mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
These are great permutations, and there's nothing wrong with them from a practical security perspective. However, both were competing in the NIST lightweight crypto competition. Gimli didn't pass the 3rd selection round, and is not much used in the wild besides Zig and libhydrogen. It will never be standardized and is unlikely to get more traction in the future. Xoodyak, that Xoodoo is the permutation of, was a finalist. It has a lot of advantages and *might* be standardized without NIST. But this is too early to tell, and too risky to commit to it in a standard library. For lightweight crypto, Ascon is the one that we know NIST will standardize and that we can safely rely on from a usage perspective. Switch to a traditional ChaCha-based CSPRNG, with an Ascon-based one as an option for constrained systems. Add a RNG benchmark by the way. Gimli and Xoodoo served us well. Their code will be maintained, but outside the standard library.
239 lines
9.3 KiB
Zig
239 lines
9.3 KiB
Zig
//! Ascon is a 320-bit permutation, selected as new standard for lightweight cryptography
|
||
//! in the NIST Lightweight Cryptography competition (2019–2023).
|
||
//! https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
|
||
//!
|
||
//! The permutation is compact, and optimized for timing and side channel resistance,
|
||
//! making it a good choice for embedded applications.
|
||
//!
|
||
//! It is not meant to be used directly, but as a building block for symmetric cryptography.
|
||
|
||
const std = @import("std");
|
||
const builtin = std.builtin;
|
||
const debug = std.debug;
|
||
const mem = std.mem;
|
||
const testing = std.testing;
|
||
const rotr = std.math.rotr;
|
||
|
||
/// An Ascon state.
|
||
///
|
||
/// The state is represented as 5 64-bit words.
|
||
///
|
||
/// The NIST submission (v1.2) serializes these words as big-endian,
|
||
/// but software implementations are free to use native endianness.
|
||
pub fn State(comptime endian: builtin.Endian) type {
|
||
return struct {
|
||
const Self = @This();
|
||
|
||
/// Number of bytes in the state.
|
||
pub const block_bytes = 40;
|
||
|
||
const Block = [5]u64;
|
||
|
||
st: Block,
|
||
|
||
/// Initialize the state from a slice of bytes.
|
||
pub fn init(initial_state: [block_bytes]u8) Self {
|
||
var state = Self{ .st = undefined };
|
||
mem.copy(u8, state.asBytes(), &initial_state);
|
||
state.endianSwap();
|
||
return state;
|
||
}
|
||
|
||
/// Initialize the state from u64 words in native endianness.
|
||
pub fn initFromWords(initial_state: [5]u64) Self {
|
||
var state = Self{ .st = initial_state };
|
||
return state;
|
||
}
|
||
|
||
/// Initialize the state for Ascon XOF
|
||
pub fn initXof() Self {
|
||
return Self{ .st = Block{
|
||
0xb57e273b814cd416,
|
||
0x2b51042562ae2420,
|
||
0x66a3a7768ddf2218,
|
||
0x5aad0a7a8153650c,
|
||
0x4f3e0e32539493b6,
|
||
} };
|
||
}
|
||
|
||
/// Initialize the state for Ascon XOFa
|
||
pub fn initXofA() Self {
|
||
return Self{ .st = Block{
|
||
0x44906568b77b9832,
|
||
0xcd8d6cae53455532,
|
||
0xf7b5212756422129,
|
||
0x246885e1de0d225b,
|
||
0xa8cb5ce33449973f,
|
||
} };
|
||
}
|
||
|
||
/// A representation of the state as bytes. The byte order is architecture-dependent.
|
||
pub fn asBytes(self: *Self) *[block_bytes]u8 {
|
||
return mem.asBytes(&self.st);
|
||
}
|
||
|
||
/// Byte-swap the entire state if the architecture doesn't match the required endianness.
|
||
pub fn endianSwap(self: *Self) void {
|
||
for (&self.st) |*w| {
|
||
w.* = mem.toNative(u64, w.*, endian);
|
||
}
|
||
}
|
||
|
||
/// Set bytes starting at the beginning of the state.
|
||
pub fn setBytes(self: *Self, bytes: []const u8) void {
|
||
var i: usize = 0;
|
||
while (i + 8 <= bytes.len) : (i += 8) {
|
||
self.st[i / 8] = mem.readInt(u64, bytes[i..][0..8], endian);
|
||
}
|
||
if (i < bytes.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.copy(u8, padded[0 .. bytes.len - i], bytes[i..]);
|
||
self.st[i / 8] = mem.readInt(u64, padded[0..], endian);
|
||
}
|
||
}
|
||
|
||
/// XOR a byte into the state at a given offset.
|
||
pub fn addByte(self: *Self, byte: u8, offset: usize) void {
|
||
const z = switch (endian) {
|
||
.Big => 64 - 8 - 8 * @truncate(u6, offset % 8),
|
||
.Little => 8 * @truncate(u6, offset % 8),
|
||
};
|
||
self.st[offset / 8] ^= @as(u64, byte) << z;
|
||
}
|
||
|
||
/// XOR bytes into the beginning of the state.
|
||
pub fn addBytes(self: *Self, bytes: []const u8) void {
|
||
var i: usize = 0;
|
||
while (i + 8 <= bytes.len) : (i += 8) {
|
||
self.st[i / 8] ^= mem.readInt(u64, bytes[i..][0..8], endian);
|
||
}
|
||
if (i < bytes.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.copy(u8, padded[0 .. bytes.len - i], bytes[i..]);
|
||
self.st[i / 8] ^= mem.readInt(u64, padded[0..], endian);
|
||
}
|
||
}
|
||
|
||
/// Extract the first bytes of the state.
|
||
pub fn extractBytes(self: *Self, out: []u8) void {
|
||
var i: usize = 0;
|
||
while (i + 8 <= out.len) : (i += 8) {
|
||
mem.writeInt(u64, out[i..][0..8], self.st[i / 8], endian);
|
||
}
|
||
if (i < out.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.writeInt(u64, padded[0..], self.st[i / 8], endian);
|
||
mem.copy(u8, out[i..], padded[0 .. out.len - i]);
|
||
}
|
||
}
|
||
|
||
/// XOR the first bytes of the state into a slice of bytes.
|
||
pub fn xorBytes(self: *Self, out: []u8, in: []const u8) void {
|
||
debug.assert(out.len == in.len);
|
||
|
||
var i: usize = 0;
|
||
while (i + 8 <= in.len) : (i += 8) {
|
||
const x = mem.readIntNative(u64, in[i..][0..8]) ^ mem.nativeTo(u64, self.st[i / 8], endian);
|
||
mem.writeIntNative(u64, out[i..][0..8], x);
|
||
}
|
||
if (i < in.len) {
|
||
var padded = [_]u8{0} ** 8;
|
||
mem.copy(u8, padded[0 .. in.len - i], in[i..]);
|
||
const x = mem.readIntNative(u64, &padded) ^ mem.nativeTo(u64, self.st[i / 8], endian);
|
||
mem.writeIntNative(u64, &padded, x);
|
||
mem.copy(u8, out[i..], padded[0 .. in.len - i]);
|
||
}
|
||
}
|
||
|
||
/// Set the words storing the bytes of a given range to zero.
|
||
pub fn clear(self: *Self, from: usize, to: usize) void {
|
||
mem.set(u64, self.st[from / 8 .. (to + 7) / 8], 0);
|
||
}
|
||
|
||
/// Clear the entire state, disabling compiler optimizations.
|
||
pub fn secureZero(self: *Self) void {
|
||
std.crypto.utils.secureZero(u64, &self.st);
|
||
}
|
||
|
||
/// Apply a reduced-round permutation to the state.
|
||
pub inline fn permuteR(state: *Self, comptime rounds: u4) void {
|
||
const rks = [12]u64{ 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87, 0x78, 0x69, 0x5a, 0x4b };
|
||
inline for (rks[rks.len - rounds ..]) |rk| {
|
||
state.round(rk);
|
||
}
|
||
}
|
||
|
||
/// Apply a full-round permutation to the state.
|
||
pub inline fn permute(state: *Self) void {
|
||
state.permuteR(12);
|
||
}
|
||
|
||
/// Apply a permutation to the state and prevent backtracking.
|
||
/// The rate is expressed in bytes and must be a multiple of the word size (8).
|
||
pub inline fn permuteRatchet(state: *Self, comptime rounds: u4, comptime rate: u6) void {
|
||
const capacity = block_bytes - rate;
|
||
debug.assert(capacity > 0 and capacity % 8 == 0); // capacity must be a multiple of 64 bits
|
||
var mask: [capacity / 8]u64 = undefined;
|
||
inline for (&mask, state.st[state.st.len - mask.len ..]) |*m, x| m.* = x;
|
||
state.permuteR(rounds);
|
||
inline for (mask, state.st[state.st.len - mask.len ..]) |m, *x| x.* ^= m;
|
||
}
|
||
|
||
// Core Ascon permutation.
|
||
inline fn round(state: *Self, rk: u64) void {
|
||
const x = &state.st;
|
||
x[2] ^= rk;
|
||
|
||
x[0] ^= x[4];
|
||
x[4] ^= x[3];
|
||
x[2] ^= x[1];
|
||
var t: Block = .{
|
||
x[0] ^ (~x[1] & x[2]),
|
||
x[1] ^ (~x[2] & x[3]),
|
||
x[2] ^ (~x[3] & x[4]),
|
||
x[3] ^ (~x[4] & x[0]),
|
||
x[4] ^ (~x[0] & x[1]),
|
||
};
|
||
t[1] ^= t[0];
|
||
t[3] ^= t[2];
|
||
t[0] ^= t[4];
|
||
|
||
x[2] = t[2] ^ rotr(u64, t[2], 6 - 1);
|
||
x[3] = t[3] ^ rotr(u64, t[3], 17 - 10);
|
||
x[4] = t[4] ^ rotr(u64, t[4], 41 - 7);
|
||
x[0] = t[0] ^ rotr(u64, t[0], 28 - 19);
|
||
x[1] = t[1] ^ rotr(u64, t[1], 61 - 39);
|
||
x[2] = t[2] ^ rotr(u64, x[2], 1);
|
||
x[3] = t[3] ^ rotr(u64, x[3], 10);
|
||
x[4] = t[4] ^ rotr(u64, x[4], 7);
|
||
x[0] = t[0] ^ rotr(u64, x[0], 19);
|
||
x[1] = t[1] ^ rotr(u64, x[1], 39);
|
||
x[2] = ~x[2];
|
||
}
|
||
};
|
||
}
|
||
|
||
test "ascon" {
|
||
const Ascon = State(.Big);
|
||
const bytes = [_]u8{0x01} ** Ascon.block_bytes;
|
||
var st = Ascon.init(bytes);
|
||
var out: [Ascon.block_bytes]u8 = undefined;
|
||
st.permute();
|
||
st.extractBytes(&out);
|
||
const expected1 = [_]u8{ 148, 147, 49, 226, 218, 221, 208, 113, 186, 94, 96, 10, 183, 219, 119, 150, 169, 206, 65, 18, 215, 97, 78, 106, 118, 81, 211, 150, 52, 17, 117, 64, 216, 45, 148, 240, 65, 181, 90, 180 };
|
||
try testing.expectEqualSlices(u8, &expected1, &out);
|
||
st.clear(0, 10);
|
||
st.extractBytes(&out);
|
||
const expected2 = [_]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 169, 206, 65, 18, 215, 97, 78, 106, 118, 81, 211, 150, 52, 17, 117, 64, 216, 45, 148, 240, 65, 181, 90, 180 };
|
||
try testing.expectEqualSlices(u8, &expected2, &out);
|
||
st.addByte(1, 5);
|
||
st.addByte(2, 5);
|
||
st.extractBytes(&out);
|
||
const expected3 = [_]u8{ 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 169, 206, 65, 18, 215, 97, 78, 106, 118, 81, 211, 150, 52, 17, 117, 64, 216, 45, 148, 240, 65, 181, 90, 180 };
|
||
try testing.expectEqualSlices(u8, &expected3, &out);
|
||
st.addBytes(&bytes);
|
||
st.extractBytes(&out);
|
||
const expected4 = [_]u8{ 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 168, 207, 64, 19, 214, 96, 79, 107, 119, 80, 210, 151, 53, 16, 116, 65, 217, 44, 149, 241, 64, 180, 91, 181 };
|
||
try testing.expectEqualSlices(u8, &expected4, &out);
|
||
}
|