zig/lib/compiler_rt/extend_f80.zig
Andrew Kelley ec95e00e28 flatten lib/std/special and improve "pkg inside another" logic
stage2: change logic for detecting whether the main package is inside
the std package. Previously it relied on realpath() which is not portable.
This uses resolve() which is how imports already work.

 * stage2: fix cleanup bug when creating Module
 * flatten lib/std/special/* to lib/*
   - this was motivated by making main_pkg_is_inside_std false for
     compiler_rt & friends.
 * rename "mini libc" to "universal libc"
2022-05-06 22:41:00 -07:00

132 lines
5.2 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const is_test = builtin.is_test;
const native_arch = builtin.cpu.arch;
// AArch64 is the only ABI (at the moment) to support f16 arguments without the
// need for extending them to wider fp types.
pub const F16T = if (native_arch.isAARCH64()) f16 else u16;
pub fn __extendhfxf2(a: F16T) callconv(.C) f80 {
return extendF80(f16, @bitCast(u16, a));
}
pub fn __extendsfxf2(a: f32) callconv(.C) f80 {
return extendF80(f32, @bitCast(u32, a));
}
pub fn __extenddfxf2(a: f64) callconv(.C) f80 {
return extendF80(f64, @bitCast(u64, a));
}
inline fn extendF80(comptime src_t: type, a: std.meta.Int(.unsigned, @typeInfo(src_t).Float.bits)) f80 {
@setRuntimeSafety(builtin.is_test);
const src_rep_t = std.meta.Int(.unsigned, @typeInfo(src_t).Float.bits);
const src_sig_bits = std.math.floatMantissaBits(src_t);
const dst_int_bit = 0x8000000000000000;
const dst_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
const dst_exp_bias = 16383;
const src_bits = @bitSizeOf(src_t);
const src_exp_bits = src_bits - src_sig_bits - 1;
const src_inf_exp = (1 << src_exp_bits) - 1;
const src_exp_bias = src_inf_exp >> 1;
const src_min_normal = 1 << src_sig_bits;
const src_inf = src_inf_exp << src_sig_bits;
const src_sign_mask = 1 << (src_sig_bits + src_exp_bits);
const src_abs_mask = src_sign_mask - 1;
const src_qnan = 1 << (src_sig_bits - 1);
const src_nan_code = src_qnan - 1;
var dst: std.math.F80 = undefined;
// Break a into a sign and representation of the absolute value
const a_abs = a & src_abs_mask;
const sign: u16 = if (a & src_sign_mask != 0) 0x8000 else 0;
if (a_abs -% src_min_normal < src_inf - src_min_normal) {
// a is a normal number.
// Extend to the destination type by shifting the significand and
// exponent into the proper position and rebiasing the exponent.
dst.exp = @intCast(u16, a_abs >> src_sig_bits);
dst.exp += dst_exp_bias - src_exp_bias;
dst.fraction = @as(u64, a_abs) << (dst_sig_bits - src_sig_bits);
dst.fraction |= dst_int_bit; // bit 64 is always set for normal numbers
} else if (a_abs >= src_inf) {
// a is NaN or infinity.
// Conjure the result by beginning with infinity, then setting the qNaN
// bit (if needed) and right-aligning the rest of the trailing NaN
// payload field.
dst.exp = 0x7fff;
dst.fraction = dst_int_bit;
dst.fraction |= @as(u64, a_abs & src_qnan) << (dst_sig_bits - src_sig_bits);
dst.fraction |= @as(u64, a_abs & src_nan_code) << (dst_sig_bits - src_sig_bits);
} else if (a_abs != 0) {
// a is denormal.
// renormalize the significand and clear the leading bit, then insert
// the correct adjusted exponent in the destination type.
const scale: u16 = @clz(src_rep_t, a_abs) -
@clz(src_rep_t, @as(src_rep_t, src_min_normal));
dst.fraction = @as(u64, a_abs) << @intCast(u6, dst_sig_bits - src_sig_bits + scale);
dst.fraction |= dst_int_bit; // bit 64 is always set for normal numbers
dst.exp = @truncate(u16, a_abs >> @intCast(u4, src_sig_bits - scale));
dst.exp ^= 1;
dst.exp |= dst_exp_bias - src_exp_bias - scale + 1;
} else {
// a is zero.
dst.exp = 0;
dst.fraction = 0;
}
dst.exp |= sign;
return std.math.make_f80(dst);
}
pub fn __extendxftf2(a: f80) callconv(.C) f128 {
@setRuntimeSafety(builtin.is_test);
const src_int_bit: u64 = 0x8000000000000000;
const src_sig_mask = ~src_int_bit;
const src_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
const dst_sig_bits = std.math.floatMantissaBits(f128);
const dst_bits = @bitSizeOf(f128);
const dst_min_normal = @as(u128, 1) << dst_sig_bits;
// Break a into a sign and representation of the absolute value
var a_rep = std.math.break_f80(a);
const sign = a_rep.exp & 0x8000;
a_rep.exp &= 0x7FFF;
var abs_result: u128 = undefined;
if (a_rep.exp == 0 and a_rep.fraction == 0) {
// zero
abs_result = 0;
} else if (a_rep.exp == 0x7FFF) {
// a is nan or infinite
abs_result = @as(u128, a_rep.fraction) << (dst_sig_bits - src_sig_bits);
abs_result |= @as(u128, a_rep.exp) << dst_sig_bits;
} else if (a_rep.fraction & src_int_bit != 0) {
// a is a normal value
abs_result = @as(u128, a_rep.fraction & src_sig_mask) << (dst_sig_bits - src_sig_bits);
abs_result |= @as(u128, a_rep.exp) << dst_sig_bits;
} else {
// a is denormal
// renormalize the significand and clear the leading bit and integer part,
// then insert the correct adjusted exponent in the destination type.
const scale: u32 = @clz(u64, a_rep.fraction);
abs_result = @as(u128, a_rep.fraction) << @intCast(u7, dst_sig_bits - src_sig_bits + scale + 1);
abs_result ^= dst_min_normal;
abs_result |= @as(u128, scale + 1) << dst_sig_bits;
}
// Apply the signbit to (dst_t)abs(a).
const result: u128 align(@alignOf(f128)) = abs_result | @as(u128, sign) << (dst_bits - 16);
return @bitCast(f128, result);
}