zig/src-self-hosted/libc_installation.zig
Andrew Kelley 0cd89e9176
std.os.execvpeZ_expandArg0: fix not restoring argv[0]
This function expands argv[0] into the absolute path resolved with PATH
environment variable before making the execve syscall. However, in case
the execve fails, e.g. with ENOENT, it did not restore argv to how it
was before it was passed in. This resulted in the caller performing an
invalid free.

This commit also adds verbose debug info when native system C compiler
detection fails. See #4521.
2020-02-22 13:56:02 -05:00

744 lines
27 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const util = @import("util.zig");
const Target = std.Target;
const fs = std.fs;
const Allocator = std.mem.Allocator;
const Batch = std.event.Batch;
const is_darwin = Target.current.isDarwin();
const is_windows = Target.current.isWindows();
const is_freebsd = Target.current.isFreeBSD();
const is_netbsd = Target.current.isNetBSD();
const is_linux = Target.current.isLinux();
const is_dragonfly = Target.current.isDragonFlyBSD();
const is_gnu = Target.current.isGnu();
usingnamespace @import("windows_sdk.zig");
/// See the render function implementation for documentation of the fields.
pub const LibCInstallation = struct {
include_dir: ?[:0]const u8 = null,
sys_include_dir: ?[:0]const u8 = null,
crt_dir: ?[:0]const u8 = null,
static_crt_dir: ?[:0]const u8 = null,
msvc_lib_dir: ?[:0]const u8 = null,
kernel32_lib_dir: ?[:0]const u8 = null,
pub const FindError = error{
OutOfMemory,
FileSystem,
UnableToSpawnCCompiler,
CCompilerExitCode,
CCompilerCrashed,
CCompilerCannotFindHeaders,
LibCRuntimeNotFound,
LibCStdLibHeaderNotFound,
LibCKernel32LibNotFound,
UnsupportedArchitecture,
WindowsSdkNotFound,
};
pub fn parse(
allocator: *Allocator,
libc_file: []const u8,
stderr: *std.io.OutStream(fs.File.WriteError),
) !LibCInstallation {
var self: LibCInstallation = .{};
const fields = std.meta.fields(LibCInstallation);
const FoundKey = struct {
found: bool,
allocated: ?[:0]u8,
};
var found_keys = [1]FoundKey{FoundKey{ .found = false, .allocated = null }} ** fields.len;
errdefer {
self = .{};
for (found_keys) |found_key| {
if (found_key.allocated) |s| allocator.free(s);
}
}
const contents = try std.io.readFileAlloc(allocator, libc_file);
defer allocator.free(contents);
var it = std.mem.tokenize(contents, "\n");
while (it.next()) |line| {
if (line.len == 0 or line[0] == '#') continue;
var line_it = std.mem.separate(line, "=");
const name = line_it.next() orelse {
try stderr.print("missing equal sign after field name\n", .{});
return error.ParseError;
};
const value = line_it.rest();
inline for (fields) |field, i| {
if (std.mem.eql(u8, name, field.name)) {
found_keys[i].found = true;
if (value.len == 0) {
@field(self, field.name) = null;
} else {
found_keys[i].allocated = try std.mem.dupeZ(allocator, u8, value);
@field(self, field.name) = found_keys[i].allocated;
}
break;
}
}
}
inline for (fields) |field, i| {
if (!found_keys[i].found) {
try stderr.print("missing field: {}\n", .{field.name});
return error.ParseError;
}
}
if (self.include_dir == null) {
try stderr.print("include_dir may not be empty\n", .{});
return error.ParseError;
}
if (self.sys_include_dir == null) {
try stderr.print("sys_include_dir may not be empty\n", .{});
return error.ParseError;
}
if (self.crt_dir == null and !is_darwin) {
try stderr.print("crt_dir may not be empty for {}\n", .{@tagName(Target.current.getOs())});
return error.ParseError;
}
if (self.static_crt_dir == null and is_windows and is_gnu) {
try stderr.print("static_crt_dir may not be empty for {}-{}\n", .{
@tagName(Target.current.getOs()),
@tagName(Target.current.getAbi()),
});
return error.ParseError;
}
if (self.msvc_lib_dir == null and is_windows and !is_gnu) {
try stderr.print("msvc_lib_dir may not be empty for {}-{}\n", .{
@tagName(Target.current.getOs()),
@tagName(Target.current.getAbi()),
});
return error.ParseError;
}
if (self.kernel32_lib_dir == null and is_windows and !is_gnu) {
try stderr.print("kernel32_lib_dir may not be empty for {}-{}\n", .{
@tagName(Target.current.getOs()),
@tagName(Target.current.getAbi()),
});
return error.ParseError;
}
return self;
}
pub fn render(self: LibCInstallation, out: *std.io.OutStream(fs.File.WriteError)) !void {
@setEvalBranchQuota(4000);
const include_dir = self.include_dir orelse "";
const sys_include_dir = self.sys_include_dir orelse "";
const crt_dir = self.crt_dir orelse "";
const static_crt_dir = self.static_crt_dir orelse "";
const msvc_lib_dir = self.msvc_lib_dir orelse "";
const kernel32_lib_dir = self.kernel32_lib_dir orelse "";
try out.print(
\\# The directory that contains `stdlib.h`.
\\# On POSIX-like systems, include directories be found with: `cc -E -Wp,-v -xc /dev/null`
\\include_dir={}
\\
\\# The system-specific include directory. May be the same as `include_dir`.
\\# On Windows it's the directory that includes `vcruntime.h`.
\\# On POSIX it's the directory that includes `sys/errno.h`.
\\sys_include_dir={}
\\
\\# The directory that contains `crt1.o` or `crt2.o`.
\\# On POSIX, can be found with `cc -print-file-name=crt1.o`.
\\# Not needed when targeting MacOS.
\\crt_dir={}
\\
\\# The directory that contains `crtbegin.o`.
\\# On POSIX, can be found with `cc -print-file-name=crtbegin.o`.
\\# Only needed when targeting MinGW-w64 on Windows.
\\static_crt_dir={}
\\
\\# The directory that contains `vcruntime.lib`.
\\# Only needed when targeting MSVC on Windows.
\\msvc_lib_dir={}
\\
\\# The directory that contains `kernel32.lib`.
\\# Only needed when targeting MSVC on Windows.
\\kernel32_lib_dir={}
\\
, .{
include_dir,
sys_include_dir,
crt_dir,
static_crt_dir,
msvc_lib_dir,
kernel32_lib_dir,
});
}
pub const FindNativeOptions = struct {
allocator: *Allocator,
/// If enabled, will print human-friendly errors to stderr.
verbose: bool = false,
};
/// Finds the default, native libc.
pub fn findNative(args: FindNativeOptions) FindError!LibCInstallation {
var self: LibCInstallation = .{};
if (is_windows) {
if (is_gnu) {
var batch = Batch(FindError!void, 3, .auto_async).init();
batch.add(&async self.findNativeIncludeDirPosix(args));
batch.add(&async self.findNativeCrtDirPosix(args));
batch.add(&async self.findNativeStaticCrtDirPosix(args));
try batch.wait();
} else {
var sdk: *ZigWindowsSDK = undefined;
switch (zig_find_windows_sdk(&sdk)) {
.None => {
defer zig_free_windows_sdk(sdk);
var batch = Batch(FindError!void, 5, .auto_async).init();
batch.add(&async self.findNativeMsvcIncludeDir(args, sdk));
batch.add(&async self.findNativeMsvcLibDir(args, sdk));
batch.add(&async self.findNativeKernel32LibDir(args, sdk));
batch.add(&async self.findNativeIncludeDirWindows(args, sdk));
batch.add(&async self.findNativeCrtDirWindows(args, sdk));
try batch.wait();
},
.OutOfMemory => return error.OutOfMemory,
.NotFound => return error.WindowsSdkNotFound,
.PathTooLong => return error.WindowsSdkNotFound,
}
}
} else {
try blk: {
var batch = Batch(FindError!void, 2, .auto_async).init();
errdefer batch.wait() catch {};
batch.add(&async self.findNativeIncludeDirPosix(args));
if (is_freebsd or is_netbsd) {
self.crt_dir = try std.mem.dupeZ(args.allocator, u8, "/usr/lib");
} else if (is_linux or is_dragonfly) {
batch.add(&async self.findNativeCrtDirPosix(args));
}
break :blk batch.wait();
};
}
return self;
}
/// Must be the same allocator passed to `parse` or `findNative`.
pub fn deinit(self: *LibCInstallation, allocator: *Allocator) void {
const fields = std.meta.fields(LibCInstallation);
inline for (fields) |field| {
if (@field(self, field.name)) |payload| {
allocator.free(payload);
}
}
self.* = undefined;
}
fn findNativeIncludeDirPosix(self: *LibCInstallation, args: FindNativeOptions) FindError!void {
const allocator = args.allocator;
const dev_null = if (is_windows) "nul" else "/dev/null";
const cc_exe = std.os.getenvZ("CC") orelse default_cc_exe;
const argv = [_][]const u8{
cc_exe,
"-E",
"-Wp,-v",
"-xc",
dev_null,
};
const exec_res = std.ChildProcess.exec2(.{
.allocator = allocator,
.argv = &argv,
.max_output_bytes = 1024 * 1024,
// Some C compilers, such as Clang, are known to rely on argv[0] to find the path
// to their own executable, without even bothering to resolve PATH. This results in the message:
// error: unable to execute command: Executable "" doesn't exist!
// So we use the expandArg0 variant of ChildProcess to give them a helping hand.
.expand_arg0 = .expand,
}) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => {
printVerboseInvocation(&argv, null, args.verbose, null);
return error.UnableToSpawnCCompiler;
},
};
defer {
allocator.free(exec_res.stdout);
allocator.free(exec_res.stderr);
}
switch (exec_res.term) {
.Exited => |code| if (code != 0) {
printVerboseInvocation(&argv, null, args.verbose, exec_res.stderr);
return error.CCompilerExitCode;
},
else => {
printVerboseInvocation(&argv, null, args.verbose, exec_res.stderr);
return error.CCompilerCrashed;
},
}
var it = std.mem.tokenize(exec_res.stderr, "\n\r");
var search_paths = std.ArrayList([]const u8).init(allocator);
defer search_paths.deinit();
while (it.next()) |line| {
if (line.len != 0 and line[0] == ' ') {
try search_paths.append(line);
}
}
if (search_paths.len == 0) {
return error.CCompilerCannotFindHeaders;
}
const include_dir_example_file = "stdlib.h";
const sys_include_dir_example_file = if (is_windows) "sys\\types.h" else "sys/errno.h";
var path_i: usize = 0;
while (path_i < search_paths.len) : (path_i += 1) {
// search in reverse order
const search_path_untrimmed = search_paths.at(search_paths.len - path_i - 1);
const search_path = std.mem.trimLeft(u8, search_path_untrimmed, " ");
var search_dir = fs.cwd().openDirList(search_path) catch |err| switch (err) {
error.FileNotFound,
error.NotDir,
error.NoDevice,
=> continue,
else => return error.FileSystem,
};
defer search_dir.close();
if (self.include_dir == null) {
if (search_dir.accessZ(include_dir_example_file, .{})) |_| {
self.include_dir = try std.mem.dupeZ(allocator, u8, search_path);
} else |err| switch (err) {
error.FileNotFound => {},
else => return error.FileSystem,
}
}
if (self.sys_include_dir == null) {
if (search_dir.accessZ(sys_include_dir_example_file, .{})) |_| {
self.sys_include_dir = try std.mem.dupeZ(allocator, u8, search_path);
} else |err| switch (err) {
error.FileNotFound => {},
else => return error.FileSystem,
}
}
if (self.include_dir != null and self.sys_include_dir != null) {
// Success.
return;
}
}
return error.LibCStdLibHeaderNotFound;
}
fn findNativeIncludeDirWindows(
self: *LibCInstallation,
args: FindNativeOptions,
sdk: *ZigWindowsSDK,
) FindError!void {
const allocator = args.allocator;
var search_buf: [2]Search = undefined;
const searches = fillSearch(&search_buf, sdk);
var result_buf = try std.Buffer.initSize(allocator, 0);
defer result_buf.deinit();
for (searches) |search| {
result_buf.shrink(0);
const stream = &std.io.BufferOutStream.init(&result_buf).stream;
try stream.print("{}\\Include\\{}\\ucrt", .{ search.path, search.version });
var dir = fs.cwd().openDirList(result_buf.toSliceConst()) catch |err| switch (err) {
error.FileNotFound,
error.NotDir,
error.NoDevice,
=> continue,
else => return error.FileSystem,
};
defer dir.close();
dir.accessZ("stdlib.h", .{}) catch |err| switch (err) {
error.FileNotFound => continue,
else => return error.FileSystem,
};
self.include_dir = result_buf.toOwnedSlice();
return;
}
return error.LibCStdLibHeaderNotFound;
}
fn findNativeCrtDirWindows(
self: *LibCInstallation,
args: FindNativeOptions,
sdk: *ZigWindowsSDK,
) FindError!void {
const allocator = args.allocator;
var search_buf: [2]Search = undefined;
const searches = fillSearch(&search_buf, sdk);
var result_buf = try std.Buffer.initSize(allocator, 0);
defer result_buf.deinit();
const arch_sub_dir = switch (builtin.arch) {
.i386 => "x86",
.x86_64 => "x64",
.arm, .armeb => "arm",
else => return error.UnsupportedArchitecture,
};
for (searches) |search| {
result_buf.shrink(0);
const stream = &std.io.BufferOutStream.init(&result_buf).stream;
try stream.print("{}\\Lib\\{}\\ucrt\\{}", .{ search.path, search.version, arch_sub_dir });
var dir = fs.cwd().openDirList(result_buf.toSliceConst()) catch |err| switch (err) {
error.FileNotFound,
error.NotDir,
error.NoDevice,
=> continue,
else => return error.FileSystem,
};
defer dir.close();
dir.accessZ("ucrt.lib", .{}) catch |err| switch (err) {
error.FileNotFound => continue,
else => return error.FileSystem,
};
self.crt_dir = result_buf.toOwnedSlice();
return;
}
return error.LibCRuntimeNotFound;
}
fn findNativeCrtDirPosix(self: *LibCInstallation, args: FindNativeOptions) FindError!void {
self.crt_dir = try ccPrintFileName(.{
.allocator = args.allocator,
.search_basename = "crt1.o",
.want_dirname = .only_dir,
.verbose = args.verbose,
});
}
fn findNativeStaticCrtDirPosix(self: *LibCInstallation, args: FindNativeOptions) FindError!void {
self.static_crt_dir = try ccPrintFileName(.{
.allocator = args.allocator,
.search_basename = "crtbegin.o",
.want_dirname = .only_dir,
.verbose = args.verbose,
});
}
fn findNativeKernel32LibDir(
self: *LibCInstallation,
args: FindNativeOptions,
sdk: *ZigWindowsSDK,
) FindError!void {
const allocator = args.allocator;
var search_buf: [2]Search = undefined;
const searches = fillSearch(&search_buf, sdk);
var result_buf = try std.Buffer.initSize(allocator, 0);
defer result_buf.deinit();
const arch_sub_dir = switch (builtin.arch) {
.i386 => "x86",
.x86_64 => "x64",
.arm, .armeb => "arm",
else => return error.UnsupportedArchitecture,
};
for (searches) |search| {
result_buf.shrink(0);
const stream = &std.io.BufferOutStream.init(&result_buf).stream;
try stream.print("{}\\Lib\\{}\\um\\{}", .{ search.path, search.version, arch_sub_dir });
var dir = fs.cwd().openDirList(result_buf.toSliceConst()) catch |err| switch (err) {
error.FileNotFound,
error.NotDir,
error.NoDevice,
=> continue,
else => return error.FileSystem,
};
defer dir.close();
dir.accessZ("kernel32.lib", .{}) catch |err| switch (err) {
error.FileNotFound => continue,
else => return error.FileSystem,
};
self.kernel32_lib_dir = result_buf.toOwnedSlice();
return;
}
return error.LibCKernel32LibNotFound;
}
fn findNativeMsvcIncludeDir(
self: *LibCInstallation,
args: FindNativeOptions,
sdk: *ZigWindowsSDK,
) FindError!void {
const allocator = args.allocator;
const msvc_lib_dir_ptr = sdk.msvc_lib_dir_ptr orelse return error.LibCStdLibHeaderNotFound;
const msvc_lib_dir = msvc_lib_dir_ptr[0..sdk.msvc_lib_dir_len];
const up1 = fs.path.dirname(msvc_lib_dir) orelse return error.LibCStdLibHeaderNotFound;
const up2 = fs.path.dirname(up1) orelse return error.LibCStdLibHeaderNotFound;
var result_buf = try std.Buffer.init(allocator, up2);
defer result_buf.deinit();
try result_buf.append("\\include");
var dir = fs.cwd().openDirList(result_buf.toSliceConst()) catch |err| switch (err) {
error.FileNotFound,
error.NotDir,
error.NoDevice,
=> return error.LibCStdLibHeaderNotFound,
else => return error.FileSystem,
};
defer dir.close();
dir.accessZ("vcruntime.h", .{}) catch |err| switch (err) {
error.FileNotFound => return error.LibCStdLibHeaderNotFound,
else => return error.FileSystem,
};
self.sys_include_dir = result_buf.toOwnedSlice();
}
fn findNativeMsvcLibDir(
self: *LibCInstallation,
args: FindNativeOptions,
sdk: *ZigWindowsSDK,
) FindError!void {
const allocator = args.allocator;
const msvc_lib_dir_ptr = sdk.msvc_lib_dir_ptr orelse return error.LibCRuntimeNotFound;
self.msvc_lib_dir = try std.mem.dupeZ(allocator, u8, msvc_lib_dir_ptr[0..sdk.msvc_lib_dir_len]);
}
};
const default_cc_exe = if (is_windows) "cc.exe" else "cc";
pub const CCPrintFileNameOptions = struct {
allocator: *Allocator,
search_basename: []const u8,
want_dirname: enum { full_path, only_dir },
verbose: bool = false,
};
/// caller owns returned memory
fn ccPrintFileName(args: CCPrintFileNameOptions) ![:0]u8 {
const allocator = args.allocator;
const cc_exe = std.os.getenvZ("CC") orelse default_cc_exe;
const arg1 = try std.fmt.allocPrint(allocator, "-print-file-name={}", .{args.search_basename});
defer allocator.free(arg1);
const argv = [_][]const u8{ cc_exe, arg1 };
const exec_res = std.ChildProcess.exec2(.{
.allocator = allocator,
.argv = &argv,
.max_output_bytes = 1024 * 1024,
// Some C compilers, such as Clang, are known to rely on argv[0] to find the path
// to their own executable, without even bothering to resolve PATH. This results in the message:
// error: unable to execute command: Executable "" doesn't exist!
// So we use the expandArg0 variant of ChildProcess to give them a helping hand.
.expand_arg0 = .expand,
}) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => return error.UnableToSpawnCCompiler,
};
defer {
allocator.free(exec_res.stdout);
allocator.free(exec_res.stderr);
}
switch (exec_res.term) {
.Exited => |code| if (code != 0) {
printVerboseInvocation(&argv, args.search_basename, args.verbose, exec_res.stderr);
return error.CCompilerExitCode;
},
else => {
printVerboseInvocation(&argv, args.search_basename, args.verbose, exec_res.stderr);
return error.CCompilerCrashed;
},
}
var it = std.mem.tokenize(exec_res.stdout, "\n\r");
const line = it.next() orelse return error.LibCRuntimeNotFound;
// When this command fails, it returns exit code 0 and duplicates the input file name.
// So we detect failure by checking if the output matches exactly the input.
if (std.mem.eql(u8, line, args.search_basename)) return error.LibCRuntimeNotFound;
switch (args.want_dirname) {
.full_path => return std.mem.dupeZ(allocator, u8, line),
.only_dir => {
const dirname = fs.path.dirname(line) orelse return error.LibCRuntimeNotFound;
return std.mem.dupeZ(allocator, u8, dirname);
},
}
}
fn printVerboseInvocation(
argv: []const []const u8,
search_basename: ?[]const u8,
verbose: bool,
stderr: ?[]const u8,
) void {
if (!verbose) return;
if (search_basename) |s| {
std.debug.warn("Zig attempted to find the file '{}' by executing this command:\n", .{s});
} else {
std.debug.warn("Zig attempted to find the path to native system libc headers by executing this command:\n", .{});
}
for (argv) |arg, i| {
if (i != 0) std.debug.warn(" ", .{});
std.debug.warn("{}", .{arg});
}
std.debug.warn("\n", .{});
if (stderr) |s| {
std.debug.warn("Output:\n==========\n{}\n==========\n", .{s});
}
}
/// Caller owns returned memory.
pub fn detectNativeDynamicLinker(allocator: *Allocator) error{
OutOfMemory,
TargetHasNoDynamicLinker,
UnknownDynamicLinkerPath,
}![:0]u8 {
if (!comptime Target.current.hasDynamicLinker()) {
return error.TargetHasNoDynamicLinker;
}
// The current target's ABI cannot be relied on for this. For example, we may build the zig
// compiler for target riscv64-linux-musl and provide a tarball for users to download.
// A user could then run that zig compiler on riscv64-linux-gnu. This use case is well-defined
// and supported by Zig. But that means that we must detect the system ABI here rather than
// relying on `std.Target.current`.
const LdInfo = struct {
ld_path: []u8,
abi: Target.Abi,
};
var ld_info_list = std.ArrayList(LdInfo).init(allocator);
defer {
for (ld_info_list.toSlice()) |ld_info| allocator.free(ld_info.ld_path);
ld_info_list.deinit();
}
const all_abis = comptime blk: {
const fields = std.meta.fields(Target.Abi);
var array: [fields.len]Target.Abi = undefined;
inline for (fields) |field, i| {
array[i] = @field(Target.Abi, field.name);
}
break :blk array;
};
for (all_abis) |abi| {
// This may be a nonsensical parameter. We detect this with error.UnknownDynamicLinkerPath and
// skip adding it to `ld_info_list`.
const target: Target = .{
.Cross = .{
.cpu = Target.Cpu.baseline(Target.current.getArch()),
.os = Target.current.getOs(),
.abi = abi,
},
};
const standard_ld_path = target.getStandardDynamicLinkerPath(allocator) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.UnknownDynamicLinkerPath, error.TargetHasNoDynamicLinker => continue,
};
errdefer allocator.free(standard_ld_path);
try ld_info_list.append(.{
.ld_path = standard_ld_path,
.abi = abi,
});
}
// Best case scenario: the zig compiler is dynamically linked, and we can iterate
// over our own shared objects and find a dynamic linker.
{
const lib_paths = try std.process.getSelfExeSharedLibPaths(allocator);
defer allocator.free(lib_paths);
// This is O(N^M) but typical case here is N=2 and M=10.
for (lib_paths) |lib_path| {
for (ld_info_list.toSlice()) |ld_info| {
const standard_ld_basename = fs.path.basename(ld_info.ld_path);
if (std.mem.endsWith(u8, lib_path, standard_ld_basename)) {
return std.mem.dupeZ(allocator, u8, lib_path);
}
}
}
}
// If Zig is statically linked, such as via distributed binary static builds, the above
// trick won't work. What are we left with? Try to run the system C compiler and get
// it to tell us the dynamic linker path.
// TODO: instead of this, look at the shared libs of /usr/bin/env.
for (ld_info_list.toSlice()) |ld_info| {
const standard_ld_basename = fs.path.basename(ld_info.ld_path);
const full_ld_path = ccPrintFileName(.{
.allocator = allocator,
.search_basename = standard_ld_basename,
.want_dirname = .full_path,
}) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.LibCRuntimeNotFound,
error.CCompilerExitCode,
error.CCompilerCrashed,
error.UnableToSpawnCCompiler,
=> continue,
};
return full_ld_path;
}
// Finally, we fall back on the standard path.
return Target.current.getStandardDynamicLinkerPath(allocator);
}
const Search = struct {
path: []const u8,
version: []const u8,
};
fn fillSearch(search_buf: *[2]Search, sdk: *ZigWindowsSDK) []Search {
var search_end: usize = 0;
if (sdk.path10_ptr) |path10_ptr| {
if (sdk.version10_ptr) |version10_ptr| {
search_buf[search_end] = Search{
.path = path10_ptr[0..sdk.path10_len],
.version = version10_ptr[0..sdk.version10_len],
};
search_end += 1;
}
}
if (sdk.path81_ptr) |path81_ptr| {
if (sdk.version81_ptr) |version81_ptr| {
search_buf[search_end] = Search{
.path = path81_ptr[0..sdk.path81_len],
.version = version81_ptr[0..sdk.version81_len],
};
search_end += 1;
}
}
return search_buf[0..search_end];
}