mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
324 lines
7.9 KiB
Zig
324 lines
7.9 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/expmf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/expm.c
|
|
|
|
// TODO: Updated recently.
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns e raised to the power of x, minus 1 (e^x - 1). This is more accurate than exp(e, x) - 1
|
|
/// when x is near 0.
|
|
///
|
|
/// Special Cases:
|
|
/// - expm1(+inf) = +inf
|
|
/// - expm1(-inf) = -1
|
|
/// - expm1(nan) = nan
|
|
pub fn expm1(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => expm1_32(x),
|
|
f64 => expm1_64(x),
|
|
else => @compileError("exp1m not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn expm1_32(x_: f32) f32 {
|
|
if (math.isNan(x_))
|
|
return math.nan(f32);
|
|
|
|
const o_threshold: f32 = 8.8721679688e+01;
|
|
const ln2_hi: f32 = 6.9313812256e-01;
|
|
const ln2_lo: f32 = 9.0580006145e-06;
|
|
const invln2: f32 = 1.4426950216e+00;
|
|
const Q1: f32 = -3.3333212137e-2;
|
|
const Q2: f32 = 1.5807170421e-3;
|
|
|
|
var x = x_;
|
|
const ux = @bitCast(u32, x);
|
|
const hx = ux & 0x7FFFFFFF;
|
|
const sign = hx >> 31;
|
|
|
|
// TODO: Shouldn't need this check explicitly.
|
|
if (math.isNegativeInf(x)) {
|
|
return -1.0;
|
|
}
|
|
|
|
// |x| >= 27 * ln2
|
|
if (hx >= 0x4195B844) {
|
|
// nan
|
|
if (hx > 0x7F800000) {
|
|
return x;
|
|
}
|
|
if (sign != 0) {
|
|
return -1;
|
|
}
|
|
if (x > o_threshold) {
|
|
x *= 0x1.0p127;
|
|
return x;
|
|
}
|
|
}
|
|
|
|
var hi: f32 = undefined;
|
|
var lo: f32 = undefined;
|
|
var c: f32 = undefined;
|
|
var k: i32 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3EB17218) {
|
|
// |x| < 1.5 * ln2
|
|
if (hx < 0x3F851592) {
|
|
if (sign == 0) {
|
|
hi = x - ln2_hi;
|
|
lo = ln2_lo;
|
|
k = 1;
|
|
} else {
|
|
hi = x + ln2_hi;
|
|
lo = -ln2_lo;
|
|
k = -1;
|
|
}
|
|
} else {
|
|
var kf = invln2 * x;
|
|
if (sign != 0) {
|
|
kf -= 0.5;
|
|
} else {
|
|
kf += 0.5;
|
|
}
|
|
|
|
k = @floatToInt(i32, kf);
|
|
const t = @intToFloat(f32, k);
|
|
hi = x - t * ln2_hi;
|
|
lo = t * ln2_lo;
|
|
}
|
|
|
|
x = hi - lo;
|
|
c = (hi - x) - lo;
|
|
}
|
|
// |x| < 2^(-25)
|
|
else if (hx < 0x33000000) {
|
|
if (hx < 0x00800000) {
|
|
math.doNotOptimizeAway(x * x);
|
|
}
|
|
return x;
|
|
} else {
|
|
k = 0;
|
|
}
|
|
|
|
const hfx = 0.5 * x;
|
|
const hxs = x * hfx;
|
|
const r1 = 1.0 + hxs * (Q1 + hxs * Q2);
|
|
const t = 3.0 - r1 * hfx;
|
|
var e = hxs * ((r1 - t) / (6.0 - x * t));
|
|
|
|
// c is 0
|
|
if (k == 0) {
|
|
return x - (x * e - hxs);
|
|
}
|
|
|
|
e = x * (e - c) - c;
|
|
e -= hxs;
|
|
|
|
// exp(x) ~ 2^k (x_reduced - e + 1)
|
|
if (k == -1) {
|
|
return 0.5 * (x - e) - 0.5;
|
|
}
|
|
if (k == 1) {
|
|
if (x < -0.25) {
|
|
return -2.0 * (e - (x + 0.5));
|
|
} else {
|
|
return 1.0 + 2.0 * (x - e);
|
|
}
|
|
}
|
|
|
|
const twopk = @bitCast(f32, @intCast(u32, (0x7F +% k) << 23));
|
|
|
|
if (k < 0 or k > 56) {
|
|
var y = x - e + 1.0;
|
|
if (k == 128) {
|
|
y = y * 2.0 * 0x1.0p127;
|
|
} else {
|
|
y = y * twopk;
|
|
}
|
|
|
|
return y - 1.0;
|
|
}
|
|
|
|
const uf = @bitCast(f32, @intCast(u32, 0x7F -% k) << 23);
|
|
if (k < 23) {
|
|
return (x - e + (1 - uf)) * twopk;
|
|
} else {
|
|
return (x - (e + uf) + 1) * twopk;
|
|
}
|
|
}
|
|
|
|
fn expm1_64(x_: f64) f64 {
|
|
if (math.isNan(x_))
|
|
return math.nan(f64);
|
|
|
|
const o_threshold: f64 = 7.09782712893383973096e+02;
|
|
const ln2_hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2_lo: f64 = 1.90821492927058770002e-10;
|
|
const invln2: f64 = 1.44269504088896338700e+00;
|
|
const Q1: f64 = -3.33333333333331316428e-02;
|
|
const Q2: f64 = 1.58730158725481460165e-03;
|
|
const Q3: f64 = -7.93650757867487942473e-05;
|
|
const Q4: f64 = 4.00821782732936239552e-06;
|
|
const Q5: f64 = -2.01099218183624371326e-07;
|
|
|
|
var x = x_;
|
|
const ux = @bitCast(u64, x);
|
|
const hx = @intCast(u32, ux >> 32) & 0x7FFFFFFF;
|
|
const sign = ux >> 63;
|
|
|
|
if (math.isNegativeInf(x)) {
|
|
return -1.0;
|
|
}
|
|
|
|
// |x| >= 56 * ln2
|
|
if (hx >= 0x4043687A) {
|
|
// exp1md(nan) = nan
|
|
if (hx > 0x7FF00000) {
|
|
return x;
|
|
}
|
|
// exp1md(-ve) = -1
|
|
if (sign != 0) {
|
|
return -1;
|
|
}
|
|
if (x > o_threshold) {
|
|
math.raiseOverflow();
|
|
return math.inf(f64);
|
|
}
|
|
}
|
|
|
|
var hi: f64 = undefined;
|
|
var lo: f64 = undefined;
|
|
var c: f64 = undefined;
|
|
var k: i32 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3FD62E42) {
|
|
// |x| < 1.5 * ln2
|
|
if (hx < 0x3FF0A2B2) {
|
|
if (sign == 0) {
|
|
hi = x - ln2_hi;
|
|
lo = ln2_lo;
|
|
k = 1;
|
|
} else {
|
|
hi = x + ln2_hi;
|
|
lo = -ln2_lo;
|
|
k = -1;
|
|
}
|
|
} else {
|
|
var kf = invln2 * x;
|
|
if (sign != 0) {
|
|
kf -= 0.5;
|
|
} else {
|
|
kf += 0.5;
|
|
}
|
|
|
|
k = @floatToInt(i32, kf);
|
|
const t = @intToFloat(f64, k);
|
|
hi = x - t * ln2_hi;
|
|
lo = t * ln2_lo;
|
|
}
|
|
|
|
x = hi - lo;
|
|
c = (hi - x) - lo;
|
|
}
|
|
// |x| < 2^(-54)
|
|
else if (hx < 0x3C900000) {
|
|
if (hx < 0x00100000) {
|
|
math.doNotOptimizeAway(@floatCast(f32, x));
|
|
}
|
|
return x;
|
|
} else {
|
|
k = 0;
|
|
}
|
|
|
|
const hfx = 0.5 * x;
|
|
const hxs = x * hfx;
|
|
const r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
|
|
const t = 3.0 - r1 * hfx;
|
|
var e = hxs * ((r1 - t) / (6.0 - x * t));
|
|
|
|
// c is 0
|
|
if (k == 0) {
|
|
return x - (x * e - hxs);
|
|
}
|
|
|
|
e = x * (e - c) - c;
|
|
e -= hxs;
|
|
|
|
// exp(x) ~ 2^k (x_reduced - e + 1)
|
|
if (k == -1) {
|
|
return 0.5 * (x - e) - 0.5;
|
|
}
|
|
if (k == 1) {
|
|
if (x < -0.25) {
|
|
return -2.0 * (e - (x + 0.5));
|
|
} else {
|
|
return 1.0 + 2.0 * (x - e);
|
|
}
|
|
}
|
|
|
|
const twopk = @bitCast(f64, @intCast(u64, 0x3FF +% k) << 52);
|
|
|
|
if (k < 0 or k > 56) {
|
|
var y = x - e + 1.0;
|
|
if (k == 1024) {
|
|
y = y * 2.0 * 0x1.0p1023;
|
|
} else {
|
|
y = y * twopk;
|
|
}
|
|
|
|
return y - 1.0;
|
|
}
|
|
|
|
const uf = @bitCast(f64, @intCast(u64, 0x3FF -% k) << 52);
|
|
if (k < 20) {
|
|
return (x - e + (1 - uf)) * twopk;
|
|
} else {
|
|
return (x - (e + uf) + 1) * twopk;
|
|
}
|
|
}
|
|
|
|
test "math.exp1m" {
|
|
try expect(expm1(@as(f32, 0.0)) == expm1_32(0.0));
|
|
try expect(expm1(@as(f64, 0.0)) == expm1_64(0.0));
|
|
}
|
|
|
|
test "math.expm1_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(expm1_32(0.0) == 0.0);
|
|
try expect(math.approxEqAbs(f32, expm1_32(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, expm1_32(0.2), 0.221403, epsilon));
|
|
try expect(math.approxEqAbs(f32, expm1_32(0.8923), 1.440737, epsilon));
|
|
try expect(math.approxEqAbs(f32, expm1_32(1.5), 3.481689, epsilon));
|
|
}
|
|
|
|
test "math.expm1_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(expm1_64(0.0) == 0.0);
|
|
try expect(math.approxEqAbs(f64, expm1_64(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, expm1_64(0.2), 0.221403, epsilon));
|
|
try expect(math.approxEqAbs(f64, expm1_64(0.8923), 1.440737, epsilon));
|
|
try expect(math.approxEqAbs(f64, expm1_64(1.5), 3.481689, epsilon));
|
|
}
|
|
|
|
test "math.expm1_32.special" {
|
|
try expect(math.isPositiveInf(expm1_32(math.inf(f32))));
|
|
try expect(expm1_32(-math.inf(f32)) == -1.0);
|
|
try expect(math.isNan(expm1_32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.expm1_64.special" {
|
|
try expect(math.isPositiveInf(expm1_64(math.inf(f64))));
|
|
try expect(expm1_64(-math.inf(f64)) == -1.0);
|
|
try expect(math.isNan(expm1_64(math.nan(f64))));
|
|
}
|