mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 22:33:08 +00:00
316 lines
12 KiB
Zig
316 lines
12 KiB
Zig
const std = @import("../std.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const expect = std.testing.expect;
|
|
const expectEqual = std.testing.expectEqual;
|
|
|
|
pub fn FloatRepr(comptime Float: type) type {
|
|
const fractional_bits = floatFractionalBits(Float);
|
|
const exponent_bits = floatExponentBits(Float);
|
|
return packed struct {
|
|
const Repr = @This();
|
|
|
|
mantissa: StoredMantissa,
|
|
exponent: BiasedExponent,
|
|
sign: std.math.Sign,
|
|
|
|
pub const StoredMantissa = @Type(.{ .int = .{
|
|
.signedness = .unsigned,
|
|
.bits = floatMantissaBits(Float),
|
|
} });
|
|
pub const Mantissa = @Type(.{ .int = .{
|
|
.signedness = .unsigned,
|
|
.bits = 1 + fractional_bits,
|
|
} });
|
|
pub const Exponent = @Type(.{ .int = .{
|
|
.signedness = .signed,
|
|
.bits = exponent_bits,
|
|
} });
|
|
pub const BiasedExponent = enum(@Type(.{ .int = .{
|
|
.signedness = .unsigned,
|
|
.bits = exponent_bits,
|
|
} })) {
|
|
denormal = 0,
|
|
min_normal = 1,
|
|
zero = (1 << (exponent_bits - 1)) - 1,
|
|
max_normal = (1 << exponent_bits) - 2,
|
|
infinite = (1 << exponent_bits) - 1,
|
|
_,
|
|
|
|
pub const Int = @typeInfo(BiasedExponent).@"enum".tag_type;
|
|
|
|
pub fn unbias(biased: BiasedExponent) Exponent {
|
|
switch (biased) {
|
|
.denormal => unreachable,
|
|
else => return @bitCast(@intFromEnum(biased) -% @intFromEnum(BiasedExponent.zero)),
|
|
.infinite => unreachable,
|
|
}
|
|
}
|
|
|
|
pub fn bias(unbiased: Exponent) BiasedExponent {
|
|
return @enumFromInt(@intFromEnum(BiasedExponent.zero) +% @as(Int, @bitCast(unbiased)));
|
|
}
|
|
};
|
|
|
|
pub const Normalized = struct {
|
|
fraction: Fraction,
|
|
exponent: Normalized.Exponent,
|
|
|
|
pub const Fraction = @Type(.{ .int = .{
|
|
.signedness = .unsigned,
|
|
.bits = fractional_bits,
|
|
} });
|
|
pub const Exponent = @Type(.{ .int = .{
|
|
.signedness = .signed,
|
|
.bits = 1 + exponent_bits,
|
|
} });
|
|
|
|
/// This currently truncates denormal values, which needs to be fixed before this can be used to
|
|
/// produce a rounded value.
|
|
pub fn reconstruct(normalized: Normalized, sign: std.math.Sign) Float {
|
|
if (normalized.exponent > BiasedExponent.max_normal.unbias()) return @bitCast(Repr{
|
|
.mantissa = 0,
|
|
.exponent = .infinite,
|
|
.sign = sign,
|
|
});
|
|
const mantissa = @as(Mantissa, 1 << fractional_bits) | normalized.fraction;
|
|
if (normalized.exponent < BiasedExponent.min_normal.unbias()) return @bitCast(Repr{
|
|
.mantissa = @truncate(std.math.shr(
|
|
Mantissa,
|
|
mantissa,
|
|
BiasedExponent.min_normal.unbias() - normalized.exponent,
|
|
)),
|
|
.exponent = .denormal,
|
|
.sign = sign,
|
|
});
|
|
return @bitCast(Repr{
|
|
.mantissa = @truncate(mantissa),
|
|
.exponent = .bias(@intCast(normalized.exponent)),
|
|
.sign = sign,
|
|
});
|
|
}
|
|
};
|
|
|
|
pub const Classified = union(enum) { normalized: Normalized, infinity, nan, invalid };
|
|
fn classify(repr: Repr) Classified {
|
|
return switch (repr.exponent) {
|
|
.denormal => {
|
|
const mantissa: Mantissa = repr.mantissa;
|
|
const shift = @clz(mantissa);
|
|
return .{ .normalized = .{
|
|
.fraction = @truncate(mantissa << shift),
|
|
.exponent = @as(Normalized.Exponent, comptime BiasedExponent.min_normal.unbias()) - shift,
|
|
} };
|
|
},
|
|
else => if (repr.mantissa <= std.math.maxInt(Normalized.Fraction)) .{ .normalized = .{
|
|
.fraction = @intCast(repr.mantissa),
|
|
.exponent = repr.exponent.unbias(),
|
|
} } else .invalid,
|
|
.infinite => switch (repr.mantissa) {
|
|
0 => .infinity,
|
|
else => .nan,
|
|
},
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic.
|
|
inline fn mantissaOne(comptime T: type) comptime_int {
|
|
return if (@typeInfo(T).float.bits == 80) 1 << floatFractionalBits(T) else 0;
|
|
}
|
|
|
|
/// Creates floating point type T from an unbiased exponent and raw mantissa.
|
|
inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T {
|
|
const TBits = @Type(.{ .int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } });
|
|
const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
|
|
return @as(T, @bitCast((biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa)));
|
|
}
|
|
|
|
/// Returns the number of bits in the exponent of floating point type T.
|
|
pub inline fn floatExponentBits(comptime T: type) comptime_int {
|
|
comptime assert(@typeInfo(T) == .float);
|
|
|
|
return switch (@typeInfo(T).float.bits) {
|
|
16 => 5,
|
|
32 => 8,
|
|
64 => 11,
|
|
80 => 15,
|
|
128 => 15,
|
|
else => @compileError("unknown floating point type " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
/// Returns the number of bits in the mantissa of floating point type T.
|
|
pub inline fn floatMantissaBits(comptime T: type) comptime_int {
|
|
comptime assert(@typeInfo(T) == .float);
|
|
|
|
return switch (@typeInfo(T).float.bits) {
|
|
16 => 10,
|
|
32 => 23,
|
|
64 => 52,
|
|
80 => 64,
|
|
128 => 112,
|
|
else => @compileError("unknown floating point type " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
/// Returns the number of fractional bits in the mantissa of floating point type T.
|
|
pub inline fn floatFractionalBits(comptime T: type) comptime_int {
|
|
comptime assert(@typeInfo(T) == .float);
|
|
|
|
// standard IEEE floats have an implicit 0.m or 1.m integer part
|
|
// f80 is special and has an explicitly stored bit in the MSB
|
|
// this function corresponds to `MANT_DIG - 1' from C
|
|
return switch (@typeInfo(T).float.bits) {
|
|
16 => 10,
|
|
32 => 23,
|
|
64 => 52,
|
|
80 => 63,
|
|
128 => 112,
|
|
else => @compileError("unknown floating point type " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
/// Returns the minimum exponent that can represent
|
|
/// a normalised value in floating point type T.
|
|
pub inline fn floatExponentMin(comptime T: type) comptime_int {
|
|
return -floatExponentMax(T) + 1;
|
|
}
|
|
|
|
/// Returns the maximum exponent that can represent
|
|
/// a normalised value in floating point type T.
|
|
pub inline fn floatExponentMax(comptime T: type) comptime_int {
|
|
return (1 << (floatExponentBits(T) - 1)) - 1;
|
|
}
|
|
|
|
/// Returns the smallest subnormal number representable in floating point type T.
|
|
pub inline fn floatTrueMin(comptime T: type) T {
|
|
return reconstructFloat(T, floatExponentMin(T) - 1, 1);
|
|
}
|
|
|
|
/// Returns the smallest normal number representable in floating point type T.
|
|
pub inline fn floatMin(comptime T: type) T {
|
|
return reconstructFloat(T, floatExponentMin(T), mantissaOne(T));
|
|
}
|
|
|
|
/// Returns the largest normal number representable in floating point type T.
|
|
pub inline fn floatMax(comptime T: type) T {
|
|
const all1s_mantissa = (1 << floatMantissaBits(T)) - 1;
|
|
return reconstructFloat(T, floatExponentMax(T), all1s_mantissa);
|
|
}
|
|
|
|
/// Returns the machine epsilon of floating point type T.
|
|
pub inline fn floatEps(comptime T: type) T {
|
|
return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T));
|
|
}
|
|
|
|
/// Returns the local epsilon of floating point type T.
|
|
pub inline fn floatEpsAt(comptime T: type, x: T) T {
|
|
switch (@typeInfo(T)) {
|
|
.float => |F| {
|
|
const U: type = @Type(.{ .int = .{ .signedness = .unsigned, .bits = F.bits } });
|
|
const u: U = @bitCast(x);
|
|
const y: T = @bitCast(u ^ 1);
|
|
return @abs(x - y);
|
|
},
|
|
else => @compileError("floatEpsAt only supports floats"),
|
|
}
|
|
}
|
|
|
|
/// Returns the inf value for a floating point `Type`.
|
|
pub inline fn inf(comptime Type: type) Type {
|
|
const RuntimeType = switch (Type) {
|
|
else => Type,
|
|
comptime_float => f128, // any float type will do
|
|
};
|
|
return reconstructFloat(RuntimeType, floatExponentMax(RuntimeType) + 1, mantissaOne(RuntimeType));
|
|
}
|
|
|
|
/// Returns the canonical quiet NaN representation for a floating point `Type`.
|
|
pub inline fn nan(comptime Type: type) Type {
|
|
const RuntimeType = switch (Type) {
|
|
else => Type,
|
|
comptime_float => f128, // any float type will do
|
|
};
|
|
return reconstructFloat(
|
|
RuntimeType,
|
|
floatExponentMax(RuntimeType) + 1,
|
|
mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 1),
|
|
);
|
|
}
|
|
|
|
/// Returns a signalling NaN representation for a floating point `Type`.
|
|
///
|
|
/// TODO: LLVM is known to miscompile on some architectures to quiet NaN -
|
|
/// this is tracked by https://github.com/ziglang/zig/issues/14366
|
|
pub inline fn snan(comptime Type: type) Type {
|
|
const RuntimeType = switch (Type) {
|
|
else => Type,
|
|
comptime_float => f128, // any float type will do
|
|
};
|
|
return reconstructFloat(
|
|
RuntimeType,
|
|
floatExponentMax(RuntimeType) + 1,
|
|
mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 2),
|
|
);
|
|
}
|
|
|
|
fn floatBits(comptime Type: type) !void {
|
|
// (1 +) for the sign bit, since it is separate from the other bits
|
|
const size = 1 + floatExponentBits(Type) + floatMantissaBits(Type);
|
|
try expect(@bitSizeOf(Type) == size);
|
|
try expect(floatFractionalBits(Type) <= floatMantissaBits(Type));
|
|
|
|
// for machine epsilon, assert expmin <= -prec <= expmax
|
|
try expect(floatExponentMin(Type) <= -floatFractionalBits(Type));
|
|
try expect(-floatFractionalBits(Type) <= floatExponentMax(Type));
|
|
}
|
|
test floatBits {
|
|
try floatBits(f16);
|
|
try floatBits(f32);
|
|
try floatBits(f64);
|
|
try floatBits(f80);
|
|
try floatBits(f128);
|
|
try floatBits(c_longdouble);
|
|
}
|
|
|
|
test inf {
|
|
const inf_u16: u16 = 0x7C00;
|
|
const inf_u32: u32 = 0x7F800000;
|
|
const inf_u64: u64 = 0x7FF0000000000000;
|
|
const inf_u80: u80 = 0x7FFF8000000000000000;
|
|
const inf_u128: u128 = 0x7FFF0000000000000000000000000000;
|
|
try expectEqual(inf_u16, @as(u16, @bitCast(inf(f16))));
|
|
try expectEqual(inf_u32, @as(u32, @bitCast(inf(f32))));
|
|
try expectEqual(inf_u64, @as(u64, @bitCast(inf(f64))));
|
|
try expectEqual(inf_u80, @as(u80, @bitCast(inf(f80))));
|
|
try expectEqual(inf_u128, @as(u128, @bitCast(inf(f128))));
|
|
}
|
|
|
|
test nan {
|
|
const qnan_u16: u16 = 0x7E00;
|
|
const qnan_u32: u32 = 0x7FC00000;
|
|
const qnan_u64: u64 = 0x7FF8000000000000;
|
|
const qnan_u80: u80 = 0x7FFFC000000000000000;
|
|
const qnan_u128: u128 = 0x7FFF8000000000000000000000000000;
|
|
try expectEqual(qnan_u16, @as(u16, @bitCast(nan(f16))));
|
|
try expectEqual(qnan_u32, @as(u32, @bitCast(nan(f32))));
|
|
try expectEqual(qnan_u64, @as(u64, @bitCast(nan(f64))));
|
|
try expectEqual(qnan_u80, @as(u80, @bitCast(nan(f80))));
|
|
try expectEqual(qnan_u128, @as(u128, @bitCast(nan(f128))));
|
|
}
|
|
|
|
test snan {
|
|
const snan_u16: u16 = 0x7D00;
|
|
const snan_u32: u32 = 0x7FA00000;
|
|
const snan_u64: u64 = 0x7FF4000000000000;
|
|
const snan_u80: u80 = 0x7FFFA000000000000000;
|
|
const snan_u128: u128 = 0x7FFF4000000000000000000000000000;
|
|
try expectEqual(snan_u16, @as(u16, @bitCast(snan(f16))));
|
|
try expectEqual(snan_u32, @as(u32, @bitCast(snan(f32))));
|
|
try expectEqual(snan_u64, @as(u64, @bitCast(snan(f64))));
|
|
try expectEqual(snan_u80, @as(u80, @bitCast(snan(f80))));
|
|
try expectEqual(snan_u128, @as(u128, @bitCast(snan(f128))));
|
|
}
|