.resolved_target.is_native_abi,
// The .rc preprocessor will need to know the libc include dirs even if we
// are not linking libc, so force 'link_libc' to true
true,
options.libc_installation,
) catch |err| {
if (includes == .any) {
// fall back to mingw
includes = .gnu;
continue;
}
return err;
},
.gnu => break :b try detectLibCFromBuilding(arena, options.zig_lib_directory.path.?, .{
.cpu = target.cpu,
.os = target.os,
.abi = .gnu,
.ofmt = target.ofmt,
}),
.none => break :b LibCDirs{
.libc_include_dir_list = &[0][]u8{},
.libc_installation = null,
.libc_framework_dir_list = &.{},
.sysroot = null,
.darwin_sdk_layout = null,
},
};
};
const sysroot = options.sysroot orelse libc_dirs.sysroot;
const include_compiler_rt = options.want_compiler_rt orelse
(!comp.skip_linker_dependencies and is_exe_or_dyn_lib);
if (include_compiler_rt and output_mode == .Obj) {
// For objects, this mechanism relies on essentially `_ = @import("compiler-rt");`
// injected into the object.
const compiler_rt_mod = try Package.Module.create(arena, .{
.global_cache_directory = options.global_cache_directory,
.paths = .{
.root = .{
.root_dir = options.zig_lib_directory,
},
.root_src_path = "compiler_rt.zig",
},
.fully_qualified_name = "compiler_rt",
.cc_argv = &.{},
.inherited = .{},
.global = options.config,
.parent = options.root_mod,
.builtin_mod = options.root_mod.getBuiltinDependency(),
});
try options.root_mod.deps.putNoClobber(arena, "compiler_rt", compiler_rt_mod);
}
if (options.verbose_llvm_cpu_features) {
if (options.root_mod.resolved_target.llvm_cpu_features) |cf| print: {
const target = options.root_mod.resolved_target.result;
std.debug.getStderrMutex().lock();
defer std.debug.getStderrMutex().unlock();
const stderr = std.io.getStdErr().writer();
nosuspend {
stderr.print("compilation: {s}\n", .{options.root_name}) catch break :print;
stderr.print(" target: {s}\n", .{try target.zigTriple(arena)}) catch break :print;
stderr.print(" cpu: {s}\n", .{target.cpu.model.name}) catch break :print;
stderr.print(" features: {s}\n", .{cf}) catch {};
}
}
}
// TODO: https://github.com/ziglang/zig/issues/17969
const formatted_panics = options.formatted_panics orelse (options.root_mod.optimize_mode == .Debug);
const error_limit = options.error_limit orelse (std.math.maxInt(u16) - 1);
const each_lib_rpath = options.each_lib_rpath orelse
options.root_mod.resolved_target.is_native_os;
// We put everything into the cache hash that *cannot be modified
// during an incremental update*. For example, one cannot change the
// target between updates, but one can change source files, so the
// target goes into the cache hash, but source files do not. This is so
// that we can find the same binary and incrementally update it even if
// there are modified source files. We do this even if outputting to
// the current directory because we need somewhere to store incremental
// compilation metadata.
const cache = try arena.create(Cache);
cache.* = .{
.gpa = gpa,
.manifest_dir = try options.local_cache_directory.handle.makeOpenPath("h", .{}),
};
cache.addPrefix(.{ .path = null, .handle = std.fs.cwd() });
cache.addPrefix(options.zig_lib_directory);
cache.addPrefix(options.local_cache_directory);
errdefer cache.manifest_dir.close();
// This is shared hasher state common to zig source and all C source files.
cache.hash.addBytes(build_options.version);
cache.hash.add(builtin.zig_backend);
cache.hash.add(options.config.pie);
cache.hash.add(options.config.lto);
cache.hash.add(options.config.link_mode);
cache.hash.add(options.function_sections);
cache.hash.add(options.data_sections);
cache.hash.add(options.no_builtin);
cache.hash.add(link_libc);
cache.hash.add(options.config.link_libcpp);
cache.hash.add(options.config.link_libunwind);
cache.hash.add(output_mode);
cache_helpers.addDebugFormat(&cache.hash, comp.config.debug_format);
cache_helpers.addOptionalEmitLoc(&cache.hash, options.emit_bin);
cache_helpers.addOptionalEmitLoc(&cache.hash, options.emit_implib);
cache_helpers.addOptionalEmitLoc(&cache.hash, options.emit_docs);
cache.hash.addBytes(options.root_name);
cache.hash.add(options.config.wasi_exec_model);
// TODO audit this and make sure everything is in it
const opt_zcu: ?*Module = if (have_zcu) blk: {
// Pre-open the directory handles for cached ZIR code so that it does not need
// to redundantly happen for each AstGen operation.
const zir_sub_dir = "z";
var local_zir_dir = try options.local_cache_directory.handle.makeOpenPath(zir_sub_dir, .{});
errdefer local_zir_dir.close();
const local_zir_cache: Directory = .{
.handle = local_zir_dir,
.path = try options.local_cache_directory.join(arena, &[_][]const u8{zir_sub_dir}),
};
var global_zir_dir = try options.global_cache_directory.handle.makeOpenPath(zir_sub_dir, .{});
errdefer global_zir_dir.close();
const global_zir_cache: Directory = .{
.handle = global_zir_dir,
.path = try options.global_cache_directory.join(arena, &[_][]const u8{zir_sub_dir}),
};
const emit_h: ?*Module.GlobalEmitH = if (options.emit_h) |loc| eh: {
const eh = try arena.create(Module.GlobalEmitH);
eh.* = .{ .loc = loc };
break :eh eh;
} else null;
const zcu = try arena.create(Module);
zcu.* = .{
.gpa = gpa,
.comp = comp,
.main_mod = options.main_mod orelse options.root_mod,
.root_mod = options.root_mod,
.std_mod = options.std_mod,
.global_zir_cache = global_zir_cache,
.local_zir_cache = local_zir_cache,
.emit_h = emit_h,
.tmp_hack_arena = std.heap.ArenaAllocator.init(gpa),
.error_limit = error_limit,
};
try zcu.init();
break :blk zcu;
} else blk: {
if (options.emit_h != null) return error.NoZigModuleForCHeader;
break :blk null;
};
errdefer if (opt_zcu) |zcu| zcu.deinit();
var system_libs = try std.StringArrayHashMapUnmanaged(SystemLib).init(
gpa,
options.system_lib_names,
options.system_lib_infos,
);
errdefer system_libs.deinit(gpa);
comp.* = .{
.gpa = gpa,
.arena = arena_allocator,
.module = opt_zcu,
.cache_use = undefined, // populated below
.bin_file = null, // populated below
.implib_emit = null, // handled below
.docs_emit = null, // handled below
.root_mod = options.root_mod,
.config = options.config,
.zig_lib_directory = options.zig_lib_directory,
.local_cache_directory = options.local_cache_directory,
.global_cache_directory = options.global_cache_directory,
.emit_asm = options.emit_asm,
.emit_llvm_ir = options.emit_llvm_ir,
.emit_llvm_bc = options.emit_llvm_bc,
.work_queue = std.fifo.LinearFifo(Job, .Dynamic).init(gpa),
.anon_work_queue = std.fifo.LinearFifo(Job, .Dynamic).init(gpa),
.c_object_work_queue = std.fifo.LinearFifo(*CObject, .Dynamic).init(gpa),
.win32_resource_work_queue = if (build_options.only_core_functionality) {} else std.fifo.LinearFifo(*Win32Resource, .Dynamic).init(gpa),
.astgen_work_queue = std.fifo.LinearFifo(*Module.File, .Dynamic).init(gpa),
.embed_file_work_queue = std.fifo.LinearFifo(*Module.EmbedFile, .Dynamic).init(gpa),
.c_source_files = options.c_source_files,
.rc_source_files = options.rc_source_files,
.cache_parent = cache,
.self_exe_path = options.self_exe_path,
.libc_include_dir_list = libc_dirs.libc_include_dir_list,
.libc_framework_dir_list = libc_dirs.libc_framework_dir_list,
.rc_include_dir_list = rc_dirs.libc_include_dir_list,
.thread_pool = options.thread_pool,
.clang_passthrough_mode = options.clang_passthrough_mode,
.clang_preprocessor_mode = options.clang_preprocessor_mode,
.verbose_cc = options.verbose_cc,
.verbose_air = options.verbose_air,
.verbose_intern_pool = options.verbose_intern_pool,
.verbose_generic_instances = options.verbose_generic_instances,
.verbose_llvm_ir = options.verbose_llvm_ir,
.verbose_llvm_bc = options.verbose_llvm_bc,
.verbose_cimport = options.verbose_cimport,
.verbose_llvm_cpu_features = options.verbose_llvm_cpu_features,
.verbose_link = options.verbose_link,
.disable_c_depfile = options.disable_c_depfile,
.color = options.color,
.reference_trace = options.reference_trace,
.formatted_panics = formatted_panics,
.time_report = options.time_report,
.stack_report = options.stack_report,
.test_filter = options.test_filter,
.test_name_prefix = options.test_name_prefix,
.debug_compiler_runtime_libs = options.debug_compiler_runtime_libs,
.debug_compile_errors = options.debug_compile_errors,
.libcxx_abi_version = options.libcxx_abi_version,
.root_name = root_name,
.sysroot = sysroot,
.system_libs = system_libs,
.version = options.version,
.libc_installation = libc_dirs.libc_installation,
.include_compiler_rt = include_compiler_rt,
.objects = options.link_objects,
.framework_dirs = options.framework_dirs,
.llvm_opt_bisect_limit = options.llvm_opt_bisect_limit,
.skip_linker_dependencies = options.skip_linker_dependencies,
.no_builtin = options.no_builtin,
.job_queued_update_builtin_zig = have_zcu,
.function_sections = options.function_sections,
.data_sections = options.data_sections,
};
const lf_open_opts: link.File.OpenOptions = .{
.linker_script = options.linker_script,
.z_nodelete = options.linker_z_nodelete,
.z_notext = options.linker_z_notext,
.z_defs = options.linker_z_defs,
.z_origin = options.linker_z_origin,
.z_nocopyreloc = options.linker_z_nocopyreloc,
.z_now = options.linker_z_now,
.z_relro = options.linker_z_relro,
.z_common_page_size = options.linker_z_common_page_size,
.z_max_page_size = options.linker_z_max_page_size,
.darwin_sdk_layout = libc_dirs.darwin_sdk_layout,
.frameworks = options.frameworks,
.wasi_emulated_libs = options.wasi_emulated_libs,
.lib_dirs = options.lib_dirs,
.rpath_list = options.rpath_list,
.symbol_wrap_set = options.symbol_wrap_set,
.allow_shlib_undefined = options.linker_allow_shlib_undefined,
.bind_global_refs_locally = options.linker_bind_global_refs_locally orelse false,
.compress_debug_sections = options.linker_compress_debug_sections orelse .none,
.module_definition_file = options.linker_module_definition_file,
.sort_section = options.linker_sort_section,
.import_symbols = options.linker_import_symbols,
.import_table = options.linker_import_table,
.export_table = options.linker_export_table,
.initial_memory = options.linker_initial_memory,
.max_memory = options.linker_max_memory,
.global_base = options.linker_global_base,
.export_symbol_names = options.linker_export_symbol_names,
.print_gc_sections = options.linker_print_gc_sections,
.print_icf_sections = options.linker_print_icf_sections,
.print_map = options.linker_print_map,
.tsaware = options.linker_tsaware,
.nxcompat = options.linker_nxcompat,
.dynamicbase = options.linker_dynamicbase,
.major_subsystem_version = options.major_subsystem_version,
.minor_subsystem_version = options.minor_subsystem_version,
.stack_size = options.stack_size,
.image_base = options.image_base,
.version_script = options.version_script,
.gc_sections = options.linker_gc_sections,
.eh_frame_hdr = link_eh_frame_hdr,
.emit_relocs = options.link_emit_relocs,
.rdynamic = options.rdynamic,
.soname = options.soname,
.compatibility_version = options.compatibility_version,
.dll_export_fns = dll_export_fns,
.each_lib_rpath = each_lib_rpath,
.build_id = build_id,
.disable_lld_caching = options.disable_lld_caching or cache_mode == .whole,
.subsystem = options.subsystem,
.hash_style = options.hash_style,
.enable_link_snapshots = options.enable_link_snapshots,
.install_name = options.install_name,
.entitlements = options.entitlements,
.pagezero_size = options.pagezero_size,
.headerpad_size = options.headerpad_size,
.headerpad_max_install_names = options.headerpad_max_install_names,
.dead_strip_dylibs = options.dead_strip_dylibs,
.force_undefined_symbols = options.force_undefined_symbols,
.pdb_source_path = options.pdb_source_path,
.pdb_out_path = options.pdb_out_path,
.entry_addr = null, // CLI does not expose this option (yet?)
};
switch (cache_mode) {
.incremental => {
// Options that are specific to zig source files, that cannot be
// modified between incremental updates.
var hash = cache.hash;
// Synchronize with other matching comments: ZigOnlyHashStuff
hash.add(use_llvm);
hash.add(options.config.use_lib_llvm);
hash.add(dll_export_fns);
hash.add(options.config.is_test);
hash.add(options.config.test_evented_io);
hash.addOptionalBytes(options.test_filter);
hash.addOptionalBytes(options.test_name_prefix);
hash.add(options.skip_linker_dependencies);
hash.add(formatted_panics);
hash.add(options.emit_h != null);
hash.add(error_limit);
// Here we put the root source file path name, but *not* with addFile.
// We want the hash to be the same regardless of the contents of the
// source file, because incremental compilation will handle it, but we
// do want to namespace different source file names because they are
// likely different compilations and therefore this would be likely to
// cause cache hits.
try addModuleTableToCacheHash(gpa, arena, &hash, options.root_mod, .path_bytes);
// In the case of incremental cache mode, this `artifact_directory`
// is computed based on a hash of non-linker inputs, and it is where all
// build artifacts are stored (even while in-progress).
const digest = hash.final();
const artifact_sub_dir = "o" ++ std.fs.path.sep_str ++ digest;
var artifact_dir = try options.local_cache_directory.handle.makeOpenPath(artifact_sub_dir, .{});
errdefer artifact_dir.close();
const artifact_directory: Directory = .{
.handle = artifact_dir,
.path = try options.local_cache_directory.join(arena, &[_][]const u8{artifact_sub_dir}),
};
const incremental = try arena.create(CacheUse.Incremental);
incremental.* = .{
.artifact_directory = artifact_directory,
};
comp.cache_use = .{ .incremental = incremental };
if (options.emit_bin) |emit_bin| {
const emit: Emit = .{
.directory = emit_bin.directory orelse artifact_directory,
.sub_path = emit_bin.basename,
};
comp.bin_file = try link.File.open(arena, comp, emit, lf_open_opts);
}
if (options.emit_implib) |emit_implib| {
comp.implib_emit = .{
.directory = emit_implib.directory orelse artifact_directory,
.sub_path = emit_implib.basename,
};
}
if (options.emit_docs) |emit_docs| {
comp.docs_emit = .{
.directory = emit_docs.directory orelse artifact_directory,
.sub_path = emit_docs.basename,
};
}
},
.whole => {
// For whole cache mode, we don't know where to put outputs from
// the linker until the final cache hash, which is available after
// the compilation is complete.
//
// Therefore, bin_file is left null until the beginning of update(),
// where it may find a cache hit, or use a temporary directory to
// hold output artifacts.
const whole = try arena.create(CacheUse.Whole);
whole.* = .{
// This is kept here so that link.File.open can be called later.
.lf_open_opts = lf_open_opts,
// This is so that when doing `CacheMode.whole`, the mechanism in update()
// can use it for communicating the result directory via `bin_file.emit`.
// This is used to distinguish between -fno-emit-bin and -femit-bin
// for `CacheMode.whole`.
// This memory will be overwritten with the real digest in update() but
// the basename will be preserved.
.bin_sub_path = try prepareWholeEmitSubPath(arena, options.emit_bin),
.implib_sub_path = try prepareWholeEmitSubPath(arena, options.emit_implib),
.docs_sub_path = try prepareWholeEmitSubPath(arena, options.emit_docs),
.tmp_artifact_directory = null,
};
comp.cache_use = .{ .whole = whole };
},
}
break :comp comp;
};
errdefer comp.destroy();
const target = options.root_mod.resolved_target.result;
const capable_of_building_compiler_rt = canBuildLibCompilerRt(target, options.config.use_llvm);
const capable_of_building_zig_libc = canBuildZigLibC(target, options.config.use_llvm);
// Add a `CObject` for each `c_source_files`.
try comp.c_object_table.ensureTotalCapacity(gpa, options.c_source_files.len);
for (options.c_source_files) |c_source_file| {
const c_object = try gpa.create(CObject);
errdefer gpa.destroy(c_object);
c_object.* = .{
.status = .{ .new = {} },
.src = c_source_file,
};
comp.c_object_table.putAssumeCapacityNoClobber(c_object, {});
}
// Add a `Win32Resource` for each `rc_source_files` and one for `manifest_file`.
if (!build_options.only_core_functionality) {
try comp.win32_resource_table.ensureTotalCapacity(gpa, options.rc_source_files.len + @intFromBool(options.manifest_file != null));
for (options.rc_source_files) |rc_source_file| {
const win32_resource = try gpa.create(Win32Resource);
errdefer gpa.destroy(win32_resource);
win32_resource.* = .{
.status = .{ .new = {} },
.src = .{ .rc = rc_source_file },
};
comp.win32_resource_table.putAssumeCapacityNoClobber(win32_resource, {});
}
if (options.manifest_file) |manifest_path| {
const win32_resource = try gpa.create(Win32Resource);
errdefer gpa.destroy(win32_resource);
win32_resource.* = .{
.status = .{ .new = {} },
.src = .{ .manifest = manifest_path },
};
comp.win32_resource_table.putAssumeCapacityNoClobber(win32_resource, {});
}
}
const have_bin_emit = switch (comp.cache_use) {
.whole => |whole| whole.bin_sub_path != null,
.incremental => comp.bin_file != null,
};
if (have_bin_emit and !comp.skip_linker_dependencies and target.ofmt != .c) {
if (target.isDarwin()) {
switch (target.abi) {
.none,
.simulator,
.macabi,
=> {},
else => return error.LibCUnavailable,
}
}
// If we need to build glibc for the target, add work items for it.
// We go through the work queue so that building can be done in parallel.
if (comp.wantBuildGLibCFromSource()) {
if (!target_util.canBuildLibC(target)) return error.LibCUnavailable;
if (glibc.needsCrtiCrtn(target)) {
try comp.work_queue.write(&[_]Job{
.{ .glibc_crt_file = .crti_o },
.{ .glibc_crt_file = .crtn_o },
});
}
try comp.work_queue.write(&[_]Job{
.{ .glibc_crt_file = .scrt1_o },
.{ .glibc_crt_file = .libc_nonshared_a },
.{ .glibc_shared_objects = {} },
});
}
if (comp.wantBuildMuslFromSource()) {
if (!target_util.canBuildLibC(target)) return error.LibCUnavailable;
try comp.work_queue.ensureUnusedCapacity(6);
if (musl.needsCrtiCrtn(target)) {
comp.work_queue.writeAssumeCapacity(&[_]Job{
.{ .musl_crt_file = .crti_o },
.{ .musl_crt_file = .crtn_o },
});
}
comp.work_queue.writeAssumeCapacity(&[_]Job{
.{ .musl_crt_file = .crt1_o },
.{ .musl_crt_file = .scrt1_o },
.{ .musl_crt_file = .rcrt1_o },
switch (comp.config.link_mode) {
.Static => .{ .musl_crt_file = .libc_a },
.Dynamic => .{ .musl_crt_file = .libc_so },
},
});
}
if (comp.bin_file) |lf| {
if (lf.cast(link.File.Wasm)) |wasm| {
if (comp.wantBuildWasiLibcFromSource()) {
if (!target_util.canBuildLibC(target)) return error.LibCUnavailable;
// worst-case we need all components
try comp.work_queue.ensureUnusedCapacity(wasm.wasi_emulated_libs.len + 2);
for (wasm.wasi_emulated_libs) |crt_file| {
comp.work_queue.writeItemAssumeCapacity(.{
.wasi_libc_crt_file = crt_file,
});
}
comp.work_queue.writeAssumeCapacity(&[_]Job{
.{ .wasi_libc_crt_file = wasi_libc.execModelCrtFile(options.config.wasi_exec_model) },
.{ .wasi_libc_crt_file = .libc_a },
});
}
}
}
if (comp.wantBuildMinGWFromSource()) {
if (!target_util.canBuildLibC(target)) return error.LibCUnavailable;
const static_lib_jobs = [_]Job{
.{ .mingw_crt_file = .mingw32_lib },
.{ .mingw_crt_file = .msvcrt_os_lib },
.{ .mingw_crt_file = .mingwex_lib },
.{ .mingw_crt_file = .uuid_lib },
};
const crt_job: Job = .{ .mingw_crt_file = if (is_dyn_lib) .dllcrt2_o else .crt2_o };
try comp.work_queue.ensureUnusedCapacity(static_lib_jobs.len + 1);
comp.work_queue.writeAssumeCapacity(&static_lib_jobs);
comp.work_queue.writeItemAssumeCapacity(crt_job);
// When linking mingw-w64 there are some import libs we always need.
for (mingw.always_link_libs) |name| {
try comp.system_libs.put(comp.gpa, name, .{
.needed = false,
.weak = false,
.path = null,
});
}
}
// Generate Windows import libs.
if (target.os.tag == .windows) {
const count = comp.system_libs.count();
try comp.work_queue.ensureUnusedCapacity(count);
for (0..count) |i| {
comp.work_queue.writeItemAssumeCapacity(.{ .windows_import_lib = i });
}
}
if (comp.wantBuildLibUnwindFromSource()) {
try comp.work_queue.writeItem(.{ .libunwind = {} });
}
if (build_options.have_llvm and is_exe_or_dyn_lib and comp.config.link_libcpp) {
try comp.work_queue.writeItem(.libcxx);
try comp.work_queue.writeItem(.libcxxabi);
}
if (build_options.have_llvm and comp.config.any_sanitize_thread) {
try comp.work_queue.writeItem(.libtsan);
}
if (comp.bin_file) |lf| {
if (comp.getTarget().isMinGW() and comp.config.any_non_single_threaded) {
// LLD might drop some symbols as unused during LTO and GCing, therefore,
// we force mark them for resolution here.
const tls_index_sym = switch (comp.getTarget().cpu.arch) {
.x86 => "__tls_index",
else => "_tls_index",
};
try lf.force_undefined_symbols.put(comp.gpa, tls_index_sym, {});
}
}
if (comp.include_compiler_rt and capable_of_building_compiler_rt) {
if (is_exe_or_dyn_lib) {
log.debug("queuing a job to build compiler_rt_lib", .{});
comp.job_queued_compiler_rt_lib = true;
} else if (output_mode != .Obj) {
log.debug("queuing a job to build compiler_rt_obj", .{});
// In this case we are making a static library, so we ask
// for a compiler-rt object to put in it.
comp.job_queued_compiler_rt_obj = true;
}
}
if (!comp.skip_linker_dependencies and is_exe_or_dyn_lib and
!comp.config.link_libc and capable_of_building_zig_libc)
{
try comp.work_queue.writeItem(.{ .zig_libc = {} });
}
}
return comp;
}
pub fn destroy(self: *Compilation) void {
if (self.bin_file) |lf| lf.destroy();
if (self.module) |zcu| zcu.deinit();
switch (self.cache_use) {
.incremental => |incremental| {
incremental.artifact_directory.handle.close();
},
.whole => {},
}
self.work_queue.deinit();
self.anon_work_queue.deinit();
self.c_object_work_queue.deinit();
if (!build_options.only_core_functionality) {
self.win32_resource_work_queue.deinit();
}
self.astgen_work_queue.deinit();
self.embed_file_work_queue.deinit();
const gpa = self.gpa;
self.system_libs.deinit(gpa);
{
var it = self.crt_files.iterator();
while (it.next()) |entry| {
gpa.free(entry.key_ptr.*);
entry.value_ptr.deinit(gpa);
}
self.crt_files.deinit(gpa);
}
if (self.libunwind_static_lib) |*crt_file| {
crt_file.deinit(gpa);
}
if (self.libcxx_static_lib) |*crt_file| {
crt_file.deinit(gpa);
}
if (self.libcxxabi_static_lib) |*crt_file| {
crt_file.deinit(gpa);
}
if (self.compiler_rt_lib) |*crt_file| {
crt_file.deinit(gpa);
}
if (self.compiler_rt_obj) |*crt_file| {
crt_file.deinit(gpa);
}
if (self.libc_static_lib) |*crt_file| {
crt_file.deinit(gpa);
}
if (self.glibc_so_files) |*glibc_file| {
glibc_file.deinit(gpa);
}
for (self.c_object_table.keys()) |key| {
key.destroy(gpa);
}
self.c_object_table.deinit(gpa);
for (self.failed_c_objects.values()) |bundle| {
bundle.destroy(gpa);
}
self.failed_c_objects.deinit(gpa);
if (!build_options.only_core_functionality) {
for (self.win32_resource_table.keys()) |key| {
key.destroy(gpa);
}
self.win32_resource_table.deinit(gpa);
for (self.failed_win32_resources.values()) |*value| {
value.deinit(gpa);
}
self.failed_win32_resources.deinit(gpa);
}
for (self.lld_errors.items) |*lld_error| {
lld_error.deinit(gpa);
}
self.lld_errors.deinit(gpa);
self.clearMiscFailures();
self.cache_parent.manifest_dir.close();
// This destroys `self`.
var arena_instance = self.arena;
arena_instance.deinit();
}
pub fn clearMiscFailures(comp: *Compilation) void {
comp.alloc_failure_occurred = false;
for (comp.misc_failures.values()) |*value| {
value.deinit(comp.gpa);
}
comp.misc_failures.deinit(comp.gpa);
comp.misc_failures = .{};
}
pub fn getTarget(self: Compilation) Target {
return self.root_mod.resolved_target.result;
}
pub fn hotCodeSwap(comp: *Compilation, prog_node: *std.Progress.Node, pid: std.ChildProcess.Id) !void {
comp.bin_file.child_pid = pid;
try comp.makeBinFileWritable();
try comp.update(prog_node);
try comp.makeBinFileExecutable();
}
fn cleanupAfterUpdate(comp: *Compilation) void {
switch (comp.cache_use) {
.incremental => return,
.whole => |whole| {
if (whole.cache_manifest) |man| {
man.deinit();
whole.cache_manifest = null;
}
if (comp.bin_file) |lf| {
lf.destroy();
comp.bin_file = null;
}
if (whole.tmp_artifact_directory) |directory| {
directory.handle.close();
if (directory.path) |p| comp.gpa.free(p);
whole.tmp_artifact_directory = null;
}
},
}
}
/// Detect changes to source files, perform semantic analysis, and update the output files.
pub fn update(comp: *Compilation, main_progress_node: *std.Progress.Node) !void {
const tracy_trace = trace(@src());
defer tracy_trace.end();
comp.clearMiscFailures();
comp.last_update_was_cache_hit = false;
var man: Cache.Manifest = undefined;
defer cleanupAfterUpdate(comp);
var tmp_dir_rand_int: u64 = undefined;
// If using the whole caching strategy, we check for *everything* up front, including
// C source files.
switch (comp.cache_use) {
.whole => |whole| {
// We are about to obtain this lock, so here we give other processes a chance first.
assert(comp.bin_file == null);
man = comp.cache_parent.obtain();
whole.cache_manifest = &man;
try comp.addNonIncrementalStuffToCacheManifest(&man);
const is_hit = man.hit() catch |err| {
// TODO properly bubble these up instead of emitting a warning
const i = man.failed_file_index orelse return err;
const pp = man.files.items[i].prefixed_path orelse return err;
const prefix = man.cache.prefixes()[pp.prefix].path orelse "";
std.log.warn("{s}: {s}{s}", .{ @errorName(err), prefix, pp.sub_path });
return err;
};
if (is_hit) {
comp.last_update_was_cache_hit = true;
log.debug("CacheMode.whole cache hit for {s}", .{comp.root_name});
const digest = man.final();
comp.wholeCacheModeSetBinFilePath(whole, &digest);
assert(comp.bin_file.lock == null);
comp.bin_file.lock = man.toOwnedLock();
return;
}
log.debug("CacheMode.whole cache miss for {s}", .{comp.root_name});
// Compile the artifacts to a temporary directory.
const tmp_artifact_directory = d: {
const s = std.fs.path.sep_str;
tmp_dir_rand_int = std.crypto.random.int(u64);
const tmp_dir_sub_path = "tmp" ++ s ++ Package.Manifest.hex64(tmp_dir_rand_int);
const path = try comp.local_cache_directory.join(comp.gpa, &.{tmp_dir_sub_path});
errdefer comp.gpa.free(path);
const handle = try comp.local_cache_directory.handle.makeOpenPath(tmp_dir_sub_path, .{});
errdefer handle.close();
break :d .{
.path = path,
.handle = handle,
};
};
whole.tmp_artifact_directory = tmp_artifact_directory;
// Now that the directory is known, it is time to create the Emit
// objects and call link.File.open.
if (whole.implib_sub_path) |sub_path| {
comp.implib_emit = .{
.directory = tmp_artifact_directory,
.sub_path = std.fs.path.basename(sub_path),
};
}
if (whole.docs_sub_path) |sub_path| {
comp.docs_emit = .{
.directory = tmp_artifact_directory,
.sub_path = std.fs.path.basename(sub_path),
};
}
if (whole.bin_sub_path) |sub_path| {
const emit: Emit = .{
.directory = tmp_artifact_directory,
.sub_path = std.fs.path.basename(sub_path),
};
// It's a bit strange to use the Compilation arena allocator here
// but in practice it won't leak much and usually whole cache mode
// will be combined with exactly one call to update().
const arena = comp.arena.allocator();
comp.bin_file = try link.File.createEmpty(arena, comp, emit, whole.lf_open_opts);
}
},
.incremental => {},
}
// For compiling C objects, we rely on the cache hash system to avoid duplicating work.
// Add a Job for each C object.
try comp.c_object_work_queue.ensureUnusedCapacity(comp.c_object_table.count());
for (comp.c_object_table.keys()) |key| {
comp.c_object_work_queue.writeItemAssumeCapacity(key);
}
// For compiling Win32 resources, we rely on the cache hash system to avoid duplicating work.
// Add a Job for each Win32 resource file.
if (!build_options.only_core_functionality) {
try comp.win32_resource_work_queue.ensureUnusedCapacity(comp.win32_resource_table.count());
for (comp.win32_resource_table.keys()) |key| {
comp.win32_resource_work_queue.writeItemAssumeCapacity(key);
}
}
if (comp.module) |module| {
module.compile_log_text.shrinkAndFree(module.gpa, 0);
module.generation += 1;
// Make sure std.zig is inside the import_table. We unconditionally need
// it for start.zig.
const std_mod = module.std_mod;
_ = try module.importPkg(std_mod);
// Normally we rely on importing std to in turn import the root source file
// in the start code, but when using the stage1 backend that won't happen,
// so in order to run AstGen on the root source file we put it into the
// import_table here.
// Likewise, in the case of `zig test`, the test runner is the root source file,
// and so there is nothing to import the main file.
if (comp.config.is_test) {
_ = try module.importPkg(module.main_mod);
}
if (module.root_mod.deps.get("compiler_rt")) |compiler_rt_mod| {
_ = try module.importPkg(compiler_rt_mod);
}
// Put a work item in for every known source file to detect if
// it changed, and, if so, re-compute ZIR and then queue the job
// to update it.
// We still want AstGen work items for stage1 so that we expose compile errors
// that are implemented in stage2 but not stage1.
try comp.astgen_work_queue.ensureUnusedCapacity(module.import_table.count());
for (module.import_table.values()) |value| {
comp.astgen_work_queue.writeItemAssumeCapacity(value);
}
// Put a work item in for checking if any files used with `@embedFile` changed.
try comp.embed_file_work_queue.ensureUnusedCapacity(module.embed_table.count());
for (module.embed_table.values()) |embed_file| {
comp.embed_file_work_queue.writeItemAssumeCapacity(embed_file);
}
try comp.work_queue.writeItem(.{ .analyze_mod = std_mod });
if (comp.config.is_test) {
try comp.work_queue.writeItem(.{ .analyze_mod = module.main_mod });
}
if (module.root_mod.deps.get("compiler_rt")) |compiler_rt_mod| {
try comp.work_queue.writeItem(.{ .analyze_mod = compiler_rt_mod });
}
}
try comp.performAllTheWork(main_progress_node);
if (comp.module) |module| {
if (builtin.mode == .Debug and comp.verbose_intern_pool) {
std.debug.print("intern pool stats for '{s}':\n", .{
comp.root_name,
});
module.intern_pool.dump();
}
if (builtin.mode == .Debug and comp.verbose_generic_instances) {
std.debug.print("generic instances for '{s}:0x{x}':\n", .{
comp.root_name,
@as(usize, @intFromPtr(module)),
});
module.intern_pool.dumpGenericInstances(comp.gpa);
}
if (comp.config.is_test and comp.totalErrorCount() == 0) {
// The `test_functions` decl has been intentionally postponed until now,
// at which point we must populate it with the list of test functions that
// have been discovered and not filtered out.
try module.populateTestFunctions(main_progress_node);
}
try module.processExports();
}
if (comp.totalErrorCount() != 0) {
// Skip flushing and keep source files loaded for error reporting.
comp.link_error_flags = .{};
return;
}
// Flush takes care of -femit-bin, but we still have -femit-llvm-ir, -femit-llvm-bc, and
// -femit-asm to handle, in the case of C objects.
comp.emitOthers();
try comp.flush(main_progress_node);
if (comp.totalErrorCount() != 0) return;
try maybeGenerateAutodocs(comp, main_progress_node);
switch (comp.cache_use) {
.whole => |whole| {
const digest = man.final();
// Rename the temporary directory into place.
// Close tmp dir and link.File to avoid open handle during rename.
if (whole.tmp_artifact_directory) |tmp_directory| {
tmp_directory.handle.close();
if (tmp_directory.path) |p| comp.gpa.free(p);
whole.tmp_artifact_directory = null;
} else unreachable;
if (comp.bin_file) |lf| {
lf.destroy();
comp.bin_file = null;
}
const s = std.fs.path.sep_str;
const tmp_dir_sub_path = "tmp" ++ s ++ Package.Manifest.hex64(tmp_dir_rand_int);
const o_sub_path = "o" ++ s ++ digest;
try renameTmpIntoCache(comp.local_cache_directory, tmp_dir_sub_path, o_sub_path);
comp.wholeCacheModeSetBinFilePath(whole, &digest);
// Failure here only means an unnecessary cache miss.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest: {s}", .{@errorName(err)});
};
assert(comp.bin_file.lock == null);
comp.bin_file.lock = man.toOwnedLock();
},
.incremental => {},
}
}
/// This function is called by the frontend before flush(). It communicates that
/// `options.bin_file.emit` directory needs to be renamed from
/// `[zig-cache]/tmp/[random]` to `[zig-cache]/o/[digest]`.
/// The frontend would like to simply perform a file system rename, however,
/// some linker backends care about the file paths of the objects they are linking.
/// So this function call tells linker backends to rename the paths of object files
/// to observe the new directory path.
/// Linker backends which do not have this requirement can fall back to the simple
/// implementation at the bottom of this function.
/// This function is only called when CacheMode is `whole`.
fn renameTmpIntoCache(
cache_directory: Compilation.Directory,
tmp_dir_sub_path: []const u8,
o_sub_path: []const u8,
) !void {
while (true) {
if (builtin.os.tag == .windows) {
// Work around windows `renameW` can't fail with `PathAlreadyExists`
// See https://github.com/ziglang/zig/issues/8362
if (cache_directory.handle.access(o_sub_path, .{})) |_| {
try cache_directory.handle.deleteTree(o_sub_path);
continue;
} else |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
}
std.fs.rename(
cache_directory.handle,
tmp_dir_sub_path,
cache_directory.handle,
o_sub_path,
) catch |err| {
log.err("unable to rename cache dir {s} to {s}: {s}", .{ tmp_dir_sub_path, o_sub_path, @errorName(err) });
return err;
};
break;
} else {
std.fs.rename(
cache_directory.handle,
tmp_dir_sub_path,
cache_directory.handle,
o_sub_path,
) catch |err| switch (err) {
error.PathAlreadyExists => {
try cache_directory.handle.deleteTree(o_sub_path);
continue;
},
else => |e| return e,
};
break;
}
}
}
fn maybeGenerateAutodocs(comp: *Compilation, prog_node: *std.Progress.Node) !void {
const mod = comp.module orelse return;
// TODO: do this in a separate job during performAllTheWork(). The
// file copies at the end of generate() can also be extracted to
// separate jobs
if (!build_options.only_c and !build_options.only_core_functionality) {
if (comp.docs_emit) |emit| {
var dir = try emit.directory.handle.makeOpenPath(emit.sub_path, .{});
defer dir.close();
var sub_prog_node = prog_node.start("Generating documentation", 0);
sub_prog_node.activate();
sub_prog_node.context.refresh();
defer sub_prog_node.end();
try Autodoc.generate(mod, dir);
}
}
}
fn flush(comp: *Compilation, prog_node: *std.Progress.Node) !void {
// This is needed before reading the error flags.
comp.bin_file.flush(comp, prog_node) catch |err| switch (err) {
error.FlushFailure => {}, // error reported through link_error_flags
error.LLDReportedFailure => {}, // error reported via lockAndParseLldStderr
else => |e| return e,
};
comp.link_error_flags = comp.bin_file.errorFlags();
if (comp.module) |module| {
try link.File.C.flushEmitH(module);
}
}
/// Communicate the output binary location to parent Compilations.
fn wholeCacheModeSetBinFilePath(
comp: *Compilation,
whole: *CacheUse.Whole,
digest: *const [Cache.hex_digest_len]u8,
) void {
const digest_start = 2; // "o/[digest]/[basename]"
if (whole.bin_sub_path) |sub_path| {
@memcpy(sub_path[digest_start..][0..digest.len], digest);
comp.bin_file.?.emit = .{
.directory = comp.local_cache_directory,
.sub_path = sub_path,
};
}
if (whole.implib_sub_path) |sub_path| {
@memcpy(sub_path[digest_start..][0..digest.len], digest);
comp.implib_emit = .{
.directory = comp.local_cache_directory,
.sub_path = sub_path,
};
}
if (whole.docs_sub_path) |sub_path| {
@memcpy(sub_path[digest_start..][0..digest.len], digest);
comp.docs_emit = .{
.directory = comp.local_cache_directory,
.sub_path = sub_path,
};
}
}
fn prepareWholeEmitSubPath(arena: Allocator, opt_emit: ?EmitLoc) error{OutOfMemory}!?[]u8 {
const emit = opt_emit orelse return null;
if (emit.directory != null) return null;
const s = std.fs.path.sep_str;
const format = "o" ++ s ++ ("x" ** Cache.hex_digest_len) ++ s ++ "{s}";
return try std.fmt.allocPrint(arena, format, .{emit.basename});
}
/// This is only observed at compile-time and used to emit a compile error
/// to remind the programmer to update multiple related pieces of code that
/// are in different locations. Bump this number when adding or deleting
/// anything from the link cache manifest.
pub const link_hash_implementation_version = 10;
fn addNonIncrementalStuffToCacheManifest(comp: *Compilation, man: *Cache.Manifest) !void {
const gpa = comp.gpa;
const target = comp.getTarget();
var arena_allocator = std.heap.ArenaAllocator.init(gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
comptime assert(link_hash_implementation_version == 10);
if (comp.module) |mod| {
const main_zig_file = try mod.main_mod.root.joinString(arena, mod.main_mod.root_src_path);
_ = try man.addFile(main_zig_file, null);
try addModuleTableToCacheHash(gpa, arena, &man.hash, mod.main_mod, .{ .files = man });
// Synchronize with other matching comments: ZigOnlyHashStuff
man.hash.add(comp.config.test_evented_io);
man.hash.addOptionalBytes(comp.test_filter);
man.hash.addOptionalBytes(comp.test_name_prefix);
man.hash.add(comp.skip_linker_dependencies);
man.hash.add(comp.formatted_panics);
man.hash.add(mod.emit_h != null);
man.hash.add(mod.error_limit);
}
for (comp.objects) |obj| {
_ = try man.addFile(obj.path, null);
man.hash.add(obj.must_link);
man.hash.add(obj.loption);
}
for (comp.c_object_table.keys()) |key| {
_ = try man.addFile(key.src.src_path, null);
man.hash.addOptional(key.src.ext);
man.hash.addListOfBytes(key.src.extra_flags);
}
if (!build_options.only_core_functionality) {
for (comp.win32_resource_table.keys()) |key| {
switch (key.src) {
.rc => |rc_src| {
_ = try man.addFile(rc_src.src_path, null);
man.hash.addListOfBytes(rc_src.extra_flags);
},
.manifest => |manifest_path| {
_ = try man.addFile(manifest_path, null);
},
}
}
}
man.hash.addOptionalBytes(comp.sysroot);
man.hash.addOptional(comp.version);
man.hash.addListOfBytes(comp.rc_include_dir_list);
cache_helpers.addOptionalEmitLoc(&man.hash, comp.emit_asm);
cache_helpers.addOptionalEmitLoc(&man.hash, comp.emit_llvm_ir);
cache_helpers.addOptionalEmitLoc(&man.hash, comp.emit_llvm_bc);
man.hash.add(comp.skip_linker_dependencies);
man.hash.add(comp.include_compiler_rt);
if (comp.config.link_libc) {
man.hash.add(comp.libc_installation != null);
if (comp.libc_installation) |libc_installation| {
man.hash.addOptionalBytes(libc_installation.crt_dir);
if (target.abi == .msvc) {
man.hash.addOptionalBytes(libc_installation.msvc_lib_dir);
man.hash.addOptionalBytes(libc_installation.kernel32_lib_dir);
}
}
man.hash.addOptionalBytes(target.dynamic_linker.get());
}
try link.hashAddSystemLibs(man, comp.system_libs);
man.hash.add(comp.config.use_llvm);
man.hash.add(comp.config.use_lib_llvm);
man.hash.add(comp.config.is_test);
man.hash.add(comp.config.import_memory);
man.hash.add(comp.config.export_memory);
man.hash.add(comp.config.shared_memory);
if (comp.bin_file) |lf| {
man.hash.add(lf.stack_size);
man.hash.add(lf.gc_sections);
man.hash.addListOfBytes(lf.rpath_list);
man.hash.add(lf.build_id);
man.hash.addListOfBytes(lf.force_undefined_symbols.keys());
man.hash.add(lf.allow_shlib_undefined);
switch (lf.tag) {
.elf => {
const elf = lf.cast(link.File.Elf).?;
man.hash.add(elf.rdynamic);
man.hash.add(elf.eh_frame_hdr);
man.hash.add(elf.image_base);
man.hash.add(elf.emit_relocs);
man.hash.add(elf.z_nodelete);
man.hash.add(elf.z_notext);
man.hash.add(elf.z_defs);
man.hash.add(elf.z_origin);
man.hash.add(elf.z_nocopyreloc);
man.hash.add(elf.z_now);
man.hash.add(elf.z_relro);
man.hash.add(elf.z_common_page_size orelse 0);
man.hash.add(elf.z_max_page_size orelse 0);
man.hash.addListOfBytes(elf.lib_dirs);
man.hash.add(elf.hash_style);
man.hash.add(elf.compress_debug_sections);
man.hash.addListOfBytes(elf.symbol_wrap_set.keys());
man.hash.add(elf.each_lib_rpath);
man.hash.addOptional(elf.sort_section);
man.hash.addOptionalBytes(elf.soname);
man.hash.add(elf.bind_global_refs_locally);
try man.addOptionalFile(elf.linker_script);
try man.addOptionalFile(elf.version_script);
},
.wasm => {
const wasm = lf.cast(link.File.Wasm).?;
man.hash.add(wasm.rdynamic);
man.hash.add(wasm.initial_memory);
man.hash.add(wasm.max_memory);
man.hash.add(wasm.global_base);
},
.macho => {
const macho = lf.cast(link.File.MachO).?;
man.hash.addListOfBytes(comp.framework_dirs);
try link.File.MachO.hashAddFrameworks(man, macho.frameworks);
try man.addOptionalFile(macho.entitlements);
man.hash.add(macho.pagezero_vmsize);
man.hash.add(macho.headerpad_size);
man.hash.add(macho.headerpad_max_install_names);
man.hash.add(macho.dead_strip_dylibs);
},
.coff => {
const coff = lf.cast(link.File.Coff).?;
man.hash.add(coff.dll_export_fns);
man.hash.add(coff.image_base);
man.hash.addOptional(coff.subsystem);
man.hash.add(coff.tsaware);
man.hash.add(coff.nxcompat);
man.hash.add(coff.dynamicbase);
man.hash.add(coff.major_subsystem_version);
man.hash.add(coff.minor_subsystem_version);
man.hash.addListOfBytes(coff.lib_dirs);
},
.spirv => {
const spirv = lf.cast(link.File.SpirV).?;
_ = spirv;
// TODO
},
.c => {}, // TODO
.plan9 => {}, // TODO
.nvptx => {}, // TODO
}
}
}
fn emitOthers(comp: *Compilation) void {
if (comp.config.output_mode != .Obj or comp.module != null or
comp.c_object_table.count() == 0)
{
return;
}
const obj_path = comp.c_object_table.keys()[0].status.success.object_path;
const cwd = std.fs.cwd();
const ext = std.fs.path.extension(obj_path);
const basename = obj_path[0 .. obj_path.len - ext.len];
// This obj path always ends with the object file extension, but if we change the
// extension to .ll, .bc, or .s, then it will be the path to those things.
const outs = [_]struct {
emit: ?EmitLoc,
ext: []const u8,
}{
.{ .emit = comp.emit_asm, .ext = ".s" },
.{ .emit = comp.emit_llvm_ir, .ext = ".ll" },
.{ .emit = comp.emit_llvm_bc, .ext = ".bc" },
};
for (outs) |out| {
if (out.emit) |loc| {
if (loc.directory) |directory| {
const src_path = std.fmt.allocPrint(comp.gpa, "{s}{s}", .{
basename, out.ext,
}) catch |err| {
log.err("unable to copy {s}{s}: {s}", .{ basename, out.ext, @errorName(err) });
continue;
};
defer comp.gpa.free(src_path);
cwd.copyFile(src_path, directory.handle, loc.basename, .{}) catch |err| {
log.err("unable to copy {s}: {s}", .{ src_path, @errorName(err) });
};
}
}
}
}
fn reportMultiModuleErrors(mod: *Module) !void {
// Some cases can give you a whole bunch of multi-module errors, which it's not helpful to
// print all of, so we'll cap the number of these to emit.
var num_errors: u32 = 0;
const max_errors = 5;
// Attach the "some omitted" note to the final error message
var last_err: ?*Module.ErrorMsg = null;
for (mod.import_table.values()) |file| {
if (!file.multi_pkg) continue;
num_errors += 1;
if (num_errors > max_errors) continue;
const err = err_blk: {
// Like with errors, let's cap the number of notes to prevent a huge error spew.
const max_notes = 5;
const omitted = file.references.items.len -| max_notes;
const num_notes = file.references.items.len - omitted;
const notes = try mod.gpa.alloc(Module.ErrorMsg, if (omitted > 0) num_notes + 1 else num_notes);
errdefer mod.gpa.free(notes);
for (notes[0..num_notes], file.references.items[0..num_notes], 0..) |*note, ref, i| {
errdefer for (notes[0..i]) |*n| n.deinit(mod.gpa);
note.* = switch (ref) {
.import => |loc| blk: {
break :blk try Module.ErrorMsg.init(
mod.gpa,
loc,
"imported from module {s}",
.{loc.file_scope.mod.fully_qualified_name},
);
},
.root => |pkg| blk: {
break :blk try Module.ErrorMsg.init(
mod.gpa,
.{ .file_scope = file, .parent_decl_node = 0, .lazy = .entire_file },
"root of module {s}",
.{pkg.fully_qualified_name},
);
},
};
}
errdefer for (notes[0..num_notes]) |*n| n.deinit(mod.gpa);
if (omitted > 0) {
notes[num_notes] = try Module.ErrorMsg.init(
mod.gpa,
.{ .file_scope = file, .parent_decl_node = 0, .lazy = .entire_file },
"{} more references omitted",
.{omitted},
);
}
errdefer if (omitted > 0) notes[num_notes].deinit(mod.gpa);
const err = try Module.ErrorMsg.create(
mod.gpa,
.{ .file_scope = file, .parent_decl_node = 0, .lazy = .entire_file },
"file exists in multiple modules",
.{},
);
err.notes = notes;
break :err_blk err;
};
errdefer err.destroy(mod.gpa);
try mod.failed_files.putNoClobber(mod.gpa, file, err);
last_err = err;
}
// If we omitted any errors, add a note saying that
if (num_errors > max_errors) {
const err = last_err.?;
// There isn't really any meaningful place to put this note, so just attach it to the
// last failed file
var note = try Module.ErrorMsg.init(
mod.gpa,
err.src_loc,
"{} more errors omitted",
.{num_errors - max_errors},
);
errdefer note.deinit(mod.gpa);
const i = err.notes.len;
err.notes = try mod.gpa.realloc(err.notes, i + 1);
err.notes[i] = note;
}
// Now that we've reported the errors, we need to deal with
// dependencies. Any file referenced by a multi_pkg file should also be
// marked multi_pkg and have its status set to astgen_failure, as it's
// ambiguous which package they should be analyzed as a part of. We need
// to add this flag after reporting the errors however, as otherwise
// we'd get an error for every single downstream file, which wouldn't be
// very useful.
for (mod.import_table.values()) |file| {
if (file.multi_pkg) file.recursiveMarkMultiPkg(mod);
}
}
/// Having the file open for writing is problematic as far as executing the
/// binary is concerned. This will remove the write flag, or close the file,
/// or whatever is needed so that it can be executed.
/// After this, one must call` makeFileWritable` before calling `update`.
pub fn makeBinFileExecutable(self: *Compilation) !void {
return self.bin_file.makeExecutable();
}
pub fn makeBinFileWritable(self: *Compilation) !void {
return self.bin_file.makeWritable();
}
const Header = extern struct {
intern_pool: extern struct {
items_len: u32,
extra_len: u32,
limbs_len: u32,
string_bytes_len: u32,
},
};
/// Note that all state that is included in the cache hash namespace is *not*
/// saved, such as the target and most CLI flags. A cache hit will only occur
/// when subsequent compiler invocations use the same set of flags.
pub fn saveState(comp: *Compilation) !void {
var bufs_list: [6]std.os.iovec_const = undefined;
var bufs_len: usize = 0;
const lf = comp.bin_file orelse return;
if (comp.module) |zcu| {
const ip = &zcu.intern_pool;
const header: Header = .{
.intern_pool = .{
.items_len = @intCast(ip.items.len),
.extra_len = @intCast(ip.extra.items.len),
.limbs_len = @intCast(ip.limbs.items.len),
.string_bytes_len = @intCast(ip.string_bytes.items.len),
},
};
addBuf(&bufs_list, &bufs_len, mem.asBytes(&header));
addBuf(&bufs_list, &bufs_len, mem.sliceAsBytes(ip.limbs.items));
addBuf(&bufs_list, &bufs_len, mem.sliceAsBytes(ip.extra.items));
addBuf(&bufs_list, &bufs_len, mem.sliceAsBytes(ip.items.items(.data)));
addBuf(&bufs_list, &bufs_len, mem.sliceAsBytes(ip.items.items(.tag)));
addBuf(&bufs_list, &bufs_len, ip.string_bytes.items);
// TODO: compilation errors
// TODO: files
// TODO: namespaces
// TODO: decls
// TODO: linker state
}
var basename_buf: [255]u8 = undefined;
const basename = std.fmt.bufPrint(&basename_buf, "{s}.zcs", .{
comp.root_name,
}) catch o: {
basename_buf[basename_buf.len - 4 ..].* = ".zcs".*;
break :o &basename_buf;
};
// Using an atomic file prevents a crash or power failure from corrupting
// the previous incremental compilation state.
var af = try lf.emit.directory.handle.atomicFile(basename, .{});
defer af.deinit();
try af.file.pwritevAll(bufs_list[0..bufs_len], 0);
try af.finish();
}
fn addBuf(bufs_list: []std.os.iovec_const, bufs_len: *usize, buf: []const u8) void {
const i = bufs_len.*;
bufs_len.* = i + 1;
bufs_list[i] = .{
.iov_base = buf.ptr,
.iov_len = buf.len,
};
}
/// This function is temporally single-threaded.
pub fn totalErrorCount(self: *Compilation) u32 {
var total: usize =
self.misc_failures.count() +
@intFromBool(self.alloc_failure_occurred) +
self.lld_errors.items.len;
for (self.failed_c_objects.values()) |bundle| {
total += bundle.diags.len;
}
if (!build_options.only_core_functionality) {
for (self.failed_win32_resources.values()) |errs| {
total += errs.errorMessageCount();
}
}
if (self.module) |module| {
total += module.failed_exports.count();
total += module.failed_embed_files.count();
for (module.failed_files.keys(), module.failed_files.values()) |file, error_msg| {
if (error_msg) |_| {
total += 1;
} else {
assert(file.zir_loaded);
const payload_index = file.zir.extra[@intFromEnum(Zir.ExtraIndex.compile_errors)];
assert(payload_index != 0);
const header = file.zir.extraData(Zir.Inst.CompileErrors, payload_index);
total += header.data.items_len;
}
}
// Skip errors for Decls within files that failed parsing.
// When a parse error is introduced, we keep all the semantic analysis for
// the previous parse success, including compile errors, but we cannot
// emit them until the file succeeds parsing.
for (module.failed_decls.keys()) |key| {
if (module.declFileScope(key).okToReportErrors()) {
total += 1;
if (module.cimport_errors.get(key)) |errors| {
total += errors.errorMessageCount();
}
}
}
if (module.emit_h) |emit_h| {
for (emit_h.failed_decls.keys()) |key| {
if (module.declFileScope(key).okToReportErrors()) {
total += 1;
}
}
}
if (module.global_error_set.entries.len - 1 > module.error_limit) {
total += 1;
}
}
// The "no entry point found" error only counts if there are no semantic analysis errors.
if (total == 0) {
total += @intFromBool(self.link_error_flags.no_entry_point_found);
}
total += @intFromBool(self.link_error_flags.missing_libc);
// Misc linker errors
total += self.bin_file.miscErrors().len;
// Compile log errors only count if there are no other errors.
if (total == 0) {
if (self.module) |module| {
total += @intFromBool(module.compile_log_decls.count() != 0);
}
}
return @as(u32, @intCast(total));
}
/// This function is temporally single-threaded.
pub fn getAllErrorsAlloc(self: *Compilation) !ErrorBundle {
const gpa = self.gpa;
var bundle: ErrorBundle.Wip = undefined;
try bundle.init(gpa);
defer bundle.deinit();
for (self.failed_c_objects.values()) |diag_bundle| {
try diag_bundle.addToErrorBundle(&bundle);
}
if (!build_options.only_core_functionality) {
for (self.failed_win32_resources.values()) |error_bundle| {
try bundle.addBundleAsRoots(error_bundle);
}
}
for (self.lld_errors.items) |lld_error| {
const notes_len = @as(u32, @intCast(lld_error.context_lines.len));
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString(lld_error.msg),
.notes_len = notes_len,
});
const notes_start = try bundle.reserveNotes(notes_len);
for (notes_start.., lld_error.context_lines) |note, context_line| {
bundle.extra.items[note] = @intFromEnum(bundle.addErrorMessageAssumeCapacity(.{
.msg = try bundle.addString(context_line),
}));
}
}
for (self.misc_failures.values()) |*value| {
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString(value.msg),
.notes_len = if (value.children) |b| b.errorMessageCount() else 0,
});
if (value.children) |b| try bundle.addBundleAsNotes(b);
}
if (self.alloc_failure_occurred) {
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString("memory allocation failure"),
});
}
if (self.module) |module| {
for (module.failed_files.keys(), module.failed_files.values()) |file, error_msg| {
if (error_msg) |msg| {
try addModuleErrorMsg(module, &bundle, msg.*);
} else {
// Must be ZIR errors. Note that this may include AST errors.
// addZirErrorMessages asserts that the tree is loaded.
_ = try file.getTree(gpa);
try addZirErrorMessages(&bundle, file);
}
}
for (module.failed_embed_files.values()) |error_msg| {
try addModuleErrorMsg(module, &bundle, error_msg.*);
}
for (module.failed_decls.keys(), module.failed_decls.values()) |decl_index, error_msg| {
// Skip errors for Decls within files that had a parse failure.
// We'll try again once parsing succeeds.
if (module.declFileScope(decl_index).okToReportErrors()) {
try addModuleErrorMsg(module, &bundle, error_msg.*);
if (module.cimport_errors.get(decl_index)) |errors| {
for (errors.getMessages()) |err_msg_index| {
const err_msg = errors.getErrorMessage(err_msg_index);
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString(errors.nullTerminatedString(err_msg.msg)),
.src_loc = if (err_msg.src_loc != .none) blk: {
const src_loc = errors.getSourceLocation(err_msg.src_loc);
break :blk try bundle.addSourceLocation(.{
.src_path = try bundle.addString(errors.nullTerminatedString(src_loc.src_path)),
.span_start = src_loc.span_start,
.span_main = src_loc.span_main,
.span_end = src_loc.span_end,
.line = src_loc.line,
.column = src_loc.column,
.source_line = if (src_loc.source_line != 0) try bundle.addString(errors.nullTerminatedString(src_loc.source_line)) else 0,
});
} else .none,
});
}
}
}
}
if (module.emit_h) |emit_h| {
for (emit_h.failed_decls.keys(), emit_h.failed_decls.values()) |decl_index, error_msg| {
// Skip errors for Decls within files that had a parse failure.
// We'll try again once parsing succeeds.
if (module.declFileScope(decl_index).okToReportErrors()) {
try addModuleErrorMsg(module, &bundle, error_msg.*);
}
}
}
for (module.failed_exports.values()) |value| {
try addModuleErrorMsg(module, &bundle, value.*);
}
const actual_error_count = module.global_error_set.entries.len - 1;
if (actual_error_count > module.error_limit) {
try bundle.addRootErrorMessage(.{
.msg = try bundle.printString("module used more errors than possible: used {d}, max {d}", .{
actual_error_count, module.error_limit,
}),
.notes_len = 1,
});
const notes_start = try bundle.reserveNotes(1);
bundle.extra.items[notes_start] = @intFromEnum(try bundle.addErrorMessage(.{
.msg = try bundle.printString("use '--error-limit {d}' to increase limit", .{
actual_error_count,
}),
}));
}
}
if (bundle.root_list.items.len == 0) {
if (self.link_error_flags.no_entry_point_found) {
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString("no entry point found"),
});
}
}
if (self.link_error_flags.missing_libc) {
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString("libc not available"),
.notes_len = 2,
});
const notes_start = try bundle.reserveNotes(2);
bundle.extra.items[notes_start + 0] = @intFromEnum(try bundle.addErrorMessage(.{
.msg = try bundle.addString("run 'zig libc -h' to learn about libc installations"),
}));
bundle.extra.items[notes_start + 1] = @intFromEnum(try bundle.addErrorMessage(.{
.msg = try bundle.addString("run 'zig targets' to see the targets for which zig can always provide libc"),
}));
}
for (self.bin_file.miscErrors()) |link_err| {
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString(link_err.msg),
.notes_len = @intCast(link_err.notes.len),
});
const notes_start = try bundle.reserveNotes(@intCast(link_err.notes.len));
for (link_err.notes, 0..) |note, i| {
bundle.extra.items[notes_start + i] = @intFromEnum(try bundle.addErrorMessage(.{
.msg = try bundle.addString(note.msg),
}));
}
}
if (self.module) |module| {
if (bundle.root_list.items.len == 0 and module.compile_log_decls.count() != 0) {
const keys = module.compile_log_decls.keys();
const values = module.compile_log_decls.values();
// First one will be the error; subsequent ones will be notes.
const err_decl = module.declPtr(keys[0]);
const src_loc = err_decl.nodeOffsetSrcLoc(values[0], module);
const err_msg = Module.ErrorMsg{
.src_loc = src_loc,
.msg = "found compile log statement",
.notes = try gpa.alloc(Module.ErrorMsg, module.compile_log_decls.count() - 1),
};
defer gpa.free(err_msg.notes);
for (keys[1..], 0..) |key, i| {
const note_decl = module.declPtr(key);
err_msg.notes[i] = .{
.src_loc = note_decl.nodeOffsetSrcLoc(values[i + 1], module),
.msg = "also here",
};
}
try addModuleErrorMsg(module, &bundle, err_msg);
}
}
assert(self.totalErrorCount() == bundle.root_list.items.len);
const compile_log_text = if (self.module) |m| m.compile_log_text.items else "";
return bundle.toOwnedBundle(compile_log_text);
}
pub const ErrorNoteHashContext = struct {
eb: *const ErrorBundle.Wip,
pub fn hash(ctx: ErrorNoteHashContext, key: ErrorBundle.ErrorMessage) u32 {
var hasher = std.hash.Wyhash.init(0);
const eb = ctx.eb.tmpBundle();
hasher.update(eb.nullTerminatedString(key.msg));
if (key.src_loc != .none) {
const src = eb.getSourceLocation(key.src_loc);
hasher.update(eb.nullTerminatedString(src.src_path));
std.hash.autoHash(&hasher, src.line);
std.hash.autoHash(&hasher, src.column);
std.hash.autoHash(&hasher, src.span_main);
}
return @as(u32, @truncate(hasher.final()));
}
pub fn eql(
ctx: ErrorNoteHashContext,
a: ErrorBundle.ErrorMessage,
b: ErrorBundle.ErrorMessage,
b_index: usize,
) bool {
_ = b_index;
const eb = ctx.eb.tmpBundle();
const msg_a = eb.nullTerminatedString(a.msg);
const msg_b = eb.nullTerminatedString(b.msg);
if (!mem.eql(u8, msg_a, msg_b)) return false;
if (a.src_loc == .none and b.src_loc == .none) return true;
if (a.src_loc == .none or b.src_loc == .none) return false;
const src_a = eb.getSourceLocation(a.src_loc);
const src_b = eb.getSourceLocation(b.src_loc);
const src_path_a = eb.nullTerminatedString(src_a.src_path);
const src_path_b = eb.nullTerminatedString(src_b.src_path);
return mem.eql(u8, src_path_a, src_path_b) and
src_a.line == src_b.line and
src_a.column == src_b.column and
src_a.span_main == src_b.span_main;
}
};
pub fn addModuleErrorMsg(mod: *Module, eb: *ErrorBundle.Wip, module_err_msg: Module.ErrorMsg) !void {
const gpa = eb.gpa;
const ip = &mod.intern_pool;
const err_source = module_err_msg.src_loc.file_scope.getSource(gpa) catch |err| {
const file_path = try module_err_msg.src_loc.file_scope.fullPath(gpa);
defer gpa.free(file_path);
try eb.addRootErrorMessage(.{
.msg = try eb.printString("unable to load '{s}': {s}", .{
file_path, @errorName(err),
}),
});
return;
};
const err_span = try module_err_msg.src_loc.span(gpa);
const err_loc = std.zig.findLineColumn(err_source.bytes, err_span.main);
const file_path = try module_err_msg.src_loc.file_scope.fullPath(gpa);
defer gpa.free(file_path);
var ref_traces: std.ArrayListUnmanaged(ErrorBundle.ReferenceTrace) = .{};
defer ref_traces.deinit(gpa);
const remaining_references: ?u32 = remaining: {
if (mod.comp.reference_trace) |_| {
if (module_err_msg.hidden_references > 0) break :remaining module_err_msg.hidden_references;
} else {
if (module_err_msg.reference_trace.len > 0) break :remaining 0;
}
break :remaining null;
};
try ref_traces.ensureTotalCapacityPrecise(gpa, module_err_msg.reference_trace.len +
@intFromBool(remaining_references != null));
for (module_err_msg.reference_trace) |module_reference| {
const source = try module_reference.src_loc.file_scope.getSource(gpa);
const span = try module_reference.src_loc.span(gpa);
const loc = std.zig.findLineColumn(source.bytes, span.main);
const rt_file_path = try module_reference.src_loc.file_scope.fullPath(gpa);
defer gpa.free(rt_file_path);
ref_traces.appendAssumeCapacity(.{
.decl_name = try eb.addString(ip.stringToSlice(module_reference.decl)),
.src_loc = try eb.addSourceLocation(.{
.src_path = try eb.addString(rt_file_path),
.span_start = span.start,
.span_main = span.main,
.span_end = span.end,
.line = @intCast(loc.line),
.column = @intCast(loc.column),
.source_line = 0,
}),
});
}
if (remaining_references) |remaining| ref_traces.appendAssumeCapacity(
.{ .decl_name = remaining, .src_loc = .none },
);
const src_loc = try eb.addSourceLocation(.{
.src_path = try eb.addString(file_path),
.span_start = err_span.start,
.span_main = err_span.main,
.span_end = err_span.end,
.line = @intCast(err_loc.line),
.column = @intCast(err_loc.column),
.source_line = if (module_err_msg.src_loc.lazy == .entire_file)
0
else
try eb.addString(err_loc.source_line),
.reference_trace_len = @intCast(ref_traces.items.len),
});
for (ref_traces.items) |rt| {
try eb.addReferenceTrace(rt);
}
// De-duplicate error notes. The main use case in mind for this is
// too many "note: called from here" notes when eval branch quota is reached.
var notes: std.ArrayHashMapUnmanaged(ErrorBundle.ErrorMessage, void, ErrorNoteHashContext, true) = .{};
defer notes.deinit(gpa);
for (module_err_msg.notes) |module_note| {
const source = try module_note.src_loc.file_scope.getSource(gpa);
const span = try module_note.src_loc.span(gpa);
const loc = std.zig.findLineColumn(source.bytes, span.main);
const note_file_path = try module_note.src_loc.file_scope.fullPath(gpa);
defer gpa.free(note_file_path);
const gop = try notes.getOrPutContext(gpa, .{
.msg = try eb.addString(module_note.msg),
.src_loc = try eb.addSourceLocation(.{
.src_path = try eb.addString(note_file_path),
.span_start = span.start,
.span_main = span.main,
.span_end = span.end,
.line = @intCast(loc.line),
.column = @intCast(loc.column),
.source_line = if (err_loc.eql(loc)) 0 else try eb.addString(loc.source_line),
}),
}, .{ .eb = eb });
if (gop.found_existing) {
gop.key_ptr.count += 1;
}
}
const notes_len: u32 = @intCast(notes.entries.len);
try eb.addRootErrorMessage(.{
.msg = try eb.addString(module_err_msg.msg),
.src_loc = src_loc,
.notes_len = notes_len,
});
const notes_start = try eb.reserveNotes(notes_len);
for (notes_start.., notes.keys()) |i, note| {
eb.extra.items[i] = @intFromEnum(try eb.addErrorMessage(note));
}
}
pub fn addZirErrorMessages(eb: *ErrorBundle.Wip, file: *Module.File) !void {
assert(file.zir_loaded);
assert(file.tree_loaded);
assert(file.source_loaded);
const payload_index = file.zir.extra[@intFromEnum(Zir.ExtraIndex.compile_errors)];
assert(payload_index != 0);
const gpa = eb.gpa;
const header = file.zir.extraData(Zir.Inst.CompileErrors, payload_index);
const items_len = header.data.items_len;
var extra_index = header.end;
for (0..items_len) |_| {
const item = file.zir.extraData(Zir.Inst.CompileErrors.Item, extra_index);
extra_index = item.end;
const err_span = blk: {
if (item.data.node != 0) {
break :blk Module.SrcLoc.nodeToSpan(&file.tree, item.data.node);
}
const token_starts = file.tree.tokens.items(.start);
const start = token_starts[item.data.token] + item.data.byte_offset;
const end = start + @as(u32, @intCast(file.tree.tokenSlice(item.data.token).len)) - item.data.byte_offset;
break :blk Module.SrcLoc.Span{ .start = start, .end = end, .main = start };
};
const err_loc = std.zig.findLineColumn(file.source, err_span.main);
{
const msg = file.zir.nullTerminatedString(item.data.msg);
const src_path = try file.fullPath(gpa);
defer gpa.free(src_path);
try eb.addRootErrorMessage(.{
.msg = try eb.addString(msg),
.src_loc = try eb.addSourceLocation(.{
.src_path = try eb.addString(src_path),
.span_start = err_span.start,
.span_main = err_span.main,
.span_end = err_span.end,
.line = @as(u32, @intCast(err_loc.line)),
.column = @as(u32, @intCast(err_loc.column)),
.source_line = try eb.addString(err_loc.source_line),
}),
.notes_len = item.data.notesLen(file.zir),
});
}
if (item.data.notes != 0) {
const notes_start = try eb.reserveNotes(item.data.notes);
const block = file.zir.extraData(Zir.Inst.Block, item.data.notes);
const body = file.zir.extra[block.end..][0..block.data.body_len];
for (notes_start.., body) |note_i, body_elem| {
const note_item = file.zir.extraData(Zir.Inst.CompileErrors.Item, body_elem);
const msg = file.zir.nullTerminatedString(note_item.data.msg);
const span = blk: {
if (note_item.data.node != 0) {
break :blk Module.SrcLoc.nodeToSpan(&file.tree, note_item.data.node);
}
const token_starts = file.tree.tokens.items(.start);
const start = token_starts[note_item.data.token] + note_item.data.byte_offset;
const end = start + @as(u32, @intCast(file.tree.tokenSlice(note_item.data.token).len)) - item.data.byte_offset;
break :blk Module.SrcLoc.Span{ .start = start, .end = end, .main = start };
};
const loc = std.zig.findLineColumn(file.source, span.main);
const src_path = try file.fullPath(gpa);
defer gpa.free(src_path);
eb.extra.items[note_i] = @intFromEnum(try eb.addErrorMessage(.{
.msg = try eb.addString(msg),
.src_loc = try eb.addSourceLocation(.{
.src_path = try eb.addString(src_path),
.span_start = span.start,
.span_main = span.main,
.span_end = span.end,
.line = @as(u32, @intCast(loc.line)),
.column = @as(u32, @intCast(loc.column)),
.source_line = if (loc.eql(err_loc))
0
else
try eb.addString(loc.source_line),
}),
.notes_len = 0, // TODO rework this function to be recursive
}));
}
}
}
}
pub fn performAllTheWork(
comp: *Compilation,
main_progress_node: *std.Progress.Node,
) error{ TimerUnsupported, OutOfMemory }!void {
// Here we queue up all the AstGen tasks first, followed by C object compilation.
// We wait until the AstGen tasks are all completed before proceeding to the
// (at least for now) single-threaded main work queue. However, C object compilation
// only needs to be finished by the end of this function.
var zir_prog_node = main_progress_node.start("AST Lowering", 0);
defer zir_prog_node.end();
var c_obj_prog_node = main_progress_node.start("Compile C Objects", comp.c_source_files.len);
defer c_obj_prog_node.end();
var win32_resource_prog_node = main_progress_node.start("Compile Win32 Resources", comp.rc_source_files.len);
defer win32_resource_prog_node.end();
comp.work_queue_wait_group.reset();
defer comp.work_queue_wait_group.wait();
{
const astgen_frame = tracy.namedFrame("astgen");
defer astgen_frame.end();
comp.astgen_wait_group.reset();
defer comp.astgen_wait_group.wait();
// builtin.zig is handled specially for two reasons:
// 1. to avoid race condition of zig processes truncating each other's builtin.zig files
// 2. optimization; in the hot path it only incurs a stat() syscall, which happens
// in the `astgen_wait_group`.
if (comp.job_queued_update_builtin_zig) b: {
comp.job_queued_update_builtin_zig = false;
const zcu = comp.module orelse break :b;
_ = zcu;
// TODO put all the modules in a flat array to make them easy to iterate.
var seen: std.AutoArrayHashMapUnmanaged(*Package.Module, void) = .{};
defer seen.deinit(comp.gpa);
try seen.put(comp.gpa, comp.root_mod);
var i: usize = 0;
while (i < seen.count()) : (i += 1) {
const mod = seen.keys()[i];
for (mod.deps.values()) |dep|
try seen.put(comp.gpa, dep);
const file = mod.builtin_file orelse continue;
comp.astgen_wait_group.start();
try comp.thread_pool.spawn(workerUpdateBuiltinZigFile, .{
comp, mod, file, &comp.astgen_wait_group,
});
}
}
while (comp.astgen_work_queue.readItem()) |file| {
comp.astgen_wait_group.start();
try comp.thread_pool.spawn(workerAstGenFile, .{
comp, file, &zir_prog_node, &comp.astgen_wait_group, .root,
});
}
while (comp.embed_file_work_queue.readItem()) |embed_file| {
comp.astgen_wait_group.start();
try comp.thread_pool.spawn(workerCheckEmbedFile, .{
comp, embed_file, &comp.astgen_wait_group,
});
}
while (comp.c_object_work_queue.readItem()) |c_object| {
comp.work_queue_wait_group.start();
try comp.thread_pool.spawn(workerUpdateCObject, .{
comp, c_object, &c_obj_prog_node, &comp.work_queue_wait_group,
});
}
if (!build_options.only_core_functionality) {
while (comp.win32_resource_work_queue.readItem()) |win32_resource| {
comp.work_queue_wait_group.start();
try comp.thread_pool.spawn(workerUpdateWin32Resource, .{
comp, win32_resource, &win32_resource_prog_node, &comp.work_queue_wait_group,
});
}
}
}
if (comp.module) |mod| {
try reportMultiModuleErrors(mod);
}
if (comp.module) |mod| {
mod.sema_prog_node = main_progress_node.start("Semantic Analysis", 0);
mod.sema_prog_node.activate();
}
defer if (comp.module) |mod| {
mod.sema_prog_node.end();
mod.sema_prog_node = undefined;
};
// In this main loop we give priority to non-anonymous Decls in the work queue, so
// that they can establish references to anonymous Decls, setting alive=true in the
// backend, preventing anonymous Decls from being prematurely destroyed.
while (true) {
if (comp.work_queue.readItem()) |work_item| {
try processOneJob(comp, work_item, main_progress_node);
continue;
}
if (comp.anon_work_queue.readItem()) |work_item| {
try processOneJob(comp, work_item, main_progress_node);
continue;
}
break;
}
if (comp.job_queued_compiler_rt_lib) {
comp.job_queued_compiler_rt_lib = false;
buildCompilerRtOneShot(comp, .Lib, &comp.compiler_rt_lib, main_progress_node);
}
if (comp.job_queued_compiler_rt_obj) {
comp.job_queued_compiler_rt_obj = false;
buildCompilerRtOneShot(comp, .Obj, &comp.compiler_rt_obj, main_progress_node);
}
}
fn processOneJob(comp: *Compilation, job: Job, prog_node: *std.Progress.Node) !void {
switch (job) {
.codegen_decl => |decl_index| {
const module = comp.module.?;
const decl = module.declPtr(decl_index);
switch (decl.analysis) {
.unreferenced => unreachable,
.in_progress => unreachable,
.outdated => unreachable,
.file_failure,
.sema_failure,
.liveness_failure,
.codegen_failure,
.dependency_failure,
.sema_failure_retryable,
=> return,
.complete, .codegen_failure_retryable => {
const named_frame = tracy.namedFrame("codegen_decl");
defer named_frame.end();
assert(decl.has_tv);
if (decl.alive) {
try module.linkerUpdateDecl(decl_index);
return;
}
// Instead of sending this decl to the linker, we actually will delete it
// because we found out that it in fact was never referenced.
module.deleteUnusedDecl(decl_index);
return;
},
}
},
.codegen_func => |func| {
const named_frame = tracy.namedFrame("codegen_func");
defer named_frame.end();
const module = comp.module.?;
module.ensureFuncBodyAnalyzed(func) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => return,
};
},
.emit_h_decl => |decl_index| {
const module = comp.module.?;
const decl = module.declPtr(decl_index);
switch (decl.analysis) {
.unreferenced => unreachable,
.in_progress => unreachable,
.outdated => unreachable,
.file_failure,
.sema_failure,
.dependency_failure,
.sema_failure_retryable,
=> return,
// emit-h only requires semantic analysis of the Decl to be complete,
// it does not depend on machine code generation to succeed.
.liveness_failure, .codegen_failure, .codegen_failure_retryable, .complete => {
const named_frame = tracy.namedFrame("emit_h_decl");
defer named_frame.end();
const gpa = comp.gpa;
const emit_h = module.emit_h.?;
_ = try emit_h.decl_table.getOrPut(gpa, decl_index);
const decl_emit_h = emit_h.declPtr(decl_index);
const fwd_decl = &decl_emit_h.fwd_decl;
fwd_decl.shrinkRetainingCapacity(0);
var ctypes_arena = std.heap.ArenaAllocator.init(gpa);
defer ctypes_arena.deinit();
var dg: c_codegen.DeclGen = .{
.gpa = gpa,
.module = module,
.error_msg = null,
.pass = .{ .decl = decl_index },
.is_naked_fn = false,
.fwd_decl = fwd_decl.toManaged(gpa),
.ctypes = .{},
.anon_decl_deps = .{},
.aligned_anon_decls = .{},
};
defer {
dg.ctypes.deinit(gpa);
dg.fwd_decl.deinit();
}
c_codegen.genHeader(&dg) catch |err| switch (err) {
error.AnalysisFail => {
try emit_h.failed_decls.put(gpa, decl_index, dg.error_msg.?);
return;
},
else => |e| return e,
};
fwd_decl.* = dg.fwd_decl.moveToUnmanaged();
fwd_decl.shrinkAndFree(gpa, fwd_decl.items.len);
},
}
},
.analyze_decl => |decl_index| {
const module = comp.module.?;
module.ensureDeclAnalyzed(decl_index) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => return,
};
const decl = module.declPtr(decl_index);
if (decl.kind == .@"test" and comp.config.is_test) {
// Tests are always emitted in test binaries. The decl_refs are created by
// Module.populateTestFunctions, but this will not queue body analysis, so do
// that now.
try module.ensureFuncBodyAnalysisQueued(decl.val.toIntern());
}
},
.update_line_number => |decl_index| {
const named_frame = tracy.namedFrame("update_line_number");
defer named_frame.end();
const gpa = comp.gpa;
const module = comp.module.?;
const decl = module.declPtr(decl_index);
comp.bin_file.updateDeclLineNumber(module, decl_index) catch |err| {
try module.failed_decls.ensureUnusedCapacity(gpa, 1);
module.failed_decls.putAssumeCapacityNoClobber(decl_index, try Module.ErrorMsg.create(
gpa,
decl.srcLoc(module),
"unable to update line number: {s}",
.{@errorName(err)},
));
decl.analysis = .codegen_failure_retryable;
};
},
.analyze_mod => |pkg| {
const named_frame = tracy.namedFrame("analyze_mod");
defer named_frame.end();
const module = comp.module.?;
module.semaPkg(pkg) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => return,
};
},
.glibc_crt_file => |crt_file| {
const named_frame = tracy.namedFrame("glibc_crt_file");
defer named_frame.end();
glibc.buildCRTFile(comp, crt_file, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(.glibc_crt_file, "unable to build glibc CRT file: {s}", .{
@errorName(err),
});
};
},
.glibc_shared_objects => {
const named_frame = tracy.namedFrame("glibc_shared_objects");
defer named_frame.end();
glibc.buildSharedObjects(comp, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.glibc_shared_objects,
"unable to build glibc shared objects: {s}",
.{@errorName(err)},
);
};
},
.musl_crt_file => |crt_file| {
const named_frame = tracy.namedFrame("musl_crt_file");
defer named_frame.end();
musl.buildCRTFile(comp, crt_file, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.musl_crt_file,
"unable to build musl CRT file: {s}",
.{@errorName(err)},
);
};
},
.mingw_crt_file => |crt_file| {
const named_frame = tracy.namedFrame("mingw_crt_file");
defer named_frame.end();
mingw.buildCRTFile(comp, crt_file, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.mingw_crt_file,
"unable to build mingw-w64 CRT file {s}: {s}",
.{ @tagName(crt_file), @errorName(err) },
);
};
},
.windows_import_lib => |index| {
const named_frame = tracy.namedFrame("windows_import_lib");
defer named_frame.end();
const link_lib = comp.system_libs.keys()[index];
mingw.buildImportLib(comp, link_lib) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.windows_import_lib,
"unable to generate DLL import .lib file for {s}: {s}",
.{ link_lib, @errorName(err) },
);
};
},
.libunwind => {
const named_frame = tracy.namedFrame("libunwind");
defer named_frame.end();
libunwind.buildStaticLib(comp, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.libunwind,
"unable to build libunwind: {s}",
.{@errorName(err)},
);
};
},
.libcxx => {
const named_frame = tracy.namedFrame("libcxx");
defer named_frame.end();
libcxx.buildLibCXX(comp, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.libcxx,
"unable to build libcxx: {s}",
.{@errorName(err)},
);
};
},
.libcxxabi => {
const named_frame = tracy.namedFrame("libcxxabi");
defer named_frame.end();
libcxx.buildLibCXXABI(comp, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.libcxxabi,
"unable to build libcxxabi: {s}",
.{@errorName(err)},
);
};
},
.libtsan => {
const named_frame = tracy.namedFrame("libtsan");
defer named_frame.end();
libtsan.buildTsan(comp, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.libtsan,
"unable to build TSAN library: {s}",
.{@errorName(err)},
);
};
},
.wasi_libc_crt_file => |crt_file| {
const named_frame = tracy.namedFrame("wasi_libc_crt_file");
defer named_frame.end();
wasi_libc.buildCRTFile(comp, crt_file, prog_node) catch |err| {
// TODO Surface more error details.
comp.lockAndSetMiscFailure(
.wasi_libc_crt_file,
"unable to build WASI libc CRT file: {s}",
.{@errorName(err)},
);
};
},
.zig_libc => {
const named_frame = tracy.namedFrame("zig_libc");
defer named_frame.end();
comp.buildOutputFromZig(
"c.zig",
.Lib,
&comp.libc_static_lib,
.zig_libc,
prog_node,
) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.SubCompilationFailed => return, // error reported already
else => comp.lockAndSetMiscFailure(
.zig_libc,
"unable to build zig's multitarget libc: {s}",
.{@errorName(err)},
),
};
},
}
}
const AstGenSrc = union(enum) {
root,
import: struct {
importing_file: *Module.File,
import_tok: std.zig.Ast.TokenIndex,
},
};
fn workerAstGenFile(
comp: *Compilation,
file: *Module.File,
prog_node: *std.Progress.Node,
wg: *WaitGroup,
src: AstGenSrc,
) void {
defer wg.finish();
var child_prog_node = prog_node.start(file.sub_file_path, 0);
child_prog_node.activate();
defer child_prog_node.end();
const mod = comp.module.?;
mod.astGenFile(file) catch |err| switch (err) {
error.AnalysisFail => return,
else => {
file.status = .retryable_failure;
comp.reportRetryableAstGenError(src, file, err) catch |oom| switch (oom) {
// Swallowing this error is OK because it's implied to be OOM when
// there is a missing `failed_files` error message.
error.OutOfMemory => {},
};
return;
},
};
// Pre-emptively look for `@import` paths and queue them up.
// If we experience an error preemptively fetching the
// file, just ignore it and let it happen again later during Sema.
assert(file.zir_loaded);
const imports_index = file.zir.extra[@intFromEnum(Zir.ExtraIndex.imports)];
if (imports_index != 0) {
const extra = file.zir.extraData(Zir.Inst.Imports, imports_index);
var import_i: u32 = 0;
var extra_index = extra.end;
while (import_i < extra.data.imports_len) : (import_i += 1) {
const item = file.zir.extraData(Zir.Inst.Imports.Item, extra_index);
extra_index = item.end;
const import_path = file.zir.nullTerminatedString(item.data.name);
// `@import("builtin")` is handled specially.
if (mem.eql(u8, import_path, "builtin")) continue;
const import_result = blk: {
comp.mutex.lock();
defer comp.mutex.unlock();
const res = mod.importFile(file, import_path) catch continue;
if (!res.is_pkg) {
res.file.addReference(mod.*, .{ .import = .{
.file_scope = file,
.parent_decl_node = 0,
.lazy = .{ .token_abs = item.data.token },
} }) catch continue;
}
break :blk res;
};
if (import_result.is_new) {
log.debug("AstGen of {s} has import '{s}'; queuing AstGen of {s}", .{
file.sub_file_path, import_path, import_result.file.sub_file_path,
});
const sub_src: AstGenSrc = .{ .import = .{
.importing_file = file,
.import_tok = item.data.token,
} };
wg.start();
comp.thread_pool.spawn(workerAstGenFile, .{
comp, import_result.file, prog_node, wg, sub_src,
}) catch {
wg.finish();
continue;
};
}
}
}
}
fn workerUpdateBuiltinZigFile(
comp: *Compilation,
mod: *Package.Module,
file: *Module.File,
wg: *WaitGroup,
) void {
defer wg.finish();
Builtin.populateFile(comp, mod, file) catch |err| {
comp.mutex.lock();
defer comp.mutex.unlock();
comp.setMiscFailure(.write_builtin_zig, "unable to write '{}{s}': {s}", .{
mod.root, mod.root_src_path, @errorName(err),
});
};
}
fn workerCheckEmbedFile(
comp: *Compilation,
embed_file: *Module.EmbedFile,
wg: *WaitGroup,
) void {
defer wg.finish();
comp.detectEmbedFileUpdate(embed_file) catch |err| {
comp.reportRetryableEmbedFileError(embed_file, err) catch |oom| switch (oom) {
// Swallowing this error is OK because it's implied to be OOM when
// there is a missing `failed_embed_files` error message.
error.OutOfMemory => {},
};
return;
};
}
fn detectEmbedFileUpdate(comp: *Compilation, embed_file: *Module.EmbedFile) !void {
const mod = comp.module.?;
const ip = &mod.intern_pool;
const sub_file_path = ip.stringToSlice(embed_file.sub_file_path);
var file = try embed_file.owner.root.openFile(sub_file_path, .{});
defer file.close();
const stat = try file.stat();
const unchanged_metadata =
stat.size == embed_file.stat.size and
stat.mtime == embed_file.stat.mtime and
stat.inode == embed_file.stat.inode;
if (unchanged_metadata) return;
@panic("TODO: handle embed file incremental update");
}
pub fn obtainCObjectCacheManifest(
comp: *const Compilation,
owner_mod: *Package.Module,
) Cache.Manifest {
var man = comp.cache_parent.obtain();
// Only things that need to be added on top of the base hash, and only things
// that apply both to @cImport and compiling C objects. No linking stuff here!
// Also nothing that applies only to compiling .zig code.
man.hash.add(owner_mod.sanitize_c);
man.hash.addListOfBytes(owner_mod.clang_argv);
man.hash.add(comp.config.link_libcpp);
// When libc_installation is null it means that Zig generated this dir list
// based on the zig library directory alone. The zig lib directory file
// path is purposefully either in the cache or not in the cache. The
// decision should not be overridden here.
if (comp.libc_installation != null) {
man.hash.addListOfBytes(comp.libc_include_dir_list);
}
return man;
}
pub fn obtainWin32ResourceCacheManifest(comp: *const Compilation) Cache.Manifest {
var man = comp.cache_parent.obtain();
man.hash.addListOfBytes(comp.rc_include_dir_list);
return man;
}
pub const CImportResult = struct {
out_zig_path: []u8,
cache_hit: bool,
errors: std.zig.ErrorBundle,
pub fn deinit(result: *CImportResult, gpa: mem.Allocator) void {
result.errors.deinit(gpa);
}
};
/// Caller owns returned memory.
/// This API is currently coupled pretty tightly to stage1's needs; it will need to be reworked
/// a bit when we want to start using it from self-hosted.
pub fn cImport(comp: *Compilation, c_src: []const u8, owner_mod: *Package.Module) !CImportResult {
if (build_options.only_core_functionality) @panic("@cImport is not available in a zig2.c build");
const tracy_trace = trace(@src());
defer tracy_trace.end();
const cimport_zig_basename = "cimport.zig";
var man = comp.obtainCObjectCacheManifest(owner_mod);
defer man.deinit();
man.hash.add(@as(u16, 0xb945)); // Random number to distinguish translate-c from compiling C objects
man.hash.addBytes(c_src);
man.hash.add(comp.config.c_frontend);
// If the previous invocation resulted in clang errors, we will see a hit
// here with 0 files in the manifest, in which case it is actually a miss.
// We need to "unhit" in this case, to keep the digests matching.
const prev_hash_state = man.hash.peekBin();
const actual_hit = hit: {
_ = try man.hit();
if (man.files.items.len == 0) {
man.unhit(prev_hash_state, 0);
break :hit false;
}
break :hit true;
};
const digest = if (!actual_hit) digest: {
var arena_allocator = std.heap.ArenaAllocator.init(comp.gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const tmp_digest = man.hash.peek();
const tmp_dir_sub_path = try std.fs.path.join(arena, &[_][]const u8{ "o", &tmp_digest });
var zig_cache_tmp_dir = try comp.local_cache_directory.handle.makeOpenPath(tmp_dir_sub_path, .{});
defer zig_cache_tmp_dir.close();
const cimport_basename = "cimport.h";
const out_h_path = try comp.local_cache_directory.join(arena, &[_][]const u8{
tmp_dir_sub_path, cimport_basename,
});
const out_dep_path = try std.fmt.allocPrint(arena, "{s}.d", .{out_h_path});
try zig_cache_tmp_dir.writeFile(cimport_basename, c_src);
if (comp.verbose_cimport) {
log.info("C import source: {s}", .{out_h_path});
}
var argv = std.ArrayList([]const u8).init(comp.gpa);
defer argv.deinit();
try argv.append(@tagName(comp.config.c_frontend)); // argv[0] is program name, actual args start at [1]
try comp.addTranslateCCArgs(arena, &argv, .c, out_dep_path, owner_mod);
try argv.append(out_h_path);
if (comp.verbose_cc) {
dump_argv(argv.items);
}
var tree = switch (comp.config.c_frontend) {
.aro => tree: {
const translate_c = @import("aro_translate_c.zig");
_ = translate_c;
if (true) @panic("TODO");
break :tree undefined;
},
.clang => tree: {
if (!build_options.have_llvm) unreachable;
const translate_c = @import("translate_c.zig");
// Convert to null terminated args.
const new_argv_with_sentinel = try arena.alloc(?[*:0]const u8, argv.items.len + 1);
new_argv_with_sentinel[argv.items.len] = null;
const new_argv = new_argv_with_sentinel[0..argv.items.len :null];
for (argv.items, 0..) |arg, i| {
new_argv[i] = try arena.dupeZ(u8, arg);
}
const c_headers_dir_path_z = try comp.zig_lib_directory.joinZ(arena, &[_][]const u8{"include"});
var errors = std.zig.ErrorBundle.empty;
errdefer errors.deinit(comp.gpa);
break :tree translate_c.translate(
comp.gpa,
new_argv.ptr,
new_argv.ptr + new_argv.len,
&errors,
c_headers_dir_path_z,
) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.SemanticAnalyzeFail => {
return CImportResult{
.out_zig_path = "",
.cache_hit = actual_hit,
.errors = errors,
};
},
};
},
};
defer tree.deinit(comp.gpa);
if (comp.verbose_cimport) {
log.info("C import .d file: {s}", .{out_dep_path});
}
const dep_basename = std.fs.path.basename(out_dep_path);
try man.addDepFilePost(zig_cache_tmp_dir, dep_basename);
if (comp.whole_cache_manifest) |whole_cache_manifest| {
comp.whole_cache_manifest_mutex.lock();
defer comp.whole_cache_manifest_mutex.unlock();
try whole_cache_manifest.addDepFilePost(zig_cache_tmp_dir, dep_basename);
}
const digest = man.final();
const o_sub_path = try std.fs.path.join(arena, &[_][]const u8{ "o", &digest });
var o_dir = try comp.local_cache_directory.handle.makeOpenPath(o_sub_path, .{});
defer o_dir.close();
var out_zig_file = try o_dir.createFile(cimport_zig_basename, .{});
defer out_zig_file.close();
const formatted = try tree.render(comp.gpa);
defer comp.gpa.free(formatted);
try out_zig_file.writeAll(formatted);
break :digest digest;
} else man.final();
if (man.have_exclusive_lock) {
// Write the updated manifest. This is a no-op if the manifest is not dirty. Note that it is
// possible we had a hit and the manifest is dirty, for example if the file mtime changed but
// the contents were the same, we hit the cache but the manifest is dirty and we need to update
// it to prevent doing a full file content comparison the next time around.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest for C import: {s}", .{@errorName(err)});
};
}
const out_zig_path = try comp.local_cache_directory.join(comp.arena.allocator(), &.{
"o", &digest, cimport_zig_basename,
});
if (comp.verbose_cimport) {
log.info("C import output: {s}", .{out_zig_path});
}
return CImportResult{
.out_zig_path = out_zig_path,
.cache_hit = actual_hit,
.errors = std.zig.ErrorBundle.empty,
};
}
fn workerUpdateCObject(
comp: *Compilation,
c_object: *CObject,
progress_node: *std.Progress.Node,
wg: *WaitGroup,
) void {
defer wg.finish();
comp.updateCObject(c_object, progress_node) catch |err| switch (err) {
error.AnalysisFail => return,
else => {
comp.reportRetryableCObjectError(c_object, err) catch |oom| switch (oom) {
// Swallowing this error is OK because it's implied to be OOM when
// there is a missing failed_c_objects error message.
error.OutOfMemory => {},
};
},
};
}
fn workerUpdateWin32Resource(
comp: *Compilation,
win32_resource: *Win32Resource,
progress_node: *std.Progress.Node,
wg: *WaitGroup,
) void {
defer wg.finish();
comp.updateWin32Resource(win32_resource, progress_node) catch |err| switch (err) {
error.AnalysisFail => return,
else => {
comp.reportRetryableWin32ResourceError(win32_resource, err) catch |oom| switch (oom) {
// Swallowing this error is OK because it's implied to be OOM when
// there is a missing failed_win32_resources error message.
error.OutOfMemory => {},
};
},
};
}
fn buildCompilerRtOneShot(
comp: *Compilation,
output_mode: std.builtin.OutputMode,
out: *?CRTFile,
prog_node: *std.Progress.Node,
) void {
comp.buildOutputFromZig(
"compiler_rt.zig",
output_mode,
out,
.compiler_rt,
prog_node,
) catch |err| switch (err) {
error.SubCompilationFailed => return, // error reported already
else => comp.lockAndSetMiscFailure(
.compiler_rt,
"unable to build compiler_rt: {s}",
.{@errorName(err)},
),
};
}
fn reportRetryableCObjectError(
comp: *Compilation,
c_object: *CObject,
err: anyerror,
) error{OutOfMemory}!void {
c_object.status = .failure_retryable;
switch (comp.failCObj(c_object, "{s}", .{@errorName(err)})) {
error.AnalysisFail => return,
else => |e| return e,
}
}
fn reportRetryableWin32ResourceError(
comp: *Compilation,
win32_resource: *Win32Resource,
err: anyerror,
) error{OutOfMemory}!void {
win32_resource.status = .failure_retryable;
var bundle: ErrorBundle.Wip = undefined;
try bundle.init(comp.gpa);
errdefer bundle.deinit();
try bundle.addRootErrorMessage(.{
.msg = try bundle.printString("{s}", .{@errorName(err)}),
.src_loc = try bundle.addSourceLocation(.{
.src_path = try bundle.addString(switch (win32_resource.src) {
.rc => |rc_src| rc_src.src_path,
.manifest => |manifest_src| manifest_src,
}),
.line = 0,
.column = 0,
.span_start = 0,
.span_main = 0,
.span_end = 0,
}),
});
const finished_bundle = try bundle.toOwnedBundle("");
{
comp.mutex.lock();
defer comp.mutex.unlock();
try comp.failed_win32_resources.putNoClobber(comp.gpa, win32_resource, finished_bundle);
}
}
fn reportRetryableAstGenError(
comp: *Compilation,
src: AstGenSrc,
file: *Module.File,
err: anyerror,
) error{OutOfMemory}!void {
const mod = comp.module.?;
const gpa = mod.gpa;
file.status = .retryable_failure;
const src_loc: Module.SrcLoc = switch (src) {
.root => .{
.file_scope = file,
.parent_decl_node = 0,
.lazy = .entire_file,
},
.import => |info| blk: {
const importing_file = info.importing_file;
break :blk .{
.file_scope = importing_file,
.parent_decl_node = 0,
.lazy = .{ .token_abs = info.import_tok },
};
},
};
const err_msg = try Module.ErrorMsg.create(gpa, src_loc, "unable to load '{}{s}': {s}", .{
file.mod.root, file.sub_file_path, @errorName(err),
});
errdefer err_msg.destroy(gpa);
{
comp.mutex.lock();
defer comp.mutex.unlock();
try mod.failed_files.putNoClobber(gpa, file, err_msg);
}
}
fn reportRetryableEmbedFileError(
comp: *Compilation,
embed_file: *Module.EmbedFile,
err: anyerror,
) error{OutOfMemory}!void {
const mod = comp.module.?;
const gpa = mod.gpa;
const src_loc = embed_file.src_loc;
const ip = &mod.intern_pool;
const err_msg = try Module.ErrorMsg.create(gpa, src_loc, "unable to load '{}{s}': {s}", .{
embed_file.owner.root,
ip.stringToSlice(embed_file.sub_file_path),
@errorName(err),
});
errdefer err_msg.destroy(gpa);
{
comp.mutex.lock();
defer comp.mutex.unlock();
try mod.failed_embed_files.putNoClobber(gpa, embed_file, err_msg);
}
}
fn updateCObject(comp: *Compilation, c_object: *CObject, c_obj_prog_node: *std.Progress.Node) !void {
if (comp.config.c_frontend == .aro) {
return comp.failCObj(c_object, "aro does not support compiling C objects yet", .{});
}
if (!build_options.have_llvm) {
return comp.failCObj(c_object, "clang not available: compiler built without LLVM extensions", .{});
}
const self_exe_path = comp.self_exe_path orelse
return comp.failCObj(c_object, "clang compilation disabled", .{});
const tracy_trace = trace(@src());
defer tracy_trace.end();
log.debug("updating C object: {s}", .{c_object.src.src_path});
if (c_object.clearStatus(comp.gpa)) {
// There was previous failure.
comp.mutex.lock();
defer comp.mutex.unlock();
// If the failure was OOM, there will not be an entry here, so we do
// not assert discard.
_ = comp.failed_c_objects.swapRemove(c_object);
}
var man = comp.obtainCObjectCacheManifest(c_object.src.owner);
defer man.deinit();
man.hash.add(comp.clang_preprocessor_mode);
cache_helpers.addOptionalEmitLoc(&man.hash, comp.emit_asm);
cache_helpers.addOptionalEmitLoc(&man.hash, comp.emit_llvm_ir);
cache_helpers.addOptionalEmitLoc(&man.hash, comp.emit_llvm_bc);
try cache_helpers.hashCSource(&man, c_object.src);
var arena_allocator = std.heap.ArenaAllocator.init(comp.gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const c_source_basename = std.fs.path.basename(c_object.src.src_path);
c_obj_prog_node.activate();
var child_progress_node = c_obj_prog_node.start(c_source_basename, 0);
child_progress_node.activate();
defer child_progress_node.end();
// Special case when doing build-obj for just one C file. When there are more than one object
// file and building an object we need to link them together, but with just one it should go
// directly to the output file.
const direct_o = comp.c_source_files.len == 1 and comp.module == null and
comp.config.output_mode == .Obj and comp.objects.len == 0;
const o_basename_noext = if (direct_o)
comp.root_name
else
c_source_basename[0 .. c_source_basename.len - std.fs.path.extension(c_source_basename).len];
const target = comp.getTarget();
const o_ext = target.ofmt.fileExt(target.cpu.arch);
const digest = if (!comp.disable_c_depfile and try man.hit()) man.final() else blk: {
var argv = std.ArrayList([]const u8).init(comp.gpa);
defer argv.deinit();
// In case we are doing passthrough mode, we need to detect -S and -emit-llvm.
const out_ext = e: {
if (!comp.clang_passthrough_mode)
break :e o_ext;
if (comp.emit_asm != null)
break :e ".s";
if (comp.emit_llvm_ir != null)
break :e ".ll";
if (comp.emit_llvm_bc != null)
break :e ".bc";
break :e o_ext;
};
const o_basename = try std.fmt.allocPrint(arena, "{s}{s}", .{ o_basename_noext, out_ext });
const ext = c_object.src.ext orelse classifyFileExt(c_object.src.src_path);
try argv.appendSlice(&[_][]const u8{ self_exe_path, "clang" });
// if "ext" is explicit, add "-x <lang>". Otherwise let clang do its thing.
if (c_object.src.ext != null) {
try argv.appendSlice(&[_][]const u8{ "-x", switch (ext) {
.assembly => "assembler",
.assembly_with_cpp => "assembler-with-cpp",
.c => "c",
.cpp => "c++",
.cu => "cuda",
.m => "objective-c",
.mm => "objective-c++",
else => fatal("language '{s}' is unsupported in this context", .{@tagName(ext)}),
} });
}
try argv.append(c_object.src.src_path);
// When all these flags are true, it means that the entire purpose of
// this compilation is to perform a single zig cc operation. This means
// that we could "tail call" clang by doing an execve, and any use of
// the caching system would actually be problematic since the user is
// presumably doing their own caching by using dep file flags.
if (std.process.can_execv and direct_o and
comp.disable_c_depfile and comp.clang_passthrough_mode)
{
try comp.addCCArgs(arena, &argv, ext, null, c_object.src.owner);
try argv.appendSlice(c_object.src.extra_flags);
try argv.appendSlice(c_object.src.cache_exempt_flags);
const out_obj_path = if (comp.bin_file) |lf|
try lf.emit.directory.join(arena, &.{lf.emit.sub_path})
else
"/dev/null";
try argv.ensureUnusedCapacity(5);
switch (comp.clang_preprocessor_mode) {
.no => argv.appendSliceAssumeCapacity(&[_][]const u8{ "-c", "-o", out_obj_path }),
.yes => argv.appendSliceAssumeCapacity(&[_][]const u8{ "-E", "-o", out_obj_path }),
.stdout => argv.appendAssumeCapacity("-E"),
}
if (comp.emit_asm != null) {
argv.appendAssumeCapacity("-S");
} else if (comp.emit_llvm_ir != null) {
argv.appendSliceAssumeCapacity(&[_][]const u8{ "-emit-llvm", "-S" });
} else if (comp.emit_llvm_bc != null) {
argv.appendAssumeCapacity("-emit-llvm");
}
if (comp.verbose_cc) {
dump_argv(argv.items);
}
const err = std.process.execv(arena, argv.items);
fatal("unable to execv clang: {s}", .{@errorName(err)});
}
// We can't know the digest until we do the C compiler invocation,
// so we need a temporary filename.
const out_obj_path = try comp.tmpFilePath(arena, o_basename);
const out_diag_path = try std.fmt.allocPrint(arena, "{s}.diag", .{out_obj_path});
var zig_cache_tmp_dir = try comp.local_cache_directory.handle.makeOpenPath("tmp", .{});
defer zig_cache_tmp_dir.close();
const out_dep_path: ?[]const u8 = if (comp.disable_c_depfile or !ext.clangSupportsDepFile())
null
else
try std.fmt.allocPrint(arena, "{s}.d", .{out_obj_path});
try comp.addCCArgs(arena, &argv, ext, out_dep_path, c_object.src.owner);
try argv.appendSlice(c_object.src.extra_flags);
try argv.appendSlice(c_object.src.cache_exempt_flags);
try argv.ensureUnusedCapacity(5);
switch (comp.clang_preprocessor_mode) {
.no => argv.appendSliceAssumeCapacity(&.{ "-c", "-o", out_obj_path }),
.yes => argv.appendSliceAssumeCapacity(&.{ "-E", "-o", out_obj_path }),
.stdout => argv.appendAssumeCapacity("-E"),
}
if (comp.clang_passthrough_mode) {
if (comp.emit_asm != null) {
argv.appendAssumeCapacity("-S");
} else if (comp.emit_llvm_ir != null) {
argv.appendSliceAssumeCapacity(&.{ "-emit-llvm", "-S" });
} else if (comp.emit_llvm_bc != null) {
argv.appendAssumeCapacity("-emit-llvm");
}
} else {
argv.appendSliceAssumeCapacity(&.{ "--serialize-diagnostics", out_diag_path });
}
if (comp.verbose_cc) {
dump_argv(argv.items);
}
if (std.process.can_spawn) {
var child = std.ChildProcess.init(argv.items, arena);
if (comp.clang_passthrough_mode) {
child.stdin_behavior = .Inherit;
child.stdout_behavior = .Inherit;
child.stderr_behavior = .Inherit;
const term = child.spawnAndWait() catch |err| {
return comp.failCObj(c_object, "unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
};
switch (term) {
.Exited => |code| {
if (code != 0) {
std.process.exit(code);
}
if (comp.clang_preprocessor_mode == .stdout)
std.process.exit(0);
},
else => std.process.abort(),
}
} else {
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Ignore;
child.stderr_behavior = .Pipe;
try child.spawn();
const stderr = try child.stderr.?.reader().readAllAlloc(arena, std.math.maxInt(usize));
const term = child.wait() catch |err| {
return comp.failCObj(c_object, "unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
};
switch (term) {
.Exited => |code| {
if (code != 0) {
const bundle = CObject.Diag.Bundle.parse(comp.gpa, out_diag_path) catch |err| {
log.err("{}: failed to parse clang diagnostics: {s}", .{ err, stderr });
return comp.failCObj(c_object, "clang exited with code {d}", .{code});
};
return comp.failCObjWithOwnedDiagBundle(c_object, bundle);
}
},
else => {
log.err("clang terminated with stderr: {s}", .{stderr});
return comp.failCObj(c_object, "clang terminated unexpectedly", .{});
},
}
}
} else {
const exit_code = try clangMain(arena, argv.items);
if (exit_code != 0) {
if (comp.clang_passthrough_mode) {
std.process.exit(exit_code);
} else {
return comp.failCObj(c_object, "clang exited with code {d}", .{exit_code});
}
}
if (comp.clang_passthrough_mode and
comp.clang_preprocessor_mode == .stdout)
{
std.process.exit(0);
}
}
if (out_dep_path) |dep_file_path| {
const dep_basename = std.fs.path.basename(dep_file_path);
// Add the files depended on to the cache system.
try man.addDepFilePost(zig_cache_tmp_dir, dep_basename);
if (comp.whole_cache_manifest) |whole_cache_manifest| {
comp.whole_cache_manifest_mutex.lock();
defer comp.whole_cache_manifest_mutex.unlock();
try whole_cache_manifest.addDepFilePost(zig_cache_tmp_dir, dep_basename);
}
// Just to save disk space, we delete the file because it is never needed again.
zig_cache_tmp_dir.deleteFile(dep_basename) catch |err| {
log.warn("failed to delete '{s}': {s}", .{ dep_file_path, @errorName(err) });
};
}
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
if (comp.disable_c_depfile) _ = try man.hit();
// Rename into place.
const digest = man.final();
const o_sub_path = try std.fs.path.join(arena, &[_][]const u8{ "o", &digest });
var o_dir = try comp.local_cache_directory.handle.makeOpenPath(o_sub_path, .{});
defer o_dir.close();
const tmp_basename = std.fs.path.basename(out_obj_path);
try std.fs.rename(zig_cache_tmp_dir, tmp_basename, o_dir, o_basename);
break :blk digest;
};
if (man.have_exclusive_lock) {
// Write the updated manifest. This is a no-op if the manifest is not dirty. Note that it is
// possible we had a hit and the manifest is dirty, for example if the file mtime changed but
// the contents were the same, we hit the cache but the manifest is dirty and we need to update
// it to prevent doing a full file content comparison the next time around.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when compiling '{s}': {s}", .{ c_object.src.src_path, @errorName(err) });
};
}
const o_basename = try std.fmt.allocPrint(arena, "{s}{s}", .{ o_basename_noext, o_ext });
c_object.status = .{
.success = .{
.object_path = try comp.local_cache_directory.join(comp.gpa, &[_][]const u8{
"o", &digest, o_basename,
}),
.lock = man.toOwnedLock(),
},
};
}
fn updateWin32Resource(comp: *Compilation, win32_resource: *Win32Resource, win32_resource_prog_node: *std.Progress.Node) !void {
if (!build_options.have_llvm) {
return comp.failWin32Resource(win32_resource, "clang not available: compiler built without LLVM extensions", .{});
}
const self_exe_path = comp.self_exe_path orelse
return comp.failWin32Resource(win32_resource, "clang compilation disabled", .{});
const tracy_trace = trace(@src());
defer tracy_trace.end();
const src_path = switch (win32_resource.src) {
.rc => |rc_src| rc_src.src_path,
.manifest => |src_path| src_path,
};
const src_basename = std.fs.path.basename(src_path);
log.debug("updating win32 resource: {s}", .{src_path});
var arena_allocator = std.heap.ArenaAllocator.init(comp.gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
if (win32_resource.clearStatus(comp.gpa)) {
// There was previous failure.
comp.mutex.lock();
defer comp.mutex.unlock();
// If the failure was OOM, there will not be an entry here, so we do
// not assert discard.
_ = comp.failed_win32_resources.swapRemove(win32_resource);
}
win32_resource_prog_node.activate();
var child_progress_node = win32_resource_prog_node.start(src_basename, 0);
child_progress_node.activate();
defer child_progress_node.end();
var man = comp.obtainWin32ResourceCacheManifest();
defer man.deinit();
// For .manifest files, we ultimately just want to generate a .res with
// the XML data as a RT_MANIFEST resource. This means we can skip preprocessing,
// include paths, CLI options, etc.
if (win32_resource.src == .manifest) {
_ = try man.addFile(src_path, null);
const res_basename = try std.fmt.allocPrint(arena, "{s}.res", .{src_basename});
const digest = if (try man.hit()) man.final() else blk: {
// The digest only depends on the .manifest file, so we can
// get the digest now and write the .res directly to the cache
const digest = man.final();
const o_sub_path = try std.fs.path.join(arena, &.{ "o", &digest });
var o_dir = try comp.local_cache_directory.handle.makeOpenPath(o_sub_path, .{});
defer o_dir.close();
var output_file = o_dir.createFile(res_basename, .{}) catch |err| {
const output_file_path = try comp.local_cache_directory.join(arena, &.{ o_sub_path, res_basename });
return comp.failWin32Resource(win32_resource, "failed to create output file '{s}': {s}", .{ output_file_path, @errorName(err) });
};
var output_file_closed = false;
defer if (!output_file_closed) output_file.close();
var diagnostics = resinator.errors.Diagnostics.init(arena);
defer diagnostics.deinit();
var output_buffered_stream = std.io.bufferedWriter(output_file.writer());
// In .rc files, a " within a quoted string is escaped as ""
const fmtRcEscape = struct {
fn formatRcEscape(bytes: []const u8, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = fmt;
_ = options;
for (bytes) |byte| switch (byte) {
'"' => try writer.writeAll("\"\""),
'\\' => try writer.writeAll("\\\\"),
else => try writer.writeByte(byte),
};
}
pub fn fmtRcEscape(bytes: []const u8) std.fmt.Formatter(formatRcEscape) {
return .{ .data = bytes };
}
}.fmtRcEscape;
// 1 is CREATEPROCESS_MANIFEST_RESOURCE_ID which is the default ID used for RT_MANIFEST resources
// 24 is RT_MANIFEST
const input = try std.fmt.allocPrint(arena, "1 24 \"{s}\"", .{fmtRcEscape(src_path)});
resinator.compile.compile(arena, input, output_buffered_stream.writer(), .{
.cwd = std.fs.cwd(),
.diagnostics = &diagnostics,
.ignore_include_env_var = true,
.default_code_page = .utf8,
}) catch |err| switch (err) {
error.ParseError, error.CompileError => {
// Delete the output file on error
output_file.close();
output_file_closed = true;
// Failing to delete is not really a big deal, so swallow any errors
o_dir.deleteFile(res_basename) catch {
const output_file_path = try comp.local_cache_directory.join(arena, &.{ o_sub_path, res_basename });
log.warn("failed to delete '{s}': {s}", .{ output_file_path, @errorName(err) });
};
return comp.failWin32ResourceCompile(win32_resource, input, &diagnostics, null);
},
else => |e| return e,
};
try output_buffered_stream.flush();
break :blk digest;
};
if (man.have_exclusive_lock) {
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when compiling '{s}': {s}", .{ src_path, @errorName(err) });
};
}
win32_resource.status = .{
.success = .{
.res_path = try comp.local_cache_directory.join(comp.gpa, &[_][]const u8{
"o", &digest, res_basename,
}),
.lock = man.toOwnedLock(),
},
};
return;
}
// We now know that we're compiling an .rc file
const rc_src = win32_resource.src.rc;
_ = try man.addFile(rc_src.src_path, null);
man.hash.addListOfBytes(rc_src.extra_flags);
const rc_basename_noext = src_basename[0 .. src_basename.len - std.fs.path.extension(src_basename).len];
const digest = if (try man.hit()) man.final() else blk: {
const rcpp_filename = try std.fmt.allocPrint(arena, "{s}.rcpp", .{rc_basename_noext});
const out_rcpp_path = try comp.tmpFilePath(arena, rcpp_filename);
var zig_cache_tmp_dir = try comp.local_cache_directory.handle.makeOpenPath("tmp", .{});
defer zig_cache_tmp_dir.close();
const res_filename = try std.fmt.allocPrint(arena, "{s}.res", .{rc_basename_noext});
// We can't know the digest until we do the compilation,
// so we need a temporary filename.
const out_res_path = try comp.tmpFilePath(arena, res_filename);
var options = options: {
var resinator_args = try std.ArrayListUnmanaged([]const u8).initCapacity(comp.gpa, rc_src.extra_flags.len + 4);
defer resinator_args.deinit(comp.gpa);
resinator_args.appendAssumeCapacity(""); // dummy 'process name' arg
resinator_args.appendSliceAssumeCapacity(rc_src.extra_flags);
resinator_args.appendSliceAssumeCapacity(&.{ "--", out_rcpp_path, out_res_path });
var cli_diagnostics = resinator.cli.Diagnostics.init(comp.gpa);
defer cli_diagnostics.deinit();
const options = resinator.cli.parse(comp.gpa, resinator_args.items, &cli_diagnostics) catch |err| switch (err) {
error.ParseError => {
return comp.failWin32ResourceCli(win32_resource, &cli_diagnostics);
},
else => |e| return e,
};
break :options options;
};
defer options.deinit();
// We never want to read the INCLUDE environment variable, so
// unconditionally set `ignore_include_env_var` to true
options.ignore_include_env_var = true;
if (options.preprocess != .yes) {
return comp.failWin32Resource(win32_resource, "the '{s}' option is not supported in this context", .{switch (options.preprocess) {
.no => "/:no-preprocess",
.only => "/p",
.yes => unreachable,
}});
}
var argv = std.ArrayList([]const u8).init(comp.gpa);
defer argv.deinit();
try argv.appendSlice(&[_][]const u8{ self_exe_path, "clang" });
try resinator.preprocess.appendClangArgs(arena, &argv, options, .{
.clang_target = null, // handled by addCCArgs
.system_include_paths = &.{}, // handled by addCCArgs
.needs_gnu_workaround = comp.getTarget().isGnu(),
.nostdinc = false, // handled by addCCArgs
});
try argv.append(rc_src.src_path);
try argv.appendSlice(&[_][]const u8{
"-o",
out_rcpp_path,
});
const out_dep_path = try std.fmt.allocPrint(arena, "{s}.d", .{out_rcpp_path});
// Note: addCCArgs will implicitly add _DEBUG/NDEBUG depending on the optimization
// mode. While these defines are not normally present when calling rc.exe directly,
// them being defined matches the behavior of how MSVC calls rc.exe which is the more
// relevant behavior in this case.
try comp.addCCArgs(arena, &argv, .rc, out_dep_path, rc_src.owner);
if (comp.verbose_cc) {
dump_argv(argv.items);
}
if (std.process.can_spawn) {
var child = std.ChildProcess.init(argv.items, arena);
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Ignore;
child.stderr_behavior = .Pipe;
try child.spawn();
const stderr_reader = child.stderr.?.reader();
const stderr = try stderr_reader.readAllAlloc(arena, 10 * 1024 * 1024);
const term = child.wait() catch |err| {
return comp.failWin32Resource(win32_resource, "unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
};
switch (term) {
.Exited => |code| {
if (code != 0) {
// TODO parse clang stderr and turn it into an error message
// and then call failCObjWithOwnedErrorMsg
log.err("clang preprocessor failed with stderr:\n{s}", .{stderr});
return comp.failWin32Resource(win32_resource, "clang preprocessor exited with code {d}", .{code});
}
},
else => {
log.err("clang preprocessor terminated with stderr:\n{s}", .{stderr});
return comp.failWin32Resource(win32_resource, "clang preprocessor terminated unexpectedly", .{});
},
}
} else {
const exit_code = try clangMain(arena, argv.items);
if (exit_code != 0) {
return comp.failWin32Resource(win32_resource, "clang preprocessor exited with code {d}", .{exit_code});
}
}
const dep_basename = std.fs.path.basename(out_dep_path);
// Add the files depended on to the cache system.
try man.addDepFilePost(zig_cache_tmp_dir, dep_basename);
if (comp.whole_cache_manifest) |whole_cache_manifest| {
comp.whole_cache_manifest_mutex.lock();
defer comp.whole_cache_manifest_mutex.unlock();
try whole_cache_manifest.addDepFilePost(zig_cache_tmp_dir, dep_basename);
}
// Just to save disk space, we delete the file because it is never needed again.
zig_cache_tmp_dir.deleteFile(dep_basename) catch |err| {
log.warn("failed to delete '{s}': {s}", .{ out_dep_path, @errorName(err) });
};
const full_input = std.fs.cwd().readFileAlloc(arena, out_rcpp_path, std.math.maxInt(usize)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => |e| {
return comp.failWin32Resource(win32_resource, "failed to read preprocessed file '{s}': {s}", .{ out_rcpp_path, @errorName(e) });
},
};
var mapping_results = try resinator.source_mapping.parseAndRemoveLineCommands(arena, full_input, full_input, .{ .initial_filename = rc_src.src_path });
defer mapping_results.mappings.deinit(arena);
const final_input = resinator.comments.removeComments(mapping_results.result, mapping_results.result, &mapping_results.mappings);
var output_file = zig_cache_tmp_dir.createFile(out_res_path, .{}) catch |err| {
return comp.failWin32Resource(win32_resource, "failed to create output file '{s}': {s}", .{ out_res_path, @errorName(err) });
};
var output_file_closed = false;
defer if (!output_file_closed) output_file.close();
var diagnostics = resinator.errors.Diagnostics.init(arena);
defer diagnostics.deinit();
var dependencies_list = std.ArrayList([]const u8).init(comp.gpa);
defer {
for (dependencies_list.items) |item| {
comp.gpa.free(item);
}
dependencies_list.deinit();
}
var output_buffered_stream = std.io.bufferedWriter(output_file.writer());
resinator.compile.compile(arena, final_input, output_buffered_stream.writer(), .{
.cwd = std.fs.cwd(),
.diagnostics = &diagnostics,
.source_mappings = &mapping_results.mappings,
.dependencies_list = &dependencies_list,
.system_include_paths = comp.rc_include_dir_list,
.ignore_include_env_var = true,
// options
.extra_include_paths = options.extra_include_paths.items,
.default_language_id = options.default_language_id,
.default_code_page = options.default_code_page orelse .windows1252,
.verbose = options.verbose,
.null_terminate_string_table_strings = options.null_terminate_string_table_strings,
.max_string_literal_codepoints = options.max_string_literal_codepoints,
.silent_duplicate_control_ids = options.silent_duplicate_control_ids,
.warn_instead_of_error_on_invalid_code_page = options.warn_instead_of_error_on_invalid_code_page,
}) catch |err| switch (err) {
error.ParseError, error.CompileError => {
// Delete the output file on error
output_file.close();
output_file_closed = true;
// Failing to delete is not really a big deal, so swallow any errors
zig_cache_tmp_dir.deleteFile(out_res_path) catch {
log.warn("failed to delete '{s}': {s}", .{ out_res_path, @errorName(err) });
};
return comp.failWin32ResourceCompile(win32_resource, final_input, &diagnostics, mapping_results.mappings);
},
else => |e| return e,
};
try output_buffered_stream.flush();
for (dependencies_list.items) |dep_file_path| {
try man.addFilePost(dep_file_path);
if (comp.whole_cache_manifest) |whole_cache_manifest| {
comp.whole_cache_manifest_mutex.lock();
defer comp.whole_cache_manifest_mutex.unlock();
try whole_cache_manifest.addFilePost(dep_file_path);
}
}
// Rename into place.
const digest = man.final();
const o_sub_path = try std.fs.path.join(arena, &[_][]const u8{ "o", &digest });
var o_dir = try comp.local_cache_directory.handle.makeOpenPath(o_sub_path, .{});
defer o_dir.close();
const tmp_basename = std.fs.path.basename(out_res_path);
try std.fs.rename(zig_cache_tmp_dir, tmp_basename, o_dir, res_filename);
const tmp_rcpp_basename = std.fs.path.basename(out_rcpp_path);
try std.fs.rename(zig_cache_tmp_dir, tmp_rcpp_basename, o_dir, rcpp_filename);
break :blk digest;
};
if (man.have_exclusive_lock) {
// Write the updated manifest. This is a no-op if the manifest is not dirty. Note that it is
// possible we had a hit and the manifest is dirty, for example if the file mtime changed but
// the contents were the same, we hit the cache but the manifest is dirty and we need to update
// it to prevent doing a full file content comparison the next time around.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when compiling '{s}': {s}", .{ rc_src.src_path, @errorName(err) });
};
}
const res_basename = try std.fmt.allocPrint(arena, "{s}.res", .{rc_basename_noext});
win32_resource.status = .{
.success = .{
.res_path = try comp.local_cache_directory.join(comp.gpa, &[_][]const u8{
"o", &digest, res_basename,
}),
.lock = man.toOwnedLock(),
},
};
}
pub fn tmpFilePath(comp: *Compilation, ally: Allocator, suffix: []const u8) error{OutOfMemory}![]const u8 {
const s = std.fs.path.sep_str;
const rand_int = std.crypto.random.int(u64);
if (comp.local_cache_directory.path) |p| {
return std.fmt.allocPrint(ally, "{s}" ++ s ++ "tmp" ++ s ++ "{x}-{s}", .{ p, rand_int, suffix });
} else {
return std.fmt.allocPrint(ally, "tmp" ++ s ++ "{x}-{s}", .{ rand_int, suffix });
}
}
pub fn addTranslateCCArgs(
comp: *Compilation,
arena: Allocator,
argv: *std.ArrayList([]const u8),
ext: FileExt,
out_dep_path: ?[]const u8,
owner_mod: *Package.Module,
) !void {
try argv.appendSlice(&.{ "-x", "c" });
try comp.addCCArgs(arena, argv, ext, out_dep_path, owner_mod);
// This gives us access to preprocessing entities, presumably at the cost of performance.
try argv.appendSlice(&.{ "-Xclang", "-detailed-preprocessing-record" });
}
/// Add common C compiler args between translate-c and C object compilation.
pub fn addCCArgs(
comp: *const Compilation,
arena: Allocator,
argv: *std.ArrayList([]const u8),
ext: FileExt,
out_dep_path: ?[]const u8,
mod: *Package.Module,
) !void {
const target = mod.resolved_target.result;
// As of Clang 16.x, it will by default read extra flags from /etc/clang.
// I'm sure the person who implemented this means well, but they have a lot
// to learn about abstractions and where the appropriate boundaries between
// them are. The road to hell is paved with good intentions. Fortunately it
// can be disabled.
try argv.append("--no-default-config");
if (ext == .cpp) {
try argv.append("-nostdinc++");
}
// We don't ever put `-fcolor-diagnostics` or `-fno-color-diagnostics` because in passthrough mode
// we want Clang to infer it, and in normal mode we always want it off, which will be true since
// clang will detect stderr as a pipe rather than a terminal.
if (!comp.clang_passthrough_mode) {
// Make stderr more easily parseable.
try argv.append("-fno-caret-diagnostics");
}
if (comp.function_sections) {
try argv.append("-ffunction-sections");
}
if (comp.data_sections) {
try argv.append("-fdata-sections");
}
if (comp.no_builtin) {
try argv.append("-fno-builtin");
}
if (comp.config.link_libcpp) {
const libcxx_include_path = try std.fs.path.join(arena, &[_][]const u8{
comp.zig_lib_directory.path.?, "libcxx", "include",
});
const libcxxabi_include_path = try std.fs.path.join(arena, &[_][]const u8{
comp.zig_lib_directory.path.?, "libcxxabi", "include",
});
try argv.append("-isystem");
try argv.append(libcxx_include_path);
try argv.append("-isystem");
try argv.append(libcxxabi_include_path);
if (target.abi.isMusl()) {
try argv.append("-D_LIBCPP_HAS_MUSL_LIBC");
}
try argv.append("-D_LIBCPP_DISABLE_VISIBILITY_ANNOTATIONS");
try argv.append("-D_LIBCXXABI_DISABLE_VISIBILITY_ANNOTATIONS");
try argv.append("-D_LIBCPP_HAS_NO_VENDOR_AVAILABILITY_ANNOTATIONS");
if (!comp.config.any_non_single_threaded) {
try argv.append("-D_LIBCPP_HAS_NO_THREADS");
}
// See the comment in libcxx.zig for more details about this.
try argv.append("-D_LIBCPP_PSTL_CPU_BACKEND_SERIAL");
try argv.append(try std.fmt.allocPrint(arena, "-D_LIBCPP_ABI_VERSION={d}", .{
@intFromEnum(comp.libcxx_abi_version),
}));
try argv.append(try std.fmt.allocPrint(arena, "-D_LIBCPP_ABI_NAMESPACE=__{d}", .{
@intFromEnum(comp.libcxx_abi_version),
}));
}
if (comp.config.link_libunwind) {
const libunwind_include_path = try std.fs.path.join(arena, &[_][]const u8{
comp.zig_lib_directory.path.?, "libunwind", "include",
});
try argv.append("-isystem");
try argv.append(libunwind_include_path);
}
if (comp.config.link_libc and target.isGnuLibC()) {
const target_version = target.os.version_range.linux.glibc;
const glibc_minor_define = try std.fmt.allocPrint(arena, "-D__GLIBC_MINOR__={d}", .{
target_version.minor,
});
try argv.append(glibc_minor_define);
}
const llvm_triple = try @import("codegen/llvm.zig").targetTriple(arena, target);
try argv.appendSlice(&[_][]const u8{ "-target", llvm_triple });
if (target.os.tag == .windows) switch (ext) {
.c, .cpp, .m, .mm, .h, .cu, .rc, .assembly, .assembly_with_cpp => {
const minver: u16 = @truncate(@intFromEnum(target.os.getVersionRange().windows.min) >> 16);
try argv.append(try std.fmt.allocPrint(argv.allocator, "-D_WIN32_WINNT=0x{x:0>4}", .{minver}));
},
else => {},
};
switch (ext) {
.c, .cpp, .m, .mm, .h, .cu, .rc => {
try argv.appendSlice(&[_][]const u8{
"-nostdinc",
"-fno-spell-checking",
});
if (comp.config.lto) {
try argv.append("-flto");
}
if (ext == .mm) {
try argv.append("-ObjC++");
}
for (comp.libc_framework_dir_list) |framework_dir| {
try argv.appendSlice(&.{ "-iframework", framework_dir });
}
for (comp.framework_dirs) |framework_dir| {
try argv.appendSlice(&.{ "-F", framework_dir });
}
// According to Rich Felker libc headers are supposed to go before C language headers.
// However as noted by @dimenus, appending libc headers before c_headers breaks intrinsics
// and other compiler specific items.
const c_headers_dir = try std.fs.path.join(arena, &[_][]const u8{ comp.zig_lib_directory.path.?, "include" });
try argv.append("-isystem");
try argv.append(c_headers_dir);
if (ext == .rc) {
for (comp.rc_include_dir_list) |include_dir| {
try argv.append("-isystem");
try argv.append(include_dir);
}
} else {
for (comp.libc_include_dir_list) |include_dir| {
try argv.append("-isystem");
try argv.append(include_dir);
}
}
if (target.cpu.model.llvm_name) |llvm_name| {
try argv.appendSlice(&[_][]const u8{
"-Xclang", "-target-cpu", "-Xclang", llvm_name,
});
}
// It would be really nice if there was a more compact way to communicate this info to Clang.
const all_features_list = target.cpu.arch.allFeaturesList();
try argv.ensureUnusedCapacity(all_features_list.len * 4);
for (all_features_list, 0..) |feature, index_usize| {
const index = @as(std.Target.Cpu.Feature.Set.Index, @intCast(index_usize));
const is_enabled = target.cpu.features.isEnabled(index);
if (feature.llvm_name) |llvm_name| {
argv.appendSliceAssumeCapacity(&[_][]const u8{ "-Xclang", "-target-feature", "-Xclang" });
const plus_or_minus = "-+"[@intFromBool(is_enabled)];
const arg = try std.fmt.allocPrint(arena, "{c}{s}", .{ plus_or_minus, llvm_name });
argv.appendAssumeCapacity(arg);
}
}
if (mod.code_model != .default) {
try argv.append(try std.fmt.allocPrint(arena, "-mcmodel={s}", .{@tagName(mod.code_model)}));
}
switch (target.os.tag) {
.windows => {
// windows.h has files such as pshpack1.h which do #pragma packing,
// triggering a clang warning. So for this target, we disable this warning.
if (target.abi.isGnu()) {
try argv.append("-Wno-pragma-pack");
}
},
.macos => {
try argv.ensureUnusedCapacity(2);
// Pass the proper -m<os>-version-min argument for darwin.
const ver = target.os.version_range.semver.min;
argv.appendAssumeCapacity(try std.fmt.allocPrint(arena, "-mmacos-version-min={d}.{d}.{d}", .{
ver.major, ver.minor, ver.patch,
}));
// This avoids a warning that sometimes occurs when
// providing both a -target argument that contains a
// version as well as the -mmacosx-version-min argument.
// Zig provides the correct value in both places, so it
// doesn't matter which one gets overridden.
argv.appendAssumeCapacity("-Wno-overriding-t-option");
},
.ios, .tvos, .watchos => switch (target.cpu.arch) {
// Pass the proper -m<os>-version-min argument for darwin.
.x86, .x86_64 => {
const ver = target.os.version_range.semver.min;
try argv.append(try std.fmt.allocPrint(
arena,
"-m{s}-simulator-version-min={d}.{d}.{d}",
.{ @tagName(target.os.tag), ver.major, ver.minor, ver.patch },
));
},
else => {
const ver = target.os.version_range.semver.min;
try argv.append(try std.fmt.allocPrint(arena, "-m{s}-version-min={d}.{d}.{d}", .{
@tagName(target.os.tag), ver.major, ver.minor, ver.patch,
}));
},
},
else => {},
}
if (target.cpu.arch.isThumb()) {
try argv.append("-mthumb");
}
if (mod.sanitize_c and !mod.sanitize_thread) {
try argv.append("-fsanitize=undefined");
try argv.append("-fsanitize-trap=undefined");
// It is very common, and well-defined, for a pointer on one side of a C ABI
// to have a different but compatible element type. Examples include:
// `char*` vs `uint8_t*` on a system with 8-bit bytes
// `const char*` vs `char*`
// `char*` vs `unsigned char*`
// Without this flag, Clang would invoke UBSAN when such an extern
// function was called.
try argv.append("-fno-sanitize=function");
} else if (mod.sanitize_c and mod.sanitize_thread) {
try argv.append("-fsanitize=undefined,thread");
try argv.append("-fsanitize-trap=undefined");
try argv.append("-fno-sanitize=function");
} else if (!mod.sanitize_c and mod.sanitize_thread) {
try argv.append("-fsanitize=thread");
}
if (mod.red_zone) {
try argv.append("-mred-zone");
} else if (target_util.hasRedZone(target)) {
try argv.append("-mno-red-zone");
}
if (mod.omit_frame_pointer) {
try argv.append("-fomit-frame-pointer");
} else {
try argv.append("-fno-omit-frame-pointer");
}
const ssp_buf_size = mod.stack_protector;
if (ssp_buf_size != 0) {
try argv.appendSlice(&[_][]const u8{
"-fstack-protector-strong",
"--param",
try std.fmt.allocPrint(arena, "ssp-buffer-size={d}", .{ssp_buf_size}),
});
} else {
try argv.append("-fno-stack-protector");
}
switch (mod.optimize_mode) {
.Debug => {
// windows c runtime requires -D_DEBUG if using debug libraries
try argv.append("-D_DEBUG");
// Clang has -Og for compatibility with GCC, but currently it is just equivalent
// to -O1. Besides potentially impairing debugging, -O1/-Og significantly
// increases compile times.
try argv.append("-O0");
},
.ReleaseSafe => {
// See the comment in the BuildModeFastRelease case for why we pass -O2 rather
// than -O3 here.
try argv.append("-O2");
try argv.append("-D_FORTIFY_SOURCE=2");
},
.ReleaseFast => {
try argv.append("-DNDEBUG");
// Here we pass -O2 rather than -O3 because, although we do the equivalent of
// -O3 in Zig code, the justification for the difference here is that Zig
// has better detection and prevention of undefined behavior, so -O3 is safer for
// Zig code than it is for C code. Also, C programmers are used to their code
// running in -O2 and thus the -O3 path has been tested less.
try argv.append("-O2");
},
.ReleaseSmall => {
try argv.append("-DNDEBUG");
try argv.append("-Os");
},
}
if (target_util.supports_fpic(target) and mod.pic) {
try argv.append("-fPIC");
}
if (mod.unwind_tables) {
try argv.append("-funwind-tables");
} else {
try argv.append("-fno-unwind-tables");
}
},
.shared_library, .ll, .bc, .unknown, .static_library, .object, .def, .zig, .res, .manifest => {},
.assembly, .assembly_with_cpp => {
if (ext == .assembly_with_cpp) {
const c_headers_dir = try std.fs.path.join(arena, &[_][]const u8{ comp.zig_lib_directory.path.?, "include" });
try argv.append("-isystem");
try argv.append(c_headers_dir);
}
// The Clang assembler does not accept the list of CPU features like the
// compiler frontend does. Therefore we must hard-code the -m flags for
// all CPU features here.
switch (target.cpu.arch) {
.riscv32, .riscv64 => {
const RvArchFeat = struct { char: u8, feat: std.Target.riscv.Feature };
const letters = [_]RvArchFeat{
.{ .char = 'm', .feat = .m },
.{ .char = 'a', .feat = .a },
.{ .char = 'f', .feat = .f },
.{ .char = 'd', .feat = .d },
.{ .char = 'c', .feat = .c },
};
const prefix: []const u8 = if (target.cpu.arch == .riscv64) "rv64" else "rv32";
const prefix_len = 4;
assert(prefix.len == prefix_len);
var march_buf: [prefix_len + letters.len + 1]u8 = undefined;
var march_index: usize = prefix_len;
@memcpy(march_buf[0..prefix.len], prefix);
if (std.Target.riscv.featureSetHas(target.cpu.features, .e)) {
march_buf[march_index] = 'e';
} else {
march_buf[march_index] = 'i';
}
march_index += 1;
for (letters) |letter| {
if (std.Target.riscv.featureSetHas(target.cpu.features, letter.feat)) {
march_buf[march_index] = letter.char;
march_index += 1;
}
}
const march_arg = try std.fmt.allocPrint(arena, "-march={s}", .{
march_buf[0..march_index],
});
try argv.append(march_arg);
if (std.Target.riscv.featureSetHas(target.cpu.features, .relax)) {
try argv.append("-mrelax");
} else {
try argv.append("-mno-relax");
}
if (std.Target.riscv.featureSetHas(target.cpu.features, .save_restore)) {
try argv.append("-msave-restore");
} else {
try argv.append("-mno-save-restore");
}
},
.mips, .mipsel, .mips64, .mips64el => {
if (target.cpu.model.llvm_name) |llvm_name| {
try argv.append(try std.fmt.allocPrint(arena, "-march={s}", .{llvm_name}));
}
if (std.Target.mips.featureSetHas(target.cpu.features, .soft_float)) {
try argv.append("-msoft-float");
}
},
else => {
// TODO
},
}
if (target_util.clangAssemblerSupportsMcpuArg(target)) {
if (target.cpu.model.llvm_name) |llvm_name| {
try argv.append(try std.fmt.allocPrint(arena, "-mcpu={s}", .{llvm_name}));
}
}
},
}
try argv.ensureUnusedCapacity(2);
switch (comp.config.debug_format) {
.strip => {},
.code_view => {
// -g is required here because -gcodeview doesn't trigger debug info
// generation, it only changes the type of information generated.
argv.appendSliceAssumeCapacity(&.{ "-g", "-gcodeview" });
},
.dwarf => |f| {
argv.appendAssumeCapacity("-gdwarf-4");
switch (f) {
.@"32" => argv.appendAssumeCapacity("-gdwarf32"),
.@"64" => argv.appendAssumeCapacity("-gdwarf64"),
}
},
}
if (target_util.llvmMachineAbi(target)) |mabi| {
try argv.append(try std.fmt.allocPrint(arena, "-mabi={s}", .{mabi}));
}
if (out_dep_path) |p| {
try argv.appendSlice(&[_][]const u8{ "-MD", "-MV", "-MF", p });
}
// We never want clang to invoke the system assembler for anything. So we would want
// this option always enabled. However, it only matters for some targets. To avoid
// "unused parameter" warnings, and to keep CLI spam to a minimum, we only put this
// flag on the command line if it is necessary.
if (target_util.clangMightShellOutForAssembly(target)) {
try argv.append("-integrated-as");
}
if (target.os.tag == .freestanding) {
try argv.append("-ffreestanding");
}
try argv.appendSlice(mod.cc_argv);
}
fn failCObj(
comp: *Compilation,
c_object: *CObject,
comptime format: []const u8,
args: anytype,
) SemaError {
@setCold(true);
const diag_bundle = blk: {
const diag_bundle = try comp.gpa.create(CObject.Diag.Bundle);
diag_bundle.* = .{};
errdefer diag_bundle.destroy(comp.gpa);
try diag_bundle.file_names.ensureTotalCapacity(comp.gpa, 1);
diag_bundle.file_names.putAssumeCapacity(1, try comp.gpa.dupe(u8, c_object.src.src_path));
diag_bundle.diags = try comp.gpa.alloc(CObject.Diag, 1);
diag_bundle.diags[0] = .{};
diag_bundle.diags[0].level = 3;
diag_bundle.diags[0].msg = try std.fmt.allocPrint(comp.gpa, format, args);
diag_bundle.diags[0].src_loc.file = 1;
break :blk diag_bundle;
};
return comp.failCObjWithOwnedDiagBundle(c_object, diag_bundle);
}
fn failCObjWithOwnedDiagBundle(
comp: *Compilation,
c_object: *CObject,
diag_bundle: *CObject.Diag.Bundle,
) SemaError {
@setCold(true);
{
comp.mutex.lock();
defer comp.mutex.unlock();
{
errdefer diag_bundle.destroy(comp.gpa);
try comp.failed_c_objects.ensureUnusedCapacity(comp.gpa, 1);
}
comp.failed_c_objects.putAssumeCapacityNoClobber(c_object, diag_bundle);
}
c_object.status = .failure;
return error.AnalysisFail;
}
fn failWin32Resource(comp: *Compilation, win32_resource: *Win32Resource, comptime format: []const u8, args: anytype) SemaError {
@setCold(true);
var bundle: ErrorBundle.Wip = undefined;
try bundle.init(comp.gpa);
errdefer bundle.deinit();
try bundle.addRootErrorMessage(.{
.msg = try bundle.printString(format, args),
.src_loc = try bundle.addSourceLocation(.{
.src_path = try bundle.addString(switch (win32_resource.src) {
.rc => |rc_src| rc_src.src_path,
.manifest => |manifest_src| manifest_src,
}),
.line = 0,
.column = 0,
.span_start = 0,
.span_main = 0,
.span_end = 0,
}),
});
const finished_bundle = try bundle.toOwnedBundle("");
return comp.failWin32ResourceWithOwnedBundle(win32_resource, finished_bundle);
}
fn failWin32ResourceWithOwnedBundle(
comp: *Compilation,
win32_resource: *Win32Resource,
err_bundle: ErrorBundle,
) SemaError {
@setCold(true);
{
comp.mutex.lock();
defer comp.mutex.unlock();
try comp.failed_win32_resources.putNoClobber(comp.gpa, win32_resource, err_bundle);
}
win32_resource.status = .failure;
return error.AnalysisFail;
}
fn failWin32ResourceCli(
comp: *Compilation,
win32_resource: *Win32Resource,
diagnostics: *resinator.cli.Diagnostics,
) SemaError {
@setCold(true);
var bundle: ErrorBundle.Wip = undefined;
try bundle.init(comp.gpa);
errdefer bundle.deinit();
try bundle.addRootErrorMessage(.{
.msg = try bundle.addString("invalid command line option(s)"),
.src_loc = try bundle.addSourceLocation(.{
.src_path = try bundle.addString(switch (win32_resource.src) {
.rc => |rc_src| rc_src.src_path,
.manifest => |manifest_src| manifest_src,
}),
.line = 0,
.column = 0,
.span_start = 0,
.span_main = 0,
.span_end = 0,
}),
});
var cur_err: ?ErrorBundle.ErrorMessage = null;
var cur_notes: std.ArrayListUnmanaged(ErrorBundle.ErrorMessage) = .{};
defer cur_notes.deinit(comp.gpa);
for (diagnostics.errors.items) |err_details| {
switch (err_details.type) {
.err => {
if (cur_err) |err| {
try win32ResourceFlushErrorMessage(&bundle, err, cur_notes.items);
}
cur_err = .{
.msg = try bundle.addString(err_details.msg.items),
};
cur_notes.clearRetainingCapacity();
},
.warning => cur_err = null,
.note => {
if (cur_err == null) continue;
cur_err.?.notes_len += 1;
try cur_notes.append(comp.gpa, .{
.msg = try bundle.addString(err_details.msg.items),
});
},
}
}
if (cur_err) |err| {
try win32ResourceFlushErrorMessage(&bundle, err, cur_notes.items);
}
const finished_bundle = try bundle.toOwnedBundle("");
return comp.failWin32ResourceWithOwnedBundle(win32_resource, finished_bundle);
}
fn failWin32ResourceCompile(
comp: *Compilation,
win32_resource: *Win32Resource,
source: []const u8,
diagnostics: *resinator.errors.Diagnostics,
opt_mappings: ?resinator.source_mapping.SourceMappings,
) SemaError {
@setCold(true);
var bundle: ErrorBundle.Wip = undefined;
try bundle.init(comp.gpa);
errdefer bundle.deinit();
var msg_buf: std.ArrayListUnmanaged(u8) = .{};
defer msg_buf.deinit(comp.gpa);
var cur_err: ?ErrorBundle.ErrorMessage = null;
var cur_notes: std.ArrayListUnmanaged(ErrorBundle.ErrorMessage) = .{};
defer cur_notes.deinit(comp.gpa);
for (diagnostics.errors.items) |err_details| {
switch (err_details.type) {
.hint => continue,
// Clear the current error so that notes don't bleed into unassociated errors
.warning => {
cur_err = null;
continue;
},
.note => if (cur_err == null) continue,
.err => {},
}
const err_line, const err_filename = blk: {
if (opt_mappings) |mappings| {
const corresponding_span = mappings.get(err_details.token.line_number);
const corresponding_file = mappings.files.get(corresponding_span.filename_offset);
const err_line = corresponding_span.start_line;
break :blk .{ err_line, corresponding_file };
} else {
break :blk .{ err_details.token.line_number, "<generated rc>" };
}
};
const source_line_start = err_details.token.getLineStart(source);
const column = err_details.token.calculateColumn(source, 1, source_line_start);
msg_buf.clearRetainingCapacity();
try err_details.render(msg_buf.writer(comp.gpa), source, diagnostics.strings.items);
const src_loc = src_loc: {
var src_loc: ErrorBundle.SourceLocation = .{
.src_path = try bundle.addString(err_filename),
.line = @intCast(err_line - 1), // 1-based -> 0-based
.column = @intCast(column),
.span_start = 0,
.span_main = 0,
.span_end = 0,
};
if (err_details.print_source_line) {
const source_line = err_details.token.getLine(source, source_line_start);
const visual_info = err_details.visualTokenInfo(source_line_start, source_line_start + source_line.len);
src_loc.span_start = @intCast(visual_info.point_offset - visual_info.before_len);
src_loc.span_main = @intCast(visual_info.point_offset);
src_loc.span_end = @intCast(visual_info.point_offset + 1 + visual_info.after_len);
src_loc.source_line = try bundle.addString(source_line);
}
break :src_loc try bundle.addSourceLocation(src_loc);
};
switch (err_details.type) {
.err => {
if (cur_err) |err| {
try win32ResourceFlushErrorMessage(&bundle, err, cur_notes.items);
}
cur_err = .{
.msg = try bundle.addString(msg_buf.items),
.src_loc = src_loc,
};
cur_notes.clearRetainingCapacity();
},
.note => {
cur_err.?.notes_len += 1;
try cur_notes.append(comp.gpa, .{
.msg = try bundle.addString(msg_buf.items),
.src_loc = src_loc,
});
},
.warning, .hint => unreachable,
}
}
if (cur_err) |err| {
try win32ResourceFlushErrorMessage(&bundle, err, cur_notes.items);
}
const finished_bundle = try bundle.toOwnedBundle("");
return comp.failWin32ResourceWithOwnedBundle(win32_resource, finished_bundle);
}
fn win32ResourceFlushErrorMessage(wip: *ErrorBundle.Wip, msg: ErrorBundle.ErrorMessage, notes: []const ErrorBundle.ErrorMessage) !void {
try wip.addRootErrorMessage(msg);
const notes_start = try wip.reserveNotes(@intCast(notes.len));
for (notes_start.., notes) |i, note| {
wip.extra.items[i] = @intFromEnum(wip.addErrorMessageAssumeCapacity(note));
}
}
pub const FileExt = enum {
c,
cpp,
cu,
h,
m,
mm,
ll,
bc,
assembly,
assembly_with_cpp,
shared_library,
object,
static_library,
zig,
def,
rc,
res,
manifest,
unknown,
pub fn clangSupportsDepFile(ext: FileExt) bool {
return switch (ext) {
.c, .cpp, .h, .m, .mm, .cu => true,
.ll,
.bc,
.assembly,
.assembly_with_cpp,
.shared_library,
.object,
.static_library,
.zig,
.def,
.rc,
.res,
.manifest,
.unknown,
=> false,
};
}
pub fn canonicalName(ext: FileExt, target: Target) [:0]const u8 {
return switch (ext) {
.c => ".c",
.cpp => ".cpp",
.cu => ".cu",
.h => ".h",
.m => ".m",
.mm => ".mm",
.ll => ".ll",
.bc => ".bc",
.assembly => ".s",
.assembly_with_cpp => ".S",
.shared_library => target.dynamicLibSuffix(),
.object => target.ofmt.fileExt(target.cpu.arch),
.static_library => target.staticLibSuffix(),
.zig => ".zig",
.def => ".def",
.rc => ".rc",
.res => ".res",
.manifest => ".manifest",
.unknown => "",
};
}
};
pub fn hasObjectExt(filename: []const u8) bool {
return mem.endsWith(u8, filename, ".o") or mem.endsWith(u8, filename, ".obj");
}
pub fn hasStaticLibraryExt(filename: []const u8) bool {
return mem.endsWith(u8, filename, ".a") or mem.endsWith(u8, filename, ".lib");
}
pub fn hasCExt(filename: []const u8) bool {
return mem.endsWith(u8, filename, ".c");
}
pub fn hasCppExt(filename: []const u8) bool {
return mem.endsWith(u8, filename, ".C") or
mem.endsWith(u8, filename, ".cc") or
mem.endsWith(u8, filename, ".cpp") or
mem.endsWith(u8, filename, ".cxx") or
mem.endsWith(u8, filename, ".stub");
}
pub fn hasObjCExt(filename: []const u8) bool {
return mem.endsWith(u8, filename, ".m");
}
pub fn hasObjCppExt(filename: []const u8) bool {
return mem.endsWith(u8, filename, ".mm");
}
pub fn hasSharedLibraryExt(filename: []const u8) bool {
if (mem.endsWith(u8, filename, ".so") or
mem.endsWith(u8, filename, ".dll") or
mem.endsWith(u8, filename, ".dylib") or
mem.endsWith(u8, filename, ".tbd"))
{
return true;
}
// Look for .so.X, .so.X.Y, .so.X.Y.Z
var it = mem.splitScalar(u8, filename, '.');
_ = it.first();
var so_txt = it.next() orelse return false;
while (!mem.eql(u8, so_txt, "so")) {
so_txt = it.next() orelse return false;
}
const n1 = it.next() orelse return false;
const n2 = it.next();
const n3 = it.next();
_ = std.fmt.parseInt(u32, n1, 10) catch return false;
if (n2) |x| _ = std.fmt.parseInt(u32, x, 10) catch return false;
if (n3) |x| _ = std.fmt.parseInt(u32, x, 10) catch return false;
if (it.next() != null) return false;
return true;
}
pub fn classifyFileExt(filename: []const u8) FileExt {
if (hasCExt(filename)) {
return .c;
} else if (hasCppExt(filename)) {
return .cpp;
} else if (hasObjCExt(filename)) {
return .m;
} else if (hasObjCppExt(filename)) {
return .mm;
} else if (mem.endsWith(u8, filename, ".ll")) {
return .ll;
} else if (mem.endsWith(u8, filename, ".bc")) {
return .bc;
} else if (mem.endsWith(u8, filename, ".s")) {
return .assembly;
} else if (mem.endsWith(u8, filename, ".S")) {
return .assembly_with_cpp;
} else if (mem.endsWith(u8, filename, ".h")) {
return .h;
} else if (mem.endsWith(u8, filename, ".zig")) {
return .zig;
} else if (hasSharedLibraryExt(filename)) {
return .shared_library;
} else if (hasStaticLibraryExt(filename)) {
return .static_library;
} else if (hasObjectExt(filename)) {
return .object;
} else if (mem.endsWith(u8, filename, ".cu")) {
return .cu;
} else if (mem.endsWith(u8, filename, ".def")) {
return .def;
} else if (std.ascii.endsWithIgnoreCase(filename, ".rc")) {
return .rc;
} else if (std.ascii.endsWithIgnoreCase(filename, ".res")) {
return .res;
} else if (std.ascii.endsWithIgnoreCase(filename, ".manifest")) {
return .manifest;
} else {
return .unknown;
}
}
test "classifyFileExt" {
try std.testing.expectEqual(FileExt.cpp, classifyFileExt("foo.cc"));
try std.testing.expectEqual(FileExt.m, classifyFileExt("foo.m"));
try std.testing.expectEqual(FileExt.mm, classifyFileExt("foo.mm"));
try std.testing.expectEqual(FileExt.unknown, classifyFileExt("foo.nim"));
try std.testing.expectEqual(FileExt.shared_library, classifyFileExt("foo.so"));
try std.testing.expectEqual(FileExt.shared_library, classifyFileExt("foo.so.1"));
try std.testing.expectEqual(FileExt.shared_library, classifyFileExt("foo.so.1.2"));
try std.testing.expectEqual(FileExt.shared_library, classifyFileExt("foo.so.1.2.3"));
try std.testing.expectEqual(FileExt.unknown, classifyFileExt("foo.so.1.2.3~"));
try std.testing.expectEqual(FileExt.zig, classifyFileExt("foo.zig"));
}
const LibCDirs = struct {
libc_include_dir_list: []const []const u8,
libc_installation: ?*const LibCInstallation,
libc_framework_dir_list: []const []const u8,
sysroot: ?[]const u8,
darwin_sdk_layout: ?link.File.MachO.SdkLayout,
};
fn getZigShippedLibCIncludeDirsDarwin(arena: Allocator, zig_lib_dir: []const u8) !LibCDirs {
const s = std.fs.path.sep_str;
const list = try arena.alloc([]const u8, 1);
list[0] = try std.fmt.allocPrint(
arena,
"{s}" ++ s ++ "libc" ++ s ++ "include" ++ s ++ "any-macos-any",
.{zig_lib_dir},
);
return LibCDirs{
.libc_include_dir_list = list,
.libc_installation = null,
.libc_framework_dir_list = &.{},
.sysroot = null,
.darwin_sdk_layout = .vendored,
};
}
pub fn detectLibCIncludeDirs(
arena: Allocator,
zig_lib_dir: []const u8,
target: Target,
is_native_abi: bool,
link_libc: bool,
libc_installation: ?*const LibCInstallation,
) !LibCDirs {
if (!link_libc) {
return LibCDirs{
.libc_include_dir_list = &[0][]u8{},
.libc_installation = null,
.libc_framework_dir_list = &.{},
.sysroot = null,
.darwin_sdk_layout = null,
};
}
if (libc_installation) |lci| {
return detectLibCFromLibCInstallation(arena, target, lci);
}
// If linking system libraries and targeting the native abi, default to
// using the system libc installation.
if (is_native_abi and !target.isMinGW()) {
const libc = try arena.create(LibCInstallation);
libc.* = LibCInstallation.findNative(.{ .allocator = arena, .target = target }) catch |err| switch (err) {
error.CCompilerExitCode,
error.CCompilerCrashed,
error.CCompilerCannotFindHeaders,
error.UnableToSpawnCCompiler,
error.DarwinSdkNotFound,
=> |e| {
// We tried to integrate with the native system C compiler,
// however, it is not installed. So we must rely on our bundled
// libc files.
if (target_util.canBuildLibC(target)) {
return detectLibCFromBuilding(arena, zig_lib_dir, target);
}
return e;
},
else => |e| return e,
};
return detectLibCFromLibCInstallation(arena, target, libc);
}
// If not linking system libraries, build and provide our own libc by
// default if possible.
if (target_util.canBuildLibC(target)) {
return detectLibCFromBuilding(arena, zig_lib_dir, target);
}
// If zig can't build the libc for the target and we are targeting the
// native abi, fall back to using the system libc installation.
// On windows, instead of the native (mingw) abi, we want to check
// for the MSVC abi as a fallback.
const use_system_abi = if (builtin.target.os.tag == .windows)
target.abi == .msvc
else
is_native_abi;
if (use_system_abi) {
const libc = try arena.create(LibCInstallation);
libc.* = try LibCInstallation.findNative(.{ .allocator = arena, .verbose = true, .target = target });
return detectLibCFromLibCInstallation(arena, target, libc);
}
return LibCDirs{
.libc_include_dir_list = &[0][]u8{},
.libc_installation = null,
.libc_framework_dir_list = &.{},
.sysroot = null,
.darwin_sdk_layout = null,
};
}
fn detectLibCFromLibCInstallation(arena: Allocator, target: Target, lci: *const LibCInstallation) !LibCDirs {
var list = try std.ArrayList([]const u8).initCapacity(arena, 5);
var framework_list = std.ArrayList([]const u8).init(arena);
list.appendAssumeCapacity(lci.include_dir.?);
const is_redundant = mem.eql(u8, lci.sys_include_dir.?, lci.include_dir.?);
if (!is_redundant) list.appendAssumeCapacity(lci.sys_include_dir.?);
if (target.os.tag == .windows) {
if (std.fs.path.dirname(lci.sys_include_dir.?)) |sys_include_dir_parent| {
// This include path will only exist when the optional "Desktop development with C++"
// is installed. It contains headers, .rc files, and resources. It is especially
// necessary when working with Windows resources.
const atlmfc_dir = try std.fs.path.join(arena, &[_][]const u8{ sys_include_dir_parent, "atlmfc", "include" });
list.appendAssumeCapacity(atlmfc_dir);
}
if (std.fs.path.dirname(lci.include_dir.?)) |include_dir_parent| {
const um_dir = try std.fs.path.join(arena, &[_][]const u8{ include_dir_parent, "um" });
list.appendAssumeCapacity(um_dir);
const shared_dir = try std.fs.path.join(arena, &[_][]const u8{ include_dir_parent, "shared" });
list.appendAssumeCapacity(shared_dir);
}
}
if (target.os.tag == .haiku) {
const include_dir_path = lci.include_dir orelse return error.LibCInstallationNotAvailable;
const os_dir = try std.fs.path.join(arena, &[_][]const u8{ include_dir_path, "os" });
list.appendAssumeCapacity(os_dir);
// Errors.h
const os_support_dir = try std.fs.path.join(arena, &[_][]const u8{ include_dir_path, "os/support" });
list.appendAssumeCapacity(os_support_dir);
const config_dir = try std.fs.path.join(arena, &[_][]const u8{ include_dir_path, "config" });
list.appendAssumeCapacity(config_dir);
}
var sysroot: ?[]const u8 = null;
if (target.isDarwin()) d: {
const down1 = std.fs.path.dirname(lci.sys_include_dir.?) orelse break :d;
const down2 = std.fs.path.dirname(down1) orelse break :d;
try framework_list.append(try std.fs.path.join(arena, &.{ down2, "System", "Library", "Frameworks" }));
sysroot = down2;
}
return LibCDirs{
.libc_include_dir_list = list.items,
.libc_installation = lci,
.libc_framework_dir_list = framework_list.items,
.sysroot = sysroot,
.darwin_sdk_layout = if (sysroot == null) null else .sdk,
};
}
fn detectLibCFromBuilding(
arena: Allocator,
zig_lib_dir: []const u8,
target: std.Target,
) !LibCDirs {
if (target.isDarwin())
return getZigShippedLibCIncludeDirsDarwin(arena, zig_lib_dir);
const generic_name = target_util.libCGenericName(target);
// Some architectures are handled by the same set of headers.
const arch_name = if (target.abi.isMusl())
musl.archNameHeaders(target.cpu.arch)
else if (target.cpu.arch.isThumb())
// ARM headers are valid for Thumb too.
switch (target.cpu.arch) {
.thumb => "arm",
.thumbeb => "armeb",
else => unreachable,
}
else
@tagName(target.cpu.arch);
const os_name = @tagName(target.os.tag);
// Musl's headers are ABI-agnostic and so they all have the "musl" ABI name.
const abi_name = if (target.abi.isMusl()) "musl" else @tagName(target.abi);
const s = std.fs.path.sep_str;
const arch_include_dir = try std.fmt.allocPrint(
arena,
"{s}" ++ s ++ "libc" ++ s ++ "include" ++ s ++ "{s}-{s}-{s}",
.{ zig_lib_dir, arch_name, os_name, abi_name },
);
const generic_include_dir = try std.fmt.allocPrint(
arena,
"{s}" ++ s ++ "libc" ++ s ++ "include" ++ s ++ "generic-{s}",
.{ zig_lib_dir, generic_name },
);
const generic_arch_name = target_util.osArchName(target);
const arch_os_include_dir = try std.fmt.allocPrint(
arena,
"{s}" ++ s ++ "libc" ++ s ++ "include" ++ s ++ "{s}-{s}-any",
.{ zig_lib_dir, generic_arch_name, os_name },
);
const generic_os_include_dir = try std.fmt.allocPrint(
arena,
"{s}" ++ s ++ "libc" ++ s ++ "include" ++ s ++ "any-{s}-any",
.{ zig_lib_dir, os_name },
);
const list = try arena.alloc([]const u8, 4);
list[0] = arch_include_dir;
list[1] = generic_include_dir;
list[2] = arch_os_include_dir;
list[3] = generic_os_include_dir;
return LibCDirs{
.libc_include_dir_list = list,
.libc_installation = null,
.libc_framework_dir_list = &.{},
.sysroot = null,
.darwin_sdk_layout = .vendored,
};
}
pub fn get_libc_crt_file(comp: *Compilation, arena: Allocator, basename: []const u8) ![]const u8 {
if (comp.wantBuildGLibCFromSource() or
comp.wantBuildMuslFromSource() or
comp.wantBuildMinGWFromSource() or
comp.wantBuildWasiLibcFromSource())
{
return comp.crt_files.get(basename).?.full_object_path;
}
const lci = comp.libc_installation orelse return error.LibCInstallationNotAvailable;
const crt_dir_path = lci.crt_dir orelse return error.LibCInstallationMissingCRTDir;
const full_path = try std.fs.path.join(arena, &[_][]const u8{ crt_dir_path, basename });
return full_path;
}
fn wantBuildLibCFromSource(comp: Compilation) bool {
const is_exe_or_dyn_lib = switch (comp.config.output_mode) {
.Obj => false,
.Lib => comp.config.link_mode == .Dynamic,
.Exe => true,
};
const ofmt = comp.root_mod.resolved_target.result.ofmt;
return comp.config.link_libc and is_exe_or_dyn_lib and
comp.libc_installation == null and ofmt != .c;
}
fn wantBuildGLibCFromSource(comp: Compilation) bool {
return comp.wantBuildLibCFromSource() and comp.getTarget().isGnuLibC();
}
fn wantBuildMuslFromSource(comp: Compilation) bool {
return comp.wantBuildLibCFromSource() and comp.getTarget().isMusl() and
!comp.getTarget().isWasm();
}
fn wantBuildWasiLibcFromSource(comp: Compilation) bool {
return comp.wantBuildLibCFromSource() and comp.getTarget().isWasm() and
comp.getTarget().os.tag == .wasi;
}
fn wantBuildMinGWFromSource(comp: Compilation) bool {
return comp.wantBuildLibCFromSource() and comp.getTarget().isMinGW();
}
fn wantBuildLibUnwindFromSource(comp: *Compilation) bool {
const is_exe_or_dyn_lib = switch (comp.config.output_mode) {
.Obj => false,
.Lib => comp.config.link_mode == .Dynamic,
.Exe => true,
};
const ofmt = comp.root_mod.resolved_target.result.ofmt;
return is_exe_or_dyn_lib and comp.config.link_libunwind and ofmt != .c;
}
fn setAllocFailure(comp: *Compilation) void {
log.debug("memory allocation failure", .{});
comp.alloc_failure_occurred = true;
}
/// Assumes that Compilation mutex is locked.
/// See also `lockAndSetMiscFailure`.
pub fn setMiscFailure(
comp: *Compilation,
tag: MiscTask,
comptime format: []const u8,
args: anytype,
) void {
comp.misc_failures.ensureUnusedCapacity(comp.gpa, 1) catch return comp.setAllocFailure();
const msg = std.fmt.allocPrint(comp.gpa, format, args) catch return comp.setAllocFailure();
const gop = comp.misc_failures.getOrPutAssumeCapacity(tag);
if (gop.found_existing) {
gop.value_ptr.deinit(comp.gpa);
}
gop.value_ptr.* = .{ .msg = msg };
}
/// See also `setMiscFailure`.
pub fn lockAndSetMiscFailure(
comp: *Compilation,
tag: MiscTask,
comptime format: []const u8,
args: anytype,
) void {
comp.mutex.lock();
defer comp.mutex.unlock();
return setMiscFailure(comp, tag, format, args);
}
fn parseLldStderr(comp: *Compilation, comptime prefix: []const u8, stderr: []const u8) Allocator.Error!void {
var context_lines = std.ArrayList([]const u8).init(comp.gpa);
defer context_lines.deinit();
var current_err: ?*LldError = null;
var lines = mem.splitSequence(u8, stderr, if (builtin.os.tag == .windows) "\r\n" else "\n");
while (lines.next()) |line| {
if (mem.startsWith(u8, line, prefix ++ ":")) {
if (current_err) |err| {
err.context_lines = try context_lines.toOwnedSlice();
}
var split = mem.splitSequence(u8, line, "error: ");
_ = split.first();
const duped_msg = try std.fmt.allocPrint(comp.gpa, "{s}: {s}", .{ prefix, split.rest() });
errdefer comp.gpa.free(duped_msg);
current_err = try comp.lld_errors.addOne(comp.gpa);
current_err.?.* = .{ .msg = duped_msg };
} else if (current_err != null) {
const context_prefix = ">>> ";
var trimmed = mem.trimRight(u8, line, &std.ascii.whitespace);
if (mem.startsWith(u8, trimmed, context_prefix)) {
trimmed = trimmed[context_prefix.len..];
}
if (trimmed.len > 0) {
const duped_line = try comp.gpa.dupe(u8, trimmed);
try context_lines.append(duped_line);
}
}
}
if (current_err) |err| {
err.context_lines = try context_lines.toOwnedSlice();
}
}
pub fn lockAndParseLldStderr(comp: *Compilation, comptime prefix: []const u8, stderr: []const u8) void {
comp.mutex.lock();
defer comp.mutex.unlock();
comp.parseLldStderr(prefix, stderr) catch comp.setAllocFailure();
}
pub fn dump_argv(argv: []const []const u8) void {
std.debug.getStderrMutex().lock();
defer std.debug.getStderrMutex().unlock();
const stderr = std.io.getStdErr().writer();
for (argv[0 .. argv.len - 1]) |arg| {
nosuspend stderr.print("{s} ", .{arg}) catch return;
}
nosuspend stderr.print("{s}\n", .{argv[argv.len - 1]}) catch {};
}
fn canBuildLibCompilerRt(target: std.Target, use_llvm: bool) bool {
switch (target.os.tag) {
.plan9 => return false,
else => {},
}
switch (target.cpu.arch) {
.spirv32, .spirv64 => return false,
else => {},
}
return switch (target_util.zigBackend(target, use_llvm)) {
.stage2_llvm => true,
.stage2_x86_64 => if (target.ofmt == .elf) true else build_options.have_llvm,
else => build_options.have_llvm,
};
}
/// Not to be confused with canBuildLibC, which builds musl, glibc, and similar.
/// This one builds lib/c.zig.
fn canBuildZigLibC(target: std.Target, use_llvm: bool) bool {
switch (target.os.tag) {
.plan9 => return false,
else => {},
}
switch (target.cpu.arch) {
.spirv32, .spirv64 => return false,
else => {},
}
return switch (target_util.zigBackend(target, use_llvm)) {
.stage2_llvm => true,
.stage2_x86_64 => if (target.ofmt == .elf) true else build_options.have_llvm,
else => build_options.have_llvm,
};
}
pub fn getZigBackend(comp: Compilation) std.builtin.CompilerBackend {
const target = comp.root_mod.resolved_target.result;
return target_util.zigBackend(target, comp.config.use_llvm);
}
pub fn updateSubCompilation(
parent_comp: *Compilation,
sub_comp: *Compilation,
misc_task: MiscTask,
prog_node: *std.Progress.Node,
) !void {
{
var sub_node = prog_node.start(@tagName(misc_task), 0);
sub_node.activate();
defer sub_node.end();
try sub_comp.update(prog_node);
}
// Look for compilation errors in this sub compilation
const gpa = parent_comp.gpa;
var keep_errors = false;
var errors = try sub_comp.getAllErrorsAlloc();
defer if (!keep_errors) errors.deinit(gpa);
if (errors.errorMessageCount() > 0) {
try parent_comp.misc_failures.ensureUnusedCapacity(gpa, 1);
parent_comp.misc_failures.putAssumeCapacityNoClobber(misc_task, .{
.msg = try std.fmt.allocPrint(gpa, "sub-compilation of {s} failed", .{
@tagName(misc_task),
}),
.children = errors,
});
keep_errors = true;
return error.SubCompilationFailed;
}
}
fn buildOutputFromZig(
comp: *Compilation,
src_basename: []const u8,
output_mode: std.builtin.OutputMode,
out: *?CRTFile,
misc_task_tag: MiscTask,
prog_node: *std.Progress.Node,
) !void {
const tracy_trace = trace(@src());
defer tracy_trace.end();
var arena_allocator = std.heap.ArenaAllocator.init(comp.gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
assert(output_mode != .Exe);
const lf = comp.bin_file.?;
const unwind_tables = if (lf.cast(link.File.Elf)) |elf| elf.eh_frame_hdr else false;
const config = try Config.resolve(.{
.output_mode = output_mode,
.resolved_target = comp.root_mod.resolved_target,
.is_test = false,
.have_zcu = true,
.emit_bin = true,
.root_optimize_mode = comp.compilerRtOptMode(),
.root_strip = comp.compilerRtStrip(),
.link_libc = comp.config.link_libc,
.any_unwind_tables = unwind_tables,
});
const root_mod = Package.Module.create(.{
.paths = .{
.root = .{ .root_dir = comp.zig_lib_directory },
.root_src_path = src_basename,
},
.fully_qualified_name = "root",
.inherited = .{
.strip = comp.compilerRtStrip(),
.stack_check = false,
.stack_protector = 0,
.red_zone = comp.root_mod.red_zone,
.omit_frame_pointer = comp.root_mod.omit_frame_pointer,
.unwind_tables = unwind_tables,
.pic = comp.root_mod.pic,
.optimize_mode = comp.compilerRtOptMode(),
.structured_cfg = comp.root_mod.structured_cfg,
},
.global = config,
.cc_argv = &.{},
});
const root_name = src_basename[0 .. src_basename.len - std.fs.path.extension(src_basename).len];
const target = comp.getTarget();
const bin_basename = try std.zig.binNameAlloc(arena, .{
.root_name = root_name,
.target = target,
.output_mode = output_mode,
});
const emit_bin = Compilation.EmitLoc{
.directory = null, // Put it in the cache directory.
.basename = bin_basename,
};
const sub_compilation = try Compilation.create(comp.gpa, .{
.global_cache_directory = comp.global_cache_directory,
.local_cache_directory = comp.global_cache_directory,
.zig_lib_directory = comp.zig_lib_directory,
.self_exe_path = comp.self_exe_path,
.resolved = config,
.root_mod = root_mod,
.cache_mode = .whole,
.root_name = root_name,
.thread_pool = comp.thread_pool,
.libc_installation = comp.libc_installation,
.emit_bin = emit_bin,
.link_mode = .Static,
.function_sections = true,
.data_sections = true,
.no_builtin = true,
.emit_h = null,
.verbose_cc = comp.verbose_cc,
.verbose_link = comp.verbose_link,
.verbose_air = comp.verbose_air,
.verbose_intern_pool = comp.verbose_intern_pool,
.verbose_generic_instances = comp.verbose_intern_pool,
.verbose_llvm_ir = comp.verbose_llvm_ir,
.verbose_llvm_bc = comp.verbose_llvm_bc,
.verbose_cimport = comp.verbose_cimport,
.verbose_llvm_cpu_features = comp.verbose_llvm_cpu_features,
.clang_passthrough_mode = comp.clang_passthrough_mode,
.skip_linker_dependencies = true,
});
defer sub_compilation.destroy();
try comp.updateSubCompilation(sub_compilation, misc_task_tag, prog_node);
assert(out.* == null);
out.* = Compilation.CRTFile{
.full_object_path = try sub_compilation.bin_file.?.emit.directory.join(comp.gpa, &[_][]const u8{
sub_compilation.bin_file.?.emit.sub_path,
}),
.lock = sub_compilation.bin_file.toOwnedLock(),
};
}
pub fn build_crt_file(
comp: *Compilation,
root_name: []const u8,
output_mode: std.builtin.OutputMode,
misc_task_tag: MiscTask,
prog_node: *std.Progress.Node,
c_source_files: []const CSourceFile,
) !void {
const tracy_trace = trace(@src());
defer tracy_trace.end();
const gpa = comp.gpa;
const basename = try std.zig.binNameAlloc(gpa, .{
.root_name = root_name,
.target = comp.root_mod.resolved_target.result,
.output_mode = output_mode,
});
errdefer gpa.free(basename);
const config = try Config.resolve(.{
.output_mode = output_mode,
.resolved_target = comp.root_mod.resolved_target,
.is_test = false,
.have_zcu = false,
.emit_bin = true,
.root_optimize_mode = comp.compilerRtOptMode(),
.root_strip = comp.compilerRtStrip(),
.link_libc = false,
.lto = switch (output_mode) {
.Lib => comp.config.lto,
.Obj, .Exe => false,
},
});
const root_mod = Package.Module.create(.{
.paths = .{
.root = .{ .root_dir = comp.zig_lib_directory },
.root_src_path = "",
},
.fully_qualified_name = "root",
.inherited = .{
.strip = comp.compilerRtStrip(),
.stack_check = false,
.stack_protector = 0,
.sanitize_c = false,
.sanitize_thread = false,
.red_zone = comp.root_mod.red_zone,
.omit_frame_pointer = comp.root_mod.omit_frame_pointer,
.valgrind = false,
.unwind_tables = false,
.pic = comp.root_mod.pic,
.optimize_mode = comp.compilerRtOptMode(),
.structured_cfg = comp.root_mod.structured_cfg,
},
.global = config,
.cc_argv = &.{},
});
const sub_compilation = try Compilation.create(gpa, .{
.local_cache_directory = comp.global_cache_directory,
.global_cache_directory = comp.global_cache_directory,
.zig_lib_directory = comp.zig_lib_directory,
.self_exe_path = comp.self_exe_path,
.cache_mode = .whole,
.resolved = config,
.root_mod = root_mod,
.root_name = root_name,
.thread_pool = comp.thread_pool,
.libc_installation = comp.libc_installation,
.emit_bin = .{
.directory = null, // Put it in the cache directory.
.basename = basename,
},
.emit_h = null,
.c_source_files = c_source_files,
.verbose_cc = comp.verbose_cc,
.verbose_link = comp.verbose_link,
.verbose_air = comp.verbose_air,
.verbose_intern_pool = comp.verbose_intern_pool,
.verbose_generic_instances = comp.verbose_generic_instances,
.verbose_llvm_ir = comp.verbose_llvm_ir,
.verbose_llvm_bc = comp.verbose_llvm_bc,
.verbose_cimport = comp.verbose_cimport,
.verbose_llvm_cpu_features = comp.verbose_llvm_cpu_features,
.clang_passthrough_mode = comp.clang_passthrough_mode,
.skip_linker_dependencies = true,
});
defer sub_compilation.destroy();
try comp.updateSubCompilation(sub_compilation, misc_task_tag, prog_node);
try comp.crt_files.ensureUnusedCapacity(gpa, 1);
comp.crt_files.putAssumeCapacityNoClobber(basename, .{
.full_object_path = try sub_compilation.bin_file.?.emit.directory.join(gpa, &[_][]const u8{
sub_compilation.bin_file.?.emit.sub_path,
}),
.lock = sub_compilation.bin_file.toOwnedLock(),
});
}
pub fn addLinkLib(comp: *Compilation, lib_name: []const u8) !void {
// Avoid deadlocking on building import libs such as kernel32.lib
// This can happen when the user uses `build-exe foo.obj -lkernel32` and
// then when we create a sub-Compilation for zig libc, it also tries to
// build kernel32.lib.
if (comp.skip_linker_dependencies) return;
// This happens when an `extern "foo"` function is referenced.
// If we haven't seen this library yet and we're targeting Windows, we need
// to queue up a work item to produce the DLL import library for this.
const gop = try comp.system_libs.getOrPut(comp.gpa, lib_name);
if (!gop.found_existing and comp.getTarget().os.tag == .windows) {
gop.value_ptr.* = .{
.needed = true,
.weak = false,
.path = null,
};
try comp.work_queue.writeItem(.{
.windows_import_lib = comp.system_libs.count() - 1,
});
}
}
/// This decides the optimization mode for all zig-provided libraries, including
/// compiler-rt, libcxx, libc, libunwind, etc.
pub fn compilerRtOptMode(comp: Compilation) std.builtin.OptimizeMode {
if (comp.debug_compiler_runtime_libs) {
return comp.root_mod.optimize_mode;
}
const target = comp.root_mod.resolved_target.result;
switch (comp.root_mod.optimize_mode) {
.Debug, .ReleaseSafe => return target_util.defaultCompilerRtOptimizeMode(target),
.ReleaseFast => return .ReleaseFast,
.ReleaseSmall => return .ReleaseSmall,
}
}
/// This decides whether to strip debug info for all zig-provided libraries, including
/// compiler-rt, libcxx, libc, libunwind, etc.
pub fn compilerRtStrip(comp: Compilation) bool {
return comp.root_mod.strip;
}