mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
152 lines
4.4 KiB
Zig
152 lines
4.4 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/tanhf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/tanh.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
const expo2 = @import("expo2.zig").expo2;
|
|
const maxInt = std.math.maxInt;
|
|
|
|
/// Returns the hyperbolic tangent of x.
|
|
///
|
|
/// Special Cases:
|
|
/// - sinh(+-0) = +-0
|
|
/// - sinh(+-inf) = +-1
|
|
/// - sinh(nan) = nan
|
|
pub fn tanh(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => tanh32(x),
|
|
f64 => tanh64(x),
|
|
else => @compileError("tanh not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
|
|
// = (exp(2x) - 1) / (exp(2x) - 1 + 2)
|
|
// = (1 - exp(-2x)) / (exp(-2x) - 1 + 2)
|
|
fn tanh32(x: f32) f32 {
|
|
const u = @bitCast(u32, x);
|
|
const ux = u & 0x7FFFFFFF;
|
|
const ax = @bitCast(f32, ux);
|
|
const sign = (u >> 31) != 0;
|
|
|
|
var t: f32 = undefined;
|
|
|
|
// |x| < log(3) / 2 ~= 0.5493 or nan
|
|
if (ux > 0x3F0C9F54) {
|
|
// |x| > 10
|
|
if (ux > 0x41200000) {
|
|
t = 1.0 + 0 / x;
|
|
} else {
|
|
t = math.expm1(2 * ax);
|
|
t = 1 - 2 / (t + 2);
|
|
}
|
|
}
|
|
// |x| > log(5 / 3) / 2 ~= 0.2554
|
|
else if (ux > 0x3E82C578) {
|
|
t = math.expm1(2 * ax);
|
|
t = t / (t + 2);
|
|
}
|
|
// |x| >= 0x1.0p-126
|
|
else if (ux >= 0x00800000) {
|
|
t = math.expm1(-2 * ax);
|
|
t = -t / (t + 2);
|
|
}
|
|
// |x| is subnormal
|
|
else {
|
|
math.doNotOptimizeAway(ax * ax);
|
|
t = ax;
|
|
}
|
|
|
|
return if (sign) -t else t;
|
|
}
|
|
|
|
fn tanh64(x: f64) f64 {
|
|
const u = @bitCast(u64, x);
|
|
const ux = u & 0x7FFFFFFFFFFFFFFF;
|
|
const w = @intCast(u32, ux >> 32);
|
|
const ax = @bitCast(f64, ux);
|
|
const sign = (u >> 63) != 0;
|
|
|
|
var t: f64 = undefined;
|
|
|
|
// |x| < log(3) / 2 ~= 0.5493 or nan
|
|
if (w > 0x3FE193EA) {
|
|
// |x| > 20 or nan
|
|
if (w > 0x40340000) {
|
|
t = 1.0 - 0 / ax;
|
|
} else {
|
|
t = math.expm1(2 * ax);
|
|
t = 1 - 2 / (t + 2);
|
|
}
|
|
}
|
|
// |x| > log(5 / 3) / 2 ~= 0.2554
|
|
else if (w > 0x3FD058AE) {
|
|
t = math.expm1(2 * ax);
|
|
t = t / (t + 2);
|
|
}
|
|
// |x| >= 0x1.0p-1022
|
|
else if (w >= 0x00100000) {
|
|
t = math.expm1(-2 * ax);
|
|
t = -t / (t + 2);
|
|
}
|
|
// |x| is subnormal
|
|
else {
|
|
math.doNotOptimizeAway(@floatCast(f32, ax));
|
|
t = ax;
|
|
}
|
|
|
|
return if (sign) -t else t;
|
|
}
|
|
|
|
test "math.tanh" {
|
|
try expect(tanh(@as(f32, 1.5)) == tanh32(1.5));
|
|
try expect(tanh(@as(f64, 1.5)) == tanh64(1.5));
|
|
}
|
|
|
|
test "math.tanh32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, tanh32(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(0.2), 0.197375, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(0.8923), 0.712528, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(1.5), 0.905148, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(37.45), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(-0.8923), -0.712528, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(-1.5), -0.905148, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanh32(-37.45), -1.0, epsilon));
|
|
}
|
|
|
|
test "math.tanh64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, tanh64(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(0.2), 0.197375, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(0.8923), 0.712528, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(1.5), 0.905148, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(37.45), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(-0.8923), -0.712528, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(-1.5), -0.905148, epsilon));
|
|
try expect(math.approxEqAbs(f64, tanh64(-37.45), -1.0, epsilon));
|
|
}
|
|
|
|
test "math.tanh32.special" {
|
|
try expect(tanh32(0.0) == 0.0);
|
|
try expect(tanh32(-0.0) == -0.0);
|
|
try expect(tanh32(math.inf(f32)) == 1.0);
|
|
try expect(tanh32(-math.inf(f32)) == -1.0);
|
|
try expect(math.isNan(tanh32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.tanh64.special" {
|
|
try expect(tanh64(0.0) == 0.0);
|
|
try expect(tanh64(-0.0) == -0.0);
|
|
try expect(tanh64(math.inf(f64)) == 1.0);
|
|
try expect(tanh64(-math.inf(f64)) == -1.0);
|
|
try expect(math.isNan(tanh64(math.nan(f64))));
|
|
}
|