zig/src/AstGen.zig

5553 lines
212 KiB
Zig

//! A Work-In-Progress `Zir`. This is a shared parent of all
//! `GenZir` scopes. Once the `Zir` is produced, this struct
//! is deinitialized.
//! The `GenZir.finish` function converts this to a `Zir`.
const AstGen = @This();
const std = @import("std");
const ast = std.zig.ast;
const mem = std.mem;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const ArrayListUnmanaged = std.ArrayListUnmanaged;
const Value = @import("value.zig").Value;
const Type = @import("type.zig").Type;
const TypedValue = @import("TypedValue.zig");
const Zir = @import("Zir.zig");
const Module = @import("Module.zig");
const trace = @import("tracy.zig").trace;
const Scope = Module.Scope;
const GenZir = Scope.GenZir;
const InnerError = Module.InnerError;
const Decl = Module.Decl;
const LazySrcLoc = Module.LazySrcLoc;
const BuiltinFn = @import("BuiltinFn.zig");
gpa: *Allocator,
file: *Scope.File,
instructions: std.MultiArrayList(Zir.Inst) = .{},
extra: ArrayListUnmanaged(u32) = .{},
string_bytes: ArrayListUnmanaged(u8) = .{},
/// Used for temporary allocations; freed after AstGen is complete.
/// The resulting ZIR code has no references to anything in this arena.
arena: *Allocator,
string_table: std.StringHashMapUnmanaged(u32) = .{},
compile_errors: ArrayListUnmanaged(Zir.Inst.CompileErrors.Item) = .{},
pub fn addExtra(astgen: *AstGen, extra: anytype) Allocator.Error!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try astgen.extra.ensureCapacity(astgen.gpa, astgen.extra.items.len + fields.len);
return addExtraAssumeCapacity(astgen, extra);
}
pub fn addExtraAssumeCapacity(astgen: *AstGen, extra: anytype) u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result = @intCast(u32, astgen.extra.items.len);
inline for (fields) |field| {
astgen.extra.appendAssumeCapacity(switch (field.field_type) {
u32 => @field(extra, field.name),
Zir.Inst.Ref => @enumToInt(@field(extra, field.name)),
else => @compileError("bad field type"),
});
}
return result;
}
pub fn appendRefs(astgen: *AstGen, refs: []const Zir.Inst.Ref) !void {
const coerced = @bitCast([]const u32, refs);
return astgen.extra.appendSlice(astgen.gpa, coerced);
}
pub fn appendRefsAssumeCapacity(astgen: *AstGen, refs: []const Zir.Inst.Ref) void {
const coerced = @bitCast([]const u32, refs);
astgen.extra.appendSliceAssumeCapacity(coerced);
}
pub fn generate(gpa: *Allocator, file: *Scope.File) InnerError!Zir {
var arena = std.heap.ArenaAllocator.init(gpa);
defer arena.deinit();
var astgen: AstGen = .{
.gpa = gpa,
.arena = &arena.allocator,
.file = file,
};
defer astgen.deinit(gpa);
// Indexes 0,1 of extra are reserved and set at the end.
try astgen.extra.resize(gpa, 2);
var gen_scope: Scope.GenZir = .{
.force_comptime = true,
.parent = &file.base,
.decl_node_index = 0,
.astgen = &astgen,
};
defer gen_scope.instructions.deinit(gpa);
const container_decl: ast.full.ContainerDecl = .{
.layout_token = null,
.ast = .{
.main_token = undefined,
.enum_token = null,
.members = file.tree.rootDecls(),
.arg = 0,
},
};
if (AstGen.structDeclInner(
&gen_scope,
&gen_scope.base,
0,
container_decl,
.struct_decl,
)) |struct_decl_ref| {
astgen.extra.items[0] = @enumToInt(struct_decl_ref);
} else |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {}, // Handled via compile_errors below.
}
if (astgen.compile_errors.items.len == 0) {
astgen.extra.items[1] = 0;
} else {
try astgen.extra.ensureCapacity(gpa, astgen.extra.items.len +
1 + astgen.compile_errors.items.len *
@typeInfo(Zir.Inst.CompileErrors.Item).Struct.fields.len);
astgen.extra.items[1] = astgen.addExtraAssumeCapacity(Zir.Inst.CompileErrors{
.items_len = @intCast(u32, astgen.compile_errors.items.len),
});
for (astgen.compile_errors.items) |item| {
_ = astgen.addExtraAssumeCapacity(item);
}
}
return Zir{
.instructions = astgen.instructions.toOwnedSlice(),
.string_bytes = astgen.string_bytes.toOwnedSlice(gpa),
.extra = astgen.extra.toOwnedSlice(gpa),
};
}
pub fn deinit(astgen: *AstGen, gpa: *Allocator) void {
astgen.instructions.deinit(gpa);
astgen.extra.deinit(gpa);
astgen.string_table.deinit(gpa);
astgen.string_bytes.deinit(gpa);
astgen.compile_errors.deinit(gpa);
}
pub const ResultLoc = union(enum) {
/// The expression is the right-hand side of assignment to `_`. Only the side-effects of the
/// expression should be generated. The result instruction from the expression must
/// be ignored.
discard,
/// The expression has an inferred type, and it will be evaluated as an rvalue.
none,
/// The expression must generate a pointer rather than a value. For example, the left hand side
/// of an assignment uses this kind of result location.
ref,
/// The callee will accept a ref, but it is not necessary, and the `ResultLoc`
/// may be treated as `none` instead.
none_or_ref,
/// The expression will be coerced into this type, but it will be evaluated as an rvalue.
ty: Zir.Inst.Ref,
/// The expression must store its result into this typed pointer. The result instruction
/// from the expression must be ignored.
ptr: Zir.Inst.Ref,
/// The expression must store its result into this allocation, which has an inferred type.
/// The result instruction from the expression must be ignored.
/// Always an instruction with tag `alloc_inferred`.
inferred_ptr: Zir.Inst.Ref,
/// There is a pointer for the expression to store its result into, however, its type
/// is inferred based on peer type resolution for a `Zir.Inst.Block`.
/// The result instruction from the expression must be ignored.
block_ptr: *GenZir,
pub const Strategy = struct {
elide_store_to_block_ptr_instructions: bool,
tag: Tag,
pub const Tag = enum {
/// Both branches will use break_void; result location is used to communicate the
/// result instruction.
break_void,
/// Use break statements to pass the block result value, and call rvalue() at
/// the end depending on rl. Also elide the store_to_block_ptr instructions
/// depending on rl.
break_operand,
};
};
fn strategy(rl: ResultLoc, block_scope: *GenZir) Strategy {
var elide_store_to_block_ptr_instructions = false;
switch (rl) {
// In this branch there will not be any store_to_block_ptr instructions.
.discard, .none, .none_or_ref, .ty, .ref => return .{
.tag = .break_operand,
.elide_store_to_block_ptr_instructions = false,
},
// The pointer got passed through to the sub-expressions, so we will use
// break_void here.
// In this branch there will not be any store_to_block_ptr instructions.
.ptr => return .{
.tag = .break_void,
.elide_store_to_block_ptr_instructions = false,
},
.inferred_ptr, .block_ptr => {
if (block_scope.rvalue_rl_count == block_scope.break_count) {
// Neither prong of the if consumed the result location, so we can
// use break instructions to create an rvalue.
return .{
.tag = .break_operand,
.elide_store_to_block_ptr_instructions = true,
};
} else {
// Allow the store_to_block_ptr instructions to remain so that
// semantic analysis can turn them into bitcasts.
return .{
.tag = .break_void,
.elide_store_to_block_ptr_instructions = false,
};
}
},
}
}
};
pub fn typeExpr(gz: *GenZir, scope: *Scope, type_node: ast.Node.Index) InnerError!Zir.Inst.Ref {
return expr(gz, scope, .{ .ty = .type_type }, type_node);
}
fn lvalExpr(gz: *GenZir, scope: *Scope, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
switch (node_tags[node]) {
.root => unreachable,
.@"usingnamespace" => unreachable,
.test_decl => unreachable,
.global_var_decl => unreachable,
.local_var_decl => unreachable,
.simple_var_decl => unreachable,
.aligned_var_decl => unreachable,
.switch_case => unreachable,
.switch_case_one => unreachable,
.container_field_init => unreachable,
.container_field_align => unreachable,
.container_field => unreachable,
.asm_output => unreachable,
.asm_input => unreachable,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_bit_shift_left,
.assign_bit_shift_right,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_mul,
.assign_mul_wrap,
.add,
.add_wrap,
.sub,
.sub_wrap,
.mul,
.mul_wrap,
.div,
.mod,
.bit_and,
.bit_or,
.bit_shift_left,
.bit_shift_right,
.bit_xor,
.bang_equal,
.equal_equal,
.greater_than,
.greater_or_equal,
.less_than,
.less_or_equal,
.array_cat,
.array_mult,
.bool_and,
.bool_or,
.@"asm",
.asm_simple,
.string_literal,
.integer_literal,
.call,
.call_comma,
.async_call,
.async_call_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.unreachable_literal,
.@"return",
.@"if",
.if_simple,
.@"while",
.while_simple,
.while_cont,
.bool_not,
.address_of,
.float_literal,
.undefined_literal,
.true_literal,
.false_literal,
.null_literal,
.optional_type,
.block,
.block_semicolon,
.block_two,
.block_two_semicolon,
.@"break",
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.array_type,
.array_type_sentinel,
.enum_literal,
.multiline_string_literal,
.char_literal,
.@"defer",
.@"errdefer",
.@"catch",
.error_union,
.merge_error_sets,
.switch_range,
.@"await",
.bit_not,
.negation,
.negation_wrap,
.@"resume",
.@"try",
.slice,
.slice_open,
.slice_sentinel,
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
.struct_init_one,
.struct_init_one_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init,
.struct_init_comma,
.@"switch",
.switch_comma,
.@"for",
.for_simple,
.@"suspend",
.@"continue",
.@"anytype",
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
.fn_decl,
.anyframe_type,
.anyframe_literal,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.@"comptime",
.@"nosuspend",
.error_value,
=> return astgen.failNode(node, "invalid left-hand side to assignment", .{}),
.builtin_call,
.builtin_call_comma,
.builtin_call_two,
.builtin_call_two_comma,
=> {
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// If the builtin is an invalid name, we don't cause an error here; instead
// let it pass, and the error will be "invalid builtin function" later.
if (BuiltinFn.list.get(builtin_name)) |info| {
if (!info.allows_lvalue) {
return astgen.failNode(node, "invalid left-hand side to assignment", .{});
}
}
},
// These can be assigned to.
.unwrap_optional,
.deref,
.field_access,
.array_access,
.identifier,
.grouped_expression,
.@"orelse",
=> {},
}
return expr(gz, scope, .ref, node);
}
/// Turn Zig AST into untyped ZIR istructions.
/// When `rl` is discard, ptr, inferred_ptr, or inferred_ptr, the
/// result instruction can be used to inspect whether it is isNoReturn() but that is it,
/// it must otherwise not be used.
pub fn expr(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
switch (node_tags[node]) {
.root => unreachable, // Top-level declaration.
.@"usingnamespace" => unreachable, // Top-level declaration.
.test_decl => unreachable, // Top-level declaration.
.container_field_init => unreachable, // Top-level declaration.
.container_field_align => unreachable, // Top-level declaration.
.container_field => unreachable, // Top-level declaration.
.fn_decl => unreachable, // Top-level declaration.
.global_var_decl => unreachable, // Handled in `blockExpr`.
.local_var_decl => unreachable, // Handled in `blockExpr`.
.simple_var_decl => unreachable, // Handled in `blockExpr`.
.aligned_var_decl => unreachable, // Handled in `blockExpr`.
.switch_case => unreachable, // Handled in `switchExpr`.
.switch_case_one => unreachable, // Handled in `switchExpr`.
.switch_range => unreachable, // Handled in `switchExpr`.
.asm_output => unreachable, // Handled in `asmExpr`.
.asm_input => unreachable, // Handled in `asmExpr`.
.assign => {
try assign(gz, scope, node);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_bit_and => {
try assignOp(gz, scope, node, .bit_and);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_bit_or => {
try assignOp(gz, scope, node, .bit_or);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_bit_shift_left => {
try assignOp(gz, scope, node, .shl);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_bit_shift_right => {
try assignOp(gz, scope, node, .shr);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_bit_xor => {
try assignOp(gz, scope, node, .xor);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_div => {
try assignOp(gz, scope, node, .div);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_sub => {
try assignOp(gz, scope, node, .sub);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_sub_wrap => {
try assignOp(gz, scope, node, .subwrap);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_mod => {
try assignOp(gz, scope, node, .mod_rem);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_add => {
try assignOp(gz, scope, node, .add);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_add_wrap => {
try assignOp(gz, scope, node, .addwrap);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_mul => {
try assignOp(gz, scope, node, .mul);
return rvalue(gz, scope, rl, .void_value, node);
},
.assign_mul_wrap => {
try assignOp(gz, scope, node, .mulwrap);
return rvalue(gz, scope, rl, .void_value, node);
},
.add => return simpleBinOp(gz, scope, rl, node, .add),
.add_wrap => return simpleBinOp(gz, scope, rl, node, .addwrap),
.sub => return simpleBinOp(gz, scope, rl, node, .sub),
.sub_wrap => return simpleBinOp(gz, scope, rl, node, .subwrap),
.mul => return simpleBinOp(gz, scope, rl, node, .mul),
.mul_wrap => return simpleBinOp(gz, scope, rl, node, .mulwrap),
.div => return simpleBinOp(gz, scope, rl, node, .div),
.mod => return simpleBinOp(gz, scope, rl, node, .mod_rem),
.bit_and => return simpleBinOp(gz, scope, rl, node, .bit_and),
.bit_or => return simpleBinOp(gz, scope, rl, node, .bit_or),
.bit_shift_left => return simpleBinOp(gz, scope, rl, node, .shl),
.bit_shift_right => return simpleBinOp(gz, scope, rl, node, .shr),
.bit_xor => return simpleBinOp(gz, scope, rl, node, .xor),
.bang_equal => return simpleBinOp(gz, scope, rl, node, .cmp_neq),
.equal_equal => return simpleBinOp(gz, scope, rl, node, .cmp_eq),
.greater_than => return simpleBinOp(gz, scope, rl, node, .cmp_gt),
.greater_or_equal => return simpleBinOp(gz, scope, rl, node, .cmp_gte),
.less_than => return simpleBinOp(gz, scope, rl, node, .cmp_lt),
.less_or_equal => return simpleBinOp(gz, scope, rl, node, .cmp_lte),
.array_cat => return simpleBinOp(gz, scope, rl, node, .array_cat),
.array_mult => return simpleBinOp(gz, scope, rl, node, .array_mul),
.error_union => return simpleBinOp(gz, scope, rl, node, .error_union_type),
.merge_error_sets => return simpleBinOp(gz, scope, rl, node, .merge_error_sets),
.bool_and => return boolBinOp(gz, scope, rl, node, .bool_br_and),
.bool_or => return boolBinOp(gz, scope, rl, node, .bool_br_or),
.bool_not => return boolNot(gz, scope, rl, node),
.bit_not => return bitNot(gz, scope, rl, node),
.negation => return negation(gz, scope, rl, node, .negate),
.negation_wrap => return negation(gz, scope, rl, node, .negate_wrap),
.identifier => return identifier(gz, scope, rl, node),
.asm_simple => return asmExpr(gz, scope, rl, node, tree.asmSimple(node)),
.@"asm" => return asmExpr(gz, scope, rl, node, tree.asmFull(node)),
.string_literal => return stringLiteral(gz, scope, rl, node),
.multiline_string_literal => return multilineStringLiteral(gz, scope, rl, node),
.integer_literal => return integerLiteral(gz, scope, rl, node),
.builtin_call_two, .builtin_call_two_comma => {
if (node_datas[node].lhs == 0) {
const params = [_]ast.Node.Index{};
return builtinCall(gz, scope, rl, node, &params);
} else if (node_datas[node].rhs == 0) {
const params = [_]ast.Node.Index{node_datas[node].lhs};
return builtinCall(gz, scope, rl, node, &params);
} else {
const params = [_]ast.Node.Index{ node_datas[node].lhs, node_datas[node].rhs };
return builtinCall(gz, scope, rl, node, &params);
}
},
.builtin_call, .builtin_call_comma => {
const params = tree.extra_data[node_datas[node].lhs..node_datas[node].rhs];
return builtinCall(gz, scope, rl, node, params);
},
.call_one, .call_one_comma, .async_call_one, .async_call_one_comma => {
var params: [1]ast.Node.Index = undefined;
return callExpr(gz, scope, rl, node, tree.callOne(&params, node));
},
.call, .call_comma, .async_call, .async_call_comma => {
return callExpr(gz, scope, rl, node, tree.callFull(node));
},
.unreachable_literal => {
_ = try gz.addAsIndex(.{
.tag = .@"unreachable",
.data = .{ .@"unreachable" = .{
.safety = true,
.src_node = gz.nodeIndexToRelative(node),
} },
});
return Zir.Inst.Ref.unreachable_value;
},
.@"return" => return ret(gz, scope, node),
.field_access => return fieldAccess(gz, scope, rl, node),
.float_literal => return floatLiteral(gz, scope, rl, node),
.if_simple => return ifExpr(gz, scope, rl, node, tree.ifSimple(node)),
.@"if" => return ifExpr(gz, scope, rl, node, tree.ifFull(node)),
.while_simple => return whileExpr(gz, scope, rl, node, tree.whileSimple(node)),
.while_cont => return whileExpr(gz, scope, rl, node, tree.whileCont(node)),
.@"while" => return whileExpr(gz, scope, rl, node, tree.whileFull(node)),
.for_simple => return forExpr(gz, scope, rl, node, tree.forSimple(node)),
.@"for" => return forExpr(gz, scope, rl, node, tree.forFull(node)),
.slice_open => {
const lhs = try expr(gz, scope, .ref, node_datas[node].lhs);
const start = try expr(gz, scope, .{ .ty = .usize_type }, node_datas[node].rhs);
const result = try gz.addPlNode(.slice_start, node, Zir.Inst.SliceStart{
.lhs = lhs,
.start = start,
});
return rvalue(gz, scope, rl, result, node);
},
.slice => {
const lhs = try expr(gz, scope, .ref, node_datas[node].lhs);
const extra = tree.extraData(node_datas[node].rhs, ast.Node.Slice);
const start = try expr(gz, scope, .{ .ty = .usize_type }, extra.start);
const end = try expr(gz, scope, .{ .ty = .usize_type }, extra.end);
const result = try gz.addPlNode(.slice_end, node, Zir.Inst.SliceEnd{
.lhs = lhs,
.start = start,
.end = end,
});
return rvalue(gz, scope, rl, result, node);
},
.slice_sentinel => {
const lhs = try expr(gz, scope, .ref, node_datas[node].lhs);
const extra = tree.extraData(node_datas[node].rhs, ast.Node.SliceSentinel);
const start = try expr(gz, scope, .{ .ty = .usize_type }, extra.start);
const end = try expr(gz, scope, .{ .ty = .usize_type }, extra.end);
const sentinel = try expr(gz, scope, .{ .ty = .usize_type }, extra.sentinel);
const result = try gz.addPlNode(.slice_sentinel, node, Zir.Inst.SliceSentinel{
.lhs = lhs,
.start = start,
.end = end,
.sentinel = sentinel,
});
return rvalue(gz, scope, rl, result, node);
},
.deref => {
const lhs = try expr(gz, scope, .none, node_datas[node].lhs);
switch (rl) {
.ref, .none_or_ref => return lhs,
else => {
const result = try gz.addUnNode(.load, lhs, node);
return rvalue(gz, scope, rl, result, node);
},
}
},
.address_of => {
const result = try expr(gz, scope, .ref, node_datas[node].lhs);
return rvalue(gz, scope, rl, result, node);
},
.undefined_literal => return rvalue(gz, scope, rl, .undef, node),
.true_literal => return rvalue(gz, scope, rl, .bool_true, node),
.false_literal => return rvalue(gz, scope, rl, .bool_false, node),
.null_literal => return rvalue(gz, scope, rl, .null_value, node),
.optional_type => {
const operand = try typeExpr(gz, scope, node_datas[node].lhs);
const result = try gz.addUnNode(.optional_type, operand, node);
return rvalue(gz, scope, rl, result, node);
},
.unwrap_optional => switch (rl) {
.ref => return gz.addUnNode(
.optional_payload_safe_ptr,
try expr(gz, scope, .ref, node_datas[node].lhs),
node,
),
else => return rvalue(gz, scope, rl, try gz.addUnNode(
.optional_payload_safe,
try expr(gz, scope, .none, node_datas[node].lhs),
node,
), node),
},
.block_two, .block_two_semicolon => {
const statements = [2]ast.Node.Index{ node_datas[node].lhs, node_datas[node].rhs };
if (node_datas[node].lhs == 0) {
return blockExpr(gz, scope, rl, node, statements[0..0]);
} else if (node_datas[node].rhs == 0) {
return blockExpr(gz, scope, rl, node, statements[0..1]);
} else {
return blockExpr(gz, scope, rl, node, statements[0..2]);
}
},
.block, .block_semicolon => {
const statements = tree.extra_data[node_datas[node].lhs..node_datas[node].rhs];
return blockExpr(gz, scope, rl, node, statements);
},
.enum_literal => return simpleStrTok(gz, scope, rl, main_tokens[node], node, .enum_literal),
.error_value => return simpleStrTok(gz, scope, rl, node_datas[node].rhs, node, .error_value),
.anyframe_literal => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.anyframe_type => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.@"catch" => {
const catch_token = main_tokens[node];
const payload_token: ?ast.TokenIndex = if (token_tags[catch_token + 1] == .pipe)
catch_token + 2
else
null;
switch (rl) {
.ref => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_err_ptr,
.err_union_payload_unsafe_ptr,
.err_union_code_ptr,
node_datas[node].rhs,
payload_token,
),
else => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_err,
.err_union_payload_unsafe,
.err_union_code,
node_datas[node].rhs,
payload_token,
),
}
},
.@"orelse" => switch (rl) {
.ref => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_null_ptr,
.optional_payload_unsafe_ptr,
undefined,
node_datas[node].rhs,
null,
),
else => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_null,
.optional_payload_unsafe,
undefined,
node_datas[node].rhs,
null,
),
},
.ptr_type_aligned => return ptrType(gz, scope, rl, node, tree.ptrTypeAligned(node)),
.ptr_type_sentinel => return ptrType(gz, scope, rl, node, tree.ptrTypeSentinel(node)),
.ptr_type => return ptrType(gz, scope, rl, node, tree.ptrType(node)),
.ptr_type_bit_range => return ptrType(gz, scope, rl, node, tree.ptrTypeBitRange(node)),
.container_decl,
.container_decl_trailing,
=> return containerDecl(gz, scope, rl, node, tree.containerDecl(node)),
.container_decl_two, .container_decl_two_trailing => {
var buffer: [2]ast.Node.Index = undefined;
return containerDecl(gz, scope, rl, node, tree.containerDeclTwo(&buffer, node));
},
.container_decl_arg,
.container_decl_arg_trailing,
=> return containerDecl(gz, scope, rl, node, tree.containerDeclArg(node)),
.tagged_union,
.tagged_union_trailing,
=> return containerDecl(gz, scope, rl, node, tree.taggedUnion(node)),
.tagged_union_two, .tagged_union_two_trailing => {
var buffer: [2]ast.Node.Index = undefined;
return containerDecl(gz, scope, rl, node, tree.taggedUnionTwo(&buffer, node));
},
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
=> return containerDecl(gz, scope, rl, node, tree.taggedUnionEnumTag(node)),
.@"break" => return breakExpr(gz, scope, node),
.@"continue" => return continueExpr(gz, scope, node),
.grouped_expression => return expr(gz, scope, rl, node_datas[node].lhs),
.array_type => return arrayType(gz, scope, rl, node),
.array_type_sentinel => return arrayTypeSentinel(gz, scope, rl, node),
.char_literal => return charLiteral(gz, scope, rl, node),
.error_set_decl => return errorSetDecl(gz, scope, rl, node),
.array_access => return arrayAccess(gz, scope, rl, node),
.@"comptime" => return comptimeExpr(gz, scope, rl, node_datas[node].lhs),
.@"switch", .switch_comma => return switchExpr(gz, scope, rl, node),
.@"nosuspend" => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.@"suspend" => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.@"await" => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.@"resume" => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.@"defer" => return astgen.failNode(node, "TODO implement astgen.expr for .defer", .{}),
.@"errdefer" => return astgen.failNode(node, "TODO implement astgen.expr for .errdefer", .{}),
.@"try" => return astgen.failNode(node, "TODO implement astgen.expr for .Try", .{}),
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
=> return astgen.failNode(node, "TODO implement astgen.expr for array literals", .{}),
.struct_init_one, .struct_init_one_comma => {
var fields: [1]ast.Node.Index = undefined;
return structInitExpr(gz, scope, rl, node, tree.structInitOne(&fields, node));
},
.struct_init_dot_two, .struct_init_dot_two_comma => {
var fields: [2]ast.Node.Index = undefined;
return structInitExpr(gz, scope, rl, node, tree.structInitDotTwo(&fields, node));
},
.struct_init_dot,
.struct_init_dot_comma,
=> return structInitExpr(gz, scope, rl, node, tree.structInitDot(node)),
.struct_init,
.struct_init_comma,
=> return structInitExpr(gz, scope, rl, node, tree.structInit(node)),
.@"anytype" => return astgen.failNode(node, "TODO implement astgen.expr for .anytype", .{}),
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
=> return astgen.failNode(node, "TODO implement astgen.expr for function prototypes", .{}),
}
}
pub fn structInitExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
struct_init: ast.full.StructInit,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const gpa = astgen.gpa;
if (struct_init.ast.fields.len == 0) {
if (struct_init.ast.type_expr == 0) {
return rvalue(gz, scope, rl, .empty_struct, node);
} else {
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
const result = try gz.addUnNode(.struct_init_empty, ty_inst, node);
return rvalue(gz, scope, rl, result, node);
}
}
switch (rl) {
.discard => return astgen.failNode(node, "TODO implement structInitExpr discard", .{}),
.none, .none_or_ref => return astgen.failNode(node, "TODO implement structInitExpr none", .{}),
.ref => unreachable, // struct literal not valid as l-value
.ty => |ty_inst| {
const fields_list = try gpa.alloc(Zir.Inst.StructInit.Item, struct_init.ast.fields.len);
defer gpa.free(fields_list);
for (struct_init.ast.fields) |field_init, i| {
const name_token = tree.firstToken(field_init) - 2;
const str_index = try gz.identAsString(name_token);
const field_ty_inst = try gz.addPlNode(.field_type, field_init, Zir.Inst.FieldType{
.container_type = ty_inst,
.name_start = str_index,
});
fields_list[i] = .{
.field_type = gz.refToIndex(field_ty_inst).?,
.init = try expr(gz, scope, .{ .ty = field_ty_inst }, field_init),
};
}
const init_inst = try gz.addPlNode(.struct_init, node, Zir.Inst.StructInit{
.fields_len = @intCast(u32, fields_list.len),
});
try astgen.extra.ensureCapacity(gpa, astgen.extra.items.len +
fields_list.len * @typeInfo(Zir.Inst.StructInit.Item).Struct.fields.len);
for (fields_list) |field| {
_ = gz.astgen.addExtraAssumeCapacity(field);
}
return rvalue(gz, scope, rl, init_inst, node);
},
.ptr => |ptr_inst| {
const field_ptr_list = try gpa.alloc(Zir.Inst.Index, struct_init.ast.fields.len);
defer gpa.free(field_ptr_list);
for (struct_init.ast.fields) |field_init, i| {
const name_token = tree.firstToken(field_init) - 2;
const str_index = try gz.identAsString(name_token);
const field_ptr = try gz.addPlNode(.field_ptr, field_init, Zir.Inst.Field{
.lhs = ptr_inst,
.field_name_start = str_index,
});
field_ptr_list[i] = gz.refToIndex(field_ptr).?;
_ = try expr(gz, scope, .{ .ptr = field_ptr }, field_init);
}
const validate_inst = try gz.addPlNode(.validate_struct_init_ptr, node, Zir.Inst.Block{
.body_len = @intCast(u32, field_ptr_list.len),
});
try astgen.extra.appendSlice(gpa, field_ptr_list);
return validate_inst;
},
.inferred_ptr => |ptr_inst| {
return astgen.failNode(node, "TODO implement structInitExpr inferred_ptr", .{});
},
.block_ptr => |block_gz| {
return astgen.failNode(node, "TODO implement structInitExpr block", .{});
},
}
}
pub fn comptimeExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const prev_force_comptime = gz.force_comptime;
gz.force_comptime = true;
const result = try expr(gz, scope, rl, node);
gz.force_comptime = prev_force_comptime;
return result;
}
fn breakExpr(parent_gz: *GenZir, parent_scope: *Scope, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const break_label = node_datas[node].lhs;
const rhs = node_datas[node].rhs;
// Look for the label in the scope.
var scope = parent_scope;
while (true) {
switch (scope.tag) {
.gen_zir => {
const block_gz = scope.cast(GenZir).?;
const block_inst = blk: {
if (break_label != 0) {
if (block_gz.label) |*label| {
if (try astgen.tokenIdentEql(label.token, break_label)) {
label.used = true;
break :blk label.block_inst;
}
}
} else if (block_gz.break_block != 0) {
break :blk block_gz.break_block;
}
scope = block_gz.parent;
continue;
};
if (rhs == 0) {
_ = try parent_gz.addBreak(.@"break", block_inst, .void_value);
return Zir.Inst.Ref.unreachable_value;
}
block_gz.break_count += 1;
const prev_rvalue_rl_count = block_gz.rvalue_rl_count;
const operand = try expr(parent_gz, parent_scope, block_gz.break_result_loc, rhs);
const have_store_to_block = block_gz.rvalue_rl_count != prev_rvalue_rl_count;
const br = try parent_gz.addBreak(.@"break", block_inst, operand);
if (block_gz.break_result_loc == .block_ptr) {
try block_gz.labeled_breaks.append(astgen.gpa, br);
if (have_store_to_block) {
const zir_tags = parent_gz.astgen.instructions.items(.tag);
const zir_datas = parent_gz.astgen.instructions.items(.data);
const store_inst = @intCast(u32, zir_tags.len - 2);
assert(zir_tags[store_inst] == .store_to_block_ptr);
assert(zir_datas[store_inst].bin.lhs == block_gz.rl_ptr);
try block_gz.labeled_store_to_block_ptr_list.append(astgen.gpa, store_inst);
}
}
return Zir.Inst.Ref.unreachable_value;
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
else => if (break_label != 0) {
const label_name = try astgen.identifierTokenString(break_label);
return astgen.failTok(break_label, "label not found: '{s}'", .{label_name});
} else {
return astgen.failNode(node, "break expression outside loop", .{});
},
}
}
}
fn continueExpr(parent_gz: *GenZir, parent_scope: *Scope, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const break_label = node_datas[node].lhs;
// Look for the label in the scope.
var scope = parent_scope;
while (true) {
switch (scope.tag) {
.gen_zir => {
const gen_zir = scope.cast(GenZir).?;
const continue_block = gen_zir.continue_block;
if (continue_block == 0) {
scope = gen_zir.parent;
continue;
}
if (break_label != 0) blk: {
if (gen_zir.label) |*label| {
if (try astgen.tokenIdentEql(label.token, break_label)) {
label.used = true;
break :blk;
}
}
// found continue but either it has a different label, or no label
scope = gen_zir.parent;
continue;
}
// TODO emit a break_inline if the loop being continued is inline
_ = try parent_gz.addBreak(.@"break", continue_block, .void_value);
return Zir.Inst.Ref.unreachable_value;
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
else => if (break_label != 0) {
const label_name = try astgen.identifierTokenString(break_label);
return astgen.failTok(break_label, "label not found: '{s}'", .{label_name});
} else {
return astgen.failNode(node, "continue expression outside loop", .{});
},
}
}
}
pub fn blockExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
block_node: ast.Node.Index,
statements: []const ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const lbrace = main_tokens[block_node];
if (token_tags[lbrace - 1] == .colon and
token_tags[lbrace - 2] == .identifier)
{
return labeledBlockExpr(gz, scope, rl, block_node, statements, .block);
}
try blockExprStmts(gz, scope, block_node, statements);
return rvalue(gz, scope, rl, .void_value, block_node);
}
fn checkLabelRedefinition(astgen: *AstGen, parent_scope: *Scope, label: ast.TokenIndex) !void {
// Look for the label in the scope.
var scope = parent_scope;
while (true) {
switch (scope.tag) {
.gen_zir => {
const gen_zir = scope.cast(GenZir).?;
if (gen_zir.label) |prev_label| {
if (try astgen.tokenIdentEql(label, prev_label.token)) {
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const label_name = try astgen.identifierTokenString(label);
return astgen.failTokNotes(label, "redefinition of label '{s}'", .{
label_name,
}, &[_]u32{
try astgen.errNoteTok(
prev_label.token,
"previous definition is here",
.{},
),
});
}
}
scope = gen_zir.parent;
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
else => return,
}
}
}
fn labeledBlockExpr(
gz: *GenZir,
parent_scope: *Scope,
rl: ResultLoc,
block_node: ast.Node.Index,
statements: []const ast.Node.Index,
zir_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
assert(zir_tag == .block);
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const lbrace = main_tokens[block_node];
const label_token = lbrace - 2;
assert(token_tags[label_token] == .identifier);
try astgen.checkLabelRedefinition(parent_scope, label_token);
// Reserve the Block ZIR instruction index so that we can put it into the GenZir struct
// so that break statements can reference it.
const block_inst = try gz.addBlock(zir_tag, block_node);
try gz.instructions.append(astgen.gpa, block_inst);
var block_scope: GenZir = .{
.parent = parent_scope,
.decl_node_index = gz.decl_node_index,
.astgen = gz.astgen,
.force_comptime = gz.force_comptime,
.instructions = .{},
// TODO @as here is working around a stage1 miscompilation bug :(
.label = @as(?GenZir.Label, GenZir.Label{
.token = label_token,
.block_inst = block_inst,
}),
};
block_scope.setBreakResultLoc(rl);
defer block_scope.instructions.deinit(astgen.gpa);
defer block_scope.labeled_breaks.deinit(astgen.gpa);
defer block_scope.labeled_store_to_block_ptr_list.deinit(astgen.gpa);
try blockExprStmts(&block_scope, &block_scope.base, block_node, statements);
if (!block_scope.label.?.used) {
return astgen.failTok(label_token, "unused block label", .{});
}
const zir_tags = gz.astgen.instructions.items(.tag);
const zir_datas = gz.astgen.instructions.items(.data);
const strat = rl.strategy(&block_scope);
switch (strat.tag) {
.break_void => {
// The code took advantage of the result location as a pointer.
// Turn the break instruction operands into void.
for (block_scope.labeled_breaks.items) |br| {
zir_datas[br].@"break".operand = .void_value;
}
try block_scope.setBlockBody(block_inst);
return gz.indexToRef(block_inst);
},
.break_operand => {
// All break operands are values that did not use the result location pointer.
if (strat.elide_store_to_block_ptr_instructions) {
for (block_scope.labeled_store_to_block_ptr_list.items) |inst| {
zir_tags[inst] = .elided;
zir_datas[inst] = undefined;
}
// TODO technically not needed since we changed the tag to elided but
// would be better still to elide the ones that are in this list.
}
try block_scope.setBlockBody(block_inst);
const block_ref = gz.indexToRef(block_inst);
switch (rl) {
.ref => return block_ref,
else => return rvalue(gz, parent_scope, rl, block_ref, block_node),
}
},
}
}
fn blockExprStmts(
gz: *GenZir,
parent_scope: *Scope,
node: ast.Node.Index,
statements: []const ast.Node.Index,
) !void {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_tags = tree.nodes.items(.tag);
var block_arena = std.heap.ArenaAllocator.init(gz.astgen.gpa);
defer block_arena.deinit();
var scope = parent_scope;
for (statements) |statement| {
if (!gz.force_comptime) {
_ = try gz.addNode(.dbg_stmt_node, statement);
}
switch (node_tags[statement]) {
.global_var_decl => scope = try varDecl(gz, scope, statement, &block_arena.allocator, tree.globalVarDecl(statement)),
.local_var_decl => scope = try varDecl(gz, scope, statement, &block_arena.allocator, tree.localVarDecl(statement)),
.simple_var_decl => scope = try varDecl(gz, scope, statement, &block_arena.allocator, tree.simpleVarDecl(statement)),
.aligned_var_decl => scope = try varDecl(gz, scope, statement, &block_arena.allocator, tree.alignedVarDecl(statement)),
.assign => try assign(gz, scope, statement),
.assign_bit_and => try assignOp(gz, scope, statement, .bit_and),
.assign_bit_or => try assignOp(gz, scope, statement, .bit_or),
.assign_bit_shift_left => try assignOp(gz, scope, statement, .shl),
.assign_bit_shift_right => try assignOp(gz, scope, statement, .shr),
.assign_bit_xor => try assignOp(gz, scope, statement, .xor),
.assign_div => try assignOp(gz, scope, statement, .div),
.assign_sub => try assignOp(gz, scope, statement, .sub),
.assign_sub_wrap => try assignOp(gz, scope, statement, .subwrap),
.assign_mod => try assignOp(gz, scope, statement, .mod_rem),
.assign_add => try assignOp(gz, scope, statement, .add),
.assign_add_wrap => try assignOp(gz, scope, statement, .addwrap),
.assign_mul => try assignOp(gz, scope, statement, .mul),
.assign_mul_wrap => try assignOp(gz, scope, statement, .mulwrap),
else => {
// We need to emit an error if the result is not `noreturn` or `void`, but
// we want to avoid adding the ZIR instruction if possible for performance.
const maybe_unused_result = try expr(gz, scope, .none, statement);
const elide_check = if (gz.refToIndex(maybe_unused_result)) |inst| b: {
// Note that this array becomes invalid after appending more items to it
// in the above while loop.
const zir_tags = gz.astgen.instructions.items(.tag);
switch (zir_tags[inst]) {
// For some instructions, swap in a slightly different ZIR tag
// so we can avoid a separate ensure_result_used instruction.
.call_none_chkused => unreachable,
.call_none => {
zir_tags[inst] = .call_none_chkused;
break :b true;
},
.call_chkused => unreachable,
.call => {
zir_tags[inst] = .call_chkused;
break :b true;
},
// ZIR instructions that might be a type other than `noreturn` or `void`.
.add,
.addwrap,
.alloc,
.alloc_mut,
.alloc_inferred,
.alloc_inferred_mut,
.array_cat,
.array_mul,
.array_type,
.array_type_sentinel,
.indexable_ptr_len,
.as,
.as_node,
.@"asm",
.asm_volatile,
.bit_and,
.bitcast,
.bitcast_result_ptr,
.bit_or,
.block,
.block_inline,
.loop,
.bool_br_and,
.bool_br_or,
.bool_not,
.bool_and,
.bool_or,
.call_compile_time,
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
.coerce_result_ptr,
.decl_ref,
.decl_val,
.load,
.div,
.elem_ptr,
.elem_val,
.elem_ptr_node,
.elem_val_node,
.floatcast,
.field_ptr,
.field_val,
.field_ptr_named,
.field_val_named,
.func,
.func_var_args,
.func_extra,
.func_extra_var_args,
.has_decl,
.int,
.float,
.float128,
.intcast,
.int_type,
.is_non_null,
.is_null,
.is_non_null_ptr,
.is_null_ptr,
.is_err,
.is_err_ptr,
.mod_rem,
.mul,
.mulwrap,
.param_type,
.ptrtoint,
.ref,
.ret_ptr,
.ret_type,
.shl,
.shr,
.str,
.sub,
.subwrap,
.negate,
.negate_wrap,
.typeof,
.typeof_elem,
.xor,
.optional_type,
.optional_type_from_ptr_elem,
.optional_payload_safe,
.optional_payload_unsafe,
.optional_payload_safe_ptr,
.optional_payload_unsafe_ptr,
.err_union_payload_safe,
.err_union_payload_unsafe,
.err_union_payload_safe_ptr,
.err_union_payload_unsafe_ptr,
.err_union_code,
.err_union_code_ptr,
.ptr_type,
.ptr_type_simple,
.enum_literal,
.enum_literal_small,
.merge_error_sets,
.error_union_type,
.bit_not,
.error_value,
.error_to_int,
.int_to_error,
.slice_start,
.slice_end,
.slice_sentinel,
.import,
.typeof_peer,
.switch_block,
.switch_block_multi,
.switch_block_else,
.switch_block_else_multi,
.switch_block_under,
.switch_block_under_multi,
.switch_block_ref,
.switch_block_ref_multi,
.switch_block_ref_else,
.switch_block_ref_else_multi,
.switch_block_ref_under,
.switch_block_ref_under_multi,
.switch_capture,
.switch_capture_ref,
.switch_capture_multi,
.switch_capture_multi_ref,
.switch_capture_else,
.switch_capture_else_ref,
.struct_init_empty,
.struct_init,
.field_type,
.struct_decl,
.struct_decl_packed,
.struct_decl_extern,
.union_decl,
.enum_decl,
.enum_decl_nonexhaustive,
.opaque_decl,
.int_to_enum,
.enum_to_int,
.type_info,
.size_of,
.bit_size_of,
.this,
.fence,
.ret_addr,
.builtin_src,
=> break :b false,
// ZIR instructions that are always either `noreturn` or `void`.
.breakpoint,
.dbg_stmt_node,
.ensure_result_used,
.ensure_result_non_error,
.@"export",
.set_eval_branch_quota,
.compile_log,
.ensure_err_payload_void,
.@"break",
.break_inline,
.condbr,
.condbr_inline,
.compile_error,
.ret_node,
.ret_tok,
.ret_coerce,
.@"unreachable",
.elided,
.store,
.store_node,
.store_to_block_ptr,
.store_to_inferred_ptr,
.resolve_inferred_alloc,
.repeat,
.repeat_inline,
.validate_struct_init_ptr,
=> break :b true,
}
} else switch (maybe_unused_result) {
.none => unreachable,
.void_value,
.unreachable_value,
=> true,
else => false,
};
if (!elide_check) {
_ = try gz.addUnNode(.ensure_result_used, maybe_unused_result, statement);
}
},
}
}
}
fn varDecl(
gz: *GenZir,
scope: *Scope,
node: ast.Node.Index,
block_arena: *Allocator,
var_decl: ast.full.VarDecl,
) InnerError!*Scope {
const astgen = gz.astgen;
if (var_decl.comptime_token) |comptime_token| {
return astgen.failTok(comptime_token, "TODO implement comptime locals", .{});
}
if (var_decl.ast.align_node != 0) {
return astgen.failNode(var_decl.ast.align_node, "TODO implement alignment on locals", .{});
}
const gpa = astgen.gpa;
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
const name_token = var_decl.ast.mut_token + 1;
const ident_name = try astgen.identifierTokenString(name_token);
// Local variables shadowing detection, including function parameters.
{
var s = scope;
while (true) switch (s.tag) {
.local_val => {
const local_val = s.cast(Scope.LocalVal).?;
if (mem.eql(u8, local_val.name, ident_name)) {
return astgen.failTokNotes(name_token, "redefinition of '{s}'", .{
ident_name,
}, &[_]u32{
try astgen.errNoteTok(
local_val.token_src,
"previous definition is here",
.{},
),
});
}
s = local_val.parent;
},
.local_ptr => {
const local_ptr = s.cast(Scope.LocalPtr).?;
if (mem.eql(u8, local_ptr.name, ident_name)) {
return astgen.failTokNotes(name_token, "redefinition of '{s}'", .{
ident_name,
}, &[_]u32{
try astgen.errNoteTok(
local_ptr.token_src,
"previous definition is here",
.{},
),
});
}
s = local_ptr.parent;
},
.gen_zir => s = s.cast(GenZir).?.parent,
.file => break,
else => unreachable,
};
}
if (var_decl.ast.init_node == 0) {
return astgen.failNode(node, "variables must be initialized", .{});
}
switch (token_tags[var_decl.ast.mut_token]) {
.keyword_const => {
// Depending on the type of AST the initialization expression is, we may need an lvalue
// or an rvalue as a result location. If it is an rvalue, we can use the instruction as
// the variable, no memory location needed.
if (!nodeMayNeedMemoryLocation(tree, var_decl.ast.init_node)) {
const result_loc: ResultLoc = if (var_decl.ast.type_node != 0) .{
.ty = try typeExpr(gz, scope, var_decl.ast.type_node),
} else .none;
const init_inst = try expr(gz, scope, result_loc, var_decl.ast.init_node);
const sub_scope = try block_arena.create(Scope.LocalVal);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.inst = init_inst,
.token_src = name_token,
};
return &sub_scope.base;
}
// Detect whether the initialization expression actually uses the
// result location pointer.
var init_scope: GenZir = .{
.parent = scope,
.decl_node_index = gz.decl_node_index,
.force_comptime = gz.force_comptime,
.astgen = astgen,
};
defer init_scope.instructions.deinit(gpa);
var resolve_inferred_alloc: Zir.Inst.Ref = .none;
var opt_type_inst: Zir.Inst.Ref = .none;
if (var_decl.ast.type_node != 0) {
const type_inst = try typeExpr(gz, &init_scope.base, var_decl.ast.type_node);
opt_type_inst = type_inst;
init_scope.rl_ptr = try init_scope.addUnNode(.alloc, type_inst, node);
init_scope.rl_ty_inst = type_inst;
} else {
const alloc = try init_scope.addNode(.alloc_inferred, node);
resolve_inferred_alloc = alloc;
init_scope.rl_ptr = alloc;
}
const init_result_loc: ResultLoc = .{ .block_ptr = &init_scope };
const init_inst = try expr(&init_scope, &init_scope.base, init_result_loc, var_decl.ast.init_node);
const zir_tags = astgen.instructions.items(.tag);
const zir_datas = astgen.instructions.items(.data);
const parent_zir = &gz.instructions;
if (init_scope.rvalue_rl_count == 1) {
// Result location pointer not used. We don't need an alloc for this
// const local, and type inference becomes trivial.
// Move the init_scope instructions into the parent scope, eliding
// the alloc instruction and the store_to_block_ptr instruction.
const expected_len = parent_zir.items.len + init_scope.instructions.items.len - 2;
try parent_zir.ensureCapacity(gpa, expected_len);
for (init_scope.instructions.items) |src_inst| {
if (gz.indexToRef(src_inst) == init_scope.rl_ptr) continue;
if (zir_tags[src_inst] == .store_to_block_ptr) {
if (zir_datas[src_inst].bin.lhs == init_scope.rl_ptr) continue;
}
parent_zir.appendAssumeCapacity(src_inst);
}
assert(parent_zir.items.len == expected_len);
const sub_scope = try block_arena.create(Scope.LocalVal);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.inst = init_inst,
.token_src = name_token,
};
return &sub_scope.base;
}
// The initialization expression took advantage of the result location
// of the const local. In this case we will create an alloc and a LocalPtr for it.
// Move the init_scope instructions into the parent scope, swapping
// store_to_block_ptr for store_to_inferred_ptr.
const expected_len = parent_zir.items.len + init_scope.instructions.items.len;
try parent_zir.ensureCapacity(gpa, expected_len);
for (init_scope.instructions.items) |src_inst| {
if (zir_tags[src_inst] == .store_to_block_ptr) {
if (zir_datas[src_inst].bin.lhs == init_scope.rl_ptr) {
zir_tags[src_inst] = .store_to_inferred_ptr;
}
}
parent_zir.appendAssumeCapacity(src_inst);
}
assert(parent_zir.items.len == expected_len);
if (resolve_inferred_alloc != .none) {
_ = try gz.addUnNode(.resolve_inferred_alloc, resolve_inferred_alloc, node);
}
const sub_scope = try block_arena.create(Scope.LocalPtr);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.ptr = init_scope.rl_ptr,
.token_src = name_token,
};
return &sub_scope.base;
},
.keyword_var => {
var resolve_inferred_alloc: Zir.Inst.Ref = .none;
const var_data: struct {
result_loc: ResultLoc,
alloc: Zir.Inst.Ref,
} = if (var_decl.ast.type_node != 0) a: {
const type_inst = try typeExpr(gz, scope, var_decl.ast.type_node);
const alloc = try gz.addUnNode(.alloc_mut, type_inst, node);
break :a .{ .alloc = alloc, .result_loc = .{ .ptr = alloc } };
} else a: {
const alloc = try gz.addNode(.alloc_inferred_mut, node);
resolve_inferred_alloc = alloc;
break :a .{ .alloc = alloc, .result_loc = .{ .inferred_ptr = alloc } };
};
const init_inst = try expr(gz, scope, var_data.result_loc, var_decl.ast.init_node);
if (resolve_inferred_alloc != .none) {
_ = try gz.addUnNode(.resolve_inferred_alloc, resolve_inferred_alloc, node);
}
const sub_scope = try block_arena.create(Scope.LocalPtr);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.ptr = var_data.alloc,
.token_src = name_token,
};
return &sub_scope.base;
},
else => unreachable,
}
}
fn assign(gz: *GenZir, scope: *Scope, infix_node: ast.Node.Index) InnerError!void {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const node_tags = tree.nodes.items(.tag);
const lhs = node_datas[infix_node].lhs;
const rhs = node_datas[infix_node].rhs;
if (node_tags[lhs] == .identifier) {
// This intentionally does not support `@"_"` syntax.
const ident_name = tree.tokenSlice(main_tokens[lhs]);
if (mem.eql(u8, ident_name, "_")) {
_ = try expr(gz, scope, .discard, rhs);
return;
}
}
const lvalue = try lvalExpr(gz, scope, lhs);
_ = try expr(gz, scope, .{ .ptr = lvalue }, rhs);
}
fn assignOp(
gz: *GenZir,
scope: *Scope,
infix_node: ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!void {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const lhs_ptr = try lvalExpr(gz, scope, node_datas[infix_node].lhs);
const lhs = try gz.addUnNode(.load, lhs_ptr, infix_node);
const lhs_type = try gz.addUnNode(.typeof, lhs, infix_node);
const rhs = try expr(gz, scope, .{ .ty = lhs_type }, node_datas[infix_node].rhs);
const result = try gz.addPlNode(op_inst_tag, infix_node, Zir.Inst.Bin{
.lhs = lhs,
.rhs = rhs,
});
_ = try gz.addBin(.store, lhs_ptr, result);
}
fn boolNot(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const operand = try expr(gz, scope, .{ .ty = .bool_type }, node_datas[node].lhs);
const result = try gz.addUnNode(.bool_not, operand, node);
return rvalue(gz, scope, rl, result, node);
}
fn bitNot(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const operand = try expr(gz, scope, .none, node_datas[node].lhs);
const result = try gz.addUnNode(.bit_not, operand, node);
return rvalue(gz, scope, rl, result, node);
}
fn negation(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const operand = try expr(gz, scope, .none, node_datas[node].lhs);
const result = try gz.addUnNode(tag, operand, node);
return rvalue(gz, scope, rl, result, node);
}
fn ptrType(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
ptr_info: ast.full.PtrType,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const elem_type = try typeExpr(gz, scope, ptr_info.ast.child_type);
const simple = ptr_info.ast.align_node == 0 and
ptr_info.ast.sentinel == 0 and
ptr_info.ast.bit_range_start == 0;
if (simple) {
const result = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = ptr_info.allowzero_token != null,
.is_mutable = ptr_info.const_token == null,
.is_volatile = ptr_info.volatile_token != null,
.size = ptr_info.size,
.elem_type = elem_type,
},
} });
return rvalue(gz, scope, rl, result, node);
}
var sentinel_ref: Zir.Inst.Ref = .none;
var align_ref: Zir.Inst.Ref = .none;
var bit_start_ref: Zir.Inst.Ref = .none;
var bit_end_ref: Zir.Inst.Ref = .none;
var trailing_count: u32 = 0;
if (ptr_info.ast.sentinel != 0) {
sentinel_ref = try expr(gz, scope, .{ .ty = elem_type }, ptr_info.ast.sentinel);
trailing_count += 1;
}
if (ptr_info.ast.align_node != 0) {
align_ref = try expr(gz, scope, .none, ptr_info.ast.align_node);
trailing_count += 1;
}
if (ptr_info.ast.bit_range_start != 0) {
assert(ptr_info.ast.bit_range_end != 0);
bit_start_ref = try expr(gz, scope, .none, ptr_info.ast.bit_range_start);
bit_end_ref = try expr(gz, scope, .none, ptr_info.ast.bit_range_end);
trailing_count += 2;
}
const gpa = gz.astgen.gpa;
try gz.instructions.ensureCapacity(gpa, gz.instructions.items.len + 1);
try gz.astgen.instructions.ensureCapacity(gpa, gz.astgen.instructions.len + 1);
try gz.astgen.extra.ensureCapacity(gpa, gz.astgen.extra.items.len +
@typeInfo(Zir.Inst.PtrType).Struct.fields.len + trailing_count);
const payload_index = gz.astgen.addExtraAssumeCapacity(Zir.Inst.PtrType{ .elem_type = elem_type });
if (sentinel_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(sentinel_ref));
}
if (align_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(align_ref));
}
if (bit_start_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(bit_start_ref));
gz.astgen.extra.appendAssumeCapacity(@enumToInt(bit_end_ref));
}
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
const result = gz.indexToRef(new_index);
gz.astgen.instructions.appendAssumeCapacity(.{ .tag = .ptr_type, .data = .{
.ptr_type = .{
.flags = .{
.is_allowzero = ptr_info.allowzero_token != null,
.is_mutable = ptr_info.const_token == null,
.is_volatile = ptr_info.volatile_token != null,
.has_sentinel = sentinel_ref != .none,
.has_align = align_ref != .none,
.has_bit_range = bit_start_ref != .none,
},
.size = ptr_info.size,
.payload_index = payload_index,
},
} });
gz.instructions.appendAssumeCapacity(new_index);
return rvalue(gz, scope, rl, result, node);
}
fn arrayType(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: ast.Node.Index) !Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
// TODO check for [_]T
const len = try expr(gz, scope, .{ .ty = .usize_type }, node_datas[node].lhs);
const elem_type = try typeExpr(gz, scope, node_datas[node].rhs);
const result = try gz.addBin(.array_type, len, elem_type);
return rvalue(gz, scope, rl, result, node);
}
fn arrayTypeSentinel(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: ast.Node.Index) !Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const extra = tree.extraData(node_datas[node].rhs, ast.Node.ArrayTypeSentinel);
// TODO check for [_]T
const len = try expr(gz, scope, .{ .ty = .usize_type }, node_datas[node].lhs);
const elem_type = try typeExpr(gz, scope, extra.elem_type);
const sentinel = try expr(gz, scope, .{ .ty = elem_type }, extra.sentinel);
const result = try gz.addArrayTypeSentinel(len, elem_type, sentinel);
return rvalue(gz, scope, rl, result, node);
}
const WipDecls = struct {
decl_index: usize = 0,
cur_bit_bag: u32 = 0,
bit_bag: ArrayListUnmanaged(u32) = .{},
name_and_value: ArrayListUnmanaged(u32) = .{},
fn deinit(wip_decls: *WipDecls, gpa: *Allocator) void {
wip_decls.bit_bag.deinit(gpa);
wip_decls.name_and_value.deinit(gpa);
}
};
fn fnDecl(
astgen: *AstGen,
gz: *GenZir,
wip_decls: *WipDecls,
body_node: ast.Node.Index,
fn_proto: ast.full.FnProto,
) InnerError!void {
const gpa = astgen.gpa;
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
const is_pub = fn_proto.visib_token != null;
const is_export = blk: {
const maybe_export_token = fn_proto.extern_export_token orelse break :blk false;
break :blk token_tags[maybe_export_token] == .keyword_export;
};
const is_extern = blk: {
const maybe_extern_token = fn_proto.extern_export_token orelse break :blk false;
break :blk token_tags[maybe_extern_token] == .keyword_extern;
};
if (wip_decls.decl_index % 16 == 0 and wip_decls.decl_index != 0) {
try wip_decls.bit_bag.append(gpa, wip_decls.cur_bit_bag);
wip_decls.cur_bit_bag = 0;
}
wip_decls.cur_bit_bag = (wip_decls.cur_bit_bag >> 2) |
(@as(u32, @boolToInt(is_pub)) << 30) |
(@as(u32, @boolToInt(is_export)) << 31);
wip_decls.decl_index += 1;
// The AST params array does not contain anytype and ... parameters.
// We must iterate to count how many param types to allocate.
const param_count = blk: {
var count: usize = 0;
var it = fn_proto.iterate(tree.*);
while (it.next()) |param| {
if (param.anytype_ellipsis3) |some| if (token_tags[some] == .ellipsis3) break;
count += 1;
}
break :blk count;
};
const param_types = try gpa.alloc(Zir.Inst.Ref, param_count);
defer gpa.free(param_types);
var is_var_args = false;
{
var param_type_i: usize = 0;
var it = fn_proto.iterate(tree.*);
while (it.next()) |param| : (param_type_i += 1) {
if (param.anytype_ellipsis3) |token| {
switch (token_tags[token]) {
.keyword_anytype => return astgen.failTok(
token,
"TODO implement anytype parameter",
.{},
),
.ellipsis3 => {
is_var_args = true;
break;
},
else => unreachable,
}
}
const param_type_node = param.type_expr;
assert(param_type_node != 0);
param_types[param_type_i] =
try expr(gz, &gz.base, .{ .ty = .type_type }, param_type_node);
}
assert(param_type_i == param_count);
}
const lib_name: u32 = if (fn_proto.lib_name) |lib_name_token| blk: {
const lib_name_str = try gz.strLitAsString(lib_name_token);
break :blk lib_name_str.index;
} else 0;
if (fn_proto.ast.align_expr != 0) {
return astgen.failNode(
fn_proto.ast.align_expr,
"TODO implement function align expression",
.{},
);
}
if (fn_proto.ast.section_expr != 0) {
return astgen.failNode(
fn_proto.ast.section_expr,
"TODO implement function section expression",
.{},
);
}
const maybe_bang = tree.firstToken(fn_proto.ast.return_type) - 1;
if (token_tags[maybe_bang] == .bang) {
return astgen.failTok(maybe_bang, "TODO implement inferred error sets", .{});
}
const return_type_inst = try AstGen.expr(
gz,
&gz.base,
.{ .ty = .type_type },
fn_proto.ast.return_type,
);
const cc: Zir.Inst.Ref = if (fn_proto.ast.callconv_expr != 0)
// TODO instead of enum literal type, this needs to be the
// std.builtin.CallingConvention enum. We need to implement importing other files
// and enums in order to fix this.
try AstGen.comptimeExpr(
gz,
&gz.base,
.{ .ty = .enum_literal_type },
fn_proto.ast.callconv_expr,
)
else if (is_extern) // note: https://github.com/ziglang/zig/issues/5269
try gz.addSmallStr(.enum_literal_small, "C")
else
.none;
const func_inst: Zir.Inst.Ref = if (body_node == 0) func: {
if (is_extern) {
return astgen.failNode(fn_proto.ast.fn_token, "non-extern function has no body", .{});
}
if (cc != .none or lib_name != 0) {
const tag: Zir.Inst.Tag = if (is_var_args) .func_extra_var_args else .func_extra;
break :func try gz.addFuncExtra(tag, .{
.src_node = fn_proto.ast.proto_node,
.ret_ty = return_type_inst,
.param_types = param_types,
.cc = cc,
.lib_name = lib_name,
.body = &[0]Zir.Inst.Index{},
});
}
const tag: Zir.Inst.Tag = if (is_var_args) .func_var_args else .func;
break :func try gz.addFunc(tag, .{
.src_node = fn_proto.ast.proto_node,
.ret_ty = return_type_inst,
.param_types = param_types,
.body = &[0]Zir.Inst.Index{},
});
} else func: {
if (is_var_args) {
return astgen.failNode(fn_proto.ast.fn_token, "non-extern function is variadic", .{});
}
var fn_gz: Scope.GenZir = .{
.force_comptime = false,
.decl_node_index = fn_proto.ast.proto_node,
.parent = &gz.base,
.astgen = astgen,
.ref_start_index = @intCast(u32, Zir.Inst.Ref.typed_value_map.len + param_count),
};
defer fn_gz.instructions.deinit(gpa);
// Iterate over the parameters. We put the param names as the first N
// items inside `extra` so that debug info later can refer to the parameter names
// even while the respective source code is unloaded.
try astgen.extra.ensureCapacity(gpa, param_count);
{
var params_scope = &fn_gz.base;
var i: usize = 0;
var it = fn_proto.iterate(tree.*);
while (it.next()) |param| : (i += 1) {
const name_token = param.name_token.?;
const param_name = try astgen.identifierTokenString(name_token);
const sub_scope = try astgen.arena.create(Scope.LocalVal);
sub_scope.* = .{
.parent = params_scope,
.gen_zir = &fn_gz,
.name = param_name,
// Implicit const list first, then implicit arg list.
.inst = @intToEnum(Zir.Inst.Ref, @intCast(u32, Zir.Inst.Ref.typed_value_map.len + i)),
.token_src = name_token,
};
params_scope = &sub_scope.base;
// Additionally put the param name into `string_bytes` and reference it with
// `extra` so that we have access to the data in codegen, for debug info.
const str_index = try fn_gz.identAsString(name_token);
astgen.extra.appendAssumeCapacity(str_index);
}
_ = try expr(&fn_gz, params_scope, .none, body_node);
}
if (fn_gz.instructions.items.len == 0 or
!astgen.instructions.items(.tag)[fn_gz.instructions.items.len - 1].isNoReturn())
{
// astgen uses result location semantics to coerce return operands.
// Since we are adding the return instruction here, we must handle the coercion.
// We do this by using the `ret_coerce` instruction.
_ = try fn_gz.addUnTok(.ret_coerce, .void_value, tree.lastToken(body_node));
}
if (cc != .none or lib_name != 0) {
const tag: Zir.Inst.Tag = if (is_var_args) .func_extra_var_args else .func_extra;
break :func try fn_gz.addFuncExtra(tag, .{
.src_node = fn_proto.ast.proto_node,
.ret_ty = return_type_inst,
.param_types = param_types,
.cc = cc,
.lib_name = lib_name,
.body = fn_gz.instructions.items,
});
}
const tag: Zir.Inst.Tag = if (is_var_args) .func_var_args else .func;
break :func try fn_gz.addFunc(tag, .{
.src_node = fn_proto.ast.proto_node,
.ret_ty = return_type_inst,
.param_types = param_types,
.body = fn_gz.instructions.items,
});
};
const fn_name_token = fn_proto.name_token orelse {
@panic("TODO handle missing function names in the parser");
};
const fn_name_str_index = try gz.identAsString(fn_name_token);
try wip_decls.name_and_value.ensureCapacity(gpa, wip_decls.name_and_value.items.len + 2);
wip_decls.name_and_value.appendAssumeCapacity(fn_name_str_index);
wip_decls.name_and_value.appendAssumeCapacity(@enumToInt(func_inst));
}
fn globalVarDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
wip_decls: *WipDecls,
node: ast.Node.Index,
var_decl: ast.full.VarDecl,
) InnerError!void {
const gpa = astgen.gpa;
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
const is_pub = var_decl.visib_token != null;
const is_export = blk: {
const maybe_export_token = var_decl.extern_export_token orelse break :blk false;
break :blk token_tags[maybe_export_token] == .keyword_export;
};
const is_extern = blk: {
const maybe_extern_token = var_decl.extern_export_token orelse break :blk false;
break :blk token_tags[maybe_extern_token] == .keyword_extern;
};
if (wip_decls.decl_index % 16 == 0 and wip_decls.decl_index != 0) {
try wip_decls.bit_bag.append(gpa, wip_decls.cur_bit_bag);
wip_decls.cur_bit_bag = 0;
}
wip_decls.cur_bit_bag = (wip_decls.cur_bit_bag >> 2) |
(@as(u32, @boolToInt(is_pub)) << 30) |
(@as(u32, @boolToInt(is_export)) << 31);
wip_decls.decl_index += 1;
const is_mutable = token_tags[var_decl.ast.mut_token] == .keyword_var;
const is_threadlocal = if (var_decl.threadlocal_token) |tok| blk: {
if (!is_mutable) {
return astgen.failTok(tok, "threadlocal variable cannot be constant", .{});
}
break :blk true;
} else false;
const lib_name: u32 = if (var_decl.lib_name) |lib_name_token| blk: {
const lib_name_str = try gz.strLitAsString(lib_name_token);
break :blk lib_name_str.index;
} else 0;
assert(var_decl.comptime_token == null); // handled by parser
if (var_decl.ast.align_node != 0) {
return astgen.failNode(var_decl.ast.align_node, "TODO implement alignment on globals", .{});
}
if (var_decl.ast.section_node != 0) {
return astgen.failNode(var_decl.ast.section_node, "TODO linksection on globals", .{});
}
const var_inst: Zir.Inst.Index = if (var_decl.ast.init_node != 0) vi: {
if (is_extern) {
return astgen.failNode(
var_decl.ast.init_node,
"extern variables have no initializers",
.{},
);
}
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = node,
.astgen = astgen,
.force_comptime = true,
};
defer block_scope.instructions.deinit(gpa);
const init_result_loc: AstGen.ResultLoc = if (var_decl.ast.type_node != 0) .{
.ty = try expr(
&block_scope,
&block_scope.base,
.{ .ty = .type_type },
var_decl.ast.type_node,
),
} else .none;
const init_inst = try expr(
&block_scope,
&block_scope.base,
init_result_loc,
var_decl.ast.init_node,
);
if (!is_mutable) {
// const globals are just their instruction. mutable globals have
// a special ZIR form.
const block_inst = try gz.addBlock(.block_inline, node);
_ = try block_scope.addBreak(.break_inline, block_inst, init_inst);
try block_scope.setBlockBody(block_inst);
break :vi block_inst;
}
@panic("TODO astgen global variable");
} else if (!is_extern) {
return astgen.failNode(node, "variables must be initialized", .{});
} else if (var_decl.ast.type_node != 0) {
// Extern variable which has an explicit type.
const type_inst = try typeExpr(gz, scope, var_decl.ast.type_node);
@panic("TODO AstGen extern global variable");
} else {
return astgen.failNode(node, "unable to infer variable type", .{});
};
const name_token = var_decl.ast.mut_token + 1;
const name_str_index = try gz.identAsString(name_token);
try wip_decls.name_and_value.ensureCapacity(gpa, wip_decls.name_and_value.items.len + 2);
wip_decls.name_and_value.appendAssumeCapacity(name_str_index);
wip_decls.name_and_value.appendAssumeCapacity(var_inst);
}
fn comptimeDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
node: ast.Node.Index,
) InnerError!void {
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const block_expr = node_datas[node].lhs;
// TODO probably we want to put these into a block and store a list of them
_ = try expr(gz, scope, .none, block_expr);
}
fn usingnamespaceDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
node: ast.Node.Index,
) InnerError!void {
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const type_expr = node_datas[node].lhs;
const is_pub = blk: {
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const main_token = main_tokens[node];
break :blk (main_token > 0 and token_tags[main_token - 1] == .keyword_pub);
};
// TODO probably we want to put these into a block and store a list of them
const namespace_inst = try expr(gz, scope, .{ .ty = .type_type }, type_expr);
}
fn testDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
node: ast.Node.Index,
) InnerError!void {
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const test_expr = node_datas[node].rhs;
const test_name: u32 = blk: {
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const test_token = main_tokens[node];
const str_lit_token = test_token + 1;
if (token_tags[str_lit_token] == .string_literal) {
break :blk (try gz.strLitAsString(str_lit_token)).index;
}
break :blk 0;
};
// TODO probably we want to put these into a block and store a list of them
const block_inst = try expr(gz, scope, .none, test_expr);
}
fn structDeclInner(
gz: *GenZir,
scope: *Scope,
node: ast.Node.Index,
container_decl: ast.full.ContainerDecl,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
if (container_decl.ast.members.len == 0) {
return gz.addPlNode(tag, node, Zir.Inst.StructDecl{
.fields_len = 0,
.body_len = 0,
.decls_len = 0,
});
}
const astgen = gz.astgen;
const gpa = astgen.gpa;
const tree = &astgen.file.tree;
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
// The struct_decl instruction introduces a scope in which the decls of the struct
// are in scope, so that field types, alignments, and default value expressions
// can refer to decls within the struct itself.
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = node,
.astgen = astgen,
.force_comptime = true,
};
defer block_scope.instructions.deinit(gpa);
var wip_decls: WipDecls = .{};
defer wip_decls.deinit(gpa);
// We don't know which members are fields until we iterate, so cannot do
// an accurate ensureCapacity yet.
var fields_data = ArrayListUnmanaged(u32){};
defer fields_data.deinit(gpa);
// We only need this if there are greater than 16 fields.
var bit_bag = ArrayListUnmanaged(u32){};
defer bit_bag.deinit(gpa);
var cur_bit_bag: u32 = 0;
var field_index: usize = 0;
for (container_decl.ast.members) |member_node| {
const member = switch (node_tags[member_node]) {
.container_field_init => tree.containerFieldInit(member_node),
.container_field_align => tree.containerFieldAlign(member_node),
.container_field => tree.containerField(member_node),
.fn_decl => {
const fn_proto = node_datas[member_node].lhs;
const body = node_datas[member_node].rhs;
switch (node_tags[fn_proto]) {
.fn_proto_simple => {
var params: [1]ast.Node.Index = undefined;
try astgen.fnDecl(gz, &wip_decls, body, tree.fnProtoSimple(&params, fn_proto));
continue;
},
.fn_proto_multi => {
try astgen.fnDecl(gz, &wip_decls, body, tree.fnProtoMulti(fn_proto));
continue;
},
.fn_proto_one => {
var params: [1]ast.Node.Index = undefined;
try astgen.fnDecl(gz, &wip_decls, body, tree.fnProtoOne(&params, fn_proto));
continue;
},
.fn_proto => {
try astgen.fnDecl(gz, &wip_decls, body, tree.fnProto(fn_proto));
continue;
},
else => unreachable,
}
},
.fn_proto_simple => {
var params: [1]ast.Node.Index = undefined;
try astgen.fnDecl(gz, &wip_decls, 0, tree.fnProtoSimple(&params, member_node));
continue;
},
.fn_proto_multi => {
try astgen.fnDecl(gz, &wip_decls, 0, tree.fnProtoMulti(member_node));
continue;
},
.fn_proto_one => {
var params: [1]ast.Node.Index = undefined;
try astgen.fnDecl(gz, &wip_decls, 0, tree.fnProtoOne(&params, member_node));
continue;
},
.fn_proto => {
try astgen.fnDecl(gz, &wip_decls, 0, tree.fnProto(member_node));
continue;
},
.global_var_decl => {
try astgen.globalVarDecl(gz, scope, &wip_decls, member_node, tree.globalVarDecl(member_node));
continue;
},
.local_var_decl => {
try astgen.globalVarDecl(gz, scope, &wip_decls, member_node, tree.localVarDecl(member_node));
continue;
},
.simple_var_decl => {
try astgen.globalVarDecl(gz, scope, &wip_decls, member_node, tree.simpleVarDecl(member_node));
continue;
},
.aligned_var_decl => {
try astgen.globalVarDecl(gz, scope, &wip_decls, member_node, tree.alignedVarDecl(member_node));
continue;
},
.@"comptime" => {
try astgen.comptimeDecl(gz, scope, member_node);
continue;
},
.@"usingnamespace" => {
try astgen.usingnamespaceDecl(gz, scope, member_node);
continue;
},
.test_decl => {
try astgen.testDecl(gz, scope, member_node);
continue;
},
else => unreachable,
};
if (field_index % 16 == 0 and field_index != 0) {
try bit_bag.append(gpa, cur_bit_bag);
cur_bit_bag = 0;
}
if (member.comptime_token) |comptime_token| {
return astgen.failTok(comptime_token, "TODO implement comptime struct fields", .{});
}
try fields_data.ensureCapacity(gpa, fields_data.items.len + 4);
const field_name = try gz.identAsString(member.ast.name_token);
fields_data.appendAssumeCapacity(field_name);
const field_type = try typeExpr(&block_scope, &block_scope.base, member.ast.type_expr);
fields_data.appendAssumeCapacity(@enumToInt(field_type));
const have_align = member.ast.align_expr != 0;
const have_value = member.ast.value_expr != 0;
cur_bit_bag = (cur_bit_bag >> 2) |
(@as(u32, @boolToInt(have_align)) << 30) |
(@as(u32, @boolToInt(have_value)) << 31);
if (have_align) {
const align_inst = try expr(&block_scope, &block_scope.base, .{ .ty = .u32_type }, member.ast.align_expr);
fields_data.appendAssumeCapacity(@enumToInt(align_inst));
}
if (have_value) {
const default_inst = try expr(&block_scope, &block_scope.base, .{ .ty = field_type }, member.ast.value_expr);
fields_data.appendAssumeCapacity(@enumToInt(default_inst));
}
field_index += 1;
}
if (field_index != 0) {
const empty_slot_count = 16 - (field_index % 16);
cur_bit_bag >>= @intCast(u5, empty_slot_count * 2);
}
if (wip_decls.decl_index != 0) {
const empty_slot_count = 16 - (wip_decls.decl_index % 16);
wip_decls.cur_bit_bag >>= @intCast(u5, empty_slot_count * 2);
}
const decl_inst = try gz.addBlock(tag, node);
try gz.instructions.append(gpa, decl_inst);
if (field_index != 0) {
_ = try block_scope.addBreak(.break_inline, decl_inst, .void_value);
}
try astgen.extra.ensureCapacity(gpa, astgen.extra.items.len +
@typeInfo(Zir.Inst.StructDecl).Struct.fields.len +
bit_bag.items.len + @boolToInt(field_index != 0) + fields_data.items.len +
block_scope.instructions.items.len +
wip_decls.bit_bag.items.len + @boolToInt(wip_decls.decl_index != 0) +
wip_decls.name_and_value.items.len);
const zir_datas = astgen.instructions.items(.data);
zir_datas[decl_inst].pl_node.payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.StructDecl{
.body_len = @intCast(u32, block_scope.instructions.items.len),
.fields_len = @intCast(u32, field_index),
.decls_len = @intCast(u32, wip_decls.decl_index),
});
astgen.extra.appendSliceAssumeCapacity(block_scope.instructions.items);
astgen.extra.appendSliceAssumeCapacity(bit_bag.items); // Likely empty.
if (field_index != 0) {
astgen.extra.appendAssumeCapacity(cur_bit_bag);
}
astgen.extra.appendSliceAssumeCapacity(fields_data.items);
astgen.extra.appendSliceAssumeCapacity(wip_decls.bit_bag.items); // Likely empty.
if (wip_decls.decl_index != 0) {
astgen.extra.appendAssumeCapacity(wip_decls.cur_bit_bag);
}
astgen.extra.appendSliceAssumeCapacity(wip_decls.name_and_value.items);
return gz.indexToRef(decl_inst);
}
fn containerDecl(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
container_decl: ast.full.ContainerDecl,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
const node_tags = tree.nodes.items(.tag);
// We must not create any types until Sema. Here the goal is only to generate
// ZIR for all the field types, alignments, and default value expressions.
const arg_inst: Zir.Inst.Ref = if (container_decl.ast.arg != 0)
try comptimeExpr(gz, scope, .{ .ty = .type_type }, container_decl.ast.arg)
else
.none;
switch (token_tags[container_decl.ast.main_token]) {
.keyword_struct => {
const tag = if (container_decl.layout_token) |t| switch (token_tags[t]) {
.keyword_packed => Zir.Inst.Tag.struct_decl_packed,
.keyword_extern => Zir.Inst.Tag.struct_decl_extern,
else => unreachable,
} else Zir.Inst.Tag.struct_decl;
assert(arg_inst == .none);
const result = try structDeclInner(gz, scope, node, container_decl, tag);
return rvalue(gz, scope, rl, result, node);
},
.keyword_union => {
return astgen.failTok(container_decl.ast.main_token, "TODO AstGen for union decl", .{});
},
.keyword_enum => {
if (container_decl.layout_token) |t| {
return astgen.failTok(t, "enums do not support 'packed' or 'extern'; instead provide an explicit integer tag type", .{});
}
// Count total fields as well as how many have explicitly provided tag values.
const counts = blk: {
var values: usize = 0;
var total_fields: usize = 0;
var decls: usize = 0;
var nonexhaustive_node: ast.Node.Index = 0;
for (container_decl.ast.members) |member_node| {
const member = switch (node_tags[member_node]) {
.container_field_init => tree.containerFieldInit(member_node),
.container_field_align => tree.containerFieldAlign(member_node),
.container_field => tree.containerField(member_node),
else => {
decls += 1;
continue;
},
};
if (member.comptime_token) |comptime_token| {
return astgen.failTok(comptime_token, "enum fields cannot be marked comptime", .{});
}
if (member.ast.type_expr != 0) {
return astgen.failNode(member.ast.type_expr, "enum fields do not have types", .{});
}
// Alignment expressions in enums are caught by the parser.
assert(member.ast.align_expr == 0);
const name_token = member.ast.name_token;
if (mem.eql(u8, tree.tokenSlice(name_token), "_")) {
if (nonexhaustive_node != 0) {
return astgen.failNodeNotes(
member_node,
"redundant non-exhaustive enum mark",
.{},
&[_]u32{
try astgen.errNoteNode(
nonexhaustive_node,
"other mark here",
.{},
),
},
);
}
nonexhaustive_node = member_node;
if (member.ast.value_expr != 0) {
return astgen.failNode(member.ast.value_expr, "'_' is used to mark an enum as non-exhaustive and cannot be assigned a value", .{});
}
continue;
}
total_fields += 1;
if (member.ast.value_expr != 0) {
if (arg_inst == .none) {
return astgen.failNode(member.ast.value_expr, "value assigned to enum tag with inferred tag type", .{});
}
values += 1;
}
}
break :blk .{
.total_fields = total_fields,
.values = values,
.decls = decls,
.nonexhaustive_node = nonexhaustive_node,
};
};
if (counts.total_fields == 0) {
// One can construct an enum with no tags, and it functions the same as `noreturn`. But
// this is only useful for generic code; when explicitly using `enum {}` syntax, there
// must be at least one tag.
return astgen.failNode(node, "enum declarations must have at least one tag", .{});
}
if (counts.nonexhaustive_node != 0 and arg_inst == .none) {
return astgen.failNodeNotes(
node,
"non-exhaustive enum missing integer tag type",
.{},
&[_]u32{
try astgen.errNoteNode(
counts.nonexhaustive_node,
"marked non-exhaustive here",
.{},
),
},
);
}
if (counts.values == 0 and counts.decls == 0 and arg_inst == .none) {
@panic("AstGen simple enum");
}
// In this case we must generate ZIR code for the tag values, similar to
// how structs are handled above.
const tag: Zir.Inst.Tag = if (counts.nonexhaustive_node == 0)
.enum_decl
else
.enum_decl_nonexhaustive;
if (counts.total_fields == 0) {
return gz.addPlNode(tag, node, Zir.Inst.EnumDecl{
.tag_type = arg_inst,
.fields_len = 0,
.body_len = 0,
});
}
// The enum_decl instruction introduces a scope in which the decls of the enum
// are in scope, so that tag values can refer to decls within the enum itself.
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = node,
.astgen = astgen,
.force_comptime = true,
};
defer block_scope.instructions.deinit(gpa);
var fields_data = ArrayListUnmanaged(u32){};
defer fields_data.deinit(gpa);
try fields_data.ensureCapacity(gpa, counts.total_fields + counts.values);
// We only need this if there are greater than 32 fields.
var bit_bag = ArrayListUnmanaged(u32){};
defer bit_bag.deinit(gpa);
var cur_bit_bag: u32 = 0;
var field_index: usize = 0;
for (container_decl.ast.members) |member_node| {
if (member_node == counts.nonexhaustive_node)
continue;
const member = switch (node_tags[member_node]) {
.container_field_init => tree.containerFieldInit(member_node),
.container_field_align => tree.containerFieldAlign(member_node),
.container_field => tree.containerField(member_node),
else => continue,
};
if (field_index % 32 == 0 and field_index != 0) {
try bit_bag.append(gpa, cur_bit_bag);
cur_bit_bag = 0;
}
assert(member.comptime_token == null);
assert(member.ast.type_expr == 0);
assert(member.ast.align_expr == 0);
const field_name = try gz.identAsString(member.ast.name_token);
fields_data.appendAssumeCapacity(field_name);
const have_value = member.ast.value_expr != 0;
cur_bit_bag = (cur_bit_bag >> 1) |
(@as(u32, @boolToInt(have_value)) << 31);
if (have_value) {
const tag_value_inst = try expr(&block_scope, &block_scope.base, .{ .ty = arg_inst }, member.ast.value_expr);
fields_data.appendAssumeCapacity(@enumToInt(tag_value_inst));
}
field_index += 1;
}
const empty_slot_count = 32 - (field_index % 32);
cur_bit_bag >>= @intCast(u5, empty_slot_count);
const decl_inst = try gz.addBlock(tag, node);
try gz.instructions.append(gpa, decl_inst);
_ = try block_scope.addBreak(.break_inline, decl_inst, .void_value);
try astgen.extra.ensureCapacity(gpa, astgen.extra.items.len +
@typeInfo(Zir.Inst.EnumDecl).Struct.fields.len +
bit_bag.items.len + 1 + fields_data.items.len +
block_scope.instructions.items.len);
const zir_datas = astgen.instructions.items(.data);
zir_datas[decl_inst].pl_node.payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.EnumDecl{
.tag_type = arg_inst,
.body_len = @intCast(u32, block_scope.instructions.items.len),
.fields_len = @intCast(u32, field_index),
});
astgen.extra.appendSliceAssumeCapacity(block_scope.instructions.items);
astgen.extra.appendSliceAssumeCapacity(bit_bag.items); // Likely empty.
astgen.extra.appendAssumeCapacity(cur_bit_bag);
astgen.extra.appendSliceAssumeCapacity(fields_data.items);
return rvalue(gz, scope, rl, gz.indexToRef(decl_inst), node);
},
.keyword_opaque => {
const result = try gz.addNode(.opaque_decl, node);
return rvalue(gz, scope, rl, result, node);
},
else => unreachable,
}
}
fn errorSetDecl(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
@panic("TODO AstGen errorSetDecl");
}
fn orelseCatchExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
lhs: ast.Node.Index,
cond_op: Zir.Inst.Tag,
unwrap_op: Zir.Inst.Tag,
unwrap_code_op: Zir.Inst.Tag,
rhs: ast.Node.Index,
payload_token: ?ast.TokenIndex,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = &astgen.file.tree;
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = parent_gz.astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
block_scope.setBreakResultLoc(rl);
defer block_scope.instructions.deinit(astgen.gpa);
// This could be a pointer or value depending on the `operand_rl` parameter.
// We cannot use `block_scope.break_result_loc` because that has the bare
// type, whereas this expression has the optional type. Later we make
// up for this fact by calling rvalue on the else branch.
block_scope.break_count += 1;
// TODO handle catch
const operand_rl: ResultLoc = switch (block_scope.break_result_loc) {
.ref => .ref,
.discard, .none, .none_or_ref, .block_ptr, .inferred_ptr => .none,
.ty => |elem_ty| blk: {
const wrapped_ty = try block_scope.addUnNode(.optional_type, elem_ty, node);
break :blk .{ .ty = wrapped_ty };
},
.ptr => |ptr_ty| blk: {
const wrapped_ty = try block_scope.addUnNode(.optional_type_from_ptr_elem, ptr_ty, node);
break :blk .{ .ty = wrapped_ty };
},
};
const operand = try expr(&block_scope, &block_scope.base, operand_rl, lhs);
const cond = try block_scope.addUnNode(cond_op, operand, node);
const condbr = try block_scope.addCondBr(.condbr, node);
const block = try parent_gz.addBlock(.block, node);
try parent_gz.instructions.append(astgen.gpa, block);
try block_scope.setBlockBody(block);
var then_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = parent_gz.astgen,
.force_comptime = block_scope.force_comptime,
.instructions = .{},
};
defer then_scope.instructions.deinit(astgen.gpa);
var err_val_scope: Scope.LocalVal = undefined;
const then_sub_scope = blk: {
const payload = payload_token orelse break :blk &then_scope.base;
if (mem.eql(u8, tree.tokenSlice(payload), "_")) {
return astgen.failTok(payload, "discard of error capture; omit it instead", .{});
}
const err_name = try astgen.identifierTokenString(payload);
err_val_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = err_name,
.inst = try then_scope.addUnNode(unwrap_code_op, operand, node),
.token_src = payload,
};
break :blk &err_val_scope.base;
};
block_scope.break_count += 1;
const then_result = try expr(&then_scope, then_sub_scope, block_scope.break_result_loc, rhs);
// We hold off on the break instructions as well as copying the then/else
// instructions into place until we know whether to keep store_to_block_ptr
// instructions or not.
var else_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = parent_gz.astgen,
.force_comptime = block_scope.force_comptime,
.instructions = .{},
};
defer else_scope.instructions.deinit(astgen.gpa);
// This could be a pointer or value depending on `unwrap_op`.
const unwrapped_payload = try else_scope.addUnNode(unwrap_op, operand, node);
const else_result = switch (rl) {
.ref => unwrapped_payload,
else => try rvalue(&else_scope, &else_scope.base, block_scope.break_result_loc, unwrapped_payload, node),
};
return finishThenElseBlock(
parent_gz,
scope,
rl,
node,
&block_scope,
&then_scope,
&else_scope,
condbr,
cond,
node,
node,
then_result,
else_result,
block,
block,
.@"break",
);
}
fn finishThenElseBlock(
parent_gz: *GenZir,
parent_scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
block_scope: *GenZir,
then_scope: *GenZir,
else_scope: *GenZir,
condbr: Zir.Inst.Index,
cond: Zir.Inst.Ref,
then_src: ast.Node.Index,
else_src: ast.Node.Index,
then_result: Zir.Inst.Ref,
else_result: Zir.Inst.Ref,
main_block: Zir.Inst.Index,
then_break_block: Zir.Inst.Index,
break_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
// We now have enough information to decide whether the result instruction should
// be communicated via result location pointer or break instructions.
const strat = rl.strategy(block_scope);
const astgen = block_scope.astgen;
switch (strat.tag) {
.break_void => {
if (!parent_gz.refIsNoReturn(then_result)) {
_ = try then_scope.addBreak(break_tag, then_break_block, .void_value);
}
const elide_else = if (else_result != .none) parent_gz.refIsNoReturn(else_result) else false;
if (!elide_else) {
_ = try else_scope.addBreak(break_tag, main_block, .void_value);
}
assert(!strat.elide_store_to_block_ptr_instructions);
try setCondBrPayload(condbr, cond, then_scope, else_scope);
return parent_gz.indexToRef(main_block);
},
.break_operand => {
if (!parent_gz.refIsNoReturn(then_result)) {
_ = try then_scope.addBreak(break_tag, then_break_block, then_result);
}
if (else_result != .none) {
if (!parent_gz.refIsNoReturn(else_result)) {
_ = try else_scope.addBreak(break_tag, main_block, else_result);
}
} else {
_ = try else_scope.addBreak(break_tag, main_block, .void_value);
}
if (strat.elide_store_to_block_ptr_instructions) {
try setCondBrPayloadElideBlockStorePtr(condbr, cond, then_scope, else_scope);
} else {
try setCondBrPayload(condbr, cond, then_scope, else_scope);
}
const block_ref = parent_gz.indexToRef(main_block);
switch (rl) {
.ref => return block_ref,
else => return rvalue(parent_gz, parent_scope, rl, block_ref, node),
}
},
}
}
/// Return whether the identifier names of two tokens are equal. Resolves @""
/// tokens without allocating.
/// OK in theory it could do it without allocating. This implementation
/// allocates when the @"" form is used.
fn tokenIdentEql(astgen: *AstGen, token1: ast.TokenIndex, token2: ast.TokenIndex) !bool {
const ident_name_1 = try astgen.identifierTokenString(token1);
const ident_name_2 = try astgen.identifierTokenString(token2);
return mem.eql(u8, ident_name_1, ident_name_2);
}
pub fn fieldAccess(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_datas = tree.nodes.items(.data);
const object_node = node_datas[node].lhs;
const dot_token = main_tokens[node];
const field_ident = dot_token + 1;
const str_index = try gz.identAsString(field_ident);
switch (rl) {
.ref => return gz.addPlNode(.field_ptr, node, Zir.Inst.Field{
.lhs = try expr(gz, scope, .ref, object_node),
.field_name_start = str_index,
}),
else => return rvalue(gz, scope, rl, try gz.addPlNode(.field_val, node, Zir.Inst.Field{
.lhs = try expr(gz, scope, .none_or_ref, object_node),
.field_name_start = str_index,
}), node),
}
}
fn arrayAccess(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_datas = tree.nodes.items(.data);
switch (rl) {
.ref => return gz.addBin(
.elem_ptr,
try expr(gz, scope, .ref, node_datas[node].lhs),
try expr(gz, scope, .{ .ty = .usize_type }, node_datas[node].rhs),
),
else => return rvalue(gz, scope, rl, try gz.addBin(
.elem_val,
try expr(gz, scope, .none_or_ref, node_datas[node].lhs),
try expr(gz, scope, .{ .ty = .usize_type }, node_datas[node].rhs),
), node),
}
}
fn simpleBinOp(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const result = try gz.addPlNode(op_inst_tag, node, Zir.Inst.Bin{
.lhs = try expr(gz, scope, .none, node_datas[node].lhs),
.rhs = try expr(gz, scope, .none, node_datas[node].rhs),
});
return rvalue(gz, scope, rl, result, node);
}
fn simpleStrTok(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
ident_token: ast.TokenIndex,
node: ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const str_index = try gz.identAsString(ident_token);
const result = try gz.addStrTok(op_inst_tag, str_index, ident_token);
return rvalue(gz, scope, rl, result, node);
}
fn boolBinOp(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
zir_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const node_datas = gz.tree().nodes.items(.data);
const lhs = try expr(gz, scope, .{ .ty = .bool_type }, node_datas[node].lhs);
const bool_br = try gz.addBoolBr(zir_tag, lhs);
var rhs_scope: GenZir = .{
.parent = scope,
.decl_node_index = gz.decl_node_index,
.astgen = gz.astgen,
.force_comptime = gz.force_comptime,
};
defer rhs_scope.instructions.deinit(gz.astgen.gpa);
const rhs = try expr(&rhs_scope, &rhs_scope.base, .{ .ty = .bool_type }, node_datas[node].rhs);
_ = try rhs_scope.addBreak(.break_inline, bool_br, rhs);
try rhs_scope.setBoolBrBody(bool_br);
const block_ref = gz.indexToRef(bool_br);
return rvalue(gz, scope, rl, block_ref, node);
}
fn ifExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
if_full: ast.full.If,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
block_scope.setBreakResultLoc(rl);
defer block_scope.instructions.deinit(astgen.gpa);
const cond = c: {
// TODO https://github.com/ziglang/zig/issues/7929
if (if_full.error_token) |error_token| {
return astgen.failTok(error_token, "TODO implement if error union", .{});
} else if (if_full.payload_token) |payload_token| {
return astgen.failTok(payload_token, "TODO implement if optional", .{});
} else {
break :c try expr(&block_scope, &block_scope.base, .{ .ty = .bool_type }, if_full.ast.cond_expr);
}
};
const condbr = try block_scope.addCondBr(.condbr, node);
const block = try parent_gz.addBlock(.block, node);
try parent_gz.instructions.append(astgen.gpa, block);
try block_scope.setBlockBody(block);
var then_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = block_scope.force_comptime,
.instructions = .{},
};
defer then_scope.instructions.deinit(astgen.gpa);
// declare payload to the then_scope
const then_sub_scope = &then_scope.base;
block_scope.break_count += 1;
const then_result = try expr(&then_scope, then_sub_scope, block_scope.break_result_loc, if_full.ast.then_expr);
// We hold off on the break instructions as well as copying the then/else
// instructions into place until we know whether to keep store_to_block_ptr
// instructions or not.
var else_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = block_scope.force_comptime,
.instructions = .{},
};
defer else_scope.instructions.deinit(astgen.gpa);
const else_node = if_full.ast.else_expr;
const else_info: struct {
src: ast.Node.Index,
result: Zir.Inst.Ref,
} = if (else_node != 0) blk: {
block_scope.break_count += 1;
const sub_scope = &else_scope.base;
break :blk .{
.src = else_node,
.result = try expr(&else_scope, sub_scope, block_scope.break_result_loc, else_node),
};
} else .{
.src = if_full.ast.then_expr,
.result = .none,
};
return finishThenElseBlock(
parent_gz,
scope,
rl,
node,
&block_scope,
&then_scope,
&else_scope,
condbr,
cond,
if_full.ast.then_expr,
else_info.src,
then_result,
else_info.result,
block,
block,
.@"break",
);
}
fn setCondBrPayload(
condbr: Zir.Inst.Index,
cond: Zir.Inst.Ref,
then_scope: *GenZir,
else_scope: *GenZir,
) !void {
const astgen = then_scope.astgen;
try astgen.extra.ensureCapacity(astgen.gpa, astgen.extra.items.len +
@typeInfo(Zir.Inst.CondBr).Struct.fields.len +
then_scope.instructions.items.len + else_scope.instructions.items.len);
const zir_datas = astgen.instructions.items(.data);
zir_datas[condbr].pl_node.payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.CondBr{
.condition = cond,
.then_body_len = @intCast(u32, then_scope.instructions.items.len),
.else_body_len = @intCast(u32, else_scope.instructions.items.len),
});
astgen.extra.appendSliceAssumeCapacity(then_scope.instructions.items);
astgen.extra.appendSliceAssumeCapacity(else_scope.instructions.items);
}
/// If `elide_block_store_ptr` is set, expects to find exactly 1 .store_to_block_ptr instruction.
fn setCondBrPayloadElideBlockStorePtr(
condbr: Zir.Inst.Index,
cond: Zir.Inst.Ref,
then_scope: *GenZir,
else_scope: *GenZir,
) !void {
const astgen = then_scope.astgen;
try astgen.extra.ensureCapacity(astgen.gpa, astgen.extra.items.len +
@typeInfo(Zir.Inst.CondBr).Struct.fields.len +
then_scope.instructions.items.len + else_scope.instructions.items.len - 2);
const zir_datas = astgen.instructions.items(.data);
zir_datas[condbr].pl_node.payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.CondBr{
.condition = cond,
.then_body_len = @intCast(u32, then_scope.instructions.items.len - 1),
.else_body_len = @intCast(u32, else_scope.instructions.items.len - 1),
});
const zir_tags = astgen.instructions.items(.tag);
for ([_]*GenZir{ then_scope, else_scope }) |scope| {
for (scope.instructions.items) |src_inst| {
if (zir_tags[src_inst] != .store_to_block_ptr) {
astgen.extra.appendAssumeCapacity(src_inst);
}
}
}
}
fn whileExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
while_full: ast.full.While,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
if (while_full.label_token) |label_token| {
try astgen.checkLabelRedefinition(scope, label_token);
}
const is_inline = parent_gz.force_comptime or while_full.inline_token != null;
const loop_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .loop;
const loop_block = try parent_gz.addBlock(loop_tag, node);
try parent_gz.instructions.append(astgen.gpa, loop_block);
var loop_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
loop_scope.setBreakResultLoc(rl);
defer loop_scope.instructions.deinit(astgen.gpa);
var continue_scope: GenZir = .{
.parent = &loop_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = loop_scope.force_comptime,
.instructions = .{},
};
defer continue_scope.instructions.deinit(astgen.gpa);
const cond = c: {
// TODO https://github.com/ziglang/zig/issues/7929
if (while_full.error_token) |error_token| {
return astgen.failTok(error_token, "TODO implement while error union", .{});
} else if (while_full.payload_token) |payload_token| {
return astgen.failTok(payload_token, "TODO implement while optional", .{});
} else {
const bool_type_rl: ResultLoc = .{ .ty = .bool_type };
break :c try expr(&continue_scope, &continue_scope.base, bool_type_rl, while_full.ast.cond_expr);
}
};
const condbr_tag: Zir.Inst.Tag = if (is_inline) .condbr_inline else .condbr;
const condbr = try continue_scope.addCondBr(condbr_tag, node);
const block_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .block;
const cond_block = try loop_scope.addBlock(block_tag, node);
try loop_scope.instructions.append(astgen.gpa, cond_block);
try continue_scope.setBlockBody(cond_block);
// TODO avoid emitting the continue expr when there
// are no jumps to it. This happens when the last statement of a while body is noreturn
// and there are no `continue` statements.
if (while_full.ast.cont_expr != 0) {
_ = try expr(&loop_scope, &loop_scope.base, .{ .ty = .void_type }, while_full.ast.cont_expr);
}
const repeat_tag: Zir.Inst.Tag = if (is_inline) .repeat_inline else .repeat;
_ = try loop_scope.addNode(repeat_tag, node);
try loop_scope.setBlockBody(loop_block);
loop_scope.break_block = loop_block;
loop_scope.continue_block = cond_block;
if (while_full.label_token) |label_token| {
loop_scope.label = @as(?GenZir.Label, GenZir.Label{
.token = label_token,
.block_inst = loop_block,
});
}
var then_scope: GenZir = .{
.parent = &continue_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = continue_scope.force_comptime,
.instructions = .{},
};
defer then_scope.instructions.deinit(astgen.gpa);
const then_sub_scope = &then_scope.base;
loop_scope.break_count += 1;
const then_result = try expr(&then_scope, then_sub_scope, loop_scope.break_result_loc, while_full.ast.then_expr);
var else_scope: GenZir = .{
.parent = &continue_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = continue_scope.force_comptime,
.instructions = .{},
};
defer else_scope.instructions.deinit(astgen.gpa);
const else_node = while_full.ast.else_expr;
const else_info: struct {
src: ast.Node.Index,
result: Zir.Inst.Ref,
} = if (else_node != 0) blk: {
loop_scope.break_count += 1;
const sub_scope = &else_scope.base;
break :blk .{
.src = else_node,
.result = try expr(&else_scope, sub_scope, loop_scope.break_result_loc, else_node),
};
} else .{
.src = while_full.ast.then_expr,
.result = .none,
};
if (loop_scope.label) |some| {
if (!some.used) {
return astgen.failTok(some.token, "unused while loop label", .{});
}
}
const break_tag: Zir.Inst.Tag = if (is_inline) .break_inline else .@"break";
return finishThenElseBlock(
parent_gz,
scope,
rl,
node,
&loop_scope,
&then_scope,
&else_scope,
condbr,
cond,
while_full.ast.then_expr,
else_info.src,
then_result,
else_info.result,
loop_block,
cond_block,
break_tag,
);
}
fn forExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
for_full: ast.full.While,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
if (for_full.label_token) |label_token| {
try astgen.checkLabelRedefinition(scope, label_token);
}
// Set up variables and constants.
const is_inline = parent_gz.force_comptime or for_full.inline_token != null;
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
const array_ptr = try expr(parent_gz, scope, .ref, for_full.ast.cond_expr);
const len = try parent_gz.addUnNode(.indexable_ptr_len, array_ptr, for_full.ast.cond_expr);
const index_ptr = blk: {
const index_ptr = try parent_gz.addUnNode(.alloc, .usize_type, node);
// initialize to zero
_ = try parent_gz.addBin(.store, index_ptr, .zero_usize);
break :blk index_ptr;
};
const loop_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .loop;
const loop_block = try parent_gz.addBlock(loop_tag, node);
try parent_gz.instructions.append(astgen.gpa, loop_block);
var loop_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
loop_scope.setBreakResultLoc(rl);
defer loop_scope.instructions.deinit(astgen.gpa);
var cond_scope: GenZir = .{
.parent = &loop_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = loop_scope.force_comptime,
.instructions = .{},
};
defer cond_scope.instructions.deinit(astgen.gpa);
// check condition i < array_expr.len
const index = try cond_scope.addUnNode(.load, index_ptr, for_full.ast.cond_expr);
const cond = try cond_scope.addPlNode(.cmp_lt, for_full.ast.cond_expr, Zir.Inst.Bin{
.lhs = index,
.rhs = len,
});
const condbr_tag: Zir.Inst.Tag = if (is_inline) .condbr_inline else .condbr;
const condbr = try cond_scope.addCondBr(condbr_tag, node);
const block_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .block;
const cond_block = try loop_scope.addBlock(block_tag, node);
try loop_scope.instructions.append(astgen.gpa, cond_block);
try cond_scope.setBlockBody(cond_block);
// Increment the index variable.
const index_2 = try loop_scope.addUnNode(.load, index_ptr, for_full.ast.cond_expr);
const index_plus_one = try loop_scope.addPlNode(.add, node, Zir.Inst.Bin{
.lhs = index_2,
.rhs = .one_usize,
});
_ = try loop_scope.addBin(.store, index_ptr, index_plus_one);
const repeat_tag: Zir.Inst.Tag = if (is_inline) .repeat_inline else .repeat;
_ = try loop_scope.addNode(repeat_tag, node);
try loop_scope.setBlockBody(loop_block);
loop_scope.break_block = loop_block;
loop_scope.continue_block = cond_block;
if (for_full.label_token) |label_token| {
loop_scope.label = @as(?GenZir.Label, GenZir.Label{
.token = label_token,
.block_inst = loop_block,
});
}
var then_scope: GenZir = .{
.parent = &cond_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = cond_scope.force_comptime,
.instructions = .{},
};
defer then_scope.instructions.deinit(astgen.gpa);
var index_scope: Scope.LocalPtr = undefined;
const then_sub_scope = blk: {
const payload_token = for_full.payload_token.?;
const ident = if (token_tags[payload_token] == .asterisk)
payload_token + 1
else
payload_token;
const is_ptr = ident != payload_token;
const value_name = tree.tokenSlice(ident);
if (!mem.eql(u8, value_name, "_")) {
return astgen.failNode(ident, "TODO implement for loop value payload", .{});
} else if (is_ptr) {
return astgen.failTok(payload_token, "pointer modifier invalid on discard", .{});
}
const index_token = if (token_tags[ident + 1] == .comma)
ident + 2
else
break :blk &then_scope.base;
if (mem.eql(u8, tree.tokenSlice(index_token), "_")) {
return astgen.failTok(index_token, "discard of index capture; omit it instead", .{});
}
const index_name = try astgen.identifierTokenString(index_token);
index_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = index_name,
.ptr = index_ptr,
.token_src = index_token,
};
break :blk &index_scope.base;
};
loop_scope.break_count += 1;
const then_result = try expr(&then_scope, then_sub_scope, loop_scope.break_result_loc, for_full.ast.then_expr);
var else_scope: GenZir = .{
.parent = &cond_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = cond_scope.force_comptime,
.instructions = .{},
};
defer else_scope.instructions.deinit(astgen.gpa);
const else_node = for_full.ast.else_expr;
const else_info: struct {
src: ast.Node.Index,
result: Zir.Inst.Ref,
} = if (else_node != 0) blk: {
loop_scope.break_count += 1;
const sub_scope = &else_scope.base;
break :blk .{
.src = else_node,
.result = try expr(&else_scope, sub_scope, loop_scope.break_result_loc, else_node),
};
} else .{
.src = for_full.ast.then_expr,
.result = .none,
};
if (loop_scope.label) |some| {
if (!some.used) {
return astgen.failTok(some.token, "unused for loop label", .{});
}
}
const break_tag: Zir.Inst.Tag = if (is_inline) .break_inline else .@"break";
return finishThenElseBlock(
parent_gz,
scope,
rl,
node,
&loop_scope,
&then_scope,
&else_scope,
condbr,
cond,
for_full.ast.then_expr,
else_info.src,
then_result,
else_info.result,
loop_block,
cond_block,
break_tag,
);
}
fn getRangeNode(
node_tags: []const ast.Node.Tag,
node_datas: []const ast.Node.Data,
node: ast.Node.Index,
) ?ast.Node.Index {
switch (node_tags[node]) {
.switch_range => return node,
.grouped_expression => unreachable,
else => return null,
}
}
pub const SwitchProngSrc = union(enum) {
scalar: u32,
multi: Multi,
range: Multi,
pub const Multi = struct {
prong: u32,
item: u32,
};
pub const RangeExpand = enum { none, first, last };
/// This function is intended to be called only when it is certain that we need
/// the LazySrcLoc in order to emit a compile error.
pub fn resolve(
prong_src: SwitchProngSrc,
decl: *Decl,
switch_node_offset: i32,
range_expand: RangeExpand,
) LazySrcLoc {
@setCold(true);
const switch_node = decl.relativeToNodeIndex(switch_node_offset);
const tree = decl.namespace.file_scope.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
const extra = tree.extraData(node_datas[switch_node].rhs, ast.Node.SubRange);
const case_nodes = tree.extra_data[extra.start..extra.end];
var multi_i: u32 = 0;
var scalar_i: u32 = 0;
for (case_nodes) |case_node| {
const case = switch (node_tags[case_node]) {
.switch_case_one => tree.switchCaseOne(case_node),
.switch_case => tree.switchCase(case_node),
else => unreachable,
};
if (case.ast.values.len == 0)
continue;
if (case.ast.values.len == 1 and
node_tags[case.ast.values[0]] == .identifier and
mem.eql(u8, tree.tokenSlice(main_tokens[case.ast.values[0]]), "_"))
{
continue;
}
const is_multi = case.ast.values.len != 1 or
getRangeNode(node_tags, node_datas, case.ast.values[0]) != null;
switch (prong_src) {
.scalar => |i| if (!is_multi and i == scalar_i) return LazySrcLoc{
.node_offset = decl.nodeIndexToRelative(case.ast.values[0]),
},
.multi => |s| if (is_multi and s.prong == multi_i) {
var item_i: u32 = 0;
for (case.ast.values) |item_node| {
if (getRangeNode(node_tags, node_datas, item_node) != null)
continue;
if (item_i == s.item) return LazySrcLoc{
.node_offset = decl.nodeIndexToRelative(item_node),
};
item_i += 1;
} else unreachable;
},
.range => |s| if (is_multi and s.prong == multi_i) {
var range_i: u32 = 0;
for (case.ast.values) |item_node| {
const range = getRangeNode(node_tags, node_datas, item_node) orelse continue;
if (range_i == s.item) switch (range_expand) {
.none => return LazySrcLoc{
.node_offset = decl.nodeIndexToRelative(item_node),
},
.first => return LazySrcLoc{
.node_offset = decl.nodeIndexToRelative(node_datas[range].lhs),
},
.last => return LazySrcLoc{
.node_offset = decl.nodeIndexToRelative(node_datas[range].rhs),
},
};
range_i += 1;
} else unreachable;
},
}
if (is_multi) {
multi_i += 1;
} else {
scalar_i += 1;
}
} else unreachable;
}
};
fn switchExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
switch_node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const gpa = astgen.gpa;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const operand_node = node_datas[switch_node].lhs;
const extra = tree.extraData(node_datas[switch_node].rhs, ast.Node.SubRange);
const case_nodes = tree.extra_data[extra.start..extra.end];
// We perform two passes over the AST. This first pass is to collect information
// for the following variables, make note of the special prong AST node index,
// and bail out with a compile error if there are multiple special prongs present.
var any_payload_is_ref = false;
var scalar_cases_len: u32 = 0;
var multi_cases_len: u32 = 0;
var special_prong: Zir.SpecialProng = .none;
var special_node: ast.Node.Index = 0;
var else_src: ?ast.TokenIndex = null;
var underscore_src: ?ast.TokenIndex = null;
for (case_nodes) |case_node| {
const case = switch (node_tags[case_node]) {
.switch_case_one => tree.switchCaseOne(case_node),
.switch_case => tree.switchCase(case_node),
else => unreachable,
};
if (case.payload_token) |payload_token| {
if (token_tags[payload_token] == .asterisk) {
any_payload_is_ref = true;
}
}
// Check for else/`_` prong.
if (case.ast.values.len == 0) {
const case_src = case.ast.arrow_token - 1;
if (else_src) |src| {
return astgen.failTokNotes(
case_src,
"multiple else prongs in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
src,
"previous else prong is here",
.{},
),
},
);
} else if (underscore_src) |some_underscore| {
return astgen.failNodeNotes(
switch_node,
"else and '_' prong in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
case_src,
"else prong is here",
.{},
),
try astgen.errNoteTok(
some_underscore,
"'_' prong is here",
.{},
),
},
);
}
special_node = case_node;
special_prong = .@"else";
else_src = case_src;
continue;
} else if (case.ast.values.len == 1 and
node_tags[case.ast.values[0]] == .identifier and
mem.eql(u8, tree.tokenSlice(main_tokens[case.ast.values[0]]), "_"))
{
const case_src = case.ast.arrow_token - 1;
if (underscore_src) |src| {
return astgen.failTokNotes(
case_src,
"multiple '_' prongs in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
src,
"previous '_' prong is here",
.{},
),
},
);
} else if (else_src) |some_else| {
return astgen.failNodeNotes(
switch_node,
"else and '_' prong in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
some_else,
"else prong is here",
.{},
),
try astgen.errNoteTok(
case_src,
"'_' prong is here",
.{},
),
},
);
}
special_node = case_node;
special_prong = .under;
underscore_src = case_src;
continue;
}
if (case.ast.values.len == 1 and
getRangeNode(node_tags, node_datas, case.ast.values[0]) == null)
{
scalar_cases_len += 1;
} else {
multi_cases_len += 1;
}
}
const operand_rl: ResultLoc = if (any_payload_is_ref) .ref else .none;
const operand = try expr(parent_gz, scope, operand_rl, operand_node);
// We need the type of the operand to use as the result location for all the prong items.
const typeof_tag: Zir.Inst.Tag = if (any_payload_is_ref) .typeof_elem else .typeof;
const operand_ty_inst = try parent_gz.addUnNode(typeof_tag, operand, operand_node);
const item_rl: ResultLoc = .{ .ty = operand_ty_inst };
// Contains the data that goes into the `extra` array for the SwitchBlock/SwitchBlockMulti.
// This is the header as well as the optional else prong body, as well as all the
// scalar cases.
// At the end we will memcpy this into place.
var scalar_cases_payload = ArrayListUnmanaged(u32){};
defer scalar_cases_payload.deinit(gpa);
// Same deal, but this is only the `extra` data for the multi cases.
var multi_cases_payload = ArrayListUnmanaged(u32){};
defer multi_cases_payload.deinit(gpa);
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
block_scope.setBreakResultLoc(rl);
defer block_scope.instructions.deinit(gpa);
// This gets added to the parent block later, after the item expressions.
const switch_block = try parent_gz.addBlock(undefined, switch_node);
// We re-use this same scope for all cases, including the special prong, if any.
var case_scope: GenZir = .{
.parent = &block_scope.base,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
defer case_scope.instructions.deinit(gpa);
// Do the else/`_` first because it goes first in the payload.
var capture_val_scope: Scope.LocalVal = undefined;
if (special_node != 0) {
const case = switch (node_tags[special_node]) {
.switch_case_one => tree.switchCaseOne(special_node),
.switch_case => tree.switchCase(special_node),
else => unreachable,
};
const sub_scope = blk: {
const payload_token = case.payload_token orelse break :blk &case_scope.base;
const ident = if (token_tags[payload_token] == .asterisk)
payload_token + 1
else
payload_token;
const is_ptr = ident != payload_token;
if (mem.eql(u8, tree.tokenSlice(ident), "_")) {
if (is_ptr) {
return astgen.failTok(payload_token, "pointer modifier invalid on discard", .{});
}
break :blk &case_scope.base;
}
const capture_tag: Zir.Inst.Tag = if (is_ptr)
.switch_capture_else_ref
else
.switch_capture_else;
const capture = try case_scope.add(.{
.tag = capture_tag,
.data = .{ .switch_capture = .{
.switch_inst = switch_block,
.prong_index = undefined,
} },
});
const capture_name = try astgen.identifierTokenString(payload_token);
capture_val_scope = .{
.parent = &case_scope.base,
.gen_zir = &case_scope,
.name = capture_name,
.inst = capture,
.token_src = payload_token,
};
break :blk &capture_val_scope.base;
};
const case_result = try expr(&case_scope, sub_scope, block_scope.break_result_loc, case.ast.target_expr);
if (!parent_gz.refIsNoReturn(case_result)) {
block_scope.break_count += 1;
_ = try case_scope.addBreak(.@"break", switch_block, case_result);
}
// Documentation for this: `Zir.Inst.SwitchBlock` and `Zir.Inst.SwitchBlockMulti`.
try scalar_cases_payload.ensureCapacity(gpa, scalar_cases_payload.items.len +
3 + // operand, scalar_cases_len, else body len
@boolToInt(multi_cases_len != 0) +
case_scope.instructions.items.len);
scalar_cases_payload.appendAssumeCapacity(@enumToInt(operand));
scalar_cases_payload.appendAssumeCapacity(scalar_cases_len);
if (multi_cases_len != 0) {
scalar_cases_payload.appendAssumeCapacity(multi_cases_len);
}
scalar_cases_payload.appendAssumeCapacity(@intCast(u32, case_scope.instructions.items.len));
scalar_cases_payload.appendSliceAssumeCapacity(case_scope.instructions.items);
} else {
// Documentation for this: `Zir.Inst.SwitchBlock` and `Zir.Inst.SwitchBlockMulti`.
try scalar_cases_payload.ensureCapacity(gpa, scalar_cases_payload.items.len +
2 + // operand, scalar_cases_len
@boolToInt(multi_cases_len != 0));
scalar_cases_payload.appendAssumeCapacity(@enumToInt(operand));
scalar_cases_payload.appendAssumeCapacity(scalar_cases_len);
if (multi_cases_len != 0) {
scalar_cases_payload.appendAssumeCapacity(multi_cases_len);
}
}
// In this pass we generate all the item and prong expressions except the special case.
var multi_case_index: u32 = 0;
var scalar_case_index: u32 = 0;
for (case_nodes) |case_node| {
if (case_node == special_node)
continue;
const case = switch (node_tags[case_node]) {
.switch_case_one => tree.switchCaseOne(case_node),
.switch_case => tree.switchCase(case_node),
else => unreachable,
};
// Reset the scope.
case_scope.instructions.shrinkRetainingCapacity(0);
const is_multi_case = case.ast.values.len != 1 or
getRangeNode(node_tags, node_datas, case.ast.values[0]) != null;
const sub_scope = blk: {
const payload_token = case.payload_token orelse break :blk &case_scope.base;
const ident = if (token_tags[payload_token] == .asterisk)
payload_token + 1
else
payload_token;
const is_ptr = ident != payload_token;
if (mem.eql(u8, tree.tokenSlice(ident), "_")) {
if (is_ptr) {
return astgen.failTok(payload_token, "pointer modifier invalid on discard", .{});
}
break :blk &case_scope.base;
}
const is_multi_case_bits: u2 = @boolToInt(is_multi_case);
const is_ptr_bits: u2 = @boolToInt(is_ptr);
const capture_tag: Zir.Inst.Tag = switch ((is_multi_case_bits << 1) | is_ptr_bits) {
0b00 => .switch_capture,
0b01 => .switch_capture_ref,
0b10 => .switch_capture_multi,
0b11 => .switch_capture_multi_ref,
};
const capture_index = if (is_multi_case) ci: {
multi_case_index += 1;
break :ci multi_case_index - 1;
} else ci: {
scalar_case_index += 1;
break :ci scalar_case_index - 1;
};
const capture = try case_scope.add(.{
.tag = capture_tag,
.data = .{ .switch_capture = .{
.switch_inst = switch_block,
.prong_index = capture_index,
} },
});
const capture_name = try astgen.identifierTokenString(payload_token);
capture_val_scope = .{
.parent = &case_scope.base,
.gen_zir = &case_scope,
.name = capture_name,
.inst = capture,
.token_src = payload_token,
};
break :blk &capture_val_scope.base;
};
if (is_multi_case) {
// items_len, ranges_len, body_len
const header_index = multi_cases_payload.items.len;
try multi_cases_payload.resize(gpa, multi_cases_payload.items.len + 3);
// items
var items_len: u32 = 0;
for (case.ast.values) |item_node| {
if (getRangeNode(node_tags, node_datas, item_node) != null) continue;
items_len += 1;
const item_inst = try comptimeExpr(parent_gz, scope, item_rl, item_node);
try multi_cases_payload.append(gpa, @enumToInt(item_inst));
}
// ranges
var ranges_len: u32 = 0;
for (case.ast.values) |item_node| {
const range = getRangeNode(node_tags, node_datas, item_node) orelse continue;
ranges_len += 1;
const first = try comptimeExpr(parent_gz, scope, item_rl, node_datas[range].lhs);
const last = try comptimeExpr(parent_gz, scope, item_rl, node_datas[range].rhs);
try multi_cases_payload.appendSlice(gpa, &[_]u32{
@enumToInt(first), @enumToInt(last),
});
}
const case_result = try expr(&case_scope, sub_scope, block_scope.break_result_loc, case.ast.target_expr);
if (!parent_gz.refIsNoReturn(case_result)) {
block_scope.break_count += 1;
_ = try case_scope.addBreak(.@"break", switch_block, case_result);
}
multi_cases_payload.items[header_index + 0] = items_len;
multi_cases_payload.items[header_index + 1] = ranges_len;
multi_cases_payload.items[header_index + 2] = @intCast(u32, case_scope.instructions.items.len);
try multi_cases_payload.appendSlice(gpa, case_scope.instructions.items);
} else {
const item_node = case.ast.values[0];
const item_inst = try comptimeExpr(parent_gz, scope, item_rl, item_node);
const case_result = try expr(&case_scope, sub_scope, block_scope.break_result_loc, case.ast.target_expr);
if (!parent_gz.refIsNoReturn(case_result)) {
block_scope.break_count += 1;
_ = try case_scope.addBreak(.@"break", switch_block, case_result);
}
try scalar_cases_payload.ensureCapacity(gpa, scalar_cases_payload.items.len +
2 + case_scope.instructions.items.len);
scalar_cases_payload.appendAssumeCapacity(@enumToInt(item_inst));
scalar_cases_payload.appendAssumeCapacity(@intCast(u32, case_scope.instructions.items.len));
scalar_cases_payload.appendSliceAssumeCapacity(case_scope.instructions.items);
}
}
// Now that the item expressions are generated we can add this.
try parent_gz.instructions.append(gpa, switch_block);
const ref_bit: u4 = @boolToInt(any_payload_is_ref);
const multi_bit: u4 = @boolToInt(multi_cases_len != 0);
const special_prong_bits: u4 = @enumToInt(special_prong);
comptime {
assert(@enumToInt(Zir.SpecialProng.none) == 0b00);
assert(@enumToInt(Zir.SpecialProng.@"else") == 0b01);
assert(@enumToInt(Zir.SpecialProng.under) == 0b10);
}
const zir_tags = astgen.instructions.items(.tag);
zir_tags[switch_block] = switch ((ref_bit << 3) | (special_prong_bits << 1) | multi_bit) {
0b0_00_0 => .switch_block,
0b0_00_1 => .switch_block_multi,
0b0_01_0 => .switch_block_else,
0b0_01_1 => .switch_block_else_multi,
0b0_10_0 => .switch_block_under,
0b0_10_1 => .switch_block_under_multi,
0b1_00_0 => .switch_block_ref,
0b1_00_1 => .switch_block_ref_multi,
0b1_01_0 => .switch_block_ref_else,
0b1_01_1 => .switch_block_ref_else_multi,
0b1_10_0 => .switch_block_ref_under,
0b1_10_1 => .switch_block_ref_under_multi,
else => unreachable,
};
const payload_index = astgen.extra.items.len;
const zir_datas = astgen.instructions.items(.data);
zir_datas[switch_block].pl_node.payload_index = @intCast(u32, payload_index);
try astgen.extra.ensureCapacity(gpa, astgen.extra.items.len +
scalar_cases_payload.items.len + multi_cases_payload.items.len);
const strat = rl.strategy(&block_scope);
switch (strat.tag) {
.break_operand => {
// Switch expressions return `true` for `nodeMayNeedMemoryLocation` thus
// `elide_store_to_block_ptr_instructions` will either be true,
// or all prongs are noreturn.
if (!strat.elide_store_to_block_ptr_instructions) {
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items);
astgen.extra.appendSliceAssumeCapacity(multi_cases_payload.items);
return parent_gz.indexToRef(switch_block);
}
// There will necessarily be a store_to_block_ptr for
// all prongs, except for prongs that ended with a noreturn instruction.
// Elide all the `store_to_block_ptr` instructions.
// The break instructions need to have their operands coerced if the
// switch's result location is a `ty`. In this case we overwrite the
// `store_to_block_ptr` instruction with an `as` instruction and repurpose
// it as the break operand.
var extra_index: usize = 0;
extra_index += 2;
extra_index += @boolToInt(multi_cases_len != 0);
if (special_prong != .none) special_prong: {
const body_len_index = extra_index;
const body_len = scalar_cases_payload.items[extra_index];
extra_index += 1;
if (body_len < 2) {
extra_index += body_len;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[0..extra_index]);
break :special_prong;
}
extra_index += body_len - 2;
const store_inst = scalar_cases_payload.items[extra_index];
if (zir_tags[store_inst] != .store_to_block_ptr) {
extra_index += 2;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[0..extra_index]);
break :special_prong;
}
assert(zir_datas[store_inst].bin.lhs == block_scope.rl_ptr);
if (block_scope.rl_ty_inst != .none) {
extra_index += 1;
const break_inst = scalar_cases_payload.items[extra_index];
extra_index += 1;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[0..extra_index]);
zir_tags[store_inst] = .as;
zir_datas[store_inst].bin = .{
.lhs = block_scope.rl_ty_inst,
.rhs = zir_datas[break_inst].@"break".operand,
};
zir_datas[break_inst].@"break".operand = parent_gz.indexToRef(store_inst);
} else {
scalar_cases_payload.items[body_len_index] -= 1;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[0..extra_index]);
extra_index += 1;
astgen.extra.appendAssumeCapacity(scalar_cases_payload.items[extra_index]);
extra_index += 1;
}
} else {
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[0..extra_index]);
}
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
const start_index = extra_index;
extra_index += 1;
const body_len_index = extra_index;
const body_len = scalar_cases_payload.items[extra_index];
extra_index += 1;
if (body_len < 2) {
extra_index += body_len;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[start_index..extra_index]);
continue;
}
extra_index += body_len - 2;
const store_inst = scalar_cases_payload.items[extra_index];
if (zir_tags[store_inst] != .store_to_block_ptr) {
extra_index += 2;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[start_index..extra_index]);
continue;
}
if (block_scope.rl_ty_inst != .none) {
extra_index += 1;
const break_inst = scalar_cases_payload.items[extra_index];
extra_index += 1;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[start_index..extra_index]);
zir_tags[store_inst] = .as;
zir_datas[store_inst].bin = .{
.lhs = block_scope.rl_ty_inst,
.rhs = zir_datas[break_inst].@"break".operand,
};
zir_datas[break_inst].@"break".operand = parent_gz.indexToRef(store_inst);
} else {
assert(zir_datas[store_inst].bin.lhs == block_scope.rl_ptr);
scalar_cases_payload.items[body_len_index] -= 1;
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items[start_index..extra_index]);
extra_index += 1;
astgen.extra.appendAssumeCapacity(scalar_cases_payload.items[extra_index]);
extra_index += 1;
}
}
extra_index = 0;
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const start_index = extra_index;
const items_len = multi_cases_payload.items[extra_index];
extra_index += 1;
const ranges_len = multi_cases_payload.items[extra_index];
extra_index += 1;
const body_len_index = extra_index;
const body_len = multi_cases_payload.items[extra_index];
extra_index += 1;
extra_index += items_len;
extra_index += 2 * ranges_len;
if (body_len < 2) {
extra_index += body_len;
astgen.extra.appendSliceAssumeCapacity(multi_cases_payload.items[start_index..extra_index]);
continue;
}
extra_index += body_len - 2;
const store_inst = multi_cases_payload.items[extra_index];
if (zir_tags[store_inst] != .store_to_block_ptr) {
extra_index += 2;
astgen.extra.appendSliceAssumeCapacity(multi_cases_payload.items[start_index..extra_index]);
continue;
}
if (block_scope.rl_ty_inst != .none) {
extra_index += 1;
const break_inst = multi_cases_payload.items[extra_index];
extra_index += 1;
astgen.extra.appendSliceAssumeCapacity(multi_cases_payload.items[start_index..extra_index]);
zir_tags[store_inst] = .as;
zir_datas[store_inst].bin = .{
.lhs = block_scope.rl_ty_inst,
.rhs = zir_datas[break_inst].@"break".operand,
};
zir_datas[break_inst].@"break".operand = parent_gz.indexToRef(store_inst);
} else {
assert(zir_datas[store_inst].bin.lhs == block_scope.rl_ptr);
multi_cases_payload.items[body_len_index] -= 1;
astgen.extra.appendSliceAssumeCapacity(multi_cases_payload.items[start_index..extra_index]);
extra_index += 1;
astgen.extra.appendAssumeCapacity(multi_cases_payload.items[extra_index]);
extra_index += 1;
}
}
const block_ref = parent_gz.indexToRef(switch_block);
switch (rl) {
.ref => return block_ref,
else => return rvalue(parent_gz, scope, rl, block_ref, switch_node),
}
},
.break_void => {
assert(!strat.elide_store_to_block_ptr_instructions);
astgen.extra.appendSliceAssumeCapacity(scalar_cases_payload.items);
astgen.extra.appendSliceAssumeCapacity(multi_cases_payload.items);
// Modify all the terminating instruction tags to become `break` variants.
var extra_index: usize = payload_index;
extra_index += 2;
extra_index += @boolToInt(multi_cases_len != 0);
if (special_prong != .none) {
const body_len = astgen.extra.items[extra_index];
extra_index += 1;
const body = astgen.extra.items[extra_index..][0..body_len];
extra_index += body_len;
const last = body[body.len - 1];
if (zir_tags[last] == .@"break" and
zir_datas[last].@"break".block_inst == switch_block)
{
zir_datas[last].@"break".operand = .void_value;
}
}
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
extra_index += 1;
const body_len = astgen.extra.items[extra_index];
extra_index += 1;
const body = astgen.extra.items[extra_index..][0..body_len];
extra_index += body_len;
const last = body[body.len - 1];
if (zir_tags[last] == .@"break" and
zir_datas[last].@"break".block_inst == switch_block)
{
zir_datas[last].@"break".operand = .void_value;
}
}
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = astgen.extra.items[extra_index];
extra_index += 1;
const ranges_len = astgen.extra.items[extra_index];
extra_index += 1;
const body_len = astgen.extra.items[extra_index];
extra_index += 1;
extra_index += items_len;
extra_index += 2 * ranges_len;
const body = astgen.extra.items[extra_index..][0..body_len];
extra_index += body_len;
const last = body[body.len - 1];
if (zir_tags[last] == .@"break" and
zir_datas[last].@"break".block_inst == switch_block)
{
zir_datas[last].@"break".operand = .void_value;
}
}
return parent_gz.indexToRef(switch_block);
},
}
}
fn ret(gz: *GenZir, scope: *Scope, node: ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const operand_node = node_datas[node].lhs;
const operand: Zir.Inst.Ref = if (operand_node != 0) operand: {
const rl: ResultLoc = if (nodeMayNeedMemoryLocation(tree, operand_node)) .{
.ptr = try gz.addNode(.ret_ptr, node),
} else .{
.ty = try gz.addNode(.ret_type, node),
};
break :operand try expr(gz, scope, rl, operand_node);
} else .void_value;
_ = try gz.addUnNode(.ret_node, operand, node);
return Zir.Inst.Ref.unreachable_value;
}
fn identifier(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
ident: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const ident_token = main_tokens[ident];
const ident_name = try astgen.identifierTokenString(ident_token);
if (mem.eql(u8, ident_name, "_")) {
return astgen.failNode(ident, "TODO implement '_' identifier", .{});
}
if (simple_types.get(ident_name)) |zir_const_ref| {
return rvalue(gz, scope, rl, zir_const_ref, ident);
}
if (ident_name.len >= 2) integer: {
const first_c = ident_name[0];
if (first_c == 'i' or first_c == 'u') {
const signedness: std.builtin.Signedness = switch (first_c == 'i') {
true => .signed,
false => .unsigned,
};
const bit_count = std.fmt.parseInt(u16, ident_name[1..], 10) catch |err| switch (err) {
error.Overflow => return astgen.failNode(
ident,
"primitive integer type '{s}' exceeds maximum bit width of 65535",
.{ident_name},
),
error.InvalidCharacter => break :integer,
};
const result = try gz.add(.{
.tag = .int_type,
.data = .{ .int_type = .{
.src_node = gz.nodeIndexToRelative(ident),
.signedness = signedness,
.bit_count = bit_count,
} },
});
return rvalue(gz, scope, rl, result, ident);
}
}
// Local variables, including function parameters.
{
var s = scope;
while (true) switch (s.tag) {
.local_val => {
const local_val = s.cast(Scope.LocalVal).?;
if (mem.eql(u8, local_val.name, ident_name)) {
return rvalue(gz, scope, rl, local_val.inst, ident);
}
s = local_val.parent;
},
.local_ptr => {
const local_ptr = s.cast(Scope.LocalPtr).?;
if (mem.eql(u8, local_ptr.name, ident_name)) {
switch (rl) {
.ref, .none_or_ref => return local_ptr.ptr,
else => {
const loaded = try gz.addUnNode(.load, local_ptr.ptr, ident);
return rvalue(gz, scope, rl, loaded, ident);
},
}
}
s = local_ptr.parent;
},
.gen_zir => s = s.cast(GenZir).?.parent,
else => break,
};
}
// We can't look up Decls until Sema because the same ZIR code is supposed to be
// used for multiple generic instantiations, and this may refer to a different Decl
// depending on the scope, determined by the generic instantiation.
const str_index = try gz.identAsString(ident_token);
switch (rl) {
.ref, .none_or_ref => return gz.addStrTok(.decl_ref, str_index, ident_token),
else => {
const result = try gz.addStrTok(.decl_val, str_index, ident_token);
return rvalue(gz, scope, rl, result, ident);
},
}
}
fn stringLiteral(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const tree = gz.astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const str_lit_token = main_tokens[node];
const str = try gz.strLitAsString(str_lit_token);
const result = try gz.add(.{
.tag = .str,
.data = .{ .str = .{
.start = str.index,
.len = str.len,
} },
});
return rvalue(gz, scope, rl, result, node);
}
fn multilineStringLiteral(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const start = node_datas[node].lhs;
const end = node_datas[node].rhs;
const gpa = gz.astgen.gpa;
const string_bytes = &gz.astgen.string_bytes;
const str_index = string_bytes.items.len;
// First line: do not append a newline.
var tok_i = start;
{
const slice = tree.tokenSlice(tok_i);
const line_bytes = slice[2 .. slice.len - 1];
try string_bytes.appendSlice(gpa, line_bytes);
tok_i += 1;
}
// Following lines: each line prepends a newline.
while (tok_i <= end) : (tok_i += 1) {
const slice = tree.tokenSlice(tok_i);
const line_bytes = slice[2 .. slice.len - 1];
try string_bytes.ensureCapacity(gpa, string_bytes.items.len + line_bytes.len + 1);
string_bytes.appendAssumeCapacity('\n');
string_bytes.appendSliceAssumeCapacity(line_bytes);
}
const result = try gz.add(.{
.tag = .str,
.data = .{ .str = .{
.start = @intCast(u32, str_index),
.len = @intCast(u32, string_bytes.items.len - str_index),
} },
});
return rvalue(gz, scope, rl, result, node);
}
fn charLiteral(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: ast.Node.Index) !Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const main_token = main_tokens[node];
const slice = tree.tokenSlice(main_token);
var bad_index: usize = undefined;
const value = std.zig.parseCharLiteral(slice, &bad_index) catch |err| switch (err) {
error.InvalidCharacter => {
const bad_byte = slice[bad_index];
const token_starts = tree.tokens.items(.start);
return astgen.failOff(
main_token,
@intCast(u32, bad_index),
"invalid character: '{c}'\n",
.{bad_byte},
);
},
};
const result = try gz.addInt(value);
return rvalue(gz, scope, rl, result, node);
}
fn integerLiteral(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const int_token = main_tokens[node];
const prefixed_bytes = tree.tokenSlice(int_token);
if (std.fmt.parseInt(u64, prefixed_bytes, 0)) |small_int| {
const result: Zir.Inst.Ref = switch (small_int) {
0 => .zero,
1 => .one,
else => try gz.addInt(small_int),
};
return rvalue(gz, scope, rl, result, node);
} else |err| {
return gz.astgen.failNode(node, "TODO implement int literals that don't fit in a u64", .{});
}
}
fn floatLiteral(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const arena = astgen.arena;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const main_token = main_tokens[node];
const bytes = tree.tokenSlice(main_token);
if (bytes.len > 2 and bytes[1] == 'x') {
assert(bytes[0] == '0'); // validated by tokenizer
return astgen.failTok(main_token, "TODO implement hex floats", .{});
}
const float_number = std.fmt.parseFloat(f128, bytes) catch |e| switch (e) {
error.InvalidCharacter => unreachable, // validated by tokenizer
};
// If the value fits into a f32 without losing any precision, store it that way.
@setFloatMode(.Strict);
const smaller_float = @floatCast(f32, float_number);
const bigger_again: f128 = smaller_float;
if (bigger_again == float_number) {
const result = try gz.addFloat(smaller_float, node);
return rvalue(gz, scope, rl, result, node);
}
// We need to use 128 bits. Break the float into 4 u32 values so we can
// put it into the `extra` array.
const int_bits = @bitCast(u128, float_number);
const result = try gz.addPlNode(.float128, node, Zir.Inst.Float128{
.piece0 = @truncate(u32, int_bits),
.piece1 = @truncate(u32, int_bits >> 32),
.piece2 = @truncate(u32, int_bits >> 64),
.piece3 = @truncate(u32, int_bits >> 96),
});
return rvalue(gz, scope, rl, result, node);
}
fn asmExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
full: ast.full.Asm,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const arena = astgen.arena;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_datas = tree.nodes.items(.data);
const asm_source = try expr(gz, scope, .{ .ty = .const_slice_u8_type }, full.ast.template);
if (full.outputs.len != 0) {
// when implementing this be sure to add test coverage for the asm return type
// not resolving into a type (the node_offset_asm_ret_ty field of LazySrcLoc)
return astgen.failTok(full.ast.asm_token, "TODO implement asm with an output", .{});
}
const constraints = try arena.alloc(u32, full.inputs.len);
const args = try arena.alloc(Zir.Inst.Ref, full.inputs.len);
for (full.inputs) |input, i| {
const constraint_token = main_tokens[input] + 2;
const string_bytes = &astgen.string_bytes;
constraints[i] = @intCast(u32, string_bytes.items.len);
const token_bytes = tree.tokenSlice(constraint_token);
try astgen.parseStrLit(constraint_token, string_bytes, token_bytes, 0);
try string_bytes.append(astgen.gpa, 0);
args[i] = try expr(gz, scope, .{ .ty = .usize_type }, node_datas[input].lhs);
}
const tag: Zir.Inst.Tag = if (full.volatile_token != null) .asm_volatile else .@"asm";
const result = try gz.addPlNode(tag, node, Zir.Inst.Asm{
.asm_source = asm_source,
.return_type = .void_type,
.output = .none,
.args_len = @intCast(u32, full.inputs.len),
.clobbers_len = 0, // TODO implement asm clobbers
});
try astgen.extra.ensureCapacity(astgen.gpa, astgen.extra.items.len +
args.len + constraints.len);
astgen.appendRefsAssumeCapacity(args);
astgen.extra.appendSliceAssumeCapacity(constraints);
return rvalue(gz, scope, rl, result, node);
}
fn as(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
lhs: ast.Node.Index,
rhs: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const dest_type = try typeExpr(gz, scope, lhs);
switch (rl) {
.none, .none_or_ref, .discard, .ref, .ty => {
const result = try expr(gz, scope, .{ .ty = dest_type }, rhs);
return rvalue(gz, scope, rl, result, node);
},
.ptr => |result_ptr| {
return asRlPtr(gz, scope, rl, result_ptr, rhs, dest_type);
},
.block_ptr => |block_scope| {
return asRlPtr(gz, scope, rl, block_scope.rl_ptr, rhs, dest_type);
},
.inferred_ptr => |result_alloc| {
// TODO here we should be able to resolve the inference; we now have a type for the result.
return gz.astgen.failNode(node, "TODO implement @as with inferred-type result location pointer", .{});
},
}
}
fn asRlPtr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
result_ptr: Zir.Inst.Ref,
operand_node: ast.Node.Index,
dest_type: Zir.Inst.Ref,
) InnerError!Zir.Inst.Ref {
// Detect whether this expr() call goes into rvalue() to store the result into the
// result location. If it does, elide the coerce_result_ptr instruction
// as well as the store instruction, instead passing the result as an rvalue.
const astgen = parent_gz.astgen;
var as_scope: GenZir = .{
.parent = scope,
.decl_node_index = parent_gz.decl_node_index,
.astgen = astgen,
.force_comptime = parent_gz.force_comptime,
.instructions = .{},
};
defer as_scope.instructions.deinit(astgen.gpa);
as_scope.rl_ptr = try as_scope.addBin(.coerce_result_ptr, dest_type, result_ptr);
const result = try expr(&as_scope, &as_scope.base, .{ .block_ptr = &as_scope }, operand_node);
const parent_zir = &parent_gz.instructions;
if (as_scope.rvalue_rl_count == 1) {
// Busted! This expression didn't actually need a pointer.
const zir_tags = astgen.instructions.items(.tag);
const zir_datas = astgen.instructions.items(.data);
const expected_len = parent_zir.items.len + as_scope.instructions.items.len - 2;
try parent_zir.ensureCapacity(astgen.gpa, expected_len);
for (as_scope.instructions.items) |src_inst| {
if (parent_gz.indexToRef(src_inst) == as_scope.rl_ptr) continue;
if (zir_tags[src_inst] == .store_to_block_ptr) {
if (zir_datas[src_inst].bin.lhs == as_scope.rl_ptr) continue;
}
parent_zir.appendAssumeCapacity(src_inst);
}
assert(parent_zir.items.len == expected_len);
const casted_result = try parent_gz.addBin(.as, dest_type, result);
return rvalue(parent_gz, scope, rl, casted_result, operand_node);
} else {
try parent_zir.appendSlice(astgen.gpa, as_scope.instructions.items);
return result;
}
}
fn bitCast(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
lhs: ast.Node.Index,
rhs: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const dest_type = try typeExpr(gz, scope, lhs);
switch (rl) {
.none, .discard, .ty => {
const operand = try expr(gz, scope, .none, rhs);
const result = try gz.addPlNode(.bitcast, node, Zir.Inst.Bin{
.lhs = dest_type,
.rhs = operand,
});
return rvalue(gz, scope, rl, result, node);
},
.ref, .none_or_ref => unreachable, // `@bitCast` is not allowed as an r-value.
.ptr => |result_ptr| {
const casted_result_ptr = try gz.addUnNode(.bitcast_result_ptr, result_ptr, node);
return expr(gz, scope, .{ .ptr = casted_result_ptr }, rhs);
},
.block_ptr => |block_ptr| {
return astgen.failNode(node, "TODO implement @bitCast with result location inferred peer types", .{});
},
.inferred_ptr => |result_alloc| {
// TODO here we should be able to resolve the inference; we now have a type for the result.
return astgen.failNode(node, "TODO implement @bitCast with inferred-type result location pointer", .{});
},
}
}
fn typeOf(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
params: []const ast.Node.Index,
) InnerError!Zir.Inst.Ref {
if (params.len < 1) {
return gz.astgen.failNode(node, "expected at least 1 argument, found 0", .{});
}
if (params.len == 1) {
const result = try gz.addUnNode(.typeof, try expr(gz, scope, .none, params[0]), node);
return rvalue(gz, scope, rl, result, node);
}
const arena = gz.astgen.arena;
var items = try arena.alloc(Zir.Inst.Ref, params.len);
for (params) |param, param_i| {
items[param_i] = try expr(gz, scope, .none, param);
}
const result = try gz.addPlNode(.typeof_peer, node, Zir.Inst.MultiOp{
.operands_len = @intCast(u32, params.len),
});
try gz.astgen.appendRefs(items);
return rvalue(gz, scope, rl, result, node);
}
fn builtinCall(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
params: []const ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = &astgen.file.tree;
const main_tokens = tree.nodes.items(.main_token);
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// We handle the different builtins manually because they have different semantics depending
// on the function. For example, `@as` and others participate in result location semantics,
// and `@cImport` creates a special scope that collects a .c source code text buffer.
// Also, some builtins have a variable number of parameters.
const info = BuiltinFn.list.get(builtin_name) orelse {
return astgen.failNode(node, "invalid builtin function: '{s}'", .{
builtin_name,
});
};
if (info.param_count) |expected| {
if (expected != params.len) {
const s = if (expected == 1) "" else "s";
return astgen.failNode(node, "expected {d} parameter{s}, found {d}", .{
expected, s, params.len,
});
}
}
switch (info.tag) {
.ptr_to_int => {
const operand = try expr(gz, scope, .none, params[0]);
const result = try gz.addUnNode(.ptrtoint, operand, node);
return rvalue(gz, scope, rl, result, node);
},
.float_cast => {
const dest_type = try typeExpr(gz, scope, params[0]);
const rhs = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.floatcast, node, Zir.Inst.Bin{
.lhs = dest_type,
.rhs = rhs,
});
return rvalue(gz, scope, rl, result, node);
},
.int_cast => {
const dest_type = try typeExpr(gz, scope, params[0]);
const rhs = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.intcast, node, Zir.Inst.Bin{
.lhs = dest_type,
.rhs = rhs,
});
return rvalue(gz, scope, rl, result, node);
},
.breakpoint => {
_ = try gz.add(.{
.tag = .breakpoint,
.data = .{ .node = gz.nodeIndexToRelative(node) },
});
return rvalue(gz, scope, rl, .void_value, node);
},
.import => {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
const operand_node = params[0];
if (node_tags[operand_node] != .string_literal) {
// Spec reference: https://github.com/ziglang/zig/issues/2206
return astgen.failNode(operand_node, "@import operand must be a string literal", .{});
}
const str_lit_token = main_tokens[operand_node];
const str = try gz.strLitAsString(str_lit_token);
const result = try gz.addStrTok(.import, str.index, str_lit_token);
return rvalue(gz, scope, rl, result, node);
},
.error_to_int => {
const target = try expr(gz, scope, .none, params[0]);
const result = try gz.addUnNode(.error_to_int, target, node);
return rvalue(gz, scope, rl, result, node);
},
.int_to_error => {
const target = try expr(gz, scope, .{ .ty = .u16_type }, params[0]);
const result = try gz.addUnNode(.int_to_error, target, node);
return rvalue(gz, scope, rl, result, node);
},
.compile_error => {
const target = try expr(gz, scope, .none, params[0]);
const result = try gz.addUnNode(.compile_error, target, node);
return rvalue(gz, scope, rl, result, node);
},
.set_eval_branch_quota => {
const quota = try expr(gz, scope, .{ .ty = .u32_type }, params[0]);
const result = try gz.addUnNode(.set_eval_branch_quota, quota, node);
return rvalue(gz, scope, rl, result, node);
},
.compile_log => {
const arg_refs = try astgen.gpa.alloc(Zir.Inst.Ref, params.len);
defer astgen.gpa.free(arg_refs);
for (params) |param, i| arg_refs[i] = try expr(gz, scope, .none, param);
const result = try gz.addPlNode(.compile_log, node, Zir.Inst.MultiOp{
.operands_len = @intCast(u32, params.len),
});
try gz.astgen.appendRefs(arg_refs);
return rvalue(gz, scope, rl, result, node);
},
.field => {
const field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]);
if (rl == .ref) {
return try gz.addPlNode(.field_ptr_named, node, Zir.Inst.FieldNamed{
.lhs = try expr(gz, scope, .ref, params[0]),
.field_name = field_name,
});
}
const result = try gz.addPlNode(.field_val_named, node, Zir.Inst.FieldNamed{
.lhs = try expr(gz, scope, .none, params[0]),
.field_name = field_name,
});
return rvalue(gz, scope, rl, result, node);
},
.as => return as(gz, scope, rl, node, params[0], params[1]),
.bit_cast => return bitCast(gz, scope, rl, node, params[0], params[1]),
.TypeOf => return typeOf(gz, scope, rl, node, params),
.int_to_enum => {
const result = try gz.addPlNode(.int_to_enum, node, Zir.Inst.Bin{
.lhs = try typeExpr(gz, scope, params[0]),
.rhs = try expr(gz, scope, .none, params[1]),
});
return rvalue(gz, scope, rl, result, node);
},
.enum_to_int => {
const operand = try expr(gz, scope, .none, params[0]);
const result = try gz.addUnNode(.enum_to_int, operand, node);
return rvalue(gz, scope, rl, result, node);
},
.@"export" => {
// TODO: @export is supposed to be able to export things other than functions.
// Instead of `comptimeExpr` here we need `decl_ref`.
const fn_to_export = try comptimeExpr(gz, scope, .none, params[0]);
// TODO: the second parameter here is supposed to be
// `std.builtin.ExportOptions`, not a string.
const export_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]);
_ = try gz.addPlNode(.@"export", node, Zir.Inst.Bin{
.lhs = fn_to_export,
.rhs = export_name,
});
return rvalue(gz, scope, rl, .void_value, node);
},
.has_decl => {
const container_type = try typeExpr(gz, scope, params[0]);
const name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]);
const result = try gz.addPlNode(.has_decl, node, Zir.Inst.Bin{
.lhs = container_type,
.rhs = name,
});
return rvalue(gz, scope, rl, result, node);
},
.type_info => {
const operand = try typeExpr(gz, scope, params[0]);
const result = try gz.addUnNode(.type_info, operand, node);
return rvalue(gz, scope, rl, result, node);
},
.size_of => {
const operand = try typeExpr(gz, scope, params[0]);
const result = try gz.addUnNode(.size_of, operand, node);
return rvalue(gz, scope, rl, result, node);
},
.bit_size_of => {
const operand = try typeExpr(gz, scope, params[0]);
const result = try gz.addUnNode(.bit_size_of, operand, node);
return rvalue(gz, scope, rl, result, node);
},
.This => return rvalue(gz, scope, rl, try gz.addNode(.this, node), node),
.fence => return rvalue(gz, scope, rl, try gz.addNode(.fence, node), node),
.return_address => return rvalue(gz, scope, rl, try gz.addNode(.ret_addr, node), node),
.src => return rvalue(gz, scope, rl, try gz.addNode(.builtin_src, node), node),
.add_with_overflow,
.align_cast,
.align_of,
.atomic_load,
.atomic_rmw,
.atomic_store,
.bit_offset_of,
.bool_to_int,
.mul_add,
.byte_swap,
.bit_reverse,
.byte_offset_of,
.call,
.c_define,
.c_import,
.c_include,
.clz,
.cmpxchg_strong,
.cmpxchg_weak,
.ctz,
.c_undef,
.div_exact,
.div_floor,
.div_trunc,
.embed_file,
.error_name,
.error_return_trace,
.err_set_cast,
.field_parent_ptr,
.float_to_int,
.has_field,
.int_to_float,
.int_to_ptr,
.memcpy,
.memset,
.wasm_memory_size,
.wasm_memory_grow,
.mod,
.mul_with_overflow,
.panic,
.pop_count,
.ptr_cast,
.rem,
.set_align_stack,
.set_cold,
.set_float_mode,
.set_runtime_safety,
.shl_exact,
.shl_with_overflow,
.shr_exact,
.shuffle,
.splat,
.reduce,
.sqrt,
.sin,
.cos,
.exp,
.exp2,
.log,
.log2,
.log10,
.fabs,
.floor,
.ceil,
.trunc,
.round,
.sub_with_overflow,
.tag_name,
.truncate,
.Type,
.type_name,
.union_init,
.async_call,
.frame,
.Frame,
.frame_address,
.frame_size,
=> return astgen.failNode(node, "TODO: implement builtin function {s}", .{
builtin_name,
}),
}
}
fn callExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
call: ast.full.Call,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
if (call.async_token) |async_token| {
return astgen.failTok(async_token, "async and related features are not yet supported", .{});
}
const lhs = try expr(gz, scope, .none, call.ast.fn_expr);
const args = try astgen.gpa.alloc(Zir.Inst.Ref, call.ast.params.len);
defer astgen.gpa.free(args);
for (call.ast.params) |param_node, i| {
const param_type = try gz.add(.{
.tag = .param_type,
.data = .{ .param_type = .{
.callee = lhs,
.param_index = @intCast(u32, i),
} },
});
args[i] = try expr(gz, scope, .{ .ty = param_type }, param_node);
}
const modifier: std.builtin.CallOptions.Modifier = switch (call.async_token != null) {
true => .async_kw,
false => .auto,
};
const result: Zir.Inst.Ref = res: {
const tag: Zir.Inst.Tag = switch (modifier) {
.auto => switch (args.len == 0) {
true => break :res try gz.addUnNode(.call_none, lhs, node),
false => .call,
},
.async_kw => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.never_tail => unreachable,
.never_inline => unreachable,
.no_async => return astgen.failNode(node, "async and related features are not yet supported", .{}),
.always_tail => unreachable,
.always_inline => unreachable,
.compile_time => .call_compile_time,
};
break :res try gz.addCall(tag, lhs, args, node);
};
return rvalue(gz, scope, rl, result, node); // TODO function call with result location
}
pub const simple_types = std.ComptimeStringMap(Zir.Inst.Ref, .{
.{ "u8", .u8_type },
.{ "i8", .i8_type },
.{ "u16", .u16_type },
.{ "i16", .i16_type },
.{ "u32", .u32_type },
.{ "i32", .i32_type },
.{ "u64", .u64_type },
.{ "i64", .i64_type },
.{ "usize", .usize_type },
.{ "isize", .isize_type },
.{ "c_short", .c_short_type },
.{ "c_ushort", .c_ushort_type },
.{ "c_int", .c_int_type },
.{ "c_uint", .c_uint_type },
.{ "c_long", .c_long_type },
.{ "c_ulong", .c_ulong_type },
.{ "c_longlong", .c_longlong_type },
.{ "c_ulonglong", .c_ulonglong_type },
.{ "c_longdouble", .c_longdouble_type },
.{ "f16", .f16_type },
.{ "f32", .f32_type },
.{ "f64", .f64_type },
.{ "f128", .f128_type },
.{ "c_void", .c_void_type },
.{ "bool", .bool_type },
.{ "void", .void_type },
.{ "type", .type_type },
.{ "anyerror", .anyerror_type },
.{ "comptime_int", .comptime_int_type },
.{ "comptime_float", .comptime_float_type },
.{ "noreturn", .noreturn_type },
.{ "null", .null_type },
.{ "undefined", .undefined_type },
.{ "undefined", .undef },
.{ "null", .null_value },
.{ "true", .bool_true },
.{ "false", .bool_false },
});
fn nodeMayNeedMemoryLocation(tree: *const ast.Tree, start_node: ast.Node.Index) bool {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
var node = start_node;
while (true) {
switch (node_tags[node]) {
.root,
.@"usingnamespace",
.test_decl,
.switch_case,
.switch_case_one,
.container_field_init,
.container_field_align,
.container_field,
.asm_output,
.asm_input,
=> unreachable,
.@"return",
.@"break",
.@"continue",
.bit_not,
.bool_not,
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
.@"defer",
.@"errdefer",
.address_of,
.optional_type,
.negation,
.negation_wrap,
.@"resume",
.array_type,
.array_type_sentinel,
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.@"suspend",
.@"anytype",
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
.fn_decl,
.anyframe_type,
.anyframe_literal,
.integer_literal,
.float_literal,
.enum_literal,
.string_literal,
.multiline_string_literal,
.char_literal,
.true_literal,
.false_literal,
.null_literal,
.undefined_literal,
.unreachable_literal,
.identifier,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.@"asm",
.asm_simple,
.add,
.add_wrap,
.array_cat,
.array_mult,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_bit_shift_left,
.assign_bit_shift_right,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_mul,
.assign_mul_wrap,
.bang_equal,
.bit_and,
.bit_or,
.bit_shift_left,
.bit_shift_right,
.bit_xor,
.bool_and,
.bool_or,
.div,
.equal_equal,
.error_union,
.greater_or_equal,
.greater_than,
.less_or_equal,
.less_than,
.merge_error_sets,
.mod,
.mul,
.mul_wrap,
.switch_range,
.field_access,
.sub,
.sub_wrap,
.slice,
.slice_open,
.slice_sentinel,
.deref,
.array_access,
.error_value,
.while_simple, // This variant cannot have an else expression.
.while_cont, // This variant cannot have an else expression.
.for_simple, // This variant cannot have an else expression.
.if_simple, // This variant cannot have an else expression.
=> return false,
// Forward the question to the LHS sub-expression.
.grouped_expression,
.@"try",
.@"await",
.@"comptime",
.@"nosuspend",
.unwrap_optional,
=> node = node_datas[node].lhs,
// Forward the question to the RHS sub-expression.
.@"catch",
.@"orelse",
=> node = node_datas[node].rhs,
// True because these are exactly the expressions we need memory locations for.
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
.struct_init_one,
.struct_init_one_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init,
.struct_init_comma,
=> return true,
// True because depending on comptime conditions, sub-expressions
// may be the kind that need memory locations.
.@"while", // This variant always has an else expression.
.@"if", // This variant always has an else expression.
.@"for", // This variant always has an else expression.
.@"switch",
.switch_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.call,
.call_comma,
.async_call,
.async_call_comma,
=> return true,
.block_two,
.block_two_semicolon,
.block,
.block_semicolon,
=> {
const lbrace = main_tokens[node];
if (token_tags[lbrace - 1] == .colon) {
// Labeled blocks may need a memory location to forward
// to their break statements.
return true;
} else {
return false;
}
},
.builtin_call,
.builtin_call_comma,
.builtin_call_two,
.builtin_call_two_comma,
=> {
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// If the builtin is an invalid name, we don't cause an error here; instead
// let it pass, and the error will be "invalid builtin function" later.
const builtin_info = BuiltinFn.list.get(builtin_name) orelse return false;
return builtin_info.needs_mem_loc;
},
}
}
}
/// Applies `rl` semantics to `inst`. Expressions which do not do their own handling of
/// result locations must call this function on their result.
/// As an example, if the `ResultLoc` is `ptr`, it will write the result to the pointer.
/// If the `ResultLoc` is `ty`, it will coerce the result to the type.
fn rvalue(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
result: Zir.Inst.Ref,
src_node: ast.Node.Index,
) InnerError!Zir.Inst.Ref {
switch (rl) {
.none, .none_or_ref => return result,
.discard => {
// Emit a compile error for discarding error values.
_ = try gz.addUnNode(.ensure_result_non_error, result, src_node);
return result;
},
.ref => {
// We need a pointer but we have a value.
const tree = &gz.astgen.file.tree;
const src_token = tree.firstToken(src_node);
return gz.addUnTok(.ref, result, src_token);
},
.ty => |ty_inst| {
// Quickly eliminate some common, unnecessary type coercion.
const as_ty = @as(u64, @enumToInt(Zir.Inst.Ref.type_type)) << 32;
const as_comptime_int = @as(u64, @enumToInt(Zir.Inst.Ref.comptime_int_type)) << 32;
const as_bool = @as(u64, @enumToInt(Zir.Inst.Ref.bool_type)) << 32;
const as_usize = @as(u64, @enumToInt(Zir.Inst.Ref.usize_type)) << 32;
const as_void = @as(u64, @enumToInt(Zir.Inst.Ref.void_type)) << 32;
switch ((@as(u64, @enumToInt(ty_inst)) << 32) | @as(u64, @enumToInt(result))) {
as_ty | @enumToInt(Zir.Inst.Ref.u8_type),
as_ty | @enumToInt(Zir.Inst.Ref.i8_type),
as_ty | @enumToInt(Zir.Inst.Ref.u16_type),
as_ty | @enumToInt(Zir.Inst.Ref.i16_type),
as_ty | @enumToInt(Zir.Inst.Ref.u32_type),
as_ty | @enumToInt(Zir.Inst.Ref.i32_type),
as_ty | @enumToInt(Zir.Inst.Ref.u64_type),
as_ty | @enumToInt(Zir.Inst.Ref.i64_type),
as_ty | @enumToInt(Zir.Inst.Ref.usize_type),
as_ty | @enumToInt(Zir.Inst.Ref.isize_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_short_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_ushort_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_int_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_uint_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_long_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_ulong_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_longlong_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_ulonglong_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_longdouble_type),
as_ty | @enumToInt(Zir.Inst.Ref.f16_type),
as_ty | @enumToInt(Zir.Inst.Ref.f32_type),
as_ty | @enumToInt(Zir.Inst.Ref.f64_type),
as_ty | @enumToInt(Zir.Inst.Ref.f128_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_void_type),
as_ty | @enumToInt(Zir.Inst.Ref.bool_type),
as_ty | @enumToInt(Zir.Inst.Ref.void_type),
as_ty | @enumToInt(Zir.Inst.Ref.type_type),
as_ty | @enumToInt(Zir.Inst.Ref.anyerror_type),
as_ty | @enumToInt(Zir.Inst.Ref.comptime_int_type),
as_ty | @enumToInt(Zir.Inst.Ref.comptime_float_type),
as_ty | @enumToInt(Zir.Inst.Ref.noreturn_type),
as_ty | @enumToInt(Zir.Inst.Ref.null_type),
as_ty | @enumToInt(Zir.Inst.Ref.undefined_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_noreturn_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_void_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_naked_noreturn_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_ccc_void_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.single_const_pointer_to_comptime_int_type),
as_ty | @enumToInt(Zir.Inst.Ref.const_slice_u8_type),
as_ty | @enumToInt(Zir.Inst.Ref.enum_literal_type),
as_comptime_int | @enumToInt(Zir.Inst.Ref.zero),
as_comptime_int | @enumToInt(Zir.Inst.Ref.one),
as_bool | @enumToInt(Zir.Inst.Ref.bool_true),
as_bool | @enumToInt(Zir.Inst.Ref.bool_false),
as_usize | @enumToInt(Zir.Inst.Ref.zero_usize),
as_usize | @enumToInt(Zir.Inst.Ref.one_usize),
as_void | @enumToInt(Zir.Inst.Ref.void_value),
=> return result, // type of result is already correct
// Need an explicit type coercion instruction.
else => return gz.addPlNode(.as_node, src_node, Zir.Inst.As{
.dest_type = ty_inst,
.operand = result,
}),
}
},
.ptr => |ptr_inst| {
_ = try gz.addPlNode(.store_node, src_node, Zir.Inst.Bin{
.lhs = ptr_inst,
.rhs = result,
});
return result;
},
.inferred_ptr => |alloc| {
_ = try gz.addBin(.store_to_inferred_ptr, alloc, result);
return result;
},
.block_ptr => |block_scope| {
block_scope.rvalue_rl_count += 1;
_ = try gz.addBin(.store_to_block_ptr, block_scope.rl_ptr, result);
return result;
},
}
}
/// Given an identifier token, obtain the string for it.
/// If the token uses @"" syntax, parses as a string, reports errors if applicable,
/// and allocates the result within `scope.arena()`.
/// Otherwise, returns a reference to the source code bytes directly.
/// See also `appendIdentStr` and `parseStrLit`.
pub fn identifierTokenString(astgen: *AstGen, token: ast.TokenIndex) InnerError![]const u8 {
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
assert(token_tags[token] == .identifier);
const ident_name = tree.tokenSlice(token);
if (!mem.startsWith(u8, ident_name, "@")) {
return ident_name;
}
var buf: ArrayListUnmanaged(u8) = .{};
defer buf.deinit(astgen.gpa);
try astgen.parseStrLit(token, &buf, ident_name, 1);
const duped = try astgen.arena.dupe(u8, buf.items);
return duped;
}
/// Given an identifier token, obtain the string for it (possibly parsing as a string
/// literal if it is @"" syntax), and append the string to `buf`.
/// See also `identifierTokenString` and `parseStrLit`.
pub fn appendIdentStr(
astgen: *AstGen,
token: ast.TokenIndex,
buf: *ArrayListUnmanaged(u8),
) InnerError!void {
const tree = &astgen.file.tree;
const token_tags = tree.tokens.items(.tag);
assert(token_tags[token] == .identifier);
const ident_name = tree.tokenSlice(token);
if (!mem.startsWith(u8, ident_name, "@")) {
return buf.appendSlice(astgen.gpa, ident_name);
} else {
return astgen.parseStrLit(token, buf, ident_name, 1);
}
}
/// Appends the result to `buf`.
pub fn parseStrLit(
astgen: *AstGen,
token: ast.TokenIndex,
buf: *ArrayListUnmanaged(u8),
bytes: []const u8,
offset: u32,
) InnerError!void {
const tree = &astgen.file.tree;
const raw_string = bytes[offset..];
var buf_managed = buf.toManaged(astgen.gpa);
const result = std.zig.string_literal.parseAppend(&buf_managed, raw_string);
buf.* = buf_managed.toUnmanaged();
switch (try result) {
.success => return,
.invalid_character => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"invalid string literal character: '{c}'",
.{raw_string[bad_index]},
);
},
.expected_hex_digits => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected hex digits after '\\x'",
.{},
);
},
.invalid_hex_escape => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"invalid hex digit: '{c}'",
.{raw_string[bad_index]},
);
},
.invalid_unicode_escape => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"invalid unicode digit: '{c}'",
.{raw_string[bad_index]},
);
},
.missing_matching_rbrace => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"missing matching '}}' character",
.{},
);
},
.expected_unicode_digits => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected unicode digits after '\\u'",
.{},
);
},
}
}
pub fn failNode(
astgen: *AstGen,
node: ast.Node.Index,
comptime format: []const u8,
args: anytype,
) InnerError {
return astgen.failNodeNotes(node, format, args, &[0]u32{});
}
pub fn failNodeNotes(
astgen: *AstGen,
node: ast.Node.Index,
comptime format: []const u8,
args: anytype,
notes: []const u32,
) InnerError {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
{
var managed = string_bytes.toManaged(astgen.gpa);
defer string_bytes.* = managed.toUnmanaged();
try managed.writer().print(format ++ "\x00", args);
}
const notes_index: u32 = if (notes.len != 0) blk: {
const notes_start = astgen.extra.items.len;
try astgen.extra.ensureCapacity(astgen.gpa, notes_start + 1 + notes.len);
astgen.extra.appendAssumeCapacity(@intCast(u32, notes.len));
astgen.extra.appendSliceAssumeCapacity(notes);
break :blk @intCast(u32, notes_start);
} else 0;
try astgen.compile_errors.append(astgen.gpa, .{
.msg = msg,
.node = node,
.token = 0,
.byte_offset = 0,
.notes = notes_index,
});
return error.AnalysisFail;
}
pub fn failTok(
astgen: *AstGen,
token: ast.TokenIndex,
comptime format: []const u8,
args: anytype,
) InnerError {
return astgen.failTokNotes(token, format, args, &[0]u32{});
}
pub fn failTokNotes(
astgen: *AstGen,
token: ast.TokenIndex,
comptime format: []const u8,
args: anytype,
notes: []const u32,
) InnerError {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
{
var managed = string_bytes.toManaged(astgen.gpa);
defer string_bytes.* = managed.toUnmanaged();
try managed.writer().print(format ++ "\x00", args);
}
const notes_index: u32 = if (notes.len != 0) blk: {
const notes_start = astgen.extra.items.len;
try astgen.extra.ensureCapacity(astgen.gpa, notes_start + 1 + notes.len);
astgen.extra.appendAssumeCapacity(@intCast(u32, notes.len));
astgen.extra.appendSliceAssumeCapacity(notes);
break :blk @intCast(u32, notes_start);
} else 0;
try astgen.compile_errors.append(astgen.gpa, .{
.msg = msg,
.node = 0,
.token = token,
.byte_offset = 0,
.notes = notes_index,
});
return error.AnalysisFail;
}
/// Same as `fail`, except given an absolute byte offset, and the function sets up the `LazySrcLoc`
/// for pointing at it relatively by subtracting from the containing `Decl`.
pub fn failOff(
astgen: *AstGen,
token: ast.TokenIndex,
byte_offset: u32,
comptime format: []const u8,
args: anytype,
) InnerError {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
{
var managed = string_bytes.toManaged(astgen.gpa);
defer string_bytes.* = managed.toUnmanaged();
try managed.writer().print(format ++ "\x00", args);
}
try astgen.compile_errors.append(astgen.gpa, .{
.msg = msg,
.node = 0,
.token = token,
.byte_offset = byte_offset,
.notes = 0,
});
return error.AnalysisFail;
}
pub fn errNoteTok(
astgen: *AstGen,
token: ast.TokenIndex,
comptime format: []const u8,
args: anytype,
) Allocator.Error!u32 {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
{
var managed = string_bytes.toManaged(astgen.gpa);
defer string_bytes.* = managed.toUnmanaged();
try managed.writer().print(format ++ "\x00", args);
}
return astgen.addExtra(Zir.Inst.CompileErrors.Item{
.msg = msg,
.node = 0,
.token = token,
.byte_offset = 0,
.notes = 0,
});
}
pub fn errNoteNode(
astgen: *AstGen,
node: ast.Node.Index,
comptime format: []const u8,
args: anytype,
) Allocator.Error!u32 {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
{
var managed = string_bytes.toManaged(astgen.gpa);
defer string_bytes.* = managed.toUnmanaged();
try managed.writer().print(format ++ "\x00", args);
}
return astgen.addExtra(Zir.Inst.CompileErrors.Item{
.msg = msg,
.node = node,
.token = 0,
.byte_offset = 0,
.notes = 0,
});
}