zig/src/value.zig
2022-07-07 10:50:06 +03:00

5014 lines
200 KiB
Zig

const std = @import("std");
const Type = @import("type.zig").Type;
const log2 = std.math.log2;
const assert = std.debug.assert;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const Target = std.Target;
const Allocator = std.mem.Allocator;
const Module = @import("Module.zig");
const Air = @import("Air.zig");
const TypedValue = @import("TypedValue.zig");
const Sema = @import("Sema.zig");
/// This is the raw data, with no bookkeeping, no memory awareness,
/// no de-duplication, and no type system awareness.
/// It's important for this type to be small.
/// This union takes advantage of the fact that the first page of memory
/// is unmapped, giving us 4096 possible enum tags that have no payload.
pub const Value = extern union {
/// If the tag value is less than Tag.no_payload_count, then no pointer
/// dereference is needed.
tag_if_small_enough: Tag,
ptr_otherwise: *Payload,
// Keep in sync with tools/zig-gdb.py
pub const Tag = enum(usize) {
// The first section of this enum are tags that require no payload.
u1_type,
u8_type,
i8_type,
u16_type,
i16_type,
u29_type,
u32_type,
i32_type,
u64_type,
i64_type,
u128_type,
i128_type,
usize_type,
isize_type,
c_short_type,
c_ushort_type,
c_int_type,
c_uint_type,
c_long_type,
c_ulong_type,
c_longlong_type,
c_ulonglong_type,
c_longdouble_type,
f16_type,
f32_type,
f64_type,
f80_type,
f128_type,
anyopaque_type,
bool_type,
void_type,
type_type,
anyerror_type,
comptime_int_type,
comptime_float_type,
noreturn_type,
anyframe_type,
null_type,
undefined_type,
enum_literal_type,
atomic_order_type,
atomic_rmw_op_type,
calling_convention_type,
address_space_type,
float_mode_type,
reduce_op_type,
call_options_type,
prefetch_options_type,
export_options_type,
extern_options_type,
type_info_type,
manyptr_u8_type,
manyptr_const_u8_type,
manyptr_const_u8_sentinel_0_type,
fn_noreturn_no_args_type,
fn_void_no_args_type,
fn_naked_noreturn_no_args_type,
fn_ccc_void_no_args_type,
single_const_pointer_to_comptime_int_type,
const_slice_u8_type,
const_slice_u8_sentinel_0_type,
anyerror_void_error_union_type,
generic_poison_type,
undef,
zero,
one,
void_value,
unreachable_value,
/// The only possible value for a particular type, which is stored externally.
the_only_possible_value,
null_value,
bool_true,
bool_false,
generic_poison,
empty_struct_value,
empty_array, // See last_no_payload_tag below.
// After this, the tag requires a payload.
ty,
int_type,
int_u64,
int_i64,
int_big_positive,
int_big_negative,
runtime_int,
function,
extern_fn,
variable,
/// Represents a pointer to a Decl.
/// When machine codegen backend sees this, it must set the Decl's `alive` field to true.
decl_ref,
/// Pointer to a Decl, but allows comptime code to mutate the Decl's Value.
/// This Tag will never be seen by machine codegen backends. It is changed into a
/// `decl_ref` when a comptime variable goes out of scope.
decl_ref_mut,
/// Behaves like `decl_ref_mut` but validates that the stored value matches the field value.
comptime_field_ptr,
/// Pointer to a specific element of an array, vector or slice.
elem_ptr,
/// Pointer to a specific field of a struct or union.
field_ptr,
/// A slice of u8 whose memory is managed externally.
bytes,
/// Similar to bytes however it stores an index relative to `Module.string_literal_bytes`.
str_lit,
/// This value is repeated some number of times. The amount of times to repeat
/// is stored externally.
repeated,
/// An array with length 0 but it has a sentinel.
empty_array_sentinel,
/// Pointer and length as sub `Value` objects.
slice,
float_16,
float_32,
float_64,
float_80,
float_128,
enum_literal,
/// A specific enum tag, indicated by the field index (declaration order).
enum_field_index,
@"error",
/// When the type is error union:
/// * If the tag is `.@"error"`, the error union is an error.
/// * If the tag is `.eu_payload`, the error union is a payload.
/// * A nested error such as `anyerror!(anyerror!T)` in which the the outer error union
/// is non-error, but the inner error union is an error, is represented as
/// a tag of `.eu_payload`, with a sub-tag of `.@"error"`.
eu_payload,
/// A pointer to the payload of an error union, based on a pointer to an error union.
eu_payload_ptr,
/// When the type is optional:
/// * If the tag is `.null_value`, the optional is null.
/// * If the tag is `.opt_payload`, the optional is a payload.
/// * A nested optional such as `??T` in which the the outer optional
/// is non-null, but the inner optional is null, is represented as
/// a tag of `.opt_payload`, with a sub-tag of `.null_value`.
opt_payload,
/// A pointer to the payload of an optional, based on a pointer to an optional.
opt_payload_ptr,
/// An instance of a struct, array, or vector.
/// Each element/field stored as a `Value`.
/// In the case of sentinel-terminated arrays, the sentinel value *is* stored,
/// so the slice length will be one more than the type's array length.
aggregate,
/// An instance of a union.
@"union",
/// This is a special value that tracks a set of types that have been stored
/// to an inferred allocation. It does not support any of the normal value queries.
inferred_alloc,
/// Used to coordinate alloc_inferred, store_to_inferred_ptr, and resolve_inferred_alloc
/// instructions for comptime code.
inferred_alloc_comptime,
/// Used sometimes as the result of field_call_bind. This value is always temporary,
/// and refers directly to the air. It will never be referenced by the air itself.
/// TODO: This is probably a bad encoding, maybe put temp data in the sema instead.
bound_fn,
/// The ABI alignment of the payload type.
lazy_align,
/// The ABI alignment of the payload type.
lazy_size,
pub const last_no_payload_tag = Tag.empty_array;
pub const no_payload_count = @enumToInt(last_no_payload_tag) + 1;
pub fn Type(comptime t: Tag) type {
return switch (t) {
.u1_type,
.u8_type,
.i8_type,
.u16_type,
.i16_type,
.u29_type,
.u32_type,
.i32_type,
.u64_type,
.i64_type,
.u128_type,
.i128_type,
.usize_type,
.isize_type,
.c_short_type,
.c_ushort_type,
.c_int_type,
.c_uint_type,
.c_long_type,
.c_ulong_type,
.c_longlong_type,
.c_ulonglong_type,
.c_longdouble_type,
.f16_type,
.f32_type,
.f64_type,
.f80_type,
.f128_type,
.anyopaque_type,
.bool_type,
.void_type,
.type_type,
.anyerror_type,
.comptime_int_type,
.comptime_float_type,
.noreturn_type,
.null_type,
.undefined_type,
.fn_noreturn_no_args_type,
.fn_void_no_args_type,
.fn_naked_noreturn_no_args_type,
.fn_ccc_void_no_args_type,
.single_const_pointer_to_comptime_int_type,
.anyframe_type,
.const_slice_u8_type,
.const_slice_u8_sentinel_0_type,
.anyerror_void_error_union_type,
.generic_poison_type,
.enum_literal_type,
.undef,
.zero,
.one,
.void_value,
.unreachable_value,
.the_only_possible_value,
.empty_struct_value,
.empty_array,
.null_value,
.bool_true,
.bool_false,
.manyptr_u8_type,
.manyptr_const_u8_type,
.manyptr_const_u8_sentinel_0_type,
.atomic_order_type,
.atomic_rmw_op_type,
.calling_convention_type,
.address_space_type,
.float_mode_type,
.reduce_op_type,
.call_options_type,
.prefetch_options_type,
.export_options_type,
.extern_options_type,
.type_info_type,
.generic_poison,
=> @compileError("Value Tag " ++ @tagName(t) ++ " has no payload"),
.int_big_positive,
.int_big_negative,
=> Payload.BigInt,
.extern_fn => Payload.ExternFn,
.decl_ref => Payload.Decl,
.repeated,
.eu_payload,
.opt_payload,
.empty_array_sentinel,
=> Payload.SubValue,
.eu_payload_ptr,
.opt_payload_ptr,
=> Payload.PayloadPtr,
.bytes,
.enum_literal,
=> Payload.Bytes,
.str_lit => Payload.StrLit,
.slice => Payload.Slice,
.enum_field_index => Payload.U32,
.ty,
.lazy_align,
.lazy_size,
=> Payload.Ty,
.int_type => Payload.IntType,
.int_u64 => Payload.U64,
.int_i64 => Payload.I64,
.runtime_int => Payload.U64,
.function => Payload.Function,
.variable => Payload.Variable,
.decl_ref_mut => Payload.DeclRefMut,
.elem_ptr => Payload.ElemPtr,
.field_ptr => Payload.FieldPtr,
.float_16 => Payload.Float_16,
.float_32 => Payload.Float_32,
.float_64 => Payload.Float_64,
.float_80 => Payload.Float_80,
.float_128 => Payload.Float_128,
.@"error" => Payload.Error,
.inferred_alloc => Payload.InferredAlloc,
.inferred_alloc_comptime => Payload.InferredAllocComptime,
.aggregate => Payload.Aggregate,
.@"union" => Payload.Union,
.bound_fn => Payload.BoundFn,
.comptime_field_ptr => Payload.ComptimeFieldPtr,
};
}
pub fn create(comptime t: Tag, ally: Allocator, data: Data(t)) error{OutOfMemory}!Value {
const ptr = try ally.create(t.Type());
ptr.* = .{
.base = .{ .tag = t },
.data = data,
};
return Value{ .ptr_otherwise = &ptr.base };
}
pub fn Data(comptime t: Tag) type {
return std.meta.fieldInfo(t.Type(), .data).field_type;
}
};
pub fn initTag(small_tag: Tag) Value {
assert(@enumToInt(small_tag) < Tag.no_payload_count);
return .{ .tag_if_small_enough = small_tag };
}
pub fn initPayload(payload: *Payload) Value {
assert(@enumToInt(payload.tag) >= Tag.no_payload_count);
return .{ .ptr_otherwise = payload };
}
pub fn tag(self: Value) Tag {
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count) {
return self.tag_if_small_enough;
} else {
return self.ptr_otherwise.tag;
}
}
/// Prefer `castTag` to this.
pub fn cast(self: Value, comptime T: type) ?*T {
if (@hasField(T, "base_tag")) {
return self.castTag(T.base_tag);
}
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count) {
return null;
}
inline for (@typeInfo(Tag).Enum.fields) |field| {
if (field.value < Tag.no_payload_count)
continue;
const t = @intToEnum(Tag, field.value);
if (self.ptr_otherwise.tag == t) {
if (T == t.Type()) {
return @fieldParentPtr(T, "base", self.ptr_otherwise);
}
return null;
}
}
unreachable;
}
pub fn castTag(self: Value, comptime t: Tag) ?*t.Type() {
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count)
return null;
if (self.ptr_otherwise.tag == t)
return @fieldParentPtr(t.Type(), "base", self.ptr_otherwise);
return null;
}
/// It's intentional that this function is not passed a corresponding Type, so that
/// a Value can be copied from a Sema to a Decl prior to resolving struct/union field types.
pub fn copy(self: Value, arena: Allocator) error{OutOfMemory}!Value {
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count) {
return Value{ .tag_if_small_enough = self.tag_if_small_enough };
} else switch (self.ptr_otherwise.tag) {
.u1_type,
.u8_type,
.i8_type,
.u16_type,
.i16_type,
.u29_type,
.u32_type,
.i32_type,
.u64_type,
.i64_type,
.u128_type,
.i128_type,
.usize_type,
.isize_type,
.c_short_type,
.c_ushort_type,
.c_int_type,
.c_uint_type,
.c_long_type,
.c_ulong_type,
.c_longlong_type,
.c_ulonglong_type,
.c_longdouble_type,
.f16_type,
.f32_type,
.f64_type,
.f80_type,
.f128_type,
.anyopaque_type,
.bool_type,
.void_type,
.type_type,
.anyerror_type,
.comptime_int_type,
.comptime_float_type,
.noreturn_type,
.null_type,
.undefined_type,
.fn_noreturn_no_args_type,
.fn_void_no_args_type,
.fn_naked_noreturn_no_args_type,
.fn_ccc_void_no_args_type,
.single_const_pointer_to_comptime_int_type,
.anyframe_type,
.const_slice_u8_type,
.const_slice_u8_sentinel_0_type,
.anyerror_void_error_union_type,
.generic_poison_type,
.enum_literal_type,
.undef,
.zero,
.one,
.void_value,
.unreachable_value,
.the_only_possible_value,
.empty_array,
.null_value,
.bool_true,
.bool_false,
.empty_struct_value,
.manyptr_u8_type,
.manyptr_const_u8_type,
.manyptr_const_u8_sentinel_0_type,
.atomic_order_type,
.atomic_rmw_op_type,
.calling_convention_type,
.address_space_type,
.float_mode_type,
.reduce_op_type,
.call_options_type,
.prefetch_options_type,
.export_options_type,
.extern_options_type,
.type_info_type,
.generic_poison,
.bound_fn,
=> unreachable,
.ty, .lazy_align, .lazy_size => {
const payload = self.cast(Payload.Ty).?;
const new_payload = try arena.create(Payload.Ty);
new_payload.* = .{
.base = payload.base,
.data = try payload.data.copy(arena),
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.int_type => return self.copyPayloadShallow(arena, Payload.IntType),
.int_u64 => return self.copyPayloadShallow(arena, Payload.U64),
.runtime_int => return self.copyPayloadShallow(arena, Payload.U64),
.int_i64 => return self.copyPayloadShallow(arena, Payload.I64),
.int_big_positive, .int_big_negative => {
const old_payload = self.cast(Payload.BigInt).?;
const new_payload = try arena.create(Payload.BigInt);
new_payload.* = .{
.base = .{ .tag = self.ptr_otherwise.tag },
.data = try arena.dupe(std.math.big.Limb, old_payload.data),
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.function => return self.copyPayloadShallow(arena, Payload.Function),
.extern_fn => return self.copyPayloadShallow(arena, Payload.ExternFn),
.variable => return self.copyPayloadShallow(arena, Payload.Variable),
.decl_ref => return self.copyPayloadShallow(arena, Payload.Decl),
.decl_ref_mut => return self.copyPayloadShallow(arena, Payload.DeclRefMut),
.eu_payload_ptr,
.opt_payload_ptr,
=> {
const payload = self.cast(Payload.PayloadPtr).?;
const new_payload = try arena.create(Payload.PayloadPtr);
new_payload.* = .{
.base = payload.base,
.data = .{
.container_ptr = try payload.data.container_ptr.copy(arena),
.container_ty = try payload.data.container_ty.copy(arena),
},
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.comptime_field_ptr => {
const payload = self.cast(Payload.ComptimeFieldPtr).?;
const new_payload = try arena.create(Payload.ComptimeFieldPtr);
new_payload.* = .{
.base = payload.base,
.data = .{
.field_val = try payload.data.field_val.copy(arena),
.field_ty = try payload.data.field_ty.copy(arena),
},
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.elem_ptr => {
const payload = self.castTag(.elem_ptr).?;
const new_payload = try arena.create(Payload.ElemPtr);
new_payload.* = .{
.base = payload.base,
.data = .{
.array_ptr = try payload.data.array_ptr.copy(arena),
.elem_ty = try payload.data.elem_ty.copy(arena),
.index = payload.data.index,
},
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.field_ptr => {
const payload = self.castTag(.field_ptr).?;
const new_payload = try arena.create(Payload.FieldPtr);
new_payload.* = .{
.base = payload.base,
.data = .{
.container_ptr = try payload.data.container_ptr.copy(arena),
.container_ty = try payload.data.container_ty.copy(arena),
.field_index = payload.data.field_index,
},
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.bytes => {
const bytes = self.castTag(.bytes).?.data;
const new_payload = try arena.create(Payload.Bytes);
new_payload.* = .{
.base = .{ .tag = .bytes },
.data = try arena.dupe(u8, bytes),
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.str_lit => return self.copyPayloadShallow(arena, Payload.StrLit),
.repeated,
.eu_payload,
.opt_payload,
.empty_array_sentinel,
=> {
const payload = self.cast(Payload.SubValue).?;
const new_payload = try arena.create(Payload.SubValue);
new_payload.* = .{
.base = payload.base,
.data = try payload.data.copy(arena),
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.slice => {
const payload = self.castTag(.slice).?;
const new_payload = try arena.create(Payload.Slice);
new_payload.* = .{
.base = payload.base,
.data = .{
.ptr = try payload.data.ptr.copy(arena),
.len = try payload.data.len.copy(arena),
},
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.float_16 => return self.copyPayloadShallow(arena, Payload.Float_16),
.float_32 => return self.copyPayloadShallow(arena, Payload.Float_32),
.float_64 => return self.copyPayloadShallow(arena, Payload.Float_64),
.float_80 => return self.copyPayloadShallow(arena, Payload.Float_80),
.float_128 => return self.copyPayloadShallow(arena, Payload.Float_128),
.enum_literal => {
const payload = self.castTag(.enum_literal).?;
const new_payload = try arena.create(Payload.Bytes);
new_payload.* = .{
.base = payload.base,
.data = try arena.dupe(u8, payload.data),
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.enum_field_index => return self.copyPayloadShallow(arena, Payload.U32),
.@"error" => return self.copyPayloadShallow(arena, Payload.Error),
.aggregate => {
const payload = self.castTag(.aggregate).?;
const new_payload = try arena.create(Payload.Aggregate);
new_payload.* = .{
.base = payload.base,
.data = try arena.alloc(Value, payload.data.len),
};
for (new_payload.data) |*elem, i| {
elem.* = try payload.data[i].copy(arena);
}
return Value{ .ptr_otherwise = &new_payload.base };
},
.@"union" => {
const tag_and_val = self.castTag(.@"union").?.data;
const new_payload = try arena.create(Payload.Union);
new_payload.* = .{
.base = .{ .tag = .@"union" },
.data = .{
.tag = try tag_and_val.tag.copy(arena),
.val = try tag_and_val.val.copy(arena),
},
};
return Value{ .ptr_otherwise = &new_payload.base };
},
.inferred_alloc => unreachable,
.inferred_alloc_comptime => unreachable,
}
}
fn copyPayloadShallow(self: Value, arena: Allocator, comptime T: type) error{OutOfMemory}!Value {
const payload = self.cast(T).?;
const new_payload = try arena.create(T);
new_payload.* = payload.*;
return Value{ .ptr_otherwise = &new_payload.base };
}
pub fn format(val: Value, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = val;
_ = fmt;
_ = options;
_ = writer;
@compileError("do not use format values directly; use either fmtDebug or fmtValue");
}
/// This is a debug function. In order to print values in a meaningful way
/// we also need access to the type.
pub fn dump(
start_val: Value,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
comptime assert(fmt.len == 0);
var val = start_val;
while (true) switch (val.tag()) {
.u1_type => return out_stream.writeAll("u1"),
.u8_type => return out_stream.writeAll("u8"),
.i8_type => return out_stream.writeAll("i8"),
.u16_type => return out_stream.writeAll("u16"),
.u29_type => return out_stream.writeAll("u29"),
.i16_type => return out_stream.writeAll("i16"),
.u32_type => return out_stream.writeAll("u32"),
.i32_type => return out_stream.writeAll("i32"),
.u64_type => return out_stream.writeAll("u64"),
.i64_type => return out_stream.writeAll("i64"),
.u128_type => return out_stream.writeAll("u128"),
.i128_type => return out_stream.writeAll("i128"),
.isize_type => return out_stream.writeAll("isize"),
.usize_type => return out_stream.writeAll("usize"),
.c_short_type => return out_stream.writeAll("c_short"),
.c_ushort_type => return out_stream.writeAll("c_ushort"),
.c_int_type => return out_stream.writeAll("c_int"),
.c_uint_type => return out_stream.writeAll("c_uint"),
.c_long_type => return out_stream.writeAll("c_long"),
.c_ulong_type => return out_stream.writeAll("c_ulong"),
.c_longlong_type => return out_stream.writeAll("c_longlong"),
.c_ulonglong_type => return out_stream.writeAll("c_ulonglong"),
.c_longdouble_type => return out_stream.writeAll("c_longdouble"),
.f16_type => return out_stream.writeAll("f16"),
.f32_type => return out_stream.writeAll("f32"),
.f64_type => return out_stream.writeAll("f64"),
.f80_type => return out_stream.writeAll("f80"),
.f128_type => return out_stream.writeAll("f128"),
.anyopaque_type => return out_stream.writeAll("anyopaque"),
.bool_type => return out_stream.writeAll("bool"),
.void_type => return out_stream.writeAll("void"),
.type_type => return out_stream.writeAll("type"),
.anyerror_type => return out_stream.writeAll("anyerror"),
.comptime_int_type => return out_stream.writeAll("comptime_int"),
.comptime_float_type => return out_stream.writeAll("comptime_float"),
.noreturn_type => return out_stream.writeAll("noreturn"),
.null_type => return out_stream.writeAll("@Type(.Null)"),
.undefined_type => return out_stream.writeAll("@Type(.Undefined)"),
.fn_noreturn_no_args_type => return out_stream.writeAll("fn() noreturn"),
.fn_void_no_args_type => return out_stream.writeAll("fn() void"),
.fn_naked_noreturn_no_args_type => return out_stream.writeAll("fn() callconv(.Naked) noreturn"),
.fn_ccc_void_no_args_type => return out_stream.writeAll("fn() callconv(.C) void"),
.single_const_pointer_to_comptime_int_type => return out_stream.writeAll("*const comptime_int"),
.anyframe_type => return out_stream.writeAll("anyframe"),
.const_slice_u8_type => return out_stream.writeAll("[]const u8"),
.const_slice_u8_sentinel_0_type => return out_stream.writeAll("[:0]const u8"),
.anyerror_void_error_union_type => return out_stream.writeAll("anyerror!void"),
.generic_poison_type => return out_stream.writeAll("(generic poison type)"),
.generic_poison => return out_stream.writeAll("(generic poison)"),
.enum_literal_type => return out_stream.writeAll("@Type(.EnumLiteral)"),
.manyptr_u8_type => return out_stream.writeAll("[*]u8"),
.manyptr_const_u8_type => return out_stream.writeAll("[*]const u8"),
.manyptr_const_u8_sentinel_0_type => return out_stream.writeAll("[*:0]const u8"),
.atomic_order_type => return out_stream.writeAll("std.builtin.AtomicOrder"),
.atomic_rmw_op_type => return out_stream.writeAll("std.builtin.AtomicRmwOp"),
.calling_convention_type => return out_stream.writeAll("std.builtin.CallingConvention"),
.address_space_type => return out_stream.writeAll("std.builtin.AddressSpace"),
.float_mode_type => return out_stream.writeAll("std.builtin.FloatMode"),
.reduce_op_type => return out_stream.writeAll("std.builtin.ReduceOp"),
.call_options_type => return out_stream.writeAll("std.builtin.CallOptions"),
.prefetch_options_type => return out_stream.writeAll("std.builtin.PrefetchOptions"),
.export_options_type => return out_stream.writeAll("std.builtin.ExportOptions"),
.extern_options_type => return out_stream.writeAll("std.builtin.ExternOptions"),
.type_info_type => return out_stream.writeAll("std.builtin.Type"),
.empty_struct_value => return out_stream.writeAll("struct {}{}"),
.aggregate => {
return out_stream.writeAll("(aggregate)");
},
.@"union" => {
return out_stream.writeAll("(union value)");
},
.null_value => return out_stream.writeAll("null"),
.undef => return out_stream.writeAll("undefined"),
.zero => return out_stream.writeAll("0"),
.one => return out_stream.writeAll("1"),
.void_value => return out_stream.writeAll("{}"),
.unreachable_value => return out_stream.writeAll("unreachable"),
.the_only_possible_value => return out_stream.writeAll("(the only possible value)"),
.bool_true => return out_stream.writeAll("true"),
.bool_false => return out_stream.writeAll("false"),
.ty => return val.castTag(.ty).?.data.dump("", options, out_stream),
.lazy_align => {
try out_stream.writeAll("@alignOf(");
try val.castTag(.lazy_align).?.data.dump("", options, out_stream);
return try out_stream.writeAll(")");
},
.lazy_size => {
try out_stream.writeAll("@sizeOf(");
try val.castTag(.lazy_size).?.data.dump("", options, out_stream);
return try out_stream.writeAll(")");
},
.int_type => {
const int_type = val.castTag(.int_type).?.data;
return out_stream.print("{s}{d}", .{
if (int_type.signed) "s" else "u",
int_type.bits,
});
},
.int_u64 => return std.fmt.formatIntValue(val.castTag(.int_u64).?.data, "", options, out_stream),
.int_i64 => return std.fmt.formatIntValue(val.castTag(.int_i64).?.data, "", options, out_stream),
.int_big_positive => return out_stream.print("{}", .{val.castTag(.int_big_positive).?.asBigInt()}),
.int_big_negative => return out_stream.print("{}", .{val.castTag(.int_big_negative).?.asBigInt()}),
.runtime_int => return out_stream.writeAll("[runtime value]"),
.function => return out_stream.print("(function decl={d})", .{val.castTag(.function).?.data.owner_decl}),
.extern_fn => return out_stream.writeAll("(extern function)"),
.variable => return out_stream.writeAll("(variable)"),
.decl_ref_mut => {
const decl_index = val.castTag(.decl_ref_mut).?.data.decl_index;
return out_stream.print("(decl_ref_mut {d})", .{decl_index});
},
.decl_ref => {
const decl_index = val.castTag(.decl_ref).?.data;
return out_stream.print("(decl_ref {d})", .{decl_index});
},
.comptime_field_ptr => {
return out_stream.writeAll("(comptime_field_ptr)");
},
.elem_ptr => {
const elem_ptr = val.castTag(.elem_ptr).?.data;
try out_stream.print("&[{}] ", .{elem_ptr.index});
val = elem_ptr.array_ptr;
},
.field_ptr => {
const field_ptr = val.castTag(.field_ptr).?.data;
try out_stream.print("fieldptr({d}) ", .{field_ptr.field_index});
val = field_ptr.container_ptr;
},
.empty_array => return out_stream.writeAll(".{}"),
.enum_literal => return out_stream.print(".{}", .{std.zig.fmtId(val.castTag(.enum_literal).?.data)}),
.enum_field_index => return out_stream.print("(enum field {d})", .{val.castTag(.enum_field_index).?.data}),
.bytes => return out_stream.print("\"{}\"", .{std.zig.fmtEscapes(val.castTag(.bytes).?.data)}),
.str_lit => {
const str_lit = val.castTag(.str_lit).?.data;
return out_stream.print("(.str_lit index={d} len={d})", .{
str_lit.index, str_lit.len,
});
},
.repeated => {
try out_stream.writeAll("(repeated) ");
val = val.castTag(.repeated).?.data;
},
.empty_array_sentinel => return out_stream.writeAll("(empty array with sentinel)"),
.slice => return out_stream.writeAll("(slice)"),
.float_16 => return out_stream.print("{}", .{val.castTag(.float_16).?.data}),
.float_32 => return out_stream.print("{}", .{val.castTag(.float_32).?.data}),
.float_64 => return out_stream.print("{}", .{val.castTag(.float_64).?.data}),
.float_80 => return out_stream.print("{}", .{val.castTag(.float_80).?.data}),
.float_128 => return out_stream.print("{}", .{val.castTag(.float_128).?.data}),
.@"error" => return out_stream.print("error.{s}", .{val.castTag(.@"error").?.data.name}),
// TODO to print this it should be error{ Set, Items }!T(val), but we need the type for that
.eu_payload => {
try out_stream.writeAll("(eu_payload) ");
val = val.castTag(.eu_payload).?.data;
},
.opt_payload => {
try out_stream.writeAll("(opt_payload) ");
val = val.castTag(.opt_payload).?.data;
},
.inferred_alloc => return out_stream.writeAll("(inferred allocation value)"),
.inferred_alloc_comptime => return out_stream.writeAll("(inferred comptime allocation value)"),
.eu_payload_ptr => {
try out_stream.writeAll("(eu_payload_ptr)");
val = val.castTag(.eu_payload_ptr).?.data.container_ptr;
},
.opt_payload_ptr => {
try out_stream.writeAll("(opt_payload_ptr)");
val = val.castTag(.opt_payload_ptr).?.data.container_ptr;
},
.bound_fn => {
const bound_func = val.castTag(.bound_fn).?.data;
return out_stream.print("(bound_fn %{}(%{})", .{ bound_func.func_inst, bound_func.arg0_inst });
},
};
}
pub fn fmtDebug(val: Value) std.fmt.Formatter(dump) {
return .{ .data = val };
}
pub fn fmtValue(val: Value, ty: Type, mod: *Module) std.fmt.Formatter(TypedValue.format) {
return .{ .data = .{
.tv = .{ .ty = ty, .val = val },
.mod = mod,
} };
}
/// Asserts that the value is representable as an array of bytes.
/// Copies the value into a freshly allocated slice of memory, which is owned by the caller.
pub fn toAllocatedBytes(val: Value, ty: Type, allocator: Allocator, mod: *Module) ![]u8 {
const target = mod.getTarget();
switch (val.tag()) {
.bytes => {
const bytes = val.castTag(.bytes).?.data;
const adjusted_len = bytes.len - @boolToInt(ty.sentinel() != null);
const adjusted_bytes = bytes[0..adjusted_len];
return allocator.dupe(u8, adjusted_bytes);
},
.str_lit => {
const str_lit = val.castTag(.str_lit).?.data;
const bytes = mod.string_literal_bytes.items[str_lit.index..][0..str_lit.len];
return allocator.dupe(u8, bytes);
},
.enum_literal => return allocator.dupe(u8, val.castTag(.enum_literal).?.data),
.repeated => {
const byte = @intCast(u8, val.castTag(.repeated).?.data.toUnsignedInt(target));
const result = try allocator.alloc(u8, @intCast(usize, ty.arrayLen()));
std.mem.set(u8, result, byte);
return result;
},
.decl_ref => {
const decl_index = val.castTag(.decl_ref).?.data;
const decl = mod.declPtr(decl_index);
const decl_val = try decl.value();
return decl_val.toAllocatedBytes(decl.ty, allocator, mod);
},
.the_only_possible_value => return &[_]u8{},
.slice => {
const slice = val.castTag(.slice).?.data;
return arrayToAllocatedBytes(slice.ptr, slice.len.toUnsignedInt(target), allocator, mod);
},
else => return arrayToAllocatedBytes(val, ty.arrayLen(), allocator, mod),
}
}
fn arrayToAllocatedBytes(val: Value, len: u64, allocator: Allocator, mod: *Module) ![]u8 {
const result = try allocator.alloc(u8, @intCast(usize, len));
var elem_value_buf: ElemValueBuffer = undefined;
for (result) |*elem, i| {
const elem_val = val.elemValueBuffer(mod, i, &elem_value_buf);
elem.* = @intCast(u8, elem_val.toUnsignedInt(mod.getTarget()));
}
return result;
}
pub const ToTypeBuffer = Type.Payload.Bits;
/// Asserts that the value is representable as a type.
pub fn toType(self: Value, buffer: *ToTypeBuffer) Type {
return switch (self.tag()) {
.ty => self.castTag(.ty).?.data,
.u1_type => Type.initTag(.u1),
.u8_type => Type.initTag(.u8),
.i8_type => Type.initTag(.i8),
.u16_type => Type.initTag(.u16),
.i16_type => Type.initTag(.i16),
.u29_type => Type.initTag(.u29),
.u32_type => Type.initTag(.u32),
.i32_type => Type.initTag(.i32),
.u64_type => Type.initTag(.u64),
.i64_type => Type.initTag(.i64),
.u128_type => Type.initTag(.u128),
.i128_type => Type.initTag(.i128),
.usize_type => Type.initTag(.usize),
.isize_type => Type.initTag(.isize),
.c_short_type => Type.initTag(.c_short),
.c_ushort_type => Type.initTag(.c_ushort),
.c_int_type => Type.initTag(.c_int),
.c_uint_type => Type.initTag(.c_uint),
.c_long_type => Type.initTag(.c_long),
.c_ulong_type => Type.initTag(.c_ulong),
.c_longlong_type => Type.initTag(.c_longlong),
.c_ulonglong_type => Type.initTag(.c_ulonglong),
.c_longdouble_type => Type.initTag(.c_longdouble),
.f16_type => Type.initTag(.f16),
.f32_type => Type.initTag(.f32),
.f64_type => Type.initTag(.f64),
.f80_type => Type.initTag(.f80),
.f128_type => Type.initTag(.f128),
.anyopaque_type => Type.initTag(.anyopaque),
.bool_type => Type.initTag(.bool),
.void_type => Type.initTag(.void),
.type_type => Type.initTag(.type),
.anyerror_type => Type.initTag(.anyerror),
.comptime_int_type => Type.initTag(.comptime_int),
.comptime_float_type => Type.initTag(.comptime_float),
.noreturn_type => Type.initTag(.noreturn),
.null_type => Type.initTag(.@"null"),
.undefined_type => Type.initTag(.@"undefined"),
.fn_noreturn_no_args_type => Type.initTag(.fn_noreturn_no_args),
.fn_void_no_args_type => Type.initTag(.fn_void_no_args),
.fn_naked_noreturn_no_args_type => Type.initTag(.fn_naked_noreturn_no_args),
.fn_ccc_void_no_args_type => Type.initTag(.fn_ccc_void_no_args),
.single_const_pointer_to_comptime_int_type => Type.initTag(.single_const_pointer_to_comptime_int),
.anyframe_type => Type.initTag(.@"anyframe"),
.const_slice_u8_type => Type.initTag(.const_slice_u8),
.const_slice_u8_sentinel_0_type => Type.initTag(.const_slice_u8_sentinel_0),
.anyerror_void_error_union_type => Type.initTag(.anyerror_void_error_union),
.generic_poison_type => Type.initTag(.generic_poison),
.enum_literal_type => Type.initTag(.enum_literal),
.manyptr_u8_type => Type.initTag(.manyptr_u8),
.manyptr_const_u8_type => Type.initTag(.manyptr_const_u8),
.manyptr_const_u8_sentinel_0_type => Type.initTag(.manyptr_const_u8_sentinel_0),
.atomic_order_type => Type.initTag(.atomic_order),
.atomic_rmw_op_type => Type.initTag(.atomic_rmw_op),
.calling_convention_type => Type.initTag(.calling_convention),
.address_space_type => Type.initTag(.address_space),
.float_mode_type => Type.initTag(.float_mode),
.reduce_op_type => Type.initTag(.reduce_op),
.call_options_type => Type.initTag(.call_options),
.prefetch_options_type => Type.initTag(.prefetch_options),
.export_options_type => Type.initTag(.export_options),
.extern_options_type => Type.initTag(.extern_options),
.type_info_type => Type.initTag(.type_info),
.int_type => {
const payload = self.castTag(.int_type).?.data;
buffer.* = .{
.base = .{
.tag = if (payload.signed) .int_signed else .int_unsigned,
},
.data = payload.bits,
};
return Type.initPayload(&buffer.base);
},
else => unreachable,
};
}
/// Asserts the type is an enum type.
pub fn toEnum(val: Value, comptime E: type) E {
switch (val.tag()) {
.enum_field_index => {
const field_index = val.castTag(.enum_field_index).?.data;
// TODO should `@intToEnum` do this `@intCast` for you?
return @intToEnum(E, @intCast(@typeInfo(E).Enum.tag_type, field_index));
},
.the_only_possible_value => {
const fields = std.meta.fields(E);
assert(fields.len == 1);
return @intToEnum(E, fields[0].value);
},
else => unreachable,
}
}
pub fn enumToInt(val: Value, ty: Type, buffer: *Payload.U64) Value {
const field_index = switch (val.tag()) {
.enum_field_index => val.castTag(.enum_field_index).?.data,
.the_only_possible_value => blk: {
assert(ty.enumFieldCount() == 1);
break :blk 0;
},
.enum_literal => i: {
const name = val.castTag(.enum_literal).?.data;
break :i ty.enumFieldIndex(name).?;
},
// Assume it is already an integer and return it directly.
else => return val,
};
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Type.Payload.EnumFull).?.data;
if (enum_full.values.count() != 0) {
return enum_full.values.keys()[field_index];
} else {
// Field index and integer values are the same.
buffer.* = .{
.base = .{ .tag = .int_u64 },
.data = field_index,
};
return Value.initPayload(&buffer.base);
}
},
.enum_numbered => {
const enum_obj = ty.castTag(.enum_numbered).?.data;
if (enum_obj.values.count() != 0) {
return enum_obj.values.keys()[field_index];
} else {
// Field index and integer values are the same.
buffer.* = .{
.base = .{ .tag = .int_u64 },
.data = field_index,
};
return Value.initPayload(&buffer.base);
}
},
.enum_simple => {
// Field index and integer values are the same.
buffer.* = .{
.base = .{ .tag = .int_u64 },
.data = field_index,
};
return Value.initPayload(&buffer.base);
},
else => unreachable,
}
}
/// Asserts the value is an integer.
pub fn toBigInt(val: Value, space: *BigIntSpace, target: Target) BigIntConst {
return val.toBigIntAdvanced(space, target, null) catch unreachable;
}
/// Asserts the value is an integer.
pub fn toBigIntAdvanced(
val: Value,
space: *BigIntSpace,
target: Target,
sema_kit: ?Module.WipAnalysis,
) Module.CompileError!BigIntConst {
switch (val.tag()) {
.null_value,
.zero,
.bool_false,
.the_only_possible_value, // i0, u0
=> return BigIntMutable.init(&space.limbs, 0).toConst(),
.one,
.bool_true,
=> return BigIntMutable.init(&space.limbs, 1).toConst(),
.int_u64 => return BigIntMutable.init(&space.limbs, val.castTag(.int_u64).?.data).toConst(),
.int_i64 => return BigIntMutable.init(&space.limbs, val.castTag(.int_i64).?.data).toConst(),
.int_big_positive => return val.castTag(.int_big_positive).?.asBigInt(),
.int_big_negative => return val.castTag(.int_big_negative).?.asBigInt(),
.runtime_int => return BigIntMutable.init(&space.limbs, val.castTag(.runtime_int).?.data).toConst(),
.undef => unreachable,
.lazy_align => {
const ty = val.castTag(.lazy_align).?.data;
if (sema_kit) |sk| {
try sk.sema.resolveTypeLayout(sk.block, sk.src, ty);
}
const x = ty.abiAlignment(target);
return BigIntMutable.init(&space.limbs, x).toConst();
},
.lazy_size => {
const ty = val.castTag(.lazy_size).?.data;
if (sema_kit) |sk| {
try sk.sema.resolveTypeLayout(sk.block, sk.src, ty);
}
const x = ty.abiSize(target);
return BigIntMutable.init(&space.limbs, x).toConst();
},
.elem_ptr => {
const elem_ptr = val.castTag(.elem_ptr).?.data;
const array_addr = (try elem_ptr.array_ptr.getUnsignedIntAdvanced(target, sema_kit)).?;
const elem_size = elem_ptr.elem_ty.abiSize(target);
const new_addr = array_addr + elem_size * elem_ptr.index;
return BigIntMutable.init(&space.limbs, new_addr).toConst();
},
else => unreachable,
}
}
/// If the value fits in a u64, return it, otherwise null.
/// Asserts not undefined.
pub fn getUnsignedInt(val: Value, target: Target) ?u64 {
return getUnsignedIntAdvanced(val, target, null) catch unreachable;
}
/// If the value fits in a u64, return it, otherwise null.
/// Asserts not undefined.
pub fn getUnsignedIntAdvanced(val: Value, target: Target, sema_kit: ?Module.WipAnalysis) !?u64 {
switch (val.tag()) {
.zero,
.bool_false,
.the_only_possible_value, // i0, u0
=> return 0,
.one,
.bool_true,
=> return 1,
.int_u64 => return val.castTag(.int_u64).?.data,
.int_i64 => return @intCast(u64, val.castTag(.int_i64).?.data),
.int_big_positive => return val.castTag(.int_big_positive).?.asBigInt().to(u64) catch null,
.int_big_negative => return val.castTag(.int_big_negative).?.asBigInt().to(u64) catch null,
.runtime_int => return val.castTag(.runtime_int).?.data,
.undef => unreachable,
.lazy_align => {
const ty = val.castTag(.lazy_align).?.data;
if (sema_kit) |sk| {
return (try ty.abiAlignmentAdvanced(target, .{ .sema_kit = sk })).scalar;
} else {
return ty.abiAlignment(target);
}
},
.lazy_size => {
const ty = val.castTag(.lazy_size).?.data;
if (sema_kit) |sk| {
return (try ty.abiSizeAdvanced(target, .{ .sema_kit = sk })).scalar;
} else {
return ty.abiSize(target);
}
},
else => return null,
}
}
/// Asserts the value is an integer and it fits in a u64
pub fn toUnsignedInt(val: Value, target: Target) u64 {
return getUnsignedInt(val, target).?;
}
/// Asserts the value is an integer and it fits in a i64
pub fn toSignedInt(self: Value) i64 {
switch (self.tag()) {
.zero,
.bool_false,
.the_only_possible_value, // i0, u0
=> return 0,
.one,
.bool_true,
=> return 1,
.int_u64 => return @intCast(i64, self.castTag(.int_u64).?.data),
.int_i64 => return self.castTag(.int_i64).?.data,
.int_big_positive => return self.castTag(.int_big_positive).?.asBigInt().to(i64) catch unreachable,
.int_big_negative => return self.castTag(.int_big_negative).?.asBigInt().to(i64) catch unreachable,
.undef => unreachable,
else => unreachable,
}
}
pub fn toBool(self: Value) bool {
return switch (self.tag()) {
.bool_true, .one => true,
.bool_false, .zero => false,
else => unreachable,
};
}
pub fn writeToMemory(val: Value, ty: Type, mod: *Module, buffer: []u8) void {
const target = mod.getTarget();
if (val.isUndef()) {
const size = @intCast(usize, ty.abiSize(target));
std.mem.set(u8, buffer[0..size], 0xaa);
return;
}
switch (ty.zigTypeTag()) {
.Void => {},
.Bool => {
buffer[0] = @boolToInt(val.toBool());
},
.Int => {
var bigint_buffer: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buffer, target);
const bits = ty.intInfo(target).bits;
const abi_size = @intCast(usize, ty.abiSize(target));
bigint.writeTwosComplement(buffer, bits, abi_size, target.cpu.arch.endian());
},
.Enum => {
var enum_buffer: Payload.U64 = undefined;
const int_val = val.enumToInt(ty, &enum_buffer);
var bigint_buffer: BigIntSpace = undefined;
const bigint = int_val.toBigInt(&bigint_buffer, target);
const bits = ty.intInfo(target).bits;
const abi_size = @intCast(usize, ty.abiSize(target));
bigint.writeTwosComplement(buffer, bits, abi_size, target.cpu.arch.endian());
},
.Float => switch (ty.floatBits(target)) {
16 => return floatWriteToMemory(f16, val.toFloat(f16), target, buffer),
32 => return floatWriteToMemory(f32, val.toFloat(f32), target, buffer),
64 => return floatWriteToMemory(f64, val.toFloat(f64), target, buffer),
80 => return floatWriteToMemory(f80, val.toFloat(f80), target, buffer),
128 => return floatWriteToMemory(f128, val.toFloat(f128), target, buffer),
else => unreachable,
},
.Array, .Vector => {
const len = ty.arrayLen();
const elem_ty = ty.childType();
const elem_size = @intCast(usize, elem_ty.abiSize(target));
var elem_i: usize = 0;
var elem_value_buf: ElemValueBuffer = undefined;
var buf_off: usize = 0;
while (elem_i < len) : (elem_i += 1) {
const elem_val = val.elemValueBuffer(mod, elem_i, &elem_value_buf);
writeToMemory(elem_val, elem_ty, mod, buffer[buf_off..]);
buf_off += elem_size;
}
},
.Struct => switch (ty.containerLayout()) {
.Auto => unreachable, // Sema is supposed to have emitted a compile error already
.Extern => {
const fields = ty.structFields().values();
const field_vals = val.castTag(.aggregate).?.data;
for (fields) |field, i| {
const off = @intCast(usize, ty.structFieldOffset(i, target));
writeToMemory(field_vals[i], field.ty, mod, buffer[off..]);
}
},
.Packed => {
// TODO allocate enough heap space instead of using this buffer
// on the stack.
var buf: [16]std.math.big.Limb = undefined;
const host_int = packedStructToInt(val, ty, target, &buf);
const abi_size = @intCast(usize, ty.abiSize(target));
const bit_size = @intCast(usize, ty.bitSize(target));
host_int.writeTwosComplement(buffer, bit_size, abi_size, target.cpu.arch.endian());
},
},
.ErrorSet => {
// TODO revisit this when we have the concept of the error tag type
const Int = u16;
const int = mod.global_error_set.get(val.castTag(.@"error").?.data.name).?;
std.mem.writeInt(Int, buffer[0..@sizeOf(Int)], @intCast(Int, int), target.cpu.arch.endian());
},
else => @panic("TODO implement writeToMemory for more types"),
}
}
fn packedStructToInt(val: Value, ty: Type, target: Target, buf: []std.math.big.Limb) BigIntConst {
var bigint = BigIntMutable.init(buf, 0);
const fields = ty.structFields().values();
const field_vals = val.castTag(.aggregate).?.data;
var bits: u16 = 0;
// TODO allocate enough heap space instead of using this buffer
// on the stack.
var field_buf: [16]std.math.big.Limb = undefined;
var field_space: BigIntSpace = undefined;
var field_buf2: [16]std.math.big.Limb = undefined;
for (fields) |field, i| {
const field_val = field_vals[i];
const field_bigint_const = switch (field.ty.zigTypeTag()) {
.Float => switch (field.ty.floatBits(target)) {
16 => bitcastFloatToBigInt(f16, field_val.toFloat(f16), &field_buf),
32 => bitcastFloatToBigInt(f32, field_val.toFloat(f32), &field_buf),
64 => bitcastFloatToBigInt(f64, field_val.toFloat(f64), &field_buf),
80 => bitcastFloatToBigInt(f80, field_val.toFloat(f80), &field_buf),
128 => bitcastFloatToBigInt(f128, field_val.toFloat(f128), &field_buf),
else => unreachable,
},
.Int, .Bool => field_val.toBigInt(&field_space, target),
.Struct => packedStructToInt(field_val, field.ty, target, &field_buf),
else => unreachable,
};
var field_bigint = BigIntMutable.init(&field_buf2, 0);
field_bigint.shiftLeft(field_bigint_const, bits);
bits += @intCast(u16, field.ty.bitSize(target));
bigint.bitOr(bigint.toConst(), field_bigint.toConst());
}
return bigint.toConst();
}
fn bitcastFloatToBigInt(comptime F: type, f: F, buf: []std.math.big.Limb) BigIntConst {
const Int = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @typeInfo(F).Float.bits,
} });
const int = @bitCast(Int, f);
return BigIntMutable.init(buf, int).toConst();
}
pub fn readFromMemory(
ty: Type,
mod: *Module,
buffer: []const u8,
arena: Allocator,
) Allocator.Error!Value {
const target = mod.getTarget();
switch (ty.zigTypeTag()) {
.Void => return Value.@"void",
.Bool => {
if (buffer[0] == 0) {
return Value.@"false";
} else {
return Value.@"true";
}
},
.Int => {
if (buffer.len == 0) return Value.zero;
const int_info = ty.intInfo(target);
const endian = target.cpu.arch.endian();
const Limb = std.math.big.Limb;
const limb_count = (buffer.len + @sizeOf(Limb) - 1) / @sizeOf(Limb);
const limbs_buffer = try arena.alloc(Limb, limb_count);
const abi_size = @intCast(usize, ty.abiSize(target));
var bigint = BigIntMutable.init(limbs_buffer, 0);
bigint.readTwosComplement(buffer, int_info.bits, abi_size, endian, int_info.signedness);
return fromBigInt(arena, bigint.toConst());
},
.Float => switch (ty.floatBits(target)) {
16 => return Value.Tag.float_16.create(arena, floatReadFromMemory(f16, target, buffer)),
32 => return Value.Tag.float_32.create(arena, floatReadFromMemory(f32, target, buffer)),
64 => return Value.Tag.float_64.create(arena, floatReadFromMemory(f64, target, buffer)),
80 => return Value.Tag.float_80.create(arena, floatReadFromMemory(f80, target, buffer)),
128 => return Value.Tag.float_128.create(arena, floatReadFromMemory(f128, target, buffer)),
else => unreachable,
},
.Array, .Vector => {
const elem_ty = ty.childType();
const elem_size = elem_ty.abiSize(target);
const elems = try arena.alloc(Value, @intCast(usize, ty.arrayLen()));
var offset: usize = 0;
for (elems) |*elem| {
elem.* = try readFromMemory(elem_ty, mod, buffer[offset..], arena);
offset += @intCast(usize, elem_size);
}
return Tag.aggregate.create(arena, elems);
},
.Struct => switch (ty.containerLayout()) {
.Auto => unreachable, // Sema is supposed to have emitted a compile error already
.Extern => {
const fields = ty.structFields().values();
const field_vals = try arena.alloc(Value, fields.len);
for (fields) |field, i| {
const off = @intCast(usize, ty.structFieldOffset(i, target));
field_vals[i] = try readFromMemory(field.ty, mod, buffer[off..], arena);
}
return Tag.aggregate.create(arena, field_vals);
},
.Packed => {
const endian = target.cpu.arch.endian();
const Limb = std.math.big.Limb;
const abi_size = @intCast(usize, ty.abiSize(target));
const bit_size = @intCast(usize, ty.bitSize(target));
const limb_count = (buffer.len + @sizeOf(Limb) - 1) / @sizeOf(Limb);
const limbs_buffer = try arena.alloc(Limb, limb_count);
var bigint = BigIntMutable.init(limbs_buffer, 0);
bigint.readTwosComplement(buffer, bit_size, abi_size, endian, .unsigned);
return intToPackedStruct(ty, target, bigint.toConst(), arena);
},
},
.ErrorSet => {
// TODO revisit this when we have the concept of the error tag type
const Int = u16;
const int = std.mem.readInt(Int, buffer[0..@sizeOf(Int)], target.cpu.arch.endian());
const payload = try arena.create(Value.Payload.Error);
payload.* = .{
.base = .{ .tag = .@"error" },
.data = .{ .name = mod.error_name_list.items[@intCast(usize, int)] },
};
return Value.initPayload(&payload.base);
},
else => @panic("TODO implement readFromMemory for more types"),
}
}
fn intToPackedStruct(
ty: Type,
target: Target,
bigint: BigIntConst,
arena: Allocator,
) Allocator.Error!Value {
const limbs_buffer = try arena.alloc(std.math.big.Limb, bigint.limbs.len);
var bigint_mut = bigint.toMutable(limbs_buffer);
const fields = ty.structFields().values();
const field_vals = try arena.alloc(Value, fields.len);
var bits: u16 = 0;
for (fields) |field, i| {
const field_bits = @intCast(u16, field.ty.bitSize(target));
bigint_mut.shiftRight(bigint, bits);
bigint_mut.truncate(bigint_mut.toConst(), .unsigned, field_bits);
bits += field_bits;
const field_bigint = bigint_mut.toConst();
field_vals[i] = switch (field.ty.zigTypeTag()) {
.Float => switch (field.ty.floatBits(target)) {
16 => try bitCastBigIntToFloat(f16, .float_16, field_bigint, arena),
32 => try bitCastBigIntToFloat(f32, .float_32, field_bigint, arena),
64 => try bitCastBigIntToFloat(f64, .float_64, field_bigint, arena),
80 => try bitCastBigIntToFloat(f80, .float_80, field_bigint, arena),
128 => try bitCastBigIntToFloat(f128, .float_128, field_bigint, arena),
else => unreachable,
},
.Bool => makeBool(!field_bigint.eqZero()),
.Int => try Tag.int_big_positive.create(
arena,
try arena.dupe(std.math.big.Limb, field_bigint.limbs),
),
.Struct => try intToPackedStruct(field.ty, target, field_bigint, arena),
else => unreachable,
};
}
return Tag.aggregate.create(arena, field_vals);
}
fn bitCastBigIntToFloat(
comptime F: type,
comptime float_tag: Tag,
bigint: BigIntConst,
arena: Allocator,
) !Value {
const Int = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @typeInfo(F).Float.bits,
} });
const int = bigint.to(Int) catch |err| switch (err) {
error.NegativeIntoUnsigned => unreachable,
error.TargetTooSmall => unreachable,
};
const f = @bitCast(F, int);
return float_tag.create(arena, f);
}
fn floatWriteToMemory(comptime F: type, f: F, target: Target, buffer: []u8) void {
const endian = target.cpu.arch.endian();
if (F == f80) {
const repr = std.math.break_f80(f);
std.mem.writeInt(u64, buffer[0..8], repr.fraction, endian);
std.mem.writeInt(u16, buffer[8..10], repr.exp, endian);
// TODO set the rest of the bytes to undefined. should we use 0xaa
// or is there a different way?
return;
}
const Int = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @typeInfo(F).Float.bits,
} });
const int = @bitCast(Int, f);
std.mem.writeInt(Int, buffer[0..@sizeOf(Int)], int, endian);
}
fn floatReadFromMemory(comptime F: type, target: Target, buffer: []const u8) F {
if (F == f80) {
switch (target.cpu.arch) {
.i386, .x86_64 => return std.math.make_f80(.{
.fraction = std.mem.readIntLittle(u64, buffer[0..8]),
.exp = std.mem.readIntLittle(u16, buffer[8..10]),
}),
else => {},
}
}
const Int = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @typeInfo(F).Float.bits,
} });
const int = readInt(Int, buffer[0..@sizeOf(Int)], target.cpu.arch.endian());
return @bitCast(F, int);
}
fn readInt(comptime Int: type, buffer: *const [@sizeOf(Int)]u8, endian: std.builtin.Endian) Int {
var result: Int = 0;
switch (endian) {
.Big => {
for (buffer) |byte| {
result <<= 8;
result |= byte;
}
},
.Little => {
var i: usize = buffer.len;
while (i != 0) {
i -= 1;
result <<= 8;
result |= buffer[i];
}
},
}
return result;
}
/// Asserts that the value is a float or an integer.
pub fn toFloat(val: Value, comptime T: type) T {
return switch (val.tag()) {
.float_16 => @floatCast(T, val.castTag(.float_16).?.data),
.float_32 => @floatCast(T, val.castTag(.float_32).?.data),
.float_64 => @floatCast(T, val.castTag(.float_64).?.data),
.float_80 => @floatCast(T, val.castTag(.float_80).?.data),
.float_128 => @floatCast(T, val.castTag(.float_128).?.data),
.zero => 0,
.one => 1,
.int_u64 => {
if (T == f80) {
@panic("TODO we can't lower this properly on non-x86 llvm backend yet");
}
return @intToFloat(T, val.castTag(.int_u64).?.data);
},
.int_i64 => {
if (T == f80) {
@panic("TODO we can't lower this properly on non-x86 llvm backend yet");
}
return @intToFloat(T, val.castTag(.int_i64).?.data);
},
.int_big_positive => @floatCast(T, bigIntToFloat(val.castTag(.int_big_positive).?.data, true)),
.int_big_negative => @floatCast(T, bigIntToFloat(val.castTag(.int_big_negative).?.data, false)),
else => unreachable,
};
}
/// TODO move this to std lib big int code
fn bigIntToFloat(limbs: []const std.math.big.Limb, positive: bool) f128 {
if (limbs.len == 0) return 0;
const base = std.math.maxInt(std.math.big.Limb) + 1;
var result: f128 = 0;
var i: usize = limbs.len;
while (i != 0) {
i -= 1;
const limb: f128 = @intToFloat(f128, limbs[i]);
result = @mulAdd(f128, base, result, limb);
}
if (positive) {
return result;
} else {
return -result;
}
}
pub fn clz(val: Value, ty: Type, target: Target) u64 {
const ty_bits = ty.intInfo(target).bits;
switch (val.tag()) {
.zero, .bool_false => return ty_bits,
.one, .bool_true => return ty_bits - 1,
.int_u64 => {
const big = @clz(u64, val.castTag(.int_u64).?.data);
return big + ty_bits - 64;
},
.int_i64 => {
@panic("TODO implement i64 Value clz");
},
.int_big_positive => {
// TODO: move this code into std lib big ints
const bigint = val.castTag(.int_big_positive).?.asBigInt();
// Limbs are stored in little-endian order but we need
// to iterate big-endian.
var total_limb_lz: u64 = 0;
var i: usize = bigint.limbs.len;
const bits_per_limb = @sizeOf(std.math.big.Limb) * 8;
while (i != 0) {
i -= 1;
const limb = bigint.limbs[i];
const this_limb_lz = @clz(std.math.big.Limb, limb);
total_limb_lz += this_limb_lz;
if (this_limb_lz != bits_per_limb) break;
}
const total_limb_bits = bigint.limbs.len * bits_per_limb;
return total_limb_lz + ty_bits - total_limb_bits;
},
.int_big_negative => {
@panic("TODO implement int_big_negative Value clz");
},
.the_only_possible_value => {
assert(ty_bits == 0);
return ty_bits;
},
else => unreachable,
}
}
pub fn ctz(val: Value, ty: Type, target: Target) u64 {
const ty_bits = ty.intInfo(target).bits;
switch (val.tag()) {
.zero, .bool_false => return ty_bits,
.one, .bool_true => return 0,
.int_u64 => {
const big = @ctz(u64, val.castTag(.int_u64).?.data);
return if (big == 64) ty_bits else big;
},
.int_i64 => {
@panic("TODO implement i64 Value ctz");
},
.int_big_positive => {
// TODO: move this code into std lib big ints
const bigint = val.castTag(.int_big_positive).?.asBigInt();
// Limbs are stored in little-endian order.
var result: u64 = 0;
for (bigint.limbs) |limb| {
const limb_tz = @ctz(std.math.big.Limb, limb);
result += limb_tz;
if (limb_tz != @sizeOf(std.math.big.Limb) * 8) break;
}
return result;
},
.int_big_negative => {
@panic("TODO implement int_big_negative Value ctz");
},
.the_only_possible_value => {
assert(ty_bits == 0);
return ty_bits;
},
else => unreachable,
}
}
pub fn popCount(val: Value, ty: Type, target: Target) u64 {
assert(!val.isUndef());
switch (val.tag()) {
.zero, .bool_false => return 0,
.one, .bool_true => return 1,
.int_u64 => return @popCount(u64, val.castTag(.int_u64).?.data),
else => {
const info = ty.intInfo(target);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, target);
var limbs_buffer: [4]std.math.big.Limb = undefined;
var result_bigint = BigIntMutable{
.limbs = &limbs_buffer,
.positive = undefined,
.len = undefined,
};
result_bigint.popCount(operand_bigint, info.bits);
return result_bigint.toConst().to(u64) catch unreachable;
},
}
}
pub fn bitReverse(val: Value, ty: Type, target: Target, arena: Allocator) !Value {
assert(!val.isUndef());
const info = ty.intInfo(target);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitReverse(operand_bigint, info.signedness, info.bits);
return fromBigInt(arena, result_bigint.toConst());
}
pub fn byteSwap(val: Value, ty: Type, target: Target, arena: Allocator) !Value {
assert(!val.isUndef());
const info = ty.intInfo(target);
// Bit count must be evenly divisible by 8
assert(info.bits % 8 == 0);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.byteSwap(operand_bigint, info.signedness, info.bits / 8);
return fromBigInt(arena, result_bigint.toConst());
}
/// Asserts the value is an integer and not undefined.
/// Returns the number of bits the value requires to represent stored in twos complement form.
pub fn intBitCountTwosComp(self: Value, target: Target) usize {
switch (self.tag()) {
.zero,
.bool_false,
.the_only_possible_value,
=> return 0,
.one,
.bool_true,
=> return 1,
.int_u64 => {
const x = self.castTag(.int_u64).?.data;
if (x == 0) return 0;
return @intCast(usize, std.math.log2(x) + 1);
},
.int_big_positive => return self.castTag(.int_big_positive).?.asBigInt().bitCountTwosComp(),
.int_big_negative => return self.castTag(.int_big_negative).?.asBigInt().bitCountTwosComp(),
.decl_ref_mut,
.comptime_field_ptr,
.extern_fn,
.decl_ref,
.function,
.variable,
.eu_payload_ptr,
.opt_payload_ptr,
=> return target.cpu.arch.ptrBitWidth(),
else => {
var buffer: BigIntSpace = undefined;
return self.toBigInt(&buffer, target).bitCountTwosComp();
},
}
}
/// Converts an integer or a float to a float. May result in a loss of information.
/// Caller can find out by equality checking the result against the operand.
pub fn floatCast(self: Value, arena: Allocator, dest_ty: Type, target: Target) !Value {
switch (dest_ty.floatBits(target)) {
16 => return Value.Tag.float_16.create(arena, self.toFloat(f16)),
32 => return Value.Tag.float_32.create(arena, self.toFloat(f32)),
64 => return Value.Tag.float_64.create(arena, self.toFloat(f64)),
80 => return Value.Tag.float_80.create(arena, self.toFloat(f80)),
128 => return Value.Tag.float_128.create(arena, self.toFloat(f128)),
else => unreachable,
}
}
/// Asserts the value is a float
pub fn floatHasFraction(self: Value) bool {
return switch (self.tag()) {
.zero,
.one,
=> false,
.float_16 => @rem(self.castTag(.float_16).?.data, 1) != 0,
.float_32 => @rem(self.castTag(.float_32).?.data, 1) != 0,
.float_64 => @rem(self.castTag(.float_64).?.data, 1) != 0,
//.float_80 => @rem(self.castTag(.float_80).?.data, 1) != 0,
.float_80 => @panic("TODO implement __remx in compiler-rt"),
.float_128 => @rem(self.castTag(.float_128).?.data, 1) != 0,
else => unreachable,
};
}
pub fn orderAgainstZero(lhs: Value) std.math.Order {
return orderAgainstZeroAdvanced(lhs, null) catch unreachable;
}
pub fn orderAgainstZeroAdvanced(
lhs: Value,
sema_kit: ?Module.WipAnalysis,
) Module.CompileError!std.math.Order {
return switch (lhs.tag()) {
.zero,
.bool_false,
.the_only_possible_value,
=> .eq,
.one,
.bool_true,
.decl_ref,
.decl_ref_mut,
.comptime_field_ptr,
.extern_fn,
.function,
.variable,
=> .gt,
.int_u64 => std.math.order(lhs.castTag(.int_u64).?.data, 0),
.int_i64 => std.math.order(lhs.castTag(.int_i64).?.data, 0),
.int_big_positive => lhs.castTag(.int_big_positive).?.asBigInt().orderAgainstScalar(0),
.int_big_negative => lhs.castTag(.int_big_negative).?.asBigInt().orderAgainstScalar(0),
.lazy_align => {
const ty = lhs.castTag(.lazy_align).?.data;
if (try ty.hasRuntimeBitsAdvanced(false, sema_kit)) {
return .gt;
} else {
return .eq;
}
},
.lazy_size => {
const ty = lhs.castTag(.lazy_size).?.data;
if (try ty.hasRuntimeBitsAdvanced(false, sema_kit)) {
return .gt;
} else {
return .eq;
}
},
.float_16 => std.math.order(lhs.castTag(.float_16).?.data, 0),
.float_32 => std.math.order(lhs.castTag(.float_32).?.data, 0),
.float_64 => std.math.order(lhs.castTag(.float_64).?.data, 0),
.float_80 => std.math.order(lhs.castTag(.float_80).?.data, 0),
.float_128 => std.math.order(lhs.castTag(.float_128).?.data, 0),
.elem_ptr => {
const elem_ptr = lhs.castTag(.elem_ptr).?.data;
switch (try elem_ptr.array_ptr.orderAgainstZeroAdvanced(sema_kit)) {
.lt => unreachable,
.gt => return .gt,
.eq => {
if (elem_ptr.index == 0) {
return .eq;
} else {
return .gt;
}
},
}
},
else => unreachable,
};
}
/// Asserts the value is comparable.
pub fn order(lhs: Value, rhs: Value, target: Target) std.math.Order {
return orderAdvanced(lhs, rhs, target, null) catch unreachable;
}
/// Asserts the value is comparable.
/// If sema_kit is null then this function asserts things are resolved and cannot fail.
pub fn orderAdvanced(lhs: Value, rhs: Value, target: Target, sema_kit: ?Module.WipAnalysis) !std.math.Order {
const lhs_tag = lhs.tag();
const rhs_tag = rhs.tag();
const lhs_against_zero = try lhs.orderAgainstZeroAdvanced(sema_kit);
const rhs_against_zero = try rhs.orderAgainstZeroAdvanced(sema_kit);
switch (lhs_against_zero) {
.lt => if (rhs_against_zero != .lt) return .lt,
.eq => return rhs_against_zero.invert(),
.gt => {},
}
switch (rhs_against_zero) {
.lt => if (lhs_against_zero != .lt) return .gt,
.eq => return lhs_against_zero,
.gt => {},
}
const lhs_float = lhs.isFloat();
const rhs_float = rhs.isFloat();
if (lhs_float and rhs_float) {
if (lhs_tag == rhs_tag) {
return switch (lhs.tag()) {
.float_16 => return std.math.order(lhs.castTag(.float_16).?.data, rhs.castTag(.float_16).?.data),
.float_32 => return std.math.order(lhs.castTag(.float_32).?.data, rhs.castTag(.float_32).?.data),
.float_64 => return std.math.order(lhs.castTag(.float_64).?.data, rhs.castTag(.float_64).?.data),
.float_80 => return std.math.order(lhs.castTag(.float_80).?.data, rhs.castTag(.float_80).?.data),
.float_128 => return std.math.order(lhs.castTag(.float_128).?.data, rhs.castTag(.float_128).?.data),
else => unreachable,
};
}
}
if (lhs_float or rhs_float) {
const lhs_f128 = lhs.toFloat(f128);
const rhs_f128 = rhs.toFloat(f128);
return std.math.order(lhs_f128, rhs_f128);
}
var lhs_bigint_space: BigIntSpace = undefined;
var rhs_bigint_space: BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_bigint_space, target, sema_kit);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_bigint_space, target, sema_kit);
return lhs_bigint.order(rhs_bigint);
}
/// Asserts the value is comparable. Does not take a type parameter because it supports
/// comparisons between heterogeneous types.
pub fn compareHetero(lhs: Value, op: std.math.CompareOperator, rhs: Value, target: Target) bool {
return compareHeteroAdvanced(lhs, op, rhs, target, null) catch unreachable;
}
pub fn compareHeteroAdvanced(
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
target: Target,
sema_kit: ?Module.WipAnalysis,
) !bool {
if (lhs.pointerDecl()) |lhs_decl| {
if (rhs.pointerDecl()) |rhs_decl| {
switch (op) {
.eq => return lhs_decl == rhs_decl,
.neq => return lhs_decl != rhs_decl,
else => {},
}
} else {
switch (op) {
.eq => return false,
.neq => return true,
else => {},
}
}
} else if (rhs.pointerDecl()) |_| {
switch (op) {
.eq => return false,
.neq => return true,
else => {},
}
}
return (try orderAdvanced(lhs, rhs, target, sema_kit)).compare(op);
}
/// Asserts the values are comparable. Both operands have type `ty`.
/// Vector results will be reduced with AND.
pub fn compare(lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type, mod: *Module) bool {
if (ty.zigTypeTag() == .Vector) {
var i: usize = 0;
while (i < ty.vectorLen()) : (i += 1) {
if (!compareScalar(lhs.indexVectorlike(i), op, rhs.indexVectorlike(i), ty.scalarType(), mod)) {
return false;
}
}
return true;
}
return compareScalar(lhs, op, rhs, ty, mod);
}
/// Asserts the values are comparable. Both operands have type `ty`.
pub fn compareScalar(
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
ty: Type,
mod: *Module,
) bool {
return switch (op) {
.eq => lhs.eql(rhs, ty, mod),
.neq => !lhs.eql(rhs, ty, mod),
else => compareHetero(lhs, op, rhs, mod.getTarget()),
};
}
/// Asserts the value is comparable.
/// Vector results will be reduced with AND.
pub fn compareWithZero(lhs: Value, op: std.math.CompareOperator) bool {
return compareWithZeroAdvanced(lhs, op, null) catch unreachable;
}
pub fn compareWithZeroAdvanced(
lhs: Value,
op: std.math.CompareOperator,
sema_kit: ?Module.WipAnalysis,
) Module.CompileError!bool {
switch (lhs.tag()) {
.repeated => return lhs.castTag(.repeated).?.data.compareWithZeroAdvanced(op, sema_kit),
.aggregate => {
for (lhs.castTag(.aggregate).?.data) |elem_val| {
if (!(try elem_val.compareWithZeroAdvanced(op, sema_kit))) return false;
}
return true;
},
else => {},
}
return (try orderAgainstZeroAdvanced(lhs, sema_kit)).compare(op);
}
/// This function is used by hash maps and so treats floating-point NaNs as equal
/// to each other, and not equal to other floating-point values.
/// Similarly, it treats `undef` as a distinct value from all other values.
/// This function has to be able to support implicit coercion of `a` to `ty`. That is,
/// `ty` will be an exactly correct Type for `b` but it may be a post-coerced Type
/// for `a`. This function must act *as if* `a` has been coerced to `ty`. This complication
/// is required in order to make generic function instantiation efficient - specifically
/// the insertion into the monomorphized function table.
pub fn eql(a: Value, b: Value, ty: Type, mod: *Module) bool {
return eqlAdvanced(a, b, ty, mod, null) catch unreachable;
}
/// If `null` is provided for `sema_kit` then it is guaranteed no error will be returned.
pub fn eqlAdvanced(
a: Value,
b: Value,
ty: Type,
mod: *Module,
sema_kit: ?Module.WipAnalysis,
) Module.CompileError!bool {
const target = mod.getTarget();
const a_tag = a.tag();
const b_tag = b.tag();
if (a_tag == b_tag) switch (a_tag) {
.undef => return true,
.void_value, .null_value, .the_only_possible_value, .empty_struct_value => return true,
.enum_literal => {
const a_name = a.castTag(.enum_literal).?.data;
const b_name = b.castTag(.enum_literal).?.data;
return std.mem.eql(u8, a_name, b_name);
},
.enum_field_index => {
const a_field_index = a.castTag(.enum_field_index).?.data;
const b_field_index = b.castTag(.enum_field_index).?.data;
return a_field_index == b_field_index;
},
.opt_payload => {
const a_payload = a.castTag(.opt_payload).?.data;
const b_payload = b.castTag(.opt_payload).?.data;
var buffer: Type.Payload.ElemType = undefined;
return eqlAdvanced(a_payload, b_payload, ty.optionalChild(&buffer), mod, sema_kit);
},
.slice => {
const a_payload = a.castTag(.slice).?.data;
const b_payload = b.castTag(.slice).?.data;
if (!(try eqlAdvanced(a_payload.len, b_payload.len, Type.usize, mod, sema_kit))) {
return false;
}
var ptr_buf: Type.SlicePtrFieldTypeBuffer = undefined;
const ptr_ty = ty.slicePtrFieldType(&ptr_buf);
return eqlAdvanced(a_payload.ptr, b_payload.ptr, ptr_ty, mod, sema_kit);
},
.elem_ptr => {
const a_payload = a.castTag(.elem_ptr).?.data;
const b_payload = b.castTag(.elem_ptr).?.data;
if (a_payload.index != b_payload.index) return false;
return eqlAdvanced(a_payload.array_ptr, b_payload.array_ptr, ty, mod, sema_kit);
},
.field_ptr => {
const a_payload = a.castTag(.field_ptr).?.data;
const b_payload = b.castTag(.field_ptr).?.data;
if (a_payload.field_index != b_payload.field_index) return false;
return eqlAdvanced(a_payload.container_ptr, b_payload.container_ptr, ty, mod, sema_kit);
},
.@"error" => {
const a_name = a.castTag(.@"error").?.data.name;
const b_name = b.castTag(.@"error").?.data.name;
return std.mem.eql(u8, a_name, b_name);
},
.eu_payload => {
const a_payload = a.castTag(.eu_payload).?.data;
const b_payload = b.castTag(.eu_payload).?.data;
return eqlAdvanced(a_payload, b_payload, ty.errorUnionPayload(), mod, sema_kit);
},
.eu_payload_ptr => @panic("TODO: Implement more pointer eql cases"),
.opt_payload_ptr => @panic("TODO: Implement more pointer eql cases"),
.function => {
const a_payload = a.castTag(.function).?.data;
const b_payload = b.castTag(.function).?.data;
return a_payload == b_payload;
},
.aggregate => {
const a_field_vals = a.castTag(.aggregate).?.data;
const b_field_vals = b.castTag(.aggregate).?.data;
assert(a_field_vals.len == b_field_vals.len);
if (ty.isTupleOrAnonStruct()) {
const types = ty.tupleFields().types;
assert(types.len == a_field_vals.len);
for (types) |field_ty, i| {
if (!(try eqlAdvanced(a_field_vals[i], b_field_vals[i], field_ty, mod, sema_kit))) {
return false;
}
}
return true;
}
if (ty.zigTypeTag() == .Struct) {
const fields = ty.structFields().values();
assert(fields.len == a_field_vals.len);
for (fields) |field, i| {
if (!(try eqlAdvanced(a_field_vals[i], b_field_vals[i], field.ty, mod, sema_kit))) {
return false;
}
}
return true;
}
const elem_ty = ty.childType();
for (a_field_vals) |a_elem, i| {
const b_elem = b_field_vals[i];
if (!(try eqlAdvanced(a_elem, b_elem, elem_ty, mod, sema_kit))) {
return false;
}
}
return true;
},
.@"union" => {
const a_union = a.castTag(.@"union").?.data;
const b_union = b.castTag(.@"union").?.data;
switch (ty.containerLayout()) {
.Packed, .Extern => {
const tag_ty = ty.unionTagTypeHypothetical();
if (!(try a_union.tag.eqlAdvanced(b_union.tag, tag_ty, mod, sema_kit))) {
// In this case, we must disregard mismatching tags and compare
// based on the in-memory bytes of the payloads.
@panic("TODO comptime comparison of extern union values with mismatching tags");
}
},
.Auto => {
const tag_ty = ty.unionTagTypeHypothetical();
if (!(try a_union.tag.eqlAdvanced(b_union.tag, tag_ty, mod, sema_kit))) {
return false;
}
},
}
const active_field_ty = ty.unionFieldType(a_union.tag, mod);
return a_union.val.eqlAdvanced(b_union.val, active_field_ty, mod, sema_kit);
},
else => {},
} else if (a_tag == .null_value or b_tag == .null_value) {
return false;
} else if (a_tag == .undef or b_tag == .undef) {
return false;
}
if (a.pointerDecl()) |a_decl| {
if (b.pointerDecl()) |b_decl| {
return a_decl == b_decl;
} else {
return false;
}
} else if (b.pointerDecl()) |_| {
return false;
}
switch (ty.zigTypeTag()) {
.Type => {
var buf_a: ToTypeBuffer = undefined;
var buf_b: ToTypeBuffer = undefined;
const a_type = a.toType(&buf_a);
const b_type = b.toType(&buf_b);
return a_type.eql(b_type, mod);
},
.Enum => {
var buf_a: Payload.U64 = undefined;
var buf_b: Payload.U64 = undefined;
const a_val = a.enumToInt(ty, &buf_a);
const b_val = b.enumToInt(ty, &buf_b);
var buf_ty: Type.Payload.Bits = undefined;
const int_ty = ty.intTagType(&buf_ty);
return eqlAdvanced(a_val, b_val, int_ty, mod, sema_kit);
},
.Array, .Vector => {
const len = ty.arrayLen();
const elem_ty = ty.childType();
var i: usize = 0;
var a_buf: ElemValueBuffer = undefined;
var b_buf: ElemValueBuffer = undefined;
while (i < len) : (i += 1) {
const a_elem = elemValueBuffer(a, mod, i, &a_buf);
const b_elem = elemValueBuffer(b, mod, i, &b_buf);
if (!(try eqlAdvanced(a_elem, b_elem, elem_ty, mod, sema_kit))) {
return false;
}
}
return true;
},
.Struct => {
// A tuple can be represented with .empty_struct_value,
// the_one_possible_value, .aggregate in which case we could
// end up here and the values are equal if the type has zero fields.
return ty.isTupleOrAnonStruct() and ty.structFieldCount() != 0;
},
.Float => {
switch (ty.floatBits(target)) {
16 => return @bitCast(u16, a.toFloat(f16)) == @bitCast(u16, b.toFloat(f16)),
32 => return @bitCast(u32, a.toFloat(f32)) == @bitCast(u32, b.toFloat(f32)),
64 => return @bitCast(u64, a.toFloat(f64)) == @bitCast(u64, b.toFloat(f64)),
80 => return @bitCast(u80, a.toFloat(f80)) == @bitCast(u80, b.toFloat(f80)),
128 => return @bitCast(u128, a.toFloat(f128)) == @bitCast(u128, b.toFloat(f128)),
else => unreachable,
}
},
.ComptimeFloat => {
const a_float = a.toFloat(f128);
const b_float = b.toFloat(f128);
const a_nan = std.math.isNan(a_float);
const b_nan = std.math.isNan(b_float);
if (a_nan != b_nan) return false;
if (std.math.signbit(a_float) != std.math.signbit(b_float)) return false;
if (a_nan) return true;
return a_float == b_float;
},
.Optional => {
if (a.tag() != .opt_payload and b.tag() == .opt_payload) {
var buffer: Payload.SubValue = .{
.base = .{ .tag = .opt_payload },
.data = a,
};
return eqlAdvanced(Value.initPayload(&buffer.base), b, ty, mod, sema_kit);
}
},
else => {},
}
return (try orderAdvanced(a, b, target, sema_kit)).compare(.eq);
}
/// This function is used by hash maps and so treats floating-point NaNs as equal
/// to each other, and not equal to other floating-point values.
pub fn hash(val: Value, ty: Type, hasher: *std.hash.Wyhash, mod: *Module) void {
const zig_ty_tag = ty.zigTypeTag();
std.hash.autoHash(hasher, zig_ty_tag);
if (val.isUndef()) return;
switch (zig_ty_tag) {
.BoundFn => unreachable, // TODO remove this from the language
.Opaque => unreachable, // Cannot hash opaque types
.Void,
.NoReturn,
.Undefined,
.Null,
=> {},
.Type => {
var buf: ToTypeBuffer = undefined;
return val.toType(&buf).hashWithHasher(hasher, mod);
},
.Float => {
// For hash/eql purposes, we treat floats as their IEEE integer representation.
switch (ty.floatBits(mod.getTarget())) {
16 => std.hash.autoHash(hasher, @bitCast(u16, val.toFloat(f16))),
32 => std.hash.autoHash(hasher, @bitCast(u32, val.toFloat(f32))),
64 => std.hash.autoHash(hasher, @bitCast(u64, val.toFloat(f64))),
80 => std.hash.autoHash(hasher, @bitCast(u80, val.toFloat(f80))),
128 => std.hash.autoHash(hasher, @bitCast(u128, val.toFloat(f128))),
else => unreachable,
}
},
.ComptimeFloat => {
const float = val.toFloat(f128);
const is_nan = std.math.isNan(float);
std.hash.autoHash(hasher, is_nan);
if (!is_nan) {
std.hash.autoHash(hasher, @bitCast(u128, float));
} else {
std.hash.autoHash(hasher, std.math.signbit(float));
}
},
.Bool, .Int, .ComptimeInt, .Pointer => switch (val.tag()) {
.slice => {
const slice = val.castTag(.slice).?.data;
var ptr_buf: Type.SlicePtrFieldTypeBuffer = undefined;
const ptr_ty = ty.slicePtrFieldType(&ptr_buf);
hash(slice.ptr, ptr_ty, hasher, mod);
hash(slice.len, Type.usize, hasher, mod);
},
else => return hashPtr(val, hasher, mod.getTarget()),
},
.Array, .Vector => {
const len = ty.arrayLen();
const elem_ty = ty.childType();
var index: usize = 0;
var elem_value_buf: ElemValueBuffer = undefined;
while (index < len) : (index += 1) {
const elem_val = val.elemValueBuffer(mod, index, &elem_value_buf);
elem_val.hash(elem_ty, hasher, mod);
}
},
.Struct => {
if (ty.isTupleOrAnonStruct()) {
const fields = ty.tupleFields();
for (fields.values) |field_val, i| {
field_val.hash(fields.types[i], hasher, mod);
}
return;
}
const fields = ty.structFields().values();
if (fields.len == 0) return;
switch (val.tag()) {
.empty_struct_value => {
for (fields) |field| {
field.default_val.hash(field.ty, hasher, mod);
}
},
.aggregate => {
const field_values = val.castTag(.aggregate).?.data;
for (field_values) |field_val, i| {
field_val.hash(fields[i].ty, hasher, mod);
}
},
else => unreachable,
}
},
.Optional => {
if (val.castTag(.opt_payload)) |payload| {
std.hash.autoHash(hasher, true); // non-null
const sub_val = payload.data;
var buffer: Type.Payload.ElemType = undefined;
const sub_ty = ty.optionalChild(&buffer);
sub_val.hash(sub_ty, hasher, mod);
} else {
std.hash.autoHash(hasher, false); // non-null
}
},
.ErrorUnion => {
if (val.tag() == .@"error") {
std.hash.autoHash(hasher, false); // error
const sub_ty = ty.errorUnionSet();
val.hash(sub_ty, hasher, mod);
return;
}
if (val.castTag(.eu_payload)) |payload| {
std.hash.autoHash(hasher, true); // payload
const sub_ty = ty.errorUnionPayload();
payload.data.hash(sub_ty, hasher, mod);
return;
} else unreachable;
},
.ErrorSet => {
// just hash the literal error value. this is the most stable
// thing between compiler invocations. we can't use the error
// int cause (1) its not stable and (2) we don't have access to mod.
hasher.update(val.getError().?);
},
.Enum => {
var enum_space: Payload.U64 = undefined;
const int_val = val.enumToInt(ty, &enum_space);
hashInt(int_val, hasher, mod.getTarget());
},
.Union => {
const union_obj = val.cast(Payload.Union).?.data;
if (ty.unionTagType()) |tag_ty| {
union_obj.tag.hash(tag_ty, hasher, mod);
}
const active_field_ty = ty.unionFieldType(union_obj.tag, mod);
union_obj.val.hash(active_field_ty, hasher, mod);
},
.Fn => {
const func: *Module.Fn = val.castTag(.function).?.data;
// Note that his hashes the *Fn rather than the *Decl. This is
// to differentiate function bodies from function pointers.
// This is currently redundant since we already hash the zig type tag
// at the top of this function.
std.hash.autoHash(hasher, func);
},
.Frame => {
@panic("TODO implement hashing frame values");
},
.AnyFrame => {
@panic("TODO implement hashing anyframe values");
},
.EnumLiteral => {
const bytes = val.castTag(.enum_literal).?.data;
hasher.update(bytes);
},
}
}
pub const ArrayHashContext = struct {
ty: Type,
mod: *Module,
pub fn hash(self: @This(), val: Value) u32 {
const other_context: HashContext = .{ .ty = self.ty, .mod = self.mod };
return @truncate(u32, other_context.hash(val));
}
pub fn eql(self: @This(), a: Value, b: Value, b_index: usize) bool {
_ = b_index;
return a.eql(b, self.ty, self.mod);
}
};
pub const HashContext = struct {
ty: Type,
mod: *Module,
pub fn hash(self: @This(), val: Value) u64 {
var hasher = std.hash.Wyhash.init(0);
val.hash(self.ty, &hasher, self.mod);
return hasher.final();
}
pub fn eql(self: @This(), a: Value, b: Value) bool {
return a.eql(b, self.ty, self.mod);
}
};
pub fn isComptimeMutablePtr(val: Value) bool {
return switch (val.tag()) {
.decl_ref_mut, .comptime_field_ptr => true,
.elem_ptr => isComptimeMutablePtr(val.castTag(.elem_ptr).?.data.array_ptr),
.field_ptr => isComptimeMutablePtr(val.castTag(.field_ptr).?.data.container_ptr),
.eu_payload_ptr => isComptimeMutablePtr(val.castTag(.eu_payload_ptr).?.data.container_ptr),
.opt_payload_ptr => isComptimeMutablePtr(val.castTag(.opt_payload_ptr).?.data.container_ptr),
else => false,
};
}
pub fn canMutateComptimeVarState(val: Value) bool {
if (val.isComptimeMutablePtr()) return true;
switch (val.tag()) {
.repeated => return val.castTag(.repeated).?.data.canMutateComptimeVarState(),
.eu_payload => return val.castTag(.eu_payload).?.data.canMutateComptimeVarState(),
.eu_payload_ptr => return val.castTag(.eu_payload_ptr).?.data.container_ptr.canMutateComptimeVarState(),
.opt_payload => return val.castTag(.opt_payload).?.data.canMutateComptimeVarState(),
.opt_payload_ptr => return val.castTag(.opt_payload_ptr).?.data.container_ptr.canMutateComptimeVarState(),
.aggregate => {
const fields = val.castTag(.aggregate).?.data;
for (fields) |field| {
if (field.canMutateComptimeVarState()) return true;
}
return false;
},
.@"union" => return val.cast(Payload.Union).?.data.val.canMutateComptimeVarState(),
.slice => return val.castTag(.slice).?.data.ptr.canMutateComptimeVarState(),
else => return false,
}
}
/// Gets the decl referenced by this pointer. If the pointer does not point
/// to a decl, or if it points to some part of a decl (like field_ptr or element_ptr),
/// this function returns null.
pub fn pointerDecl(val: Value) ?Module.Decl.Index {
return switch (val.tag()) {
.decl_ref_mut => val.castTag(.decl_ref_mut).?.data.decl_index,
.extern_fn => val.castTag(.extern_fn).?.data.owner_decl,
.function => val.castTag(.function).?.data.owner_decl,
.variable => val.castTag(.variable).?.data.owner_decl,
.decl_ref => val.cast(Payload.Decl).?.data,
else => null,
};
}
fn hashInt(int_val: Value, hasher: *std.hash.Wyhash, target: Target) void {
var buffer: BigIntSpace = undefined;
const big = int_val.toBigInt(&buffer, target);
std.hash.autoHash(hasher, big.positive);
for (big.limbs) |limb| {
std.hash.autoHash(hasher, limb);
}
}
fn hashPtr(ptr_val: Value, hasher: *std.hash.Wyhash, target: Target) void {
switch (ptr_val.tag()) {
.decl_ref,
.decl_ref_mut,
.extern_fn,
.function,
.variable,
=> {
const decl: Module.Decl.Index = ptr_val.pointerDecl().?;
std.hash.autoHash(hasher, decl);
},
.comptime_field_ptr => {
std.hash.autoHash(hasher, Value.Tag.comptime_field_ptr);
},
.elem_ptr => {
const elem_ptr = ptr_val.castTag(.elem_ptr).?.data;
hashPtr(elem_ptr.array_ptr, hasher, target);
std.hash.autoHash(hasher, Value.Tag.elem_ptr);
std.hash.autoHash(hasher, elem_ptr.index);
},
.field_ptr => {
const field_ptr = ptr_val.castTag(.field_ptr).?.data;
std.hash.autoHash(hasher, Value.Tag.field_ptr);
hashPtr(field_ptr.container_ptr, hasher, target);
std.hash.autoHash(hasher, field_ptr.field_index);
},
.eu_payload_ptr => {
const err_union_ptr = ptr_val.castTag(.eu_payload_ptr).?.data;
std.hash.autoHash(hasher, Value.Tag.eu_payload_ptr);
hashPtr(err_union_ptr.container_ptr, hasher, target);
},
.opt_payload_ptr => {
const opt_ptr = ptr_val.castTag(.opt_payload_ptr).?.data;
std.hash.autoHash(hasher, Value.Tag.opt_payload_ptr);
hashPtr(opt_ptr.container_ptr, hasher, target);
},
.zero,
.one,
.int_u64,
.int_i64,
.int_big_positive,
.int_big_negative,
.bool_false,
.bool_true,
.the_only_possible_value,
.lazy_align,
.lazy_size,
=> return hashInt(ptr_val, hasher, target),
else => unreachable,
}
}
pub fn slicePtr(val: Value) Value {
return switch (val.tag()) {
.slice => val.castTag(.slice).?.data.ptr,
// TODO this should require being a slice tag, and not allow decl_ref, field_ptr, etc.
.decl_ref, .decl_ref_mut, .field_ptr, .elem_ptr, .comptime_field_ptr => val,
else => unreachable,
};
}
pub fn sliceLen(val: Value, mod: *Module) u64 {
return switch (val.tag()) {
.slice => val.castTag(.slice).?.data.len.toUnsignedInt(mod.getTarget()),
.decl_ref => {
const decl_index = val.castTag(.decl_ref).?.data;
const decl = mod.declPtr(decl_index);
if (decl.ty.zigTypeTag() == .Array) {
return decl.ty.arrayLen();
} else {
return 1;
}
},
.decl_ref_mut => {
const decl_index = val.castTag(.decl_ref_mut).?.data.decl_index;
const decl = mod.declPtr(decl_index);
if (decl.ty.zigTypeTag() == .Array) {
return decl.ty.arrayLen();
} else {
return 1;
}
},
.comptime_field_ptr => {
const payload = val.castTag(.comptime_field_ptr).?.data;
if (payload.field_ty.zigTypeTag() == .Array) {
return payload.field_ty.arrayLen();
} else {
return 1;
}
},
else => unreachable,
};
}
/// Index into a vector-like `Value`. Asserts `index` is a valid index for `val`.
/// Some scalar values are considered vector-like to avoid needing to allocate
/// a new `repeated` each time a constant is used.
pub fn indexVectorlike(val: Value, index: usize) Value {
return switch (val.tag()) {
.aggregate => val.castTag(.aggregate).?.data[index],
.repeated => val.castTag(.repeated).?.data,
// These values will implicitly be treated as `repeated`.
.zero,
.one,
.bool_false,
.bool_true,
.int_i64,
.int_u64,
=> val,
else => unreachable,
};
}
/// Asserts the value is a single-item pointer to an array, or an array,
/// or an unknown-length pointer, and returns the element value at the index.
pub fn elemValue(val: Value, mod: *Module, arena: Allocator, index: usize) !Value {
return elemValueAdvanced(val, mod, index, arena, undefined);
}
pub const ElemValueBuffer = Payload.U64;
pub fn elemValueBuffer(val: Value, mod: *Module, index: usize, buffer: *ElemValueBuffer) Value {
return elemValueAdvanced(val, mod, index, null, buffer) catch unreachable;
}
pub fn elemValueAdvanced(
val: Value,
mod: *Module,
index: usize,
arena: ?Allocator,
buffer: *ElemValueBuffer,
) error{OutOfMemory}!Value {
switch (val.tag()) {
// This is the case of accessing an element of an undef array.
.undef => return Value.undef,
.empty_array => unreachable, // out of bounds array index
.empty_struct_value => unreachable, // out of bounds array index
.empty_array_sentinel => {
assert(index == 0); // The only valid index for an empty array with sentinel.
return val.castTag(.empty_array_sentinel).?.data;
},
.bytes => {
const byte = val.castTag(.bytes).?.data[index];
if (arena) |a| {
return Tag.int_u64.create(a, byte);
} else {
buffer.* = .{
.base = .{ .tag = .int_u64 },
.data = byte,
};
return initPayload(&buffer.base);
}
},
.str_lit => {
const str_lit = val.castTag(.str_lit).?.data;
const bytes = mod.string_literal_bytes.items[str_lit.index..][0..str_lit.len];
const byte = bytes[index];
if (arena) |a| {
return Tag.int_u64.create(a, byte);
} else {
buffer.* = .{
.base = .{ .tag = .int_u64 },
.data = byte,
};
return initPayload(&buffer.base);
}
},
// No matter the index; all the elements are the same!
.repeated => return val.castTag(.repeated).?.data,
.aggregate => return val.castTag(.aggregate).?.data[index],
.slice => return val.castTag(.slice).?.data.ptr.elemValueAdvanced(mod, index, arena, buffer),
.decl_ref => return mod.declPtr(val.castTag(.decl_ref).?.data).val.elemValueAdvanced(mod, index, arena, buffer),
.decl_ref_mut => return mod.declPtr(val.castTag(.decl_ref_mut).?.data.decl_index).val.elemValueAdvanced(mod, index, arena, buffer),
.comptime_field_ptr => return val.castTag(.comptime_field_ptr).?.data.field_val.elemValueAdvanced(mod, index, arena, buffer),
.elem_ptr => {
const data = val.castTag(.elem_ptr).?.data;
return data.array_ptr.elemValueAdvanced(mod, index + data.index, arena, buffer);
},
// The child type of arrays which have only one possible value need
// to have only one possible value itself.
.the_only_possible_value => return val,
else => unreachable,
}
}
// Asserts that the provided start/end are in-bounds.
pub fn sliceArray(
val: Value,
mod: *Module,
arena: Allocator,
start: usize,
end: usize,
) error{OutOfMemory}!Value {
return switch (val.tag()) {
.empty_array_sentinel => if (start == 0 and end == 1) val else Value.initTag(.empty_array),
.bytes => Tag.bytes.create(arena, val.castTag(.bytes).?.data[start..end]),
.str_lit => {
const str_lit = val.castTag(.str_lit).?.data;
return Tag.str_lit.create(arena, .{
.index = @intCast(u32, str_lit.index + start),
.len = @intCast(u32, end - start),
});
},
.aggregate => Tag.aggregate.create(arena, val.castTag(.aggregate).?.data[start..end]),
.slice => sliceArray(val.castTag(.slice).?.data.ptr, mod, arena, start, end),
.decl_ref => sliceArray(mod.declPtr(val.castTag(.decl_ref).?.data).val, mod, arena, start, end),
.decl_ref_mut => sliceArray(mod.declPtr(val.castTag(.decl_ref_mut).?.data.decl_index).val, mod, arena, start, end),
.comptime_field_ptr => sliceArray(val.castTag(.comptime_field_ptr).?.data.field_val, mod, arena, start, end),
.elem_ptr => blk: {
const elem_ptr = val.castTag(.elem_ptr).?.data;
break :blk sliceArray(elem_ptr.array_ptr, mod, arena, start + elem_ptr.index, end + elem_ptr.index);
},
.repeated,
.the_only_possible_value,
=> val,
else => unreachable,
};
}
pub fn fieldValue(val: Value, ty: Type, index: usize) Value {
switch (val.tag()) {
.aggregate => {
const field_values = val.castTag(.aggregate).?.data;
return field_values[index];
},
.@"union" => {
const payload = val.castTag(.@"union").?.data;
// TODO assert the tag is correct
return payload.val;
},
.the_only_possible_value => return ty.onePossibleValue().?,
.empty_struct_value => {
if (ty.isTupleOrAnonStruct()) {
const tuple = ty.tupleFields();
return tuple.values[index];
}
unreachable;
},
.undef => return Value.undef,
else => unreachable,
}
}
pub fn unionTag(val: Value) Value {
switch (val.tag()) {
.undef, .enum_field_index => return val,
.@"union" => return val.castTag(.@"union").?.data.tag,
else => unreachable,
}
}
/// Returns a pointer to the element value at the index.
pub fn elemPtr(
val: Value,
ty: Type,
arena: Allocator,
index: usize,
mod: *Module,
) Allocator.Error!Value {
const elem_ty = ty.elemType2();
const ptr_val = switch (val.tag()) {
.slice => val.castTag(.slice).?.data.ptr,
else => val,
};
if (ptr_val.tag() == .elem_ptr) {
const elem_ptr = ptr_val.castTag(.elem_ptr).?.data;
if (elem_ptr.elem_ty.eql(elem_ty, mod)) {
return Tag.elem_ptr.create(arena, .{
.array_ptr = elem_ptr.array_ptr,
.elem_ty = elem_ptr.elem_ty,
.index = elem_ptr.index + index,
});
}
}
return Tag.elem_ptr.create(arena, .{
.array_ptr = ptr_val,
.elem_ty = elem_ty,
.index = index,
});
}
pub fn isUndef(self: Value) bool {
return self.tag() == .undef;
}
/// TODO: check for cases such as array that is not marked undef but all the element
/// values are marked undef, or struct that is not marked undef but all fields are marked
/// undef, etc.
pub fn isUndefDeep(self: Value) bool {
return self.isUndef();
}
/// Asserts the value is not undefined and not unreachable.
/// Integer value 0 is considered null because of C pointers.
pub fn isNull(self: Value) bool {
return switch (self.tag()) {
.null_value => true,
.opt_payload => false,
// If it's not one of those two tags then it must be a C pointer value,
// in which case the value 0 is null and other values are non-null.
.zero,
.bool_false,
.the_only_possible_value,
=> true,
.one,
.bool_true,
=> false,
.int_u64,
.int_i64,
.int_big_positive,
.int_big_negative,
=> compareWithZero(self, .eq),
.undef => unreachable,
.unreachable_value => unreachable,
.inferred_alloc => unreachable,
.inferred_alloc_comptime => unreachable,
else => false,
};
}
/// Valid for all types. Asserts the value is not undefined and not unreachable.
/// Prefer `errorUnionIsPayload` to find out whether something is an error or not
/// because it works without having to figure out the string.
pub fn getError(self: Value) ?[]const u8 {
return switch (self.tag()) {
.@"error" => self.castTag(.@"error").?.data.name,
.int_u64 => @panic("TODO"),
.int_i64 => @panic("TODO"),
.int_big_positive => @panic("TODO"),
.int_big_negative => @panic("TODO"),
.one => @panic("TODO"),
.undef => unreachable,
.unreachable_value => unreachable,
.inferred_alloc => unreachable,
.inferred_alloc_comptime => unreachable,
else => null,
};
}
/// Assumes the type is an error union. Returns true if and only if the value is
/// the error union payload, not an error.
pub fn errorUnionIsPayload(val: Value) bool {
return switch (val.tag()) {
.eu_payload => true,
else => false,
.undef => unreachable,
.inferred_alloc => unreachable,
.inferred_alloc_comptime => unreachable,
};
}
/// Value of the optional, null if optional has no payload.
pub fn optionalValue(val: Value) ?Value {
if (val.isNull()) return null;
// Valid for optional representation to be the direct value
// and not use opt_payload.
return if (val.castTag(.opt_payload)) |p| p.data else val;
}
/// Valid for all types. Asserts the value is not undefined.
pub fn isFloat(self: Value) bool {
return switch (self.tag()) {
.undef => unreachable,
.inferred_alloc => unreachable,
.inferred_alloc_comptime => unreachable,
.float_16,
.float_32,
.float_64,
.float_80,
.float_128,
=> true,
else => false,
};
}
pub fn intToFloat(val: Value, arena: Allocator, int_ty: Type, float_ty: Type, target: Target) !Value {
if (int_ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, int_ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intToFloatScalar(val.indexVectorlike(i), arena, float_ty.scalarType(), target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return intToFloatScalar(val, arena, float_ty, target);
}
pub fn intToFloatScalar(val: Value, arena: Allocator, float_ty: Type, target: Target) !Value {
switch (val.tag()) {
.undef, .zero, .one => return val,
.the_only_possible_value => return Value.initTag(.zero), // for i0, u0
.int_u64 => {
return intToFloatInner(val.castTag(.int_u64).?.data, arena, float_ty, target);
},
.int_i64 => {
return intToFloatInner(val.castTag(.int_i64).?.data, arena, float_ty, target);
},
.int_big_positive => {
const limbs = val.castTag(.int_big_positive).?.data;
const float = bigIntToFloat(limbs, true);
return floatToValue(float, arena, float_ty, target);
},
.int_big_negative => {
const limbs = val.castTag(.int_big_negative).?.data;
const float = bigIntToFloat(limbs, false);
return floatToValue(float, arena, float_ty, target);
},
else => unreachable,
}
}
fn intToFloatInner(x: anytype, arena: Allocator, dest_ty: Type, target: Target) !Value {
switch (dest_ty.floatBits(target)) {
16 => return Value.Tag.float_16.create(arena, @intToFloat(f16, x)),
32 => return Value.Tag.float_32.create(arena, @intToFloat(f32, x)),
64 => return Value.Tag.float_64.create(arena, @intToFloat(f64, x)),
80 => return Value.Tag.float_80.create(arena, @intToFloat(f80, x)),
128 => return Value.Tag.float_128.create(arena, @intToFloat(f128, x)),
else => unreachable,
}
}
fn floatToValue(float: f128, arena: Allocator, dest_ty: Type, target: Target) !Value {
switch (dest_ty.floatBits(target)) {
16 => return Value.Tag.float_16.create(arena, @floatCast(f16, float)),
32 => return Value.Tag.float_32.create(arena, @floatCast(f32, float)),
64 => return Value.Tag.float_64.create(arena, @floatCast(f64, float)),
80 => return Value.Tag.float_80.create(arena, @floatCast(f80, float)),
128 => return Value.Tag.float_128.create(arena, float),
else => unreachable,
}
}
fn calcLimbLenFloat(scalar: anytype) usize {
if (scalar == 0) {
return 1;
}
const w_value = @fabs(scalar);
return @divFloor(@floatToInt(std.math.big.Limb, std.math.log2(w_value)), @typeInfo(std.math.big.Limb).Int.bits) + 1;
}
pub const OverflowArithmeticResult = struct {
/// TODO: Rename to `overflow_bit` and make of type `u1`.
overflowed: Value,
wrapped_result: Value,
};
pub fn fromBigInt(arena: Allocator, big_int: BigIntConst) !Value {
if (big_int.positive) {
if (big_int.to(u64)) |x| {
return Value.Tag.int_u64.create(arena, x);
} else |_| {
return Value.Tag.int_big_positive.create(arena, big_int.limbs);
}
} else {
if (big_int.to(i64)) |x| {
return Value.Tag.int_i64.create(arena, x);
} else |_| {
return Value.Tag.int_big_negative.create(arena, big_int.limbs);
}
}
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intAddSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intAddSatScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return intAddSatScalar(lhs, rhs, ty, arena, target);
}
/// Supports integers only; asserts neither operand is undefined.
pub fn intAddSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
assert(!lhs.isUndef());
assert(!rhs.isUndef());
const info = ty.intInfo(target);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.addSat(lhs_bigint, rhs_bigint, info.signedness, info.bits);
return fromBigInt(arena, result_bigint.toConst());
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intSubSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intSubSatScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return intSubSatScalar(lhs, rhs, ty, arena, target);
}
/// Supports integers only; asserts neither operand is undefined.
pub fn intSubSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
assert(!lhs.isUndef());
assert(!rhs.isUndef());
const info = ty.intInfo(target);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.subSat(lhs_bigint, rhs_bigint, info.signedness, info.bits);
return fromBigInt(arena, result_bigint.toConst());
}
pub fn intMulWithOverflow(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !OverflowArithmeticResult {
if (ty.zigTypeTag() == .Vector) {
const overflowed_data = try arena.alloc(Value, ty.vectorLen());
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
const of_math_result = try intMulWithOverflowScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
overflowed_data[i] = of_math_result.overflowed;
scalar.* = of_math_result.wrapped_result;
}
return OverflowArithmeticResult{
.overflowed = try Value.Tag.aggregate.create(arena, overflowed_data),
.wrapped_result = try Value.Tag.aggregate.create(arena, result_data),
};
}
return intMulWithOverflowScalar(lhs, rhs, ty, arena, target);
}
pub fn intMulWithOverflowScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !OverflowArithmeticResult {
const info = ty.intInfo(target);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
var limbs_buffer = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, arena);
const overflowed = !result_bigint.toConst().fitsInTwosComp(info.signedness, info.bits);
if (overflowed) {
result_bigint.truncate(result_bigint.toConst(), info.signedness, info.bits);
}
return OverflowArithmeticResult{
.overflowed = makeBool(overflowed),
.wrapped_result = try fromBigInt(arena, result_bigint.toConst()),
};
}
/// Supports both (vectors of) floats and ints; handles undefined scalars.
pub fn numberMulWrap(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try numberMulWrapScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return numberMulWrapScalar(lhs, rhs, ty, arena, target);
}
/// Supports both floats and ints; handles undefined.
pub fn numberMulWrapScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (lhs.isUndef() or rhs.isUndef()) return Value.initTag(.undef);
if (ty.zigTypeTag() == .ComptimeInt) {
return intMul(lhs, rhs, ty, arena, target);
}
if (ty.isAnyFloat()) {
return floatMul(lhs, rhs, ty, arena, target);
}
const overflow_result = try intMulWithOverflow(lhs, rhs, ty, arena, target);
return overflow_result.wrapped_result;
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intMulSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intMulSatScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return intMulSatScalar(lhs, rhs, ty, arena, target);
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intMulSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
assert(!lhs.isUndef());
assert(!rhs.isUndef());
const info = ty.intInfo(target);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.max(
// For the saturate
std.math.big.int.calcTwosCompLimbCount(info.bits),
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
var limbs_buffer = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, arena);
result_bigint.saturate(result_bigint.toConst(), info.signedness, info.bits);
return fromBigInt(arena, result_bigint.toConst());
}
/// Supports both floats and ints; handles undefined.
pub fn numberMax(lhs: Value, rhs: Value, target: Target) Value {
if (lhs.isUndef() or rhs.isUndef()) return undef;
if (lhs.isNan()) return rhs;
if (rhs.isNan()) return lhs;
return switch (order(lhs, rhs, target)) {
.lt => rhs,
.gt, .eq => lhs,
};
}
/// Supports both floats and ints; handles undefined.
pub fn numberMin(lhs: Value, rhs: Value, target: Target) Value {
if (lhs.isUndef() or rhs.isUndef()) return undef;
if (lhs.isNan()) return rhs;
if (rhs.isNan()) return lhs;
return switch (order(lhs, rhs, target)) {
.lt => lhs,
.gt, .eq => rhs,
};
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseNot(val: Value, ty: Type, arena: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try bitwiseNotScalar(val.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return bitwiseNotScalar(val, ty, arena, target);
}
/// operands must be integers; handles undefined.
pub fn bitwiseNotScalar(val: Value, ty: Type, arena: Allocator, target: Target) !Value {
if (val.isUndef()) return Value.initTag(.undef);
const info = ty.intInfo(target);
if (info.bits == 0) {
return val;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitNotWrap(val_bigint, info.signedness, info.bits);
return fromBigInt(arena, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseAnd(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try bitwiseAndScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return bitwiseAndScalar(lhs, rhs, allocator, target);
}
/// operands must be integers; handles undefined.
pub fn bitwiseAndScalar(lhs: Value, rhs: Value, arena: Allocator, target: Target) !Value {
if (lhs.isUndef() or rhs.isUndef()) return Value.initTag(.undef);
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
// + 1 for negatives
std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitAnd(lhs_bigint, rhs_bigint);
return fromBigInt(arena, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseNand(lhs: Value, rhs: Value, ty: Type, arena: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try bitwiseNandScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return bitwiseNandScalar(lhs, rhs, ty, arena, target);
}
/// operands must be integers; handles undefined.
pub fn bitwiseNandScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, target: Target) !Value {
if (lhs.isUndef() or rhs.isUndef()) return Value.initTag(.undef);
const anded = try bitwiseAnd(lhs, rhs, ty, arena, target);
const all_ones = if (ty.isSignedInt())
try Value.Tag.int_i64.create(arena, -1)
else
try ty.maxInt(arena, target);
return bitwiseXor(anded, all_ones, ty, arena, target);
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseOr(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try bitwiseOrScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return bitwiseOrScalar(lhs, rhs, allocator, target);
}
/// operands must be integers; handles undefined.
pub fn bitwiseOrScalar(lhs: Value, rhs: Value, arena: Allocator, target: Target) !Value {
if (lhs.isUndef() or rhs.isUndef()) return Value.initTag(.undef);
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitOr(lhs_bigint, rhs_bigint);
return fromBigInt(arena, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseXor(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try bitwiseXorScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return bitwiseXorScalar(lhs, rhs, allocator, target);
}
/// operands must be integers; handles undefined.
pub fn bitwiseXorScalar(lhs: Value, rhs: Value, arena: Allocator, target: Target) !Value {
if (lhs.isUndef() or rhs.isUndef()) return Value.initTag(.undef);
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try arena.alloc(
std.math.big.Limb,
// + 1 for negatives
std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitXor(lhs_bigint, rhs_bigint);
return fromBigInt(arena, result_bigint.toConst());
}
pub fn intDiv(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intDivScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intDivScalar(lhs, rhs, allocator, target);
}
pub fn intDivScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return fromBigInt(allocator, result_q.toConst());
}
pub fn intDivFloor(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intDivFloorScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intDivFloorScalar(lhs, rhs, allocator, target);
}
pub fn intDivFloorScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return fromBigInt(allocator, result_q.toConst());
}
pub fn intRem(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intRemScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intRemScalar(lhs, rhs, allocator, target);
}
pub fn intRemScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
// TODO: consider reworking Sema to re-use Values rather than
// always producing new Value objects.
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return fromBigInt(allocator, result_r.toConst());
}
pub fn intMod(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intModScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intModScalar(lhs, rhs, allocator, target);
}
pub fn intModScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return fromBigInt(allocator, result_r.toConst());
}
/// Returns true if the value is a floating point type and is NaN. Returns false otherwise.
pub fn isNan(val: Value) bool {
return switch (val.tag()) {
.float_16 => std.math.isNan(val.castTag(.float_16).?.data),
.float_32 => std.math.isNan(val.castTag(.float_32).?.data),
.float_64 => std.math.isNan(val.castTag(.float_64).?.data),
.float_80 => std.math.isNan(val.castTag(.float_80).?.data),
.float_128 => std.math.isNan(val.castTag(.float_128).?.data),
else => false,
};
}
pub fn floatRem(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, target: Target) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatRemScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatRemScalar(lhs, rhs, float_type, arena, target);
}
pub fn floatRemScalar(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, target: Target) !Value {
switch (float_type.floatBits(target)) {
16 => {
const lhs_val = lhs.toFloat(f16);
const rhs_val = rhs.toFloat(f16);
return Value.Tag.float_16.create(arena, @rem(lhs_val, rhs_val));
},
32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, @rem(lhs_val, rhs_val));
},
64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, @rem(lhs_val, rhs_val));
},
80 => {
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @rem(lhs_val, rhs_val));
},
128 => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, @rem(lhs_val, rhs_val));
},
else => unreachable,
}
}
pub fn floatMod(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, target: Target) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatModScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatModScalar(lhs, rhs, float_type, arena, target);
}
pub fn floatModScalar(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, target: Target) !Value {
switch (float_type.floatBits(target)) {
16 => {
const lhs_val = lhs.toFloat(f16);
const rhs_val = rhs.toFloat(f16);
return Value.Tag.float_16.create(arena, @mod(lhs_val, rhs_val));
},
32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, @mod(lhs_val, rhs_val));
},
64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, @mod(lhs_val, rhs_val));
},
80 => {
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @mod(lhs_val, rhs_val));
},
128 => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, @mod(lhs_val, rhs_val));
},
else => unreachable,
}
}
pub fn intMul(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intMulScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intMulScalar(lhs, rhs, allocator, target);
}
pub fn intMulScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const rhs_bigint = rhs.toBigInt(&rhs_space, target);
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
var limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
defer allocator.free(limbs_buffer);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, allocator);
return fromBigInt(allocator, result_bigint.toConst());
}
pub fn intTrunc(val: Value, ty: Type, allocator: Allocator, signedness: std.builtin.Signedness, bits: u16, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intTruncScalar(val.indexVectorlike(i), allocator, signedness, bits, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intTruncScalar(val, allocator, signedness, bits, target);
}
/// This variant may vectorize on `bits`. Asserts that `bits` is a (vector of) `u16`.
pub fn intTruncBitsAsValue(
val: Value,
ty: Type,
allocator: Allocator,
signedness: std.builtin.Signedness,
bits: Value,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try intTruncScalar(val.indexVectorlike(i), allocator, signedness, @intCast(u16, bits.indexVectorlike(i).toUnsignedInt(target)), target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return intTruncScalar(val, allocator, signedness, @intCast(u16, bits.toUnsignedInt(target)), target);
}
pub fn intTruncScalar(val: Value, allocator: Allocator, signedness: std.builtin.Signedness, bits: u16, target: Target) !Value {
if (bits == 0) return Value.zero;
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, target);
const limbs = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.truncate(val_bigint, signedness, bits);
return fromBigInt(allocator, result_bigint.toConst());
}
pub fn shl(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try shlScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return shlScalar(lhs, rhs, allocator, target);
}
pub fn shlScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const shift = @intCast(usize, rhs.toUnsignedInt(target));
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + (shift / (@sizeOf(std.math.big.Limb) * 8)) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeft(lhs_bigint, shift);
return fromBigInt(allocator, result_bigint.toConst());
}
pub fn shlWithOverflow(
lhs: Value,
rhs: Value,
ty: Type,
allocator: Allocator,
target: Target,
) !OverflowArithmeticResult {
if (ty.zigTypeTag() == .Vector) {
const overflowed_data = try allocator.alloc(Value, ty.vectorLen());
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
const of_math_result = try shlWithOverflowScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), allocator, target);
overflowed_data[i] = of_math_result.overflowed;
scalar.* = of_math_result.wrapped_result;
}
return OverflowArithmeticResult{
.overflowed = try Value.Tag.aggregate.create(allocator, overflowed_data),
.wrapped_result = try Value.Tag.aggregate.create(allocator, result_data),
};
}
return shlWithOverflowScalar(lhs, rhs, ty, allocator, target);
}
pub fn shlWithOverflowScalar(
lhs: Value,
rhs: Value,
ty: Type,
allocator: Allocator,
target: Target,
) !OverflowArithmeticResult {
const info = ty.intInfo(target);
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const shift = @intCast(usize, rhs.toUnsignedInt(target));
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + (shift / (@sizeOf(std.math.big.Limb) * 8)) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeft(lhs_bigint, shift);
const overflowed = !result_bigint.toConst().fitsInTwosComp(info.signedness, info.bits);
if (overflowed) {
result_bigint.truncate(result_bigint.toConst(), info.signedness, info.bits);
}
return OverflowArithmeticResult{
.overflowed = makeBool(overflowed),
.wrapped_result = try fromBigInt(allocator, result_bigint.toConst()),
};
}
pub fn shlSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try shlSatScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return shlSatScalar(lhs, rhs, ty, arena, target);
}
pub fn shlSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const info = ty.intInfo(target);
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const shift = @intCast(usize, rhs.toUnsignedInt(target));
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeftSat(lhs_bigint, shift, info.signedness, info.bits);
return fromBigInt(arena, result_bigint.toConst());
}
pub fn shlTrunc(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try shlTruncScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), ty.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return shlTruncScalar(lhs, rhs, ty, arena, target);
}
pub fn shlTruncScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
target: Target,
) !Value {
const shifted = try lhs.shl(rhs, ty, arena, target);
const int_info = ty.intInfo(target);
const truncated = try shifted.intTrunc(ty, arena, int_info.signedness, int_info.bits, target);
return truncated;
}
pub fn shr(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, target: Target) !Value {
if (ty.zigTypeTag() == .Vector) {
const result_data = try allocator.alloc(Value, ty.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try shrScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), allocator, target);
}
return Value.Tag.aggregate.create(allocator, result_data);
}
return shrScalar(lhs, rhs, allocator, target);
}
pub fn shrScalar(lhs: Value, rhs: Value, allocator: Allocator, target: Target) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, target);
const shift = @intCast(usize, rhs.toUnsignedInt(target));
const result_limbs = lhs_bigint.limbs.len -| (shift / (@sizeOf(std.math.big.Limb) * 8));
if (result_limbs == 0) {
// The shift is enough to remove all the bits from the number, which means the
// result is zero.
return Value.zero;
}
const limbs = try allocator.alloc(
std.math.big.Limb,
result_limbs,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftRight(lhs_bigint, shift);
return fromBigInt(allocator, result_bigint.toConst());
}
pub fn floatNeg(
val: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatNegScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatNegScalar(val, float_type, arena, target);
}
pub fn floatNegScalar(
val: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
switch (float_type.floatBits(target)) {
16 => return Value.Tag.float_16.create(arena, -val.toFloat(f16)),
32 => return Value.Tag.float_32.create(arena, -val.toFloat(f32)),
64 => return Value.Tag.float_64.create(arena, -val.toFloat(f64)),
80 => return Value.Tag.float_80.create(arena, -val.toFloat(f80)),
128 => return Value.Tag.float_128.create(arena, -val.toFloat(f128)),
else => unreachable,
}
}
pub fn floatDiv(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatDivScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatDivScalar(lhs, rhs, float_type, arena, target);
}
pub fn floatDivScalar(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
switch (float_type.floatBits(target)) {
16 => {
const lhs_val = lhs.toFloat(f16);
const rhs_val = rhs.toFloat(f16);
return Value.Tag.float_16.create(arena, lhs_val / rhs_val);
},
32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, lhs_val / rhs_val);
},
64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, lhs_val / rhs_val);
},
80 => {
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, lhs_val / rhs_val);
},
128 => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, lhs_val / rhs_val);
},
else => unreachable,
}
}
pub fn floatDivFloor(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatDivFloorScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatDivFloorScalar(lhs, rhs, float_type, arena, target);
}
pub fn floatDivFloorScalar(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
switch (float_type.floatBits(target)) {
16 => {
const lhs_val = lhs.toFloat(f16);
const rhs_val = rhs.toFloat(f16);
return Value.Tag.float_16.create(arena, @divFloor(lhs_val, rhs_val));
},
32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, @divFloor(lhs_val, rhs_val));
},
64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, @divFloor(lhs_val, rhs_val));
},
80 => {
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @divFloor(lhs_val, rhs_val));
},
128 => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, @divFloor(lhs_val, rhs_val));
},
else => unreachable,
}
}
pub fn floatDivTrunc(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatDivTruncScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatDivTruncScalar(lhs, rhs, float_type, arena, target);
}
pub fn floatDivTruncScalar(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
switch (float_type.floatBits(target)) {
16 => {
const lhs_val = lhs.toFloat(f16);
const rhs_val = rhs.toFloat(f16);
return Value.Tag.float_16.create(arena, @divTrunc(lhs_val, rhs_val));
},
32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, @divTrunc(lhs_val, rhs_val));
},
64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, @divTrunc(lhs_val, rhs_val));
},
80 => {
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @divTrunc(lhs_val, rhs_val));
},
128 => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, @divTrunc(lhs_val, rhs_val));
},
else => unreachable,
}
}
pub fn floatMul(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floatMulScalar(lhs.indexVectorlike(i), rhs.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floatMulScalar(lhs, rhs, float_type, arena, target);
}
pub fn floatMulScalar(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
target: Target,
) !Value {
switch (float_type.floatBits(target)) {
16 => {
const lhs_val = lhs.toFloat(f16);
const rhs_val = rhs.toFloat(f16);
return Value.Tag.float_16.create(arena, lhs_val * rhs_val);
},
32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, lhs_val * rhs_val);
},
64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, lhs_val * rhs_val);
},
80 => {
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, lhs_val * rhs_val);
},
128 => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, lhs_val * rhs_val);
},
else => unreachable,
}
}
pub fn sqrt(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try sqrtScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return sqrtScalar(val, float_type, arena, target);
}
pub fn sqrtScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @sqrt(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @sqrt(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @sqrt(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @sqrt(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @sqrt(f));
},
else => unreachable,
}
}
pub fn sin(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try sinScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return sinScalar(val, float_type, arena, target);
}
pub fn sinScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @sin(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @sin(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @sin(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @sin(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @sin(f));
},
else => unreachable,
}
}
pub fn cos(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try cosScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return cosScalar(val, float_type, arena, target);
}
pub fn cosScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @cos(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @cos(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @cos(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @cos(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @cos(f));
},
else => unreachable,
}
}
pub fn tan(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try tanScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return tanScalar(val, float_type, arena, target);
}
pub fn tanScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @tan(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @tan(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @tan(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @tan(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @tan(f));
},
else => unreachable,
}
}
pub fn exp(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try expScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return expScalar(val, float_type, arena, target);
}
pub fn expScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @exp(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @exp(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @exp(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @exp(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @exp(f));
},
else => unreachable,
}
}
pub fn exp2(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try exp2Scalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return exp2Scalar(val, float_type, arena, target);
}
pub fn exp2Scalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @exp2(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @exp2(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @exp2(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @exp2(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @exp2(f));
},
else => unreachable,
}
}
pub fn log(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try logScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return logScalar(val, float_type, arena, target);
}
pub fn logScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @log(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @log(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @log(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @log(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @log(f));
},
else => unreachable,
}
}
pub fn log2(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try log2Scalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return log2Scalar(val, float_type, arena, target);
}
pub fn log2Scalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @log2(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @log2(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @log2(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @log2(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @log2(f));
},
else => unreachable,
}
}
pub fn log10(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try log10Scalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return log10Scalar(val, float_type, arena, target);
}
pub fn log10Scalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @log10(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @log10(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @log10(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @log10(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @log10(f));
},
else => unreachable,
}
}
pub fn fabs(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try fabsScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return fabsScalar(val, float_type, arena, target);
}
pub fn fabsScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @fabs(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @fabs(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @fabs(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @fabs(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @fabs(f));
},
else => unreachable,
}
}
pub fn floor(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try floorScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return floorScalar(val, float_type, arena, target);
}
pub fn floorScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @floor(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @floor(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @floor(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @floor(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @floor(f));
},
else => unreachable,
}
}
pub fn ceil(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try ceilScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return ceilScalar(val, float_type, arena, target);
}
pub fn ceilScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @ceil(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @ceil(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @ceil(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @ceil(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @ceil(f));
},
else => unreachable,
}
}
pub fn round(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try roundScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return roundScalar(val, float_type, arena, target);
}
pub fn roundScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @round(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @round(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @round(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @round(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @round(f));
},
else => unreachable,
}
}
pub fn trunc(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try truncScalar(val.indexVectorlike(i), float_type.scalarType(), arena, target);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return truncScalar(val, float_type, arena, target);
}
pub fn truncScalar(val: Value, float_type: Type, arena: Allocator, target: Target) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const f = val.toFloat(f16);
return Value.Tag.float_16.create(arena, @trunc(f));
},
32 => {
const f = val.toFloat(f32);
return Value.Tag.float_32.create(arena, @trunc(f));
},
64 => {
const f = val.toFloat(f64);
return Value.Tag.float_64.create(arena, @trunc(f));
},
80 => {
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @trunc(f));
},
128 => {
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @trunc(f));
},
else => unreachable,
}
}
pub fn mulAdd(
float_type: Type,
mulend1: Value,
mulend2: Value,
addend: Value,
arena: Allocator,
target: Target,
) Allocator.Error!Value {
if (float_type.zigTypeTag() == .Vector) {
const result_data = try arena.alloc(Value, float_type.vectorLen());
for (result_data) |*scalar, i| {
scalar.* = try mulAddScalar(
float_type.scalarType(),
mulend1.indexVectorlike(i),
mulend2.indexVectorlike(i),
addend.indexVectorlike(i),
arena,
target,
);
}
return Value.Tag.aggregate.create(arena, result_data);
}
return mulAddScalar(float_type, mulend1, mulend2, addend, arena, target);
}
pub fn mulAddScalar(
float_type: Type,
mulend1: Value,
mulend2: Value,
addend: Value,
arena: Allocator,
target: Target,
) Allocator.Error!Value {
switch (float_type.floatBits(target)) {
16 => {
const m1 = mulend1.toFloat(f16);
const m2 = mulend2.toFloat(f16);
const a = addend.toFloat(f16);
return Value.Tag.float_16.create(arena, @mulAdd(f16, m1, m2, a));
},
32 => {
const m1 = mulend1.toFloat(f32);
const m2 = mulend2.toFloat(f32);
const a = addend.toFloat(f32);
return Value.Tag.float_32.create(arena, @mulAdd(f32, m1, m2, a));
},
64 => {
const m1 = mulend1.toFloat(f64);
const m2 = mulend2.toFloat(f64);
const a = addend.toFloat(f64);
return Value.Tag.float_64.create(arena, @mulAdd(f64, m1, m2, a));
},
80 => {
const m1 = mulend1.toFloat(f80);
const m2 = mulend2.toFloat(f80);
const a = addend.toFloat(f80);
return Value.Tag.float_80.create(arena, @mulAdd(f80, m1, m2, a));
},
128 => {
const m1 = mulend1.toFloat(f128);
const m2 = mulend2.toFloat(f128);
const a = addend.toFloat(f128);
return Value.Tag.float_128.create(arena, @mulAdd(f128, m1, m2, a));
},
else => unreachable,
}
}
/// This type is not copyable since it may contain pointers to its inner data.
pub const Payload = struct {
tag: Tag,
pub const U32 = struct {
base: Payload,
data: u32,
};
pub const U64 = struct {
base: Payload,
data: u64,
};
pub const I64 = struct {
base: Payload,
data: i64,
};
pub const BigInt = struct {
base: Payload,
data: []const std.math.big.Limb,
pub fn asBigInt(self: BigInt) BigIntConst {
const positive = switch (self.base.tag) {
.int_big_positive => true,
.int_big_negative => false,
else => unreachable,
};
return BigIntConst{ .limbs = self.data, .positive = positive };
}
};
pub const Function = struct {
base: Payload,
data: *Module.Fn,
};
pub const ExternFn = struct {
base: Payload,
data: *Module.ExternFn,
};
pub const Decl = struct {
base: Payload,
data: Module.Decl.Index,
};
pub const Variable = struct {
base: Payload,
data: *Module.Var,
};
pub const SubValue = struct {
base: Payload,
data: Value,
};
pub const DeclRefMut = struct {
pub const base_tag = Tag.decl_ref_mut;
base: Payload = Payload{ .tag = base_tag },
data: Data,
pub const Data = struct {
decl_index: Module.Decl.Index,
runtime_index: RuntimeIndex,
};
};
pub const PayloadPtr = struct {
base: Payload,
data: struct {
container_ptr: Value,
container_ty: Type,
},
};
pub const ComptimeFieldPtr = struct {
base: Payload,
data: struct {
field_val: Value,
field_ty: Type,
},
};
pub const ElemPtr = struct {
pub const base_tag = Tag.elem_ptr;
base: Payload = Payload{ .tag = base_tag },
data: struct {
array_ptr: Value,
elem_ty: Type,
index: usize,
},
};
pub const FieldPtr = struct {
pub const base_tag = Tag.field_ptr;
base: Payload = Payload{ .tag = base_tag },
data: struct {
container_ptr: Value,
container_ty: Type,
field_index: usize,
},
};
pub const Bytes = struct {
base: Payload,
/// Includes the sentinel, if any.
data: []const u8,
};
pub const StrLit = struct {
base: Payload,
data: Module.StringLiteralContext.Key,
};
pub const Aggregate = struct {
base: Payload,
/// Field values. The types are according to the struct or array type.
/// The length is provided here so that copying a Value does not depend on the Type.
data: []Value,
};
pub const Slice = struct {
base: Payload,
data: struct {
ptr: Value,
len: Value,
},
pub const ptr_index = 0;
pub const len_index = 1;
};
pub const Ty = struct {
base: Payload,
data: Type,
};
pub const IntType = struct {
pub const base_tag = Tag.int_type;
base: Payload = Payload{ .tag = base_tag },
data: struct {
bits: u16,
signed: bool,
},
};
pub const Float_16 = struct {
pub const base_tag = Tag.float_16;
base: Payload = .{ .tag = base_tag },
data: f16,
};
pub const Float_32 = struct {
pub const base_tag = Tag.float_32;
base: Payload = .{ .tag = base_tag },
data: f32,
};
pub const Float_64 = struct {
pub const base_tag = Tag.float_64;
base: Payload = .{ .tag = base_tag },
data: f64,
};
pub const Float_80 = struct {
pub const base_tag = Tag.float_80;
base: Payload = .{ .tag = base_tag },
data: f80,
};
pub const Float_128 = struct {
pub const base_tag = Tag.float_128;
base: Payload = .{ .tag = base_tag },
data: f128,
};
pub const Error = struct {
base: Payload = .{ .tag = .@"error" },
data: struct {
/// `name` is owned by `Module` and will be valid for the entire
/// duration of the compilation.
/// TODO revisit this when we have the concept of the error tag type
name: []const u8,
},
};
pub const InferredAlloc = struct {
pub const base_tag = Tag.inferred_alloc;
base: Payload = .{ .tag = base_tag },
data: struct {
/// The value stored in the inferred allocation. This will go into
/// peer type resolution. This is stored in a separate list so that
/// the items are contiguous in memory and thus can be passed to
/// `Module.resolvePeerTypes`.
stored_inst_list: std.ArrayListUnmanaged(Air.Inst.Ref) = .{},
/// 0 means ABI-aligned.
alignment: u32,
},
};
pub const InferredAllocComptime = struct {
pub const base_tag = Tag.inferred_alloc_comptime;
base: Payload = .{ .tag = base_tag },
data: struct {
decl_index: Module.Decl.Index,
/// 0 means ABI-aligned.
alignment: u32,
},
};
pub const Union = struct {
pub const base_tag = Tag.@"union";
base: Payload = .{ .tag = base_tag },
data: struct {
tag: Value,
val: Value,
},
};
pub const BoundFn = struct {
pub const base_tag = Tag.bound_fn;
base: Payload = Payload{ .tag = base_tag },
data: struct {
func_inst: Air.Inst.Ref,
arg0_inst: Air.Inst.Ref,
},
};
};
/// Big enough to fit any non-BigInt value
pub const BigIntSpace = struct {
/// The +1 is headroom so that operations such as incrementing once or decrementing once
/// are possible without using an allocator.
limbs: [(@sizeOf(u64) / @sizeOf(std.math.big.Limb)) + 1]std.math.big.Limb,
};
pub const zero = initTag(.zero);
pub const one = initTag(.one);
pub const negative_one: Value = .{ .ptr_otherwise = &negative_one_payload.base };
pub const undef = initTag(.undef);
pub const @"void" = initTag(.void_value);
pub const @"null" = initTag(.null_value);
pub const @"false" = initTag(.bool_false);
pub const @"true" = initTag(.bool_true);
pub fn makeBool(x: bool) Value {
return if (x) Value.@"true" else Value.@"false";
}
pub const RuntimeIndex = enum(u32) {
zero = 0,
comptime_field_ptr = std.math.maxInt(u32),
_,
pub fn increment(ri: *RuntimeIndex) void {
ri.* = @intToEnum(RuntimeIndex, @enumToInt(ri.*) + 1);
}
};
};
var negative_one_payload: Value.Payload.I64 = .{
.base = .{ .tag = .int_i64 },
.data = -1,
};