mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
Ascon has been selected as new standard for lightweight cryptography in the NIST Lightweight Cryptography competition. Ascon won over Gimli and Xoodoo. The permutation is unlikely to change. However, NIST may tweak the constructions (XOF, hash, authenticated encryption) before standardizing them. For that reason, implementations of those are better maintained outside the standard library for now. In fact, we already had an Ascon implementation in Zig: `std.crypto.aead.isap` is based on it. While the implementation was here, there was no public API to access it directly. So: - The Ascon permutation is now available as `std.crypto.core.Ascon`, with everything needed to use it in AEADs and other Ascon-based constructions - The ISAP implementation now uses std.crypto.core.Ascon instead of keeping a private copy - The default CSPRNG replaces Xoodoo with Ascon. And instead of an ad-hoc construction, it's using the XOFa mode of the NIST submission.
228 lines
8.7 KiB
Zig
228 lines
8.7 KiB
Zig
//! Ascon is a 320-bit permutation, selected as new standard for lightweight cryptography
|
||
//! in the NIST Lightweight Cryptography competition (2019–2023).
|
||
//! https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
|
||
//!
|
||
//! The permutation is compact, and optimized for timing and side channel resistance,
|
||
//! making it a good choice for embedded applications.
|
||
//!
|
||
//! It is not meant to be used directly, but as a building block for symmetric cryptography.
|
||
|
||
const std = @import("std");
|
||
const builtin = std.builtin;
|
||
const debug = std.debug;
|
||
const mem = std.mem;
|
||
const testing = std.testing;
|
||
const rotr = std.math.rotr;
|
||
|
||
/// An Ascon state.
|
||
///
|
||
/// The state is represented as 5 64-bit words.
|
||
///
|
||
/// The NIST submission (v1.2) serializes these words as big-endian,
|
||
/// but software implementations are free to use native endianness.
|
||
pub fn State(comptime endian: builtin.Endian) type {
|
||
return struct {
|
||
const Self = @This();
|
||
|
||
/// Number of bytes in the state.
|
||
pub const block_bytes = 40;
|
||
|
||
const Block = [5]u64;
|
||
|
||
st: Block,
|
||
|
||
/// Initialize the state from a slice of bytes.
|
||
pub fn init(initial_state: [block_bytes]u8) Self {
|
||
var state = Self{ .st = undefined };
|
||
mem.copy(u8, state.asBytes(), &initial_state);
|
||
state.endianSwap();
|
||
return state;
|
||
}
|
||
|
||
/// Initialize the state from u64 words in native endianness.
|
||
pub fn initFromWords(initial_state: [5]u64) Self {
|
||
var state = Self{ .st = initial_state };
|
||
return state;
|
||
}
|
||
|
||
/// Initialize the state for Ascon XOF
|
||
pub fn initXof() Self {
|
||
return Self{ .st = Block{
|
||
0xb57e273b814cd416,
|
||
0x2b51042562ae2420,
|
||
0x66a3a7768ddf2218,
|
||
0x5aad0a7a8153650c,
|
||
0x4f3e0e32539493b6,
|
||
} };
|
||
}
|
||
|
||
/// Initialize the state for Ascon XOFa
|
||
pub fn initXofA() Self {
|
||
return Self{ .st = Block{
|
||
0x44906568b77b9832,
|
||
0xcd8d6cae53455532,
|
||
0xf7b5212756422129,
|
||
0x246885e1de0d225b,
|
||
0xa8cb5ce33449973f,
|
||
} };
|
||
}
|
||
|
||
/// A representation of the state as bytes. The byte order is architecture-dependent.
|
||
pub fn asBytes(self: *Self) *[block_bytes]u8 {
|
||
return mem.asBytes(&self.st);
|
||
}
|
||
|
||
/// Byte-swap the entire state if the architecture doesn't match the required endianness.
|
||
pub fn endianSwap(self: *Self) void {
|
||
for (self.st) |*w| {
|
||
w.* = mem.toNative(u64, w.*, endian);
|
||
}
|
||
}
|
||
|
||
/// Set bytes starting at the beginning of the state.
|
||
pub fn setBytes(self: *Self, bytes: []const u8) void {
|
||
var i: usize = 0;
|
||
while (i + 8 <= bytes.len) : (i += 8) {
|
||
self.st[i / 8] = mem.readInt(u64, bytes[i..][0..8], endian);
|
||
}
|
||
if (i < bytes.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.copy(u8, padded[0 .. bytes.len - i], bytes[i..]);
|
||
self.st[i / 8] = mem.readInt(u64, padded[0..], endian);
|
||
}
|
||
}
|
||
|
||
/// XOR a byte into the state at a given offset.
|
||
pub fn addByte(self: *Self, byte: u8, offset: usize) void {
|
||
const z = switch (endian) {
|
||
.Big => 64 - 8 - 8 * @truncate(u6, offset % 8),
|
||
.Little => 8 * @truncate(u6, offset % 8),
|
||
};
|
||
self.st[offset / 8] ^= @as(u64, byte) << z;
|
||
}
|
||
|
||
/// XOR bytes into the beginning of the state.
|
||
pub fn addBytes(self: *Self, bytes: []const u8) void {
|
||
var i: usize = 0;
|
||
while (i + 8 <= bytes.len) : (i += 8) {
|
||
self.st[i / 8] ^= mem.readInt(u64, bytes[i..][0..8], endian);
|
||
}
|
||
if (i < bytes.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.copy(u8, padded[0 .. bytes.len - i], bytes[i..]);
|
||
self.st[i / 8] ^= mem.readInt(u64, padded[0..], endian);
|
||
}
|
||
}
|
||
|
||
/// Extract the first bytes of the state.
|
||
pub fn extractBytes(self: *Self, out: []u8) void {
|
||
var i: usize = 0;
|
||
while (i + 8 <= out.len) : (i += 8) {
|
||
mem.writeInt(u64, out[i..][0..8], self.st[i / 8], endian);
|
||
}
|
||
if (i < out.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.writeInt(u64, padded[0..], self.st[i / 8], endian);
|
||
mem.copy(u8, out[i..], padded[0 .. out.len - i]);
|
||
}
|
||
}
|
||
|
||
/// XOR the first bytes of the state into a slice of bytes.
|
||
pub fn xorBytes(self: *Self, out: []u8, in: []const u8) void {
|
||
debug.assert(out.len == in.len);
|
||
|
||
var i: usize = 0;
|
||
while (i + 8 <= in.len) : (i += 8) {
|
||
const x = mem.readIntNative(u64, in[i..][0..8]) ^ mem.nativeTo(u64, self.st[i / 8], endian);
|
||
mem.writeIntNative(u64, out[i..][0..8], x);
|
||
}
|
||
if (i < in.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.copy(u8, padded[0 .. in.len - i], in[i..]);
|
||
const x = mem.readIntNative(u64, &padded) ^ mem.nativeTo(u64, self.st[i / 8], endian);
|
||
mem.writeIntNative(u64, &padded, x);
|
||
mem.copy(u8, out[i..], padded[0 .. in.len - i]);
|
||
}
|
||
}
|
||
|
||
/// Set the words storing the bytes of a given range to zero.
|
||
pub fn clear(self: *Self, from: usize, to: usize) void {
|
||
mem.set(u64, self.st[from / 8 .. (to + 7) / 8], 0);
|
||
}
|
||
|
||
/// Clear the entire state, disabling compiler optimizations.
|
||
pub fn secureZero(self: *Self) void {
|
||
std.crypto.utils.secureZero(u64, &self.st);
|
||
}
|
||
|
||
/// Apply a reduced-round permutation to the state.
|
||
pub inline fn permuteR(state: *Self, comptime rounds: u4) void {
|
||
const rks = [12]u64{ 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87, 0x78, 0x69, 0x5a, 0x4b };
|
||
inline for (rks[rks.len - rounds ..]) |rk| {
|
||
state.round(rk);
|
||
}
|
||
}
|
||
|
||
/// Apply a full-round permutation to the state.
|
||
pub inline fn permute(state: *Self) void {
|
||
state.permuteR(12);
|
||
}
|
||
|
||
// Core Ascon permutation.
|
||
inline fn round(state: *Self, rk: u64) void {
|
||
const x = &state.st;
|
||
x[2] ^= rk;
|
||
|
||
x[0] ^= x[4];
|
||
x[4] ^= x[3];
|
||
x[2] ^= x[1];
|
||
var t: Block = .{
|
||
x[0] ^ (~x[1] & x[2]),
|
||
x[1] ^ (~x[2] & x[3]),
|
||
x[2] ^ (~x[3] & x[4]),
|
||
x[3] ^ (~x[4] & x[0]),
|
||
x[4] ^ (~x[0] & x[1]),
|
||
};
|
||
t[1] ^= t[0];
|
||
t[3] ^= t[2];
|
||
t[0] ^= t[4];
|
||
|
||
x[2] = t[2] ^ rotr(u64, t[2], 6 - 1);
|
||
x[3] = t[3] ^ rotr(u64, t[3], 17 - 10);
|
||
x[4] = t[4] ^ rotr(u64, t[4], 41 - 7);
|
||
x[0] = t[0] ^ rotr(u64, t[0], 28 - 19);
|
||
x[1] = t[1] ^ rotr(u64, t[1], 61 - 39);
|
||
x[2] = t[2] ^ rotr(u64, x[2], 1);
|
||
x[3] = t[3] ^ rotr(u64, x[3], 10);
|
||
x[4] = t[4] ^ rotr(u64, x[4], 7);
|
||
x[0] = t[0] ^ rotr(u64, x[0], 19);
|
||
x[1] = t[1] ^ rotr(u64, x[1], 39);
|
||
x[2] = ~x[2];
|
||
}
|
||
};
|
||
}
|
||
|
||
test "ascon" {
|
||
const Ascon = State(.Big);
|
||
const bytes = [_]u8{0x01} ** Ascon.block_bytes;
|
||
var st = Ascon.init(bytes);
|
||
var out: [Ascon.block_bytes]u8 = undefined;
|
||
st.permute();
|
||
st.extractBytes(&out);
|
||
const expected1 = [_]u8{ 148, 147, 49, 226, 218, 221, 208, 113, 186, 94, 96, 10, 183, 219, 119, 150, 169, 206, 65, 18, 215, 97, 78, 106, 118, 81, 211, 150, 52, 17, 117, 64, 216, 45, 148, 240, 65, 181, 90, 180 };
|
||
try testing.expectEqualSlices(u8, &expected1, &out);
|
||
st.clear(0, 10);
|
||
st.extractBytes(&out);
|
||
const expected2 = [_]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 169, 206, 65, 18, 215, 97, 78, 106, 118, 81, 211, 150, 52, 17, 117, 64, 216, 45, 148, 240, 65, 181, 90, 180 };
|
||
try testing.expectEqualSlices(u8, &expected2, &out);
|
||
st.addByte(1, 5);
|
||
st.addByte(2, 5);
|
||
st.extractBytes(&out);
|
||
const expected3 = [_]u8{ 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 169, 206, 65, 18, 215, 97, 78, 106, 118, 81, 211, 150, 52, 17, 117, 64, 216, 45, 148, 240, 65, 181, 90, 180 };
|
||
try testing.expectEqualSlices(u8, &expected3, &out);
|
||
st.addBytes(&bytes);
|
||
st.extractBytes(&out);
|
||
const expected4 = [_]u8{ 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 168, 207, 64, 19, 214, 96, 79, 107, 119, 80, 210, 151, 53, 16, 116, 65, 217, 44, 149, 241, 64, 180, 91, 181 };
|
||
try testing.expectEqualSlices(u8, &expected4, &out);
|
||
}
|