zig/src/link/MachO.zig
2022-06-25 10:50:00 +02:00

6856 lines
263 KiB
Zig

const MachO = @This();
const std = @import("std");
const build_options = @import("build_options");
const builtin = @import("builtin");
const assert = std.debug.assert;
const fmt = std.fmt;
const fs = std.fs;
const log = std.log.scoped(.link);
const macho = std.macho;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const aarch64 = @import("../arch/aarch64/bits.zig");
const bind = @import("MachO/bind.zig");
const codegen = @import("../codegen.zig");
const link = @import("../link.zig");
const llvm_backend = @import("../codegen/llvm.zig");
const target_util = @import("../target.zig");
const trace = @import("../tracy.zig").trace;
const Air = @import("../Air.zig");
const Allocator = mem.Allocator;
const Archive = @import("MachO/Archive.zig");
const Atom = @import("MachO/Atom.zig");
const Cache = @import("../Cache.zig");
const CodeSignature = @import("MachO/CodeSignature.zig");
const Compilation = @import("../Compilation.zig");
const Dwarf = File.Dwarf;
const Dylib = @import("MachO/Dylib.zig");
const File = link.File;
const Object = @import("MachO/Object.zig");
const LibStub = @import("tapi.zig").LibStub;
const Liveness = @import("../Liveness.zig");
const LlvmObject = @import("../codegen/llvm.zig").Object;
const Module = @import("../Module.zig");
const StringIndexAdapter = std.hash_map.StringIndexAdapter;
const StringIndexContext = std.hash_map.StringIndexContext;
const Trie = @import("MachO/Trie.zig");
const Type = @import("../type.zig").Type;
const TypedValue = @import("../TypedValue.zig");
const Value = @import("../value.zig").Value;
pub const TextBlock = Atom;
pub const DebugSymbols = @import("MachO/DebugSymbols.zig");
pub const base_tag: File.Tag = File.Tag.macho;
pub const SearchStrategy = enum {
paths_first,
dylibs_first,
};
base: File,
/// If this is not null, an object file is created by LLVM and linked with LLD afterwards.
llvm_object: ?*LlvmObject = null,
/// Debug symbols bundle (or dSym).
d_sym: ?DebugSymbols = null,
/// Page size is dependent on the target cpu architecture.
/// For x86_64 that's 4KB, whereas for aarch64, that's 16KB.
page_size: u16,
/// If true, the linker will preallocate several sections and segments before starting the linking
/// process. This is for example true for stage2 debug builds, however, this is false for stage1
/// and potentially stage2 release builds in the future.
needs_prealloc: bool = true,
/// We commit 0x1000 = 4096 bytes of space to the header and
/// the table of load commands. This should be plenty for any
/// potential future extensions.
header_pad: u16 = 0x1000,
/// The absolute address of the entry point.
entry_addr: ?u64 = null,
/// Code signature (if any)
code_signature: ?CodeSignature = null,
objects: std.ArrayListUnmanaged(Object) = .{},
archives: std.ArrayListUnmanaged(Archive) = .{},
dylibs: std.ArrayListUnmanaged(Dylib) = .{},
dylibs_map: std.StringHashMapUnmanaged(u16) = .{},
referenced_dylibs: std.AutoArrayHashMapUnmanaged(u16, void) = .{},
load_commands: std.ArrayListUnmanaged(macho.LoadCommand) = .{},
pagezero_segment_cmd_index: ?u16 = null,
text_segment_cmd_index: ?u16 = null,
data_const_segment_cmd_index: ?u16 = null,
data_segment_cmd_index: ?u16 = null,
linkedit_segment_cmd_index: ?u16 = null,
dyld_info_cmd_index: ?u16 = null,
symtab_cmd_index: ?u16 = null,
dysymtab_cmd_index: ?u16 = null,
dylinker_cmd_index: ?u16 = null,
data_in_code_cmd_index: ?u16 = null,
function_starts_cmd_index: ?u16 = null,
main_cmd_index: ?u16 = null,
dylib_id_cmd_index: ?u16 = null,
source_version_cmd_index: ?u16 = null,
build_version_cmd_index: ?u16 = null,
uuid_cmd_index: ?u16 = null,
code_signature_cmd_index: ?u16 = null,
// __TEXT segment sections
text_section_index: ?u16 = null,
stubs_section_index: ?u16 = null,
stub_helper_section_index: ?u16 = null,
text_const_section_index: ?u16 = null,
cstring_section_index: ?u16 = null,
ustring_section_index: ?u16 = null,
gcc_except_tab_section_index: ?u16 = null,
unwind_info_section_index: ?u16 = null,
eh_frame_section_index: ?u16 = null,
objc_methlist_section_index: ?u16 = null,
objc_methname_section_index: ?u16 = null,
objc_methtype_section_index: ?u16 = null,
objc_classname_section_index: ?u16 = null,
// __DATA_CONST segment sections
got_section_index: ?u16 = null,
mod_init_func_section_index: ?u16 = null,
mod_term_func_section_index: ?u16 = null,
data_const_section_index: ?u16 = null,
objc_cfstring_section_index: ?u16 = null,
objc_classlist_section_index: ?u16 = null,
objc_imageinfo_section_index: ?u16 = null,
// __DATA segment sections
tlv_section_index: ?u16 = null,
tlv_data_section_index: ?u16 = null,
tlv_bss_section_index: ?u16 = null,
tlv_ptrs_section_index: ?u16 = null,
la_symbol_ptr_section_index: ?u16 = null,
data_section_index: ?u16 = null,
bss_section_index: ?u16 = null,
objc_const_section_index: ?u16 = null,
objc_selrefs_section_index: ?u16 = null,
objc_classrefs_section_index: ?u16 = null,
objc_data_section_index: ?u16 = null,
rustc_section_index: ?u16 = null,
rustc_section_size: u64 = 0,
locals: std.ArrayListUnmanaged(macho.nlist_64) = .{},
globals: std.ArrayListUnmanaged(macho.nlist_64) = .{},
undefs: std.ArrayListUnmanaged(macho.nlist_64) = .{},
symbol_resolver: std.AutoHashMapUnmanaged(u32, SymbolWithLoc) = .{},
unresolved: std.AutoArrayHashMapUnmanaged(u32, enum {
none,
stub,
got,
}) = .{},
tentatives: std.AutoArrayHashMapUnmanaged(u32, void) = .{},
locals_free_list: std.ArrayListUnmanaged(u32) = .{},
globals_free_list: std.ArrayListUnmanaged(u32) = .{},
mh_execute_header_index: ?u32 = null,
dyld_stub_binder_index: ?u32 = null,
dyld_private_atom: ?*Atom = null,
stub_helper_preamble_atom: ?*Atom = null,
strtab: std.ArrayListUnmanaged(u8) = .{},
strtab_dir: std.HashMapUnmanaged(u32, void, StringIndexContext, std.hash_map.default_max_load_percentage) = .{},
tlv_ptr_entries: std.ArrayListUnmanaged(Entry) = .{},
tlv_ptr_entries_free_list: std.ArrayListUnmanaged(u32) = .{},
tlv_ptr_entries_table: std.AutoArrayHashMapUnmanaged(Atom.Relocation.Target, u32) = .{},
got_entries: std.ArrayListUnmanaged(Entry) = .{},
got_entries_free_list: std.ArrayListUnmanaged(u32) = .{},
got_entries_table: std.AutoArrayHashMapUnmanaged(Atom.Relocation.Target, u32) = .{},
stubs: std.ArrayListUnmanaged(*Atom) = .{},
stubs_free_list: std.ArrayListUnmanaged(u32) = .{},
stubs_table: std.AutoArrayHashMapUnmanaged(u32, u32) = .{},
error_flags: File.ErrorFlags = File.ErrorFlags{},
load_commands_dirty: bool = false,
sections_order_dirty: bool = false,
has_dices: bool = false,
has_stabs: bool = false,
/// A helper var to indicate if we are at the start of the incremental updates, or
/// already somewhere further along the update-and-run chain.
/// TODO once we add opening a prelinked output binary from file, this will become
/// obsolete as we will carry on where we left off.
cold_start: bool = false,
invalidate_relocs: bool = false,
section_ordinals: std.AutoArrayHashMapUnmanaged(MatchingSection, void) = .{},
/// A list of atoms that have surplus capacity. This list can have false
/// positives, as functions grow and shrink over time, only sometimes being added
/// or removed from the freelist.
///
/// An atom has surplus capacity when its overcapacity value is greater than
/// padToIdeal(minimum_atom_size). That is, when it has so
/// much extra capacity, that we could fit a small new symbol in it, itself with
/// ideal_capacity or more.
///
/// Ideal capacity is defined by size + (size / ideal_factor).
///
/// Overcapacity is measured by actual_capacity - ideal_capacity. Note that
/// overcapacity can be negative. A simple way to have negative overcapacity is to
/// allocate a fresh atom, which will have ideal capacity, and then grow it
/// by 1 byte. It will then have -1 overcapacity.
atom_free_lists: std.AutoHashMapUnmanaged(MatchingSection, std.ArrayListUnmanaged(*Atom)) = .{},
/// Pointer to the last allocated atom
atoms: std.AutoHashMapUnmanaged(MatchingSection, *Atom) = .{},
/// List of atoms that are owned directly by the linker.
/// Currently these are only atoms that are the result of linking
/// object files. Atoms which take part in incremental linking are
/// at present owned by Module.Decl.
/// TODO consolidate this.
managed_atoms: std.ArrayListUnmanaged(*Atom) = .{},
atom_by_index_table: std.AutoHashMapUnmanaged(u32, *Atom) = .{},
/// Table of unnamed constants associated with a parent `Decl`.
/// We store them here so that we can free the constants whenever the `Decl`
/// needs updating or is freed.
///
/// For example,
///
/// ```zig
/// const Foo = struct{
/// a: u8,
/// };
///
/// pub fn main() void {
/// var foo = Foo{ .a = 1 };
/// _ = foo;
/// }
/// ```
///
/// value assigned to label `foo` is an unnamed constant belonging/associated
/// with `Decl` `main`, and lives as long as that `Decl`.
unnamed_const_atoms: UnnamedConstTable = .{},
/// Table of Decls that are currently alive.
/// We store them here so that we can properly dispose of any allocated
/// memory within the atom in the incremental linker.
/// TODO consolidate this.
decls: std.AutoArrayHashMapUnmanaged(Module.Decl.Index, ?MatchingSection) = .{},
const Entry = struct {
target: Atom.Relocation.Target,
atom: *Atom,
};
const UnnamedConstTable = std.AutoHashMapUnmanaged(Module.Decl.Index, std.ArrayListUnmanaged(*Atom));
const PendingUpdate = union(enum) {
resolve_undef: u32,
add_stub_entry: u32,
add_got_entry: u32,
};
const SymbolWithLoc = struct {
// Table where the symbol can be found.
where: enum {
global,
undef,
},
where_index: u32,
local_sym_index: u32 = 0,
file: ?u16 = null, // null means Zig module
};
/// When allocating, the ideal_capacity is calculated by
/// actual_capacity + (actual_capacity / ideal_factor)
const ideal_factor = 4;
/// Default path to dyld
const default_dyld_path: [*:0]const u8 = "/usr/lib/dyld";
/// In order for a slice of bytes to be considered eligible to keep metadata pointing at
/// it as a possible place to put new symbols, it must have enough room for this many bytes
/// (plus extra for reserved capacity).
const minimum_text_block_size = 64;
pub const min_text_capacity = padToIdeal(minimum_text_block_size);
/// Default virtual memory offset corresponds to the size of __PAGEZERO segment and
/// start of __TEXT segment.
const default_pagezero_vmsize: u64 = 0x100000000;
pub const Export = struct {
sym_index: ?u32 = null,
};
pub fn openPath(allocator: Allocator, options: link.Options) !*MachO {
assert(options.object_format == .macho);
const use_stage1 = build_options.is_stage1 and options.use_stage1;
if (use_stage1 or options.emit == null) {
return createEmpty(allocator, options);
}
const emit = options.emit.?;
const file = try emit.directory.handle.createFile(emit.sub_path, .{
.truncate = false,
.read = true,
.mode = link.determineMode(options),
});
errdefer file.close();
const self = try createEmpty(allocator, options);
errdefer {
self.base.file = null;
self.base.destroy();
}
self.base.file = file;
if (build_options.have_llvm and options.use_llvm and options.module != null) {
// TODO this intermediary_basename isn't enough; in the case of `zig build-exe`,
// we also want to put the intermediary object file in the cache while the
// main emit directory is the cwd.
self.base.intermediary_basename = try std.fmt.allocPrint(allocator, "{s}{s}", .{
emit.sub_path, options.object_format.fileExt(options.target.cpu.arch),
});
}
if (options.output_mode == .Lib and
options.link_mode == .Static and self.base.intermediary_basename != null)
{
return self;
}
if (!options.strip and options.module != null) blk: {
// TODO once I add support for converting (and relocating) DWARF info from relocatable
// object files, this check becomes unnecessary.
// For now, for LLVM backend we fallback to the old-fashioned stabs approach used by
// stage1.
if (build_options.have_llvm and options.use_llvm) break :blk;
// Create dSYM bundle.
const dir = options.module.?.zig_cache_artifact_directory;
log.debug("creating {s}.dSYM bundle in {s}", .{ emit.sub_path, dir.path });
const d_sym_path = try fmt.allocPrint(
allocator,
"{s}.dSYM" ++ fs.path.sep_str ++ "Contents" ++ fs.path.sep_str ++ "Resources" ++ fs.path.sep_str ++ "DWARF",
.{emit.sub_path},
);
defer allocator.free(d_sym_path);
var d_sym_bundle = try dir.handle.makeOpenPath(d_sym_path, .{});
defer d_sym_bundle.close();
const d_sym_file = try d_sym_bundle.createFile(emit.sub_path, .{
.truncate = false,
.read = true,
});
self.d_sym = .{
.base = self,
.dwarf = link.File.Dwarf.init(allocator, .macho, options.target),
.file = d_sym_file,
};
}
// Index 0 is always a null symbol.
try self.locals.append(allocator, .{
.n_strx = 0,
.n_type = 0,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
try self.strtab.append(allocator, 0);
try self.populateMissingMetadata();
if (self.d_sym) |*d_sym| {
try d_sym.populateMissingMetadata(allocator);
}
return self;
}
pub fn createEmpty(gpa: Allocator, options: link.Options) !*MachO {
const cpu_arch = options.target.cpu.arch;
const os_tag = options.target.os.tag;
const abi = options.target.abi;
const page_size: u16 = if (cpu_arch == .aarch64) 0x4000 else 0x1000;
// Adhoc code signature is required when targeting aarch64-macos either directly or indirectly via the simulator
// ABI such as aarch64-ios-simulator, etc.
const requires_adhoc_codesig = cpu_arch == .aarch64 and (os_tag == .macos or abi == .simulator);
const use_llvm = build_options.have_llvm and options.use_llvm;
const use_stage1 = build_options.is_stage1 and options.use_stage1;
const needs_prealloc = !(use_stage1 or use_llvm or options.cache_mode == .whole);
const self = try gpa.create(MachO);
errdefer gpa.destroy(self);
self.* = .{
.base = .{
.tag = .macho,
.options = options,
.allocator = gpa,
.file = null,
},
.page_size = page_size,
.code_signature = if (requires_adhoc_codesig) CodeSignature.init(page_size) else null,
.needs_prealloc = needs_prealloc,
};
if (use_llvm and !use_stage1) {
self.llvm_object = try LlvmObject.create(gpa, options);
}
return self;
}
pub fn flush(self: *MachO, comp: *Compilation, prog_node: *std.Progress.Node) !void {
if (self.base.options.emit == null) {
if (build_options.have_llvm) {
if (self.llvm_object) |llvm_object| {
try llvm_object.flushModule(comp, prog_node);
}
}
return;
}
if (self.base.options.output_mode == .Lib and self.base.options.link_mode == .Static) {
if (build_options.have_llvm) {
return self.base.linkAsArchive(comp, prog_node);
} else {
log.err("TODO: non-LLVM archiver for MachO object files", .{});
return error.TODOImplementWritingStaticLibFiles;
}
}
return self.flushModule(comp, prog_node);
}
pub fn flushModule(self: *MachO, comp: *Compilation, prog_node: *std.Progress.Node) !void {
const tracy = trace(@src());
defer tracy.end();
const use_stage1 = build_options.is_stage1 and self.base.options.use_stage1;
if (build_options.have_llvm and !use_stage1) {
if (self.llvm_object) |llvm_object| {
try llvm_object.flushModule(comp, prog_node);
llvm_object.destroy(self.base.allocator);
self.llvm_object = null;
if (self.base.options.output_mode == .Lib and self.base.options.link_mode == .Static) {
return;
}
}
}
var sub_prog_node = prog_node.start("MachO Flush", 0);
sub_prog_node.activate();
defer sub_prog_node.end();
var arena_allocator = std.heap.ArenaAllocator.init(self.base.allocator);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const directory = self.base.options.emit.?.directory; // Just an alias to make it shorter to type.
const full_out_path = try directory.join(arena, &[_][]const u8{self.base.options.emit.?.sub_path});
// If there is no Zig code to compile, then we should skip flushing the output file because it
// will not be part of the linker line anyway.
const module_obj_path: ?[]const u8 = if (self.base.options.module) |module| blk: {
if (use_stage1) {
const obj_basename = try std.zig.binNameAlloc(arena, .{
.root_name = self.base.options.root_name,
.target = self.base.options.target,
.output_mode = .Obj,
});
switch (self.base.options.cache_mode) {
.incremental => break :blk try module.zig_cache_artifact_directory.join(
arena,
&[_][]const u8{obj_basename},
),
.whole => break :blk try fs.path.join(arena, &.{
fs.path.dirname(full_out_path).?, obj_basename,
}),
}
}
const obj_basename = self.base.intermediary_basename orelse break :blk null;
if (fs.path.dirname(full_out_path)) |dirname| {
break :blk try fs.path.join(arena, &.{ dirname, obj_basename });
} else {
break :blk obj_basename;
}
} else null;
if (self.d_sym) |*d_sym| {
if (self.base.options.module) |module| {
try d_sym.dwarf.flushModule(&self.base, module);
}
}
const is_lib = self.base.options.output_mode == .Lib;
const is_dyn_lib = self.base.options.link_mode == .Dynamic and is_lib;
const is_exe_or_dyn_lib = is_dyn_lib or self.base.options.output_mode == .Exe;
const stack_size = self.base.options.stack_size_override orelse 0;
const allow_undef = is_dyn_lib and (self.base.options.allow_shlib_undefined orelse false);
const id_symlink_basename = "zld.id";
const cache_dir_handle = blk: {
if (use_stage1) {
break :blk directory.handle;
}
if (self.base.options.module) |module| {
break :blk module.zig_cache_artifact_directory.handle;
}
break :blk directory.handle;
};
var man: Cache.Manifest = undefined;
defer if (!self.base.options.disable_lld_caching) man.deinit();
var digest: [Cache.hex_digest_len]u8 = undefined;
var needs_full_relink = true;
cache: {
if ((use_stage1 and self.base.options.disable_lld_caching) or self.base.options.cache_mode == .whole)
break :cache;
man = comp.cache_parent.obtain();
// We are about to obtain this lock, so here we give other processes a chance first.
self.base.releaseLock();
comptime assert(Compilation.link_hash_implementation_version == 5);
for (self.base.options.objects) |obj| {
_ = try man.addFile(obj.path, null);
man.hash.add(obj.must_link);
}
for (comp.c_object_table.keys()) |key| {
_ = try man.addFile(key.status.success.object_path, null);
}
try man.addOptionalFile(module_obj_path);
// We can skip hashing libc and libc++ components that we are in charge of building from Zig
// installation sources because they are always a product of the compiler version + target information.
man.hash.add(stack_size);
man.hash.addOptional(self.base.options.pagezero_size);
man.hash.addOptional(self.base.options.search_strategy);
man.hash.addListOfBytes(self.base.options.lib_dirs);
man.hash.addListOfBytes(self.base.options.framework_dirs);
man.hash.addListOfBytes(self.base.options.frameworks);
man.hash.addListOfBytes(self.base.options.rpath_list);
if (is_dyn_lib) {
man.hash.addOptionalBytes(self.base.options.install_name);
man.hash.addOptional(self.base.options.version);
}
link.hashAddSystemLibs(&man.hash, self.base.options.system_libs);
man.hash.addOptionalBytes(self.base.options.sysroot);
try man.addOptionalFile(self.base.options.entitlements);
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
_ = try man.hit();
digest = man.final();
var prev_digest_buf: [digest.len]u8 = undefined;
const prev_digest: []u8 = Cache.readSmallFile(
cache_dir_handle,
id_symlink_basename,
&prev_digest_buf,
) catch |err| blk: {
log.debug("MachO Zld new_digest={s} error: {s}", .{
std.fmt.fmtSliceHexLower(&digest),
@errorName(err),
});
// Handle this as a cache miss.
break :blk prev_digest_buf[0..0];
};
if (mem.eql(u8, prev_digest, &digest)) {
// Hot diggity dog! The output binary is already there.
const use_llvm = build_options.have_llvm and self.base.options.use_llvm;
if (use_llvm or use_stage1) {
log.debug("MachO Zld digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)});
self.base.lock = man.toOwnedLock();
return;
} else {
log.debug("MachO Zld digest={s} match", .{std.fmt.fmtSliceHexLower(&digest)});
if (!self.cold_start) {
log.debug(" no need to relink objects", .{});
needs_full_relink = false;
} else {
log.debug(" TODO parse prelinked binary and continue linking where we left off", .{});
// TODO until such time however, perform a full relink of objects.
needs_full_relink = true;
}
}
}
log.debug("MachO Zld prev_digest={s} new_digest={s}", .{
std.fmt.fmtSliceHexLower(prev_digest),
std.fmt.fmtSliceHexLower(&digest),
});
// We are about to change the output file to be different, so we invalidate the build hash now.
cache_dir_handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
};
}
if (self.base.options.output_mode == .Obj) {
// LLD's MachO driver does not support the equivalent of `-r` so we do a simple file copy
// here. TODO: think carefully about how we can avoid this redundant operation when doing
// build-obj. See also the corresponding TODO in linkAsArchive.
const the_object_path = blk: {
if (self.base.options.objects.len != 0) {
break :blk self.base.options.objects[0].path;
}
if (comp.c_object_table.count() != 0)
break :blk comp.c_object_table.keys()[0].status.success.object_path;
if (module_obj_path) |p|
break :blk p;
// TODO I think this is unreachable. Audit this situation when solving the above TODO
// regarding eliding redundant object -> object transformations.
return error.NoObjectsToLink;
};
// This can happen when using --enable-cache and using the stage1 backend. In this case
// we can skip the file copy.
if (!mem.eql(u8, the_object_path, full_out_path)) {
try fs.cwd().copyFile(the_object_path, fs.cwd(), full_out_path, .{});
}
} else {
if (use_stage1) {
const sub_path = self.base.options.emit.?.sub_path;
self.base.file = try cache_dir_handle.createFile(sub_path, .{
.truncate = true,
.read = true,
.mode = link.determineMode(self.base.options),
});
// Index 0 is always a null symbol.
try self.locals.append(self.base.allocator, .{
.n_strx = 0,
.n_type = 0,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
try self.strtab.append(self.base.allocator, 0);
try self.populateMissingMetadata();
}
var lib_not_found = false;
var framework_not_found = false;
if (needs_full_relink) {
for (self.objects.items) |*object| {
object.free(self.base.allocator, self);
object.deinit(self.base.allocator);
}
self.objects.clearRetainingCapacity();
for (self.archives.items) |*archive| {
archive.deinit(self.base.allocator);
}
self.archives.clearRetainingCapacity();
for (self.dylibs.items) |*dylib| {
dylib.deinit(self.base.allocator);
}
self.dylibs.clearRetainingCapacity();
self.dylibs_map.clearRetainingCapacity();
self.referenced_dylibs.clearRetainingCapacity();
{
var to_remove = std.ArrayList(u32).init(self.base.allocator);
defer to_remove.deinit();
var it = self.symbol_resolver.iterator();
while (it.next()) |entry| {
const key = entry.key_ptr.*;
const value = entry.value_ptr.*;
if (value.file != null) {
try to_remove.append(key);
}
}
for (to_remove.items) |key| {
if (self.symbol_resolver.fetchRemove(key)) |entry| {
const resolv = entry.value;
switch (resolv.where) {
.global => {
self.globals_free_list.append(self.base.allocator, resolv.where_index) catch {};
const sym = &self.globals.items[resolv.where_index];
sym.n_strx = 0;
sym.n_type = 0;
sym.n_value = 0;
},
.undef => {
const sym = &self.undefs.items[resolv.where_index];
sym.n_strx = 0;
sym.n_desc = 0;
},
}
if (self.got_entries_table.get(.{ .global = entry.key })) |i| {
self.got_entries_free_list.append(self.base.allocator, @intCast(u32, i)) catch {};
self.got_entries.items[i] = .{ .target = .{ .local = 0 }, .atom = undefined };
_ = self.got_entries_table.swapRemove(.{ .global = entry.key });
}
if (self.stubs_table.get(entry.key)) |i| {
self.stubs_free_list.append(self.base.allocator, @intCast(u32, i)) catch {};
self.stubs.items[i] = undefined;
_ = self.stubs_table.swapRemove(entry.key);
}
}
}
}
// Invalidate all relocs
// TODO we only need to invalidate the backlinks to the relinked atoms from
// the relocatable object files.
self.invalidate_relocs = true;
// Positional arguments to the linker such as object files and static archives.
var positionals = std.ArrayList([]const u8).init(arena);
try positionals.ensureUnusedCapacity(self.base.options.objects.len);
var must_link_archives = std.StringArrayHashMap(void).init(arena);
try must_link_archives.ensureUnusedCapacity(self.base.options.objects.len);
for (self.base.options.objects) |obj| {
if (must_link_archives.contains(obj.path)) continue;
if (obj.must_link) {
_ = must_link_archives.getOrPutAssumeCapacity(obj.path);
} else {
_ = positionals.appendAssumeCapacity(obj.path);
}
}
for (comp.c_object_table.keys()) |key| {
try positionals.append(key.status.success.object_path);
}
if (module_obj_path) |p| {
try positionals.append(p);
}
if (comp.compiler_rt_lib) |lib| {
try positionals.append(lib.full_object_path);
}
// libc++ dep
if (self.base.options.link_libcpp) {
try positionals.append(comp.libcxxabi_static_lib.?.full_object_path);
try positionals.append(comp.libcxx_static_lib.?.full_object_path);
}
// Shared and static libraries passed via `-l` flag.
var search_lib_names = std.ArrayList([]const u8).init(arena);
const system_libs = self.base.options.system_libs.keys();
for (system_libs) |link_lib| {
// By this time, we depend on these libs being dynamically linked libraries and not static libraries
// (the check for that needs to be earlier), but they could be full paths to .dylib files, in which
// case we want to avoid prepending "-l".
if (Compilation.classifyFileExt(link_lib) == .shared_library) {
try positionals.append(link_lib);
continue;
}
try search_lib_names.append(link_lib);
}
var lib_dirs = std.ArrayList([]const u8).init(arena);
for (self.base.options.lib_dirs) |dir| {
if (try resolveSearchDir(arena, dir, self.base.options.sysroot)) |search_dir| {
try lib_dirs.append(search_dir);
} else {
log.warn("directory not found for '-L{s}'", .{dir});
}
}
var libs = std.ArrayList([]const u8).init(arena);
// Assume ld64 default -search_paths_first if no strategy specified.
const search_strategy = self.base.options.search_strategy orelse .paths_first;
outer: for (search_lib_names.items) |lib_name| {
switch (search_strategy) {
.paths_first => {
// Look in each directory for a dylib (stub first), and then for archive
for (lib_dirs.items) |dir| {
for (&[_][]const u8{ ".tbd", ".dylib", ".a" }) |ext| {
if (try resolveLib(arena, dir, lib_name, ext)) |full_path| {
try libs.append(full_path);
continue :outer;
}
}
} else {
log.warn("library not found for '-l{s}'", .{lib_name});
lib_not_found = true;
}
},
.dylibs_first => {
// First, look for a dylib in each search dir
for (lib_dirs.items) |dir| {
for (&[_][]const u8{ ".tbd", ".dylib" }) |ext| {
if (try resolveLib(arena, dir, lib_name, ext)) |full_path| {
try libs.append(full_path);
continue :outer;
}
}
} else for (lib_dirs.items) |dir| {
if (try resolveLib(arena, dir, lib_name, ".a")) |full_path| {
try libs.append(full_path);
} else {
log.warn("library not found for '-l{s}'", .{lib_name});
lib_not_found = true;
}
}
},
}
}
if (lib_not_found) {
log.warn("Library search paths:", .{});
for (lib_dirs.items) |dir| {
log.warn(" {s}", .{dir});
}
}
// If we were given the sysroot, try to look there first for libSystem.B.{dylib, tbd}.
var libsystem_available = false;
if (self.base.options.sysroot != null) blk: {
// Try stub file first. If we hit it, then we're done as the stub file
// re-exports every single symbol definition.
for (lib_dirs.items) |dir| {
if (try resolveLib(arena, dir, "System", ".tbd")) |full_path| {
try libs.append(full_path);
libsystem_available = true;
break :blk;
}
}
// If we didn't hit the stub file, try .dylib next. However, libSystem.dylib
// doesn't export libc.dylib which we'll need to resolve subsequently also.
for (lib_dirs.items) |dir| {
if (try resolveLib(arena, dir, "System", ".dylib")) |libsystem_path| {
if (try resolveLib(arena, dir, "c", ".dylib")) |libc_path| {
try libs.append(libsystem_path);
try libs.append(libc_path);
libsystem_available = true;
break :blk;
}
}
}
}
if (!libsystem_available) {
const libsystem_name = try std.fmt.allocPrint(arena, "libSystem.{d}.tbd", .{
self.base.options.target.os.version_range.semver.min.major,
});
const full_path = try comp.zig_lib_directory.join(arena, &[_][]const u8{
"libc", "darwin", libsystem_name,
});
try libs.append(full_path);
}
// frameworks
var framework_dirs = std.ArrayList([]const u8).init(arena);
for (self.base.options.framework_dirs) |dir| {
if (try resolveSearchDir(arena, dir, self.base.options.sysroot)) |search_dir| {
try framework_dirs.append(search_dir);
} else {
log.warn("directory not found for '-F{s}'", .{dir});
}
}
outer: for (self.base.options.frameworks) |framework| {
for (framework_dirs.items) |dir| {
for (&[_][]const u8{ ".tbd", ".dylib", "" }) |ext| {
if (try resolveFramework(arena, dir, framework, ext)) |full_path| {
try libs.append(full_path);
continue :outer;
}
}
} else {
log.warn("framework not found for '-framework {s}'", .{framework});
framework_not_found = true;
}
}
if (framework_not_found) {
log.warn("Framework search paths:", .{});
for (framework_dirs.items) |dir| {
log.warn(" {s}", .{dir});
}
}
// rpaths
var rpath_table = std.StringArrayHashMap(void).init(arena);
for (self.base.options.rpath_list) |rpath| {
if (rpath_table.contains(rpath)) continue;
const cmdsize = @intCast(u32, mem.alignForwardGeneric(
u64,
@sizeOf(macho.rpath_command) + rpath.len + 1,
@sizeOf(u64),
));
var rpath_cmd = macho.emptyGenericCommandWithData(macho.rpath_command{
.cmdsize = cmdsize,
.path = @sizeOf(macho.rpath_command),
});
rpath_cmd.data = try self.base.allocator.alloc(u8, cmdsize - rpath_cmd.inner.path);
mem.set(u8, rpath_cmd.data, 0);
mem.copy(u8, rpath_cmd.data, rpath);
try self.load_commands.append(self.base.allocator, .{ .rpath = rpath_cmd });
try rpath_table.putNoClobber(rpath, {});
self.load_commands_dirty = true;
}
// code signature and entitlements
if (self.base.options.entitlements) |path| {
if (self.code_signature) |*csig| {
try csig.addEntitlements(self.base.allocator, path);
csig.code_directory.ident = self.base.options.emit.?.sub_path;
} else {
var csig = CodeSignature.init(self.page_size);
try csig.addEntitlements(self.base.allocator, path);
csig.code_directory.ident = self.base.options.emit.?.sub_path;
self.code_signature = csig;
}
}
if (self.base.options.verbose_link) {
var argv = std.ArrayList([]const u8).init(arena);
try argv.append("zig");
try argv.append("ld");
if (is_exe_or_dyn_lib) {
try argv.append("-dynamic");
}
if (is_dyn_lib) {
try argv.append("-dylib");
if (self.base.options.install_name) |install_name| {
try argv.append("-install_name");
try argv.append(install_name);
}
}
if (self.base.options.sysroot) |syslibroot| {
try argv.append("-syslibroot");
try argv.append(syslibroot);
}
for (rpath_table.keys()) |rpath| {
try argv.append("-rpath");
try argv.append(rpath);
}
if (self.base.options.pagezero_size) |pagezero_size| {
try argv.append("-pagezero_size");
try argv.append(try std.fmt.allocPrint(arena, "0x{x}", .{pagezero_size}));
}
if (self.base.options.search_strategy) |strat| switch (strat) {
.paths_first => try argv.append("-search_paths_first"),
.dylibs_first => try argv.append("-search_dylibs_first"),
};
if (self.base.options.entry) |entry| {
try argv.append("-e");
try argv.append(entry);
}
for (self.base.options.objects) |obj| {
try argv.append(obj.path);
}
for (comp.c_object_table.keys()) |key| {
try argv.append(key.status.success.object_path);
}
if (module_obj_path) |p| {
try argv.append(p);
}
if (comp.compiler_rt_lib) |lib| {
try argv.append(lib.full_object_path);
}
if (self.base.options.link_libcpp) {
try argv.append(comp.libcxxabi_static_lib.?.full_object_path);
try argv.append(comp.libcxx_static_lib.?.full_object_path);
}
try argv.append("-o");
try argv.append(full_out_path);
try argv.append("-lSystem");
try argv.append("-lc");
for (self.base.options.system_libs.keys()) |l_name| {
try argv.append(try std.fmt.allocPrint(arena, "-l{s}", .{l_name}));
}
for (self.base.options.lib_dirs) |lib_dir| {
try argv.append(try std.fmt.allocPrint(arena, "-L{s}", .{lib_dir}));
}
for (self.base.options.frameworks) |framework| {
try argv.append(try std.fmt.allocPrint(arena, "-framework {s}", .{framework}));
}
for (self.base.options.framework_dirs) |framework_dir| {
try argv.append(try std.fmt.allocPrint(arena, "-F{s}", .{framework_dir}));
}
if (allow_undef) {
try argv.append("-undefined");
try argv.append("dynamic_lookup");
}
for (must_link_archives.keys()) |lib| {
try argv.append(try std.fmt.allocPrint(arena, "-force_load {s}", .{lib}));
}
Compilation.dump_argv(argv.items);
}
var dependent_libs = std.fifo.LinearFifo(Dylib.Id, .Dynamic).init(self.base.allocator);
defer dependent_libs.deinit();
try self.parseInputFiles(positionals.items, self.base.options.sysroot, &dependent_libs);
try self.parseAndForceLoadStaticArchives(must_link_archives.keys());
try self.parseLibs(libs.items, self.base.options.sysroot, &dependent_libs);
try self.parseDependentLibs(self.base.options.sysroot, &dependent_libs);
}
try self.createMhExecuteHeaderAtom();
for (self.objects.items) |*object, object_id| {
if (object.analyzed) continue;
try self.resolveSymbolsInObject(@intCast(u16, object_id));
}
try self.resolveSymbolsInArchives();
try self.resolveDyldStubBinder();
try self.createDyldPrivateAtom();
try self.createStubHelperPreambleAtom();
try self.resolveSymbolsInDylibs();
try self.createDsoHandleAtom();
try self.addCodeSignatureLC();
{
var next_sym: usize = 0;
while (next_sym < self.unresolved.count()) {
const sym = &self.undefs.items[self.unresolved.keys()[next_sym]];
const sym_name = self.getString(sym.n_strx);
const resolv = self.symbol_resolver.get(sym.n_strx) orelse unreachable;
if (sym.discarded()) {
sym.* = .{
.n_strx = 0,
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
_ = self.unresolved.swapRemove(resolv.where_index);
continue;
} else if (allow_undef) {
const n_desc = @bitCast(
u16,
macho.BIND_SPECIAL_DYLIB_FLAT_LOOKUP * @intCast(i16, macho.N_SYMBOL_RESOLVER),
);
// TODO allow_shlib_undefined is an ELF flag so figure out macOS specific flags too.
sym.n_type = macho.N_EXT;
sym.n_desc = n_desc;
_ = self.unresolved.swapRemove(resolv.where_index);
continue;
}
log.err("undefined reference to symbol '{s}'", .{sym_name});
if (resolv.file) |file| {
log.err(" first referenced in '{s}'", .{self.objects.items[file].name});
}
next_sym += 1;
}
}
if (self.unresolved.count() > 0) {
return error.UndefinedSymbolReference;
}
if (lib_not_found) {
return error.LibraryNotFound;
}
if (framework_not_found) {
return error.FrameworkNotFound;
}
try self.createTentativeDefAtoms();
try self.parseObjectsIntoAtoms();
const use_llvm = build_options.have_llvm and self.base.options.use_llvm;
if (use_llvm or use_stage1) {
try self.sortSections();
try self.allocateTextSegment();
try self.allocateDataConstSegment();
try self.allocateDataSegment();
self.allocateLinkeditSegment();
try self.allocateLocals();
}
try self.allocateGlobals();
if (build_options.enable_logging) {
self.logSymtab();
self.logSectionOrdinals();
}
if (use_llvm or use_stage1) {
try self.writeAllAtoms();
} else {
try self.writeAtoms();
}
if (self.rustc_section_index) |id| {
const seg = &self.load_commands.items[self.data_segment_cmd_index.?].segment;
const sect = &seg.sections.items[id];
sect.size = self.rustc_section_size;
}
try self.setEntryPoint();
try self.updateSectionOrdinals();
try self.writeLinkeditSegment();
if (self.d_sym) |*d_sym| {
// Flush debug symbols bundle.
try d_sym.flushModule(self.base.allocator, self.base.options);
}
if (self.code_signature) |*csig| {
csig.clear(self.base.allocator);
csig.code_directory.ident = self.base.options.emit.?.sub_path;
// Preallocate space for the code signature.
// We need to do this at this stage so that we have the load commands with proper values
// written out to the file.
// The most important here is to have the correct vm and filesize of the __LINKEDIT segment
// where the code signature goes into.
try self.writeCodeSignaturePadding(csig);
}
try self.writeLoadCommands();
try self.writeHeader();
if (self.entry_addr == null and self.base.options.output_mode == .Exe) {
log.debug("flushing. no_entry_point_found = true", .{});
self.error_flags.no_entry_point_found = true;
} else {
log.debug("flushing. no_entry_point_found = false", .{});
self.error_flags.no_entry_point_found = false;
}
assert(!self.load_commands_dirty);
if (self.code_signature) |*csig| {
try self.writeCodeSignature(csig); // code signing always comes last
}
if (build_options.enable_link_snapshots) {
if (self.base.options.enable_link_snapshots)
try self.snapshotState();
}
}
cache: {
if ((use_stage1 and self.base.options.disable_lld_caching) or self.base.options.cache_mode == .whole)
break :cache;
// Update the file with the digest. If it fails we can continue; it only
// means that the next invocation will have an unnecessary cache miss.
Cache.writeSmallFile(cache_dir_handle, id_symlink_basename, &digest) catch |err| {
log.debug("failed to save linking hash digest file: {s}", .{@errorName(err)});
};
// Again failure here only means an unnecessary cache miss.
man.writeManifest() catch |err| {
log.debug("failed to write cache manifest when linking: {s}", .{@errorName(err)});
};
// We hang on to this lock so that the output file path can be used without
// other processes clobbering it.
self.base.lock = man.toOwnedLock();
}
self.cold_start = false;
}
fn resolveSearchDir(
arena: Allocator,
dir: []const u8,
syslibroot: ?[]const u8,
) !?[]const u8 {
var candidates = std.ArrayList([]const u8).init(arena);
if (fs.path.isAbsolute(dir)) {
if (syslibroot) |root| {
const common_dir = if (builtin.os.tag == .windows) blk: {
// We need to check for disk designator and strip it out from dir path so
// that we can concat dir with syslibroot.
// TODO we should backport this mechanism to 'MachO.Dylib.parseDependentLibs()'
const disk_designator = fs.path.diskDesignatorWindows(dir);
if (mem.indexOf(u8, dir, disk_designator)) |where| {
break :blk dir[where + disk_designator.len ..];
}
break :blk dir;
} else dir;
const full_path = try fs.path.join(arena, &[_][]const u8{ root, common_dir });
try candidates.append(full_path);
}
}
try candidates.append(dir);
for (candidates.items) |candidate| {
// Verify that search path actually exists
var tmp = fs.cwd().openDir(candidate, .{}) catch |err| switch (err) {
error.FileNotFound => continue,
else => |e| return e,
};
defer tmp.close();
return candidate;
}
return null;
}
fn resolveLib(
arena: Allocator,
search_dir: []const u8,
name: []const u8,
ext: []const u8,
) !?[]const u8 {
const search_name = try std.fmt.allocPrint(arena, "lib{s}{s}", .{ name, ext });
const full_path = try fs.path.join(arena, &[_][]const u8{ search_dir, search_name });
// Check if the file exists.
const tmp = fs.cwd().openFile(full_path, .{}) catch |err| switch (err) {
error.FileNotFound => return null,
else => |e| return e,
};
defer tmp.close();
return full_path;
}
fn resolveFramework(
arena: Allocator,
search_dir: []const u8,
name: []const u8,
ext: []const u8,
) !?[]const u8 {
const search_name = try std.fmt.allocPrint(arena, "{s}{s}", .{ name, ext });
const prefix_path = try std.fmt.allocPrint(arena, "{s}.framework", .{name});
const full_path = try fs.path.join(arena, &[_][]const u8{ search_dir, prefix_path, search_name });
// Check if the file exists.
const tmp = fs.cwd().openFile(full_path, .{}) catch |err| switch (err) {
error.FileNotFound => return null,
else => |e| return e,
};
defer tmp.close();
return full_path;
}
fn parseObject(self: *MachO, path: []const u8) !bool {
const file = fs.cwd().openFile(path, .{}) catch |err| switch (err) {
error.FileNotFound => return false,
else => |e| return e,
};
errdefer file.close();
const name = try self.base.allocator.dupe(u8, path);
errdefer self.base.allocator.free(name);
var object = Object{
.name = name,
.file = file,
};
object.parse(self.base.allocator, self.base.options.target) catch |err| switch (err) {
error.EndOfStream, error.NotObject => {
object.deinit(self.base.allocator);
return false;
},
else => |e| return e,
};
try self.objects.append(self.base.allocator, object);
return true;
}
fn parseArchive(self: *MachO, path: []const u8, force_load: bool) !bool {
const file = fs.cwd().openFile(path, .{}) catch |err| switch (err) {
error.FileNotFound => return false,
else => |e| return e,
};
errdefer file.close();
const name = try self.base.allocator.dupe(u8, path);
errdefer self.base.allocator.free(name);
var archive = Archive{
.name = name,
.file = file,
};
archive.parse(self.base.allocator, self.base.options.target) catch |err| switch (err) {
error.EndOfStream, error.NotArchive => {
archive.deinit(self.base.allocator);
return false;
},
else => |e| return e,
};
if (force_load) {
defer archive.deinit(self.base.allocator);
// Get all offsets from the ToC
var offsets = std.AutoArrayHashMap(u32, void).init(self.base.allocator);
defer offsets.deinit();
for (archive.toc.values()) |offs| {
for (offs.items) |off| {
_ = try offsets.getOrPut(off);
}
}
for (offsets.keys()) |off| {
const object = try self.objects.addOne(self.base.allocator);
object.* = try archive.parseObject(self.base.allocator, self.base.options.target, off);
}
} else {
try self.archives.append(self.base.allocator, archive);
}
return true;
}
const ParseDylibError = error{
OutOfMemory,
EmptyStubFile,
MismatchedCpuArchitecture,
UnsupportedCpuArchitecture,
} || fs.File.OpenError || std.os.PReadError || Dylib.Id.ParseError;
const DylibCreateOpts = struct {
syslibroot: ?[]const u8,
dependent_libs: *std.fifo.LinearFifo(Dylib.Id, .Dynamic),
id: ?Dylib.Id = null,
is_dependent: bool = false,
};
pub fn parseDylib(self: *MachO, path: []const u8, opts: DylibCreateOpts) ParseDylibError!bool {
const file = fs.cwd().openFile(path, .{}) catch |err| switch (err) {
error.FileNotFound => return false,
else => |e| return e,
};
errdefer file.close();
const name = try self.base.allocator.dupe(u8, path);
errdefer self.base.allocator.free(name);
var dylib = Dylib{
.name = name,
.file = file,
};
dylib.parse(self.base.allocator, self.base.options.target, opts.dependent_libs) catch |err| switch (err) {
error.EndOfStream, error.NotDylib => {
try file.seekTo(0);
var lib_stub = LibStub.loadFromFile(self.base.allocator, file) catch {
dylib.deinit(self.base.allocator);
return false;
};
defer lib_stub.deinit();
try dylib.parseFromStub(self.base.allocator, self.base.options.target, lib_stub, opts.dependent_libs);
},
else => |e| return e,
};
if (opts.id) |id| {
if (dylib.id.?.current_version < id.compatibility_version) {
log.warn("found dylib is incompatible with the required minimum version", .{});
log.warn(" dylib: {s}", .{id.name});
log.warn(" required minimum version: {}", .{id.compatibility_version});
log.warn(" dylib version: {}", .{dylib.id.?.current_version});
// TODO maybe this should be an error and facilitate auto-cleanup?
dylib.deinit(self.base.allocator);
return false;
}
}
const dylib_id = @intCast(u16, self.dylibs.items.len);
try self.dylibs.append(self.base.allocator, dylib);
try self.dylibs_map.putNoClobber(self.base.allocator, dylib.id.?.name, dylib_id);
if (!(opts.is_dependent or self.referenced_dylibs.contains(dylib_id))) {
try self.addLoadDylibLC(dylib_id);
try self.referenced_dylibs.putNoClobber(self.base.allocator, dylib_id, {});
}
return true;
}
fn parseInputFiles(self: *MachO, files: []const []const u8, syslibroot: ?[]const u8, dependent_libs: anytype) !void {
for (files) |file_name| {
const full_path = full_path: {
var buffer: [fs.MAX_PATH_BYTES]u8 = undefined;
const path = try fs.realpath(file_name, &buffer);
break :full_path try self.base.allocator.dupe(u8, path);
};
defer self.base.allocator.free(full_path);
log.debug("parsing input file path '{s}'", .{full_path});
if (try self.parseObject(full_path)) continue;
if (try self.parseArchive(full_path, false)) continue;
if (try self.parseDylib(full_path, .{
.syslibroot = syslibroot,
.dependent_libs = dependent_libs,
})) continue;
log.warn("unknown filetype for positional input file: '{s}'", .{file_name});
}
}
fn parseAndForceLoadStaticArchives(self: *MachO, files: []const []const u8) !void {
for (files) |file_name| {
const full_path = full_path: {
var buffer: [fs.MAX_PATH_BYTES]u8 = undefined;
const path = try fs.realpath(file_name, &buffer);
break :full_path try self.base.allocator.dupe(u8, path);
};
defer self.base.allocator.free(full_path);
log.debug("parsing and force loading static archive '{s}'", .{full_path});
if (try self.parseArchive(full_path, true)) continue;
log.warn("unknown filetype: expected static archive: '{s}'", .{file_name});
}
}
fn parseLibs(self: *MachO, libs: []const []const u8, syslibroot: ?[]const u8, dependent_libs: anytype) !void {
for (libs) |lib| {
log.debug("parsing lib path '{s}'", .{lib});
if (try self.parseDylib(lib, .{
.syslibroot = syslibroot,
.dependent_libs = dependent_libs,
})) continue;
if (try self.parseArchive(lib, false)) continue;
log.warn("unknown filetype for a library: '{s}'", .{lib});
}
}
fn parseDependentLibs(self: *MachO, syslibroot: ?[]const u8, dependent_libs: anytype) !void {
// At this point, we can now parse dependents of dylibs preserving the inclusion order of:
// 1) anything on the linker line is parsed first
// 2) afterwards, we parse dependents of the included dylibs
// TODO this should not be performed if the user specifies `-flat_namespace` flag.
// See ld64 manpages.
var arena_alloc = std.heap.ArenaAllocator.init(self.base.allocator);
const arena = arena_alloc.allocator();
defer arena_alloc.deinit();
while (dependent_libs.readItem()) |*id| {
defer id.deinit(self.base.allocator);
if (self.dylibs_map.contains(id.name)) continue;
const has_ext = blk: {
const basename = fs.path.basename(id.name);
break :blk mem.lastIndexOfScalar(u8, basename, '.') != null;
};
const extension = if (has_ext) fs.path.extension(id.name) else "";
const without_ext = if (has_ext) blk: {
const index = mem.lastIndexOfScalar(u8, id.name, '.') orelse unreachable;
break :blk id.name[0..index];
} else id.name;
for (&[_][]const u8{ extension, ".tbd" }) |ext| {
const with_ext = try std.fmt.allocPrint(arena, "{s}{s}", .{ without_ext, ext });
const full_path = if (syslibroot) |root| try fs.path.join(arena, &.{ root, with_ext }) else with_ext;
log.debug("trying dependency at fully resolved path {s}", .{full_path});
const did_parse_successfully = try self.parseDylib(full_path, .{
.id = id.*,
.syslibroot = syslibroot,
.is_dependent = true,
.dependent_libs = dependent_libs,
});
if (did_parse_successfully) break;
} else {
log.warn("unable to resolve dependency {s}", .{id.name});
}
}
}
pub const MatchingSection = struct {
seg: u16,
sect: u16,
};
pub fn getMatchingSection(self: *MachO, sect: macho.section_64) !?MatchingSection {
const segname = sect.segName();
const sectname = sect.sectName();
const res: ?MatchingSection = blk: {
switch (sect.type_()) {
macho.S_4BYTE_LITERALS, macho.S_8BYTE_LITERALS, macho.S_16BYTE_LITERALS => {
if (self.text_const_section_index == null) {
self.text_const_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_const_section_index.?,
};
},
macho.S_CSTRING_LITERALS => {
if (mem.eql(u8, sectname, "__objc_methname")) {
// TODO it seems the common values within the sections in objects are deduplicated/merged
// on merging the sections' contents.
if (self.objc_methname_section_index == null) {
self.objc_methname_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__objc_methname",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.objc_methname_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_methtype")) {
if (self.objc_methtype_section_index == null) {
self.objc_methtype_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__objc_methtype",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.objc_methtype_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_classname")) {
if (self.objc_classname_section_index == null) {
self.objc_classname_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__objc_classname",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.objc_classname_section_index.?,
};
}
if (self.cstring_section_index == null) {
self.cstring_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__cstring",
sect.size,
sect.@"align",
.{
.flags = macho.S_CSTRING_LITERALS,
},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.cstring_section_index.?,
};
},
macho.S_LITERAL_POINTERS => {
if (mem.eql(u8, segname, "__DATA") and mem.eql(u8, sectname, "__objc_selrefs")) {
if (self.objc_selrefs_section_index == null) {
self.objc_selrefs_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__objc_selrefs",
sect.size,
sect.@"align",
.{
.flags = macho.S_LITERAL_POINTERS,
},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.objc_selrefs_section_index.?,
};
} else {
// TODO investigate
break :blk null;
}
},
macho.S_MOD_INIT_FUNC_POINTERS => {
if (self.mod_init_func_section_index == null) {
self.mod_init_func_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__mod_init_func",
sect.size,
sect.@"align",
.{
.flags = macho.S_MOD_INIT_FUNC_POINTERS,
},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.mod_init_func_section_index.?,
};
},
macho.S_MOD_TERM_FUNC_POINTERS => {
if (self.mod_term_func_section_index == null) {
self.mod_term_func_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__mod_term_func",
sect.size,
sect.@"align",
.{
.flags = macho.S_MOD_TERM_FUNC_POINTERS,
},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.mod_term_func_section_index.?,
};
},
macho.S_ZEROFILL => {
if (self.bss_section_index == null) {
self.bss_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__bss",
sect.size,
sect.@"align",
.{
.flags = macho.S_ZEROFILL,
},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.bss_section_index.?,
};
},
macho.S_THREAD_LOCAL_VARIABLES => {
if (self.tlv_section_index == null) {
self.tlv_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_vars",
sect.size,
sect.@"align",
.{
.flags = macho.S_THREAD_LOCAL_VARIABLES,
},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.tlv_section_index.?,
};
},
macho.S_THREAD_LOCAL_VARIABLE_POINTERS => {
if (self.tlv_ptrs_section_index == null) {
self.tlv_ptrs_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_ptrs",
sect.size,
sect.@"align",
.{
.flags = macho.S_THREAD_LOCAL_VARIABLE_POINTERS,
},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.tlv_ptrs_section_index.?,
};
},
macho.S_THREAD_LOCAL_REGULAR => {
if (self.tlv_data_section_index == null) {
self.tlv_data_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_data",
sect.size,
sect.@"align",
.{
.flags = macho.S_THREAD_LOCAL_REGULAR,
},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.tlv_data_section_index.?,
};
},
macho.S_THREAD_LOCAL_ZEROFILL => {
if (self.tlv_bss_section_index == null) {
self.tlv_bss_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_bss",
sect.size,
sect.@"align",
.{
.flags = macho.S_THREAD_LOCAL_ZEROFILL,
},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.tlv_bss_section_index.?,
};
},
macho.S_COALESCED => {
if (mem.eql(u8, "__TEXT", segname) and mem.eql(u8, "__eh_frame", sectname)) {
// TODO I believe __eh_frame is currently part of __unwind_info section
// in the latest ld64 output.
if (self.eh_frame_section_index == null) {
self.eh_frame_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__eh_frame",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.eh_frame_section_index.?,
};
}
// TODO audit this: is this the right mapping?
if (self.data_const_section_index == null) {
self.data_const_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.data_const_section_index.?,
};
},
macho.S_REGULAR => {
if (sect.isCode()) {
if (self.text_section_index == null) {
self.text_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__text",
sect.size,
sect.@"align",
.{
.flags = macho.S_REGULAR |
macho.S_ATTR_PURE_INSTRUCTIONS |
macho.S_ATTR_SOME_INSTRUCTIONS,
},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_section_index.?,
};
}
if (sect.isDebug()) {
// TODO debug attributes
if (mem.eql(u8, "__LD", segname) and mem.eql(u8, "__compact_unwind", sectname)) {
log.debug("TODO compact unwind section: type 0x{x}, name '{s},{s}'", .{
sect.flags, segname, sectname,
});
}
break :blk null;
}
if (mem.eql(u8, segname, "__TEXT")) {
if (mem.eql(u8, sectname, "__ustring")) {
if (self.ustring_section_index == null) {
self.ustring_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__ustring",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.ustring_section_index.?,
};
} else if (mem.eql(u8, sectname, "__gcc_except_tab")) {
if (self.gcc_except_tab_section_index == null) {
self.gcc_except_tab_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__gcc_except_tab",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.gcc_except_tab_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_methlist")) {
if (self.objc_methlist_section_index == null) {
self.objc_methlist_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__objc_methlist",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.objc_methlist_section_index.?,
};
} else if (mem.eql(u8, sectname, "__rodata") or
mem.eql(u8, sectname, "__typelink") or
mem.eql(u8, sectname, "__itablink") or
mem.eql(u8, sectname, "__gosymtab") or
mem.eql(u8, sectname, "__gopclntab"))
{
if (self.data_const_section_index == null) {
self.data_const_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.data_const_section_index.?,
};
} else {
if (self.text_const_section_index == null) {
self.text_const_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_const_section_index.?,
};
}
}
if (mem.eql(u8, segname, "__DATA_CONST")) {
if (self.data_const_section_index == null) {
self.data_const_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.data_const_section_index.?,
};
}
if (mem.eql(u8, segname, "__DATA")) {
if (mem.eql(u8, sectname, "__const")) {
if (self.data_const_section_index == null) {
self.data_const_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.data_const_section_index.?,
};
} else if (mem.eql(u8, sectname, "__cfstring")) {
if (self.objc_cfstring_section_index == null) {
self.objc_cfstring_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__cfstring",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.objc_cfstring_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_classlist")) {
if (self.objc_classlist_section_index == null) {
self.objc_classlist_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__objc_classlist",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.objc_classlist_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_imageinfo")) {
if (self.objc_imageinfo_section_index == null) {
self.objc_imageinfo_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__objc_imageinfo",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.objc_imageinfo_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_const")) {
if (self.objc_const_section_index == null) {
self.objc_const_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__objc_const",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.objc_const_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_classrefs")) {
if (self.objc_classrefs_section_index == null) {
self.objc_classrefs_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__objc_classrefs",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.objc_classrefs_section_index.?,
};
} else if (mem.eql(u8, sectname, "__objc_data")) {
if (self.objc_data_section_index == null) {
self.objc_data_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__objc_data",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.objc_data_section_index.?,
};
} else if (mem.eql(u8, sectname, ".rustc")) {
if (self.rustc_section_index == null) {
self.rustc_section_index = try self.initSection(
self.data_segment_cmd_index.?,
".rustc",
sect.size,
sect.@"align",
.{},
);
// We need to preserve the section size for rustc to properly
// decompress the metadata.
self.rustc_section_size = sect.size;
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.rustc_section_index.?,
};
} else {
if (self.data_section_index == null) {
self.data_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__data",
sect.size,
sect.@"align",
.{},
);
}
break :blk .{
.seg = self.data_segment_cmd_index.?,
.sect = self.data_section_index.?,
};
}
}
if (mem.eql(u8, "__LLVM", segname) and mem.eql(u8, "__asm", sectname)) {
log.debug("TODO LLVM asm section: type 0x{x}, name '{s},{s}'", .{
sect.flags, segname, sectname,
});
}
break :blk null;
},
else => break :blk null,
}
};
return res;
}
pub fn createEmptyAtom(self: *MachO, local_sym_index: u32, size: u64, alignment: u32) !*Atom {
const size_usize = math.cast(usize, size) orelse return error.Overflow;
const atom = try self.base.allocator.create(Atom);
errdefer self.base.allocator.destroy(atom);
atom.* = Atom.empty;
atom.local_sym_index = local_sym_index;
atom.size = size;
atom.alignment = alignment;
try atom.code.resize(self.base.allocator, size_usize);
mem.set(u8, atom.code.items, 0);
try self.managed_atoms.append(self.base.allocator, atom);
return atom;
}
pub fn writeAtom(self: *MachO, atom: *Atom, match: MatchingSection) !void {
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
const sym = self.locals.items[atom.local_sym_index];
const file_offset = sect.offset + sym.n_value - sect.addr;
try atom.resolveRelocs(self);
log.debug("writing atom for symbol {s} at file offset 0x{x}", .{ self.getString(sym.n_strx), file_offset });
try self.base.file.?.pwriteAll(atom.code.items, file_offset);
}
fn allocateLocals(self: *MachO) !void {
var it = self.atoms.iterator();
while (it.next()) |entry| {
const match = entry.key_ptr.*;
var atom = entry.value_ptr.*;
while (atom.prev) |prev| {
atom = prev;
}
const n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
var base_vaddr = sect.addr;
log.debug("allocating local symbols in {s},{s}", .{ sect.segName(), sect.sectName() });
while (true) {
const alignment = try math.powi(u32, 2, atom.alignment);
base_vaddr = mem.alignForwardGeneric(u64, base_vaddr, alignment);
const sym = &self.locals.items[atom.local_sym_index];
sym.n_value = base_vaddr;
sym.n_sect = n_sect;
log.debug(" {d}: {s} allocated at 0x{x}", .{
atom.local_sym_index,
self.getString(sym.n_strx),
base_vaddr,
});
// Update each alias (if any)
for (atom.aliases.items) |index| {
const alias_sym = &self.locals.items[index];
alias_sym.n_value = base_vaddr;
alias_sym.n_sect = n_sect;
}
// Update each symbol contained within the atom
for (atom.contained.items) |sym_at_off| {
const contained_sym = &self.locals.items[sym_at_off.local_sym_index];
contained_sym.n_value = base_vaddr + sym_at_off.offset;
contained_sym.n_sect = n_sect;
}
base_vaddr += atom.size;
if (atom.next) |next| {
atom = next;
} else break;
}
}
}
fn shiftLocalsByOffset(self: *MachO, match: MatchingSection, offset: i64) !void {
var atom = self.atoms.get(match) orelse return;
while (true) {
const atom_sym = &self.locals.items[atom.local_sym_index];
atom_sym.n_value = @intCast(u64, @intCast(i64, atom_sym.n_value) + offset);
for (atom.aliases.items) |index| {
const alias_sym = &self.locals.items[index];
alias_sym.n_value = @intCast(u64, @intCast(i64, alias_sym.n_value) + offset);
}
for (atom.contained.items) |sym_at_off| {
const contained_sym = &self.locals.items[sym_at_off.local_sym_index];
contained_sym.n_value = @intCast(u64, @intCast(i64, contained_sym.n_value) + offset);
}
if (atom.prev) |prev| {
atom = prev;
} else break;
}
}
fn allocateGlobals(self: *MachO) !void {
log.debug("allocating global symbols", .{});
var sym_it = self.symbol_resolver.valueIterator();
while (sym_it.next()) |resolv| {
if (resolv.where != .global) continue;
assert(resolv.local_sym_index != 0);
const local_sym = self.locals.items[resolv.local_sym_index];
const sym = &self.globals.items[resolv.where_index];
sym.n_value = local_sym.n_value;
sym.n_sect = local_sym.n_sect;
log.debug(" {d}: {s} allocated at 0x{x}", .{
resolv.where_index,
self.getString(sym.n_strx),
local_sym.n_value,
});
}
}
fn writeAllAtoms(self: *MachO) !void {
var it = self.atoms.iterator();
while (it.next()) |entry| {
const match = entry.key_ptr.*;
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
var atom: *Atom = entry.value_ptr.*;
if (sect.flags == macho.S_ZEROFILL or sect.flags == macho.S_THREAD_LOCAL_ZEROFILL) continue;
var buffer = std.ArrayList(u8).init(self.base.allocator);
defer buffer.deinit();
try buffer.ensureTotalCapacity(math.cast(usize, sect.size) orelse return error.Overflow);
log.debug("writing atoms in {s},{s}", .{ sect.segName(), sect.sectName() });
while (atom.prev) |prev| {
atom = prev;
}
while (true) {
const atom_sym = self.locals.items[atom.local_sym_index];
const padding_size: usize = if (atom.next) |next| blk: {
const next_sym = self.locals.items[next.local_sym_index];
const size = next_sym.n_value - (atom_sym.n_value + atom.size);
break :blk math.cast(usize, size) orelse return error.Overflow;
} else 0;
log.debug(" (adding atom {s} to buffer: {})", .{ self.getString(atom_sym.n_strx), atom_sym });
try atom.resolveRelocs(self);
buffer.appendSliceAssumeCapacity(atom.code.items);
var i: usize = 0;
while (i < padding_size) : (i += 1) {
buffer.appendAssumeCapacity(0);
}
if (atom.next) |next| {
atom = next;
} else {
assert(buffer.items.len == sect.size);
log.debug(" (writing at file offset 0x{x})", .{sect.offset});
try self.base.file.?.pwriteAll(buffer.items, sect.offset);
break;
}
}
}
}
fn writePadding(self: *MachO, match: MatchingSection, size: usize, writer: anytype) !void {
const is_code = match.seg == self.text_segment_cmd_index.? and match.sect == self.text_section_index.?;
const min_alignment: u3 = if (!is_code)
1
else switch (self.base.options.target.cpu.arch) {
.aarch64 => @sizeOf(u32),
.x86_64 => @as(u3, 1),
else => unreachable,
};
const len = @divExact(size, min_alignment);
var i: usize = 0;
while (i < len) : (i += 1) {
if (!is_code) {
try writer.writeByte(0);
} else switch (self.base.options.target.cpu.arch) {
.aarch64 => {
const inst = aarch64.Instruction.nop();
try writer.writeIntLittle(u32, inst.toU32());
},
.x86_64 => {
try writer.writeByte(0x90);
},
else => unreachable,
}
}
}
fn writeAtoms(self: *MachO) !void {
var it = self.atoms.iterator();
while (it.next()) |entry| {
const match = entry.key_ptr.*;
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
var atom: *Atom = entry.value_ptr.*;
// TODO handle zerofill in stage2
// if (sect.flags == macho.S_ZEROFILL or sect.flags == macho.S_THREAD_LOCAL_ZEROFILL) continue;
log.debug("writing atoms in {s},{s}", .{ sect.segName(), sect.sectName() });
while (true) {
if (atom.dirty or self.invalidate_relocs) {
try self.writeAtom(atom, match);
atom.dirty = false;
}
if (atom.prev) |prev| {
atom = prev;
} else break;
}
}
}
pub fn createGotAtom(self: *MachO, target: Atom.Relocation.Target) !*Atom {
const local_sym_index = @intCast(u32, self.locals.items.len);
try self.locals.append(self.base.allocator, .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
const atom = try self.createEmptyAtom(local_sym_index, @sizeOf(u64), 3);
try atom.relocs.append(self.base.allocator, .{
.offset = 0,
.target = target,
.addend = 0,
.subtractor = null,
.pcrel = false,
.length = 3,
.@"type" = switch (self.base.options.target.cpu.arch) {
.aarch64 => @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_UNSIGNED),
.x86_64 => @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_UNSIGNED),
else => unreachable,
},
});
switch (target) {
.local => {
try atom.rebases.append(self.base.allocator, 0);
},
.global => |n_strx| {
try atom.bindings.append(self.base.allocator, .{
.n_strx = n_strx,
.offset = 0,
});
},
}
return atom;
}
pub fn createTlvPtrAtom(self: *MachO, target: Atom.Relocation.Target) !*Atom {
const local_sym_index = @intCast(u32, self.locals.items.len);
try self.locals.append(self.base.allocator, .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
const atom = try self.createEmptyAtom(local_sym_index, @sizeOf(u64), 3);
assert(target == .global);
try atom.bindings.append(self.base.allocator, .{
.n_strx = target.global,
.offset = 0,
});
return atom;
}
fn createDyldPrivateAtom(self: *MachO) !void {
if (self.dyld_private_atom != null) return;
const local_sym_index = @intCast(u32, self.locals.items.len);
const sym = try self.locals.addOne(self.base.allocator);
sym.* = .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
const atom = try self.createEmptyAtom(local_sym_index, @sizeOf(u64), 3);
self.dyld_private_atom = atom;
const match = MatchingSection{
.seg = self.data_segment_cmd_index.?,
.sect = self.data_section_index.?,
};
if (self.needs_prealloc) {
const vaddr = try self.allocateAtom(atom, @sizeOf(u64), 8, match);
log.debug("allocated {s} atom at 0x{x}", .{ self.getString(sym.n_strx), vaddr });
sym.n_value = vaddr;
} else try self.addAtomToSection(atom, match);
sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
}
fn createStubHelperPreambleAtom(self: *MachO) !void {
if (self.stub_helper_preamble_atom != null) return;
const arch = self.base.options.target.cpu.arch;
const size: u64 = switch (arch) {
.x86_64 => 15,
.aarch64 => 6 * @sizeOf(u32),
else => unreachable,
};
const alignment: u32 = switch (arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable,
};
const local_sym_index = @intCast(u32, self.locals.items.len);
const sym = try self.locals.addOne(self.base.allocator);
sym.* = .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
const atom = try self.createEmptyAtom(local_sym_index, size, alignment);
const dyld_private_sym_index = self.dyld_private_atom.?.local_sym_index;
switch (arch) {
.x86_64 => {
try atom.relocs.ensureUnusedCapacity(self.base.allocator, 2);
// lea %r11, [rip + disp]
atom.code.items[0] = 0x4c;
atom.code.items[1] = 0x8d;
atom.code.items[2] = 0x1d;
atom.relocs.appendAssumeCapacity(.{
.offset = 3,
.target = .{ .local = dyld_private_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_SIGNED),
});
// push %r11
atom.code.items[7] = 0x41;
atom.code.items[8] = 0x53;
// jmp [rip + disp]
atom.code.items[9] = 0xff;
atom.code.items[10] = 0x25;
atom.relocs.appendAssumeCapacity(.{
.offset = 11,
.target = .{ .global = self.undefs.items[self.dyld_stub_binder_index.?].n_strx },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_GOT),
});
},
.aarch64 => {
try atom.relocs.ensureUnusedCapacity(self.base.allocator, 4);
// adrp x17, 0
mem.writeIntLittle(u32, atom.code.items[0..][0..4], aarch64.Instruction.adrp(.x17, 0).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 0,
.target = .{ .local = dyld_private_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_PAGE21),
});
// add x17, x17, 0
mem.writeIntLittle(u32, atom.code.items[4..][0..4], aarch64.Instruction.add(.x17, .x17, 0, false).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 4,
.target = .{ .local = dyld_private_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = false,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_PAGEOFF12),
});
// stp x16, x17, [sp, #-16]!
mem.writeIntLittle(u32, atom.code.items[8..][0..4], aarch64.Instruction.stp(
.x16,
.x17,
aarch64.Register.sp,
aarch64.Instruction.LoadStorePairOffset.pre_index(-16),
).toU32());
// adrp x16, 0
mem.writeIntLittle(u32, atom.code.items[12..][0..4], aarch64.Instruction.adrp(.x16, 0).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 12,
.target = .{ .global = self.undefs.items[self.dyld_stub_binder_index.?].n_strx },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_GOT_LOAD_PAGE21),
});
// ldr x16, [x16, 0]
mem.writeIntLittle(u32, atom.code.items[16..][0..4], aarch64.Instruction.ldr(
.x16,
.x16,
aarch64.Instruction.LoadStoreOffset.imm(0),
).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 16,
.target = .{ .global = self.undefs.items[self.dyld_stub_binder_index.?].n_strx },
.addend = 0,
.subtractor = null,
.pcrel = false,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_GOT_LOAD_PAGEOFF12),
});
// br x16
mem.writeIntLittle(u32, atom.code.items[20..][0..4], aarch64.Instruction.br(.x16).toU32());
},
else => unreachable,
}
self.stub_helper_preamble_atom = atom;
const match = MatchingSection{
.seg = self.text_segment_cmd_index.?,
.sect = self.stub_helper_section_index.?,
};
if (self.needs_prealloc) {
const alignment_pow_2 = try math.powi(u32, 2, atom.alignment);
const vaddr = try self.allocateAtom(atom, atom.size, alignment_pow_2, match);
log.debug("allocated {s} atom at 0x{x}", .{ self.getString(sym.n_strx), vaddr });
sym.n_value = vaddr;
} else try self.addAtomToSection(atom, match);
sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
}
pub fn createStubHelperAtom(self: *MachO) !*Atom {
const arch = self.base.options.target.cpu.arch;
const stub_size: u4 = switch (arch) {
.x86_64 => 10,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable,
};
const alignment: u2 = switch (arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable,
};
const local_sym_index = @intCast(u32, self.locals.items.len);
try self.locals.append(self.base.allocator, .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
const atom = try self.createEmptyAtom(local_sym_index, stub_size, alignment);
try atom.relocs.ensureTotalCapacity(self.base.allocator, 1);
switch (arch) {
.x86_64 => {
// pushq
atom.code.items[0] = 0x68;
// Next 4 bytes 1..4 are just a placeholder populated in `populateLazyBindOffsetsInStubHelper`.
// jmpq
atom.code.items[5] = 0xe9;
atom.relocs.appendAssumeCapacity(.{
.offset = 6,
.target = .{ .local = self.stub_helper_preamble_atom.?.local_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_BRANCH),
});
},
.aarch64 => {
const literal = blk: {
const div_res = try math.divExact(u64, stub_size - @sizeOf(u32), 4);
break :blk math.cast(u18, div_res) orelse return error.Overflow;
};
// ldr w16, literal
mem.writeIntLittle(u32, atom.code.items[0..4], aarch64.Instruction.ldrLiteral(
.w16,
literal,
).toU32());
// b disp
mem.writeIntLittle(u32, atom.code.items[4..8], aarch64.Instruction.b(0).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 4,
.target = .{ .local = self.stub_helper_preamble_atom.?.local_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_BRANCH26),
});
// Next 4 bytes 8..12 are just a placeholder populated in `populateLazyBindOffsetsInStubHelper`.
},
else => unreachable,
}
return atom;
}
pub fn createLazyPointerAtom(self: *MachO, stub_sym_index: u32, n_strx: u32) !*Atom {
const local_sym_index = @intCast(u32, self.locals.items.len);
try self.locals.append(self.base.allocator, .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
const atom = try self.createEmptyAtom(local_sym_index, @sizeOf(u64), 3);
try atom.relocs.append(self.base.allocator, .{
.offset = 0,
.target = .{ .local = stub_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = false,
.length = 3,
.@"type" = switch (self.base.options.target.cpu.arch) {
.aarch64 => @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_UNSIGNED),
.x86_64 => @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_UNSIGNED),
else => unreachable,
},
});
try atom.rebases.append(self.base.allocator, 0);
try atom.lazy_bindings.append(self.base.allocator, .{
.n_strx = n_strx,
.offset = 0,
});
return atom;
}
pub fn createStubAtom(self: *MachO, laptr_sym_index: u32) !*Atom {
const arch = self.base.options.target.cpu.arch;
const alignment: u2 = switch (arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const stub_size: u4 = switch (arch) {
.x86_64 => 6,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable, // unhandled architecture type
};
const local_sym_index = @intCast(u32, self.locals.items.len);
try self.locals.append(self.base.allocator, .{
.n_strx = 0,
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
const atom = try self.createEmptyAtom(local_sym_index, stub_size, alignment);
switch (arch) {
.x86_64 => {
// jmp
atom.code.items[0] = 0xff;
atom.code.items[1] = 0x25;
try atom.relocs.append(self.base.allocator, .{
.offset = 2,
.target = .{ .local = laptr_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_BRANCH),
});
},
.aarch64 => {
try atom.relocs.ensureTotalCapacity(self.base.allocator, 2);
// adrp x16, pages
mem.writeIntLittle(u32, atom.code.items[0..4], aarch64.Instruction.adrp(.x16, 0).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 0,
.target = .{ .local = laptr_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = true,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_PAGE21),
});
// ldr x16, x16, offset
mem.writeIntLittle(u32, atom.code.items[4..8], aarch64.Instruction.ldr(
.x16,
.x16,
aarch64.Instruction.LoadStoreOffset.imm(0),
).toU32());
atom.relocs.appendAssumeCapacity(.{
.offset = 4,
.target = .{ .local = laptr_sym_index },
.addend = 0,
.subtractor = null,
.pcrel = false,
.length = 2,
.@"type" = @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_PAGEOFF12),
});
// br x16
mem.writeIntLittle(u32, atom.code.items[8..12], aarch64.Instruction.br(.x16).toU32());
},
else => unreachable,
}
return atom;
}
fn createTentativeDefAtoms(self: *MachO) !void {
if (self.tentatives.count() == 0) return;
// Convert any tentative definition into a regular symbol and allocate
// text blocks for each tentative definition.
while (self.tentatives.popOrNull()) |entry| {
const match = MatchingSection{
.seg = self.data_segment_cmd_index.?,
.sect = self.bss_section_index.?,
};
_ = try self.section_ordinals.getOrPut(self.base.allocator, match);
const global_sym = &self.globals.items[entry.key];
const size = global_sym.n_value;
const alignment = (global_sym.n_desc >> 8) & 0x0f;
global_sym.n_value = 0;
global_sym.n_desc = 0;
global_sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
const local_sym_index = @intCast(u32, self.locals.items.len);
const local_sym = try self.locals.addOne(self.base.allocator);
local_sym.* = .{
.n_strx = global_sym.n_strx,
.n_type = macho.N_SECT,
.n_sect = global_sym.n_sect,
.n_desc = 0,
.n_value = 0,
};
const resolv = self.symbol_resolver.getPtr(local_sym.n_strx) orelse unreachable;
resolv.local_sym_index = local_sym_index;
const atom = try self.createEmptyAtom(local_sym_index, size, alignment);
if (self.needs_prealloc) {
const alignment_pow_2 = try math.powi(u32, 2, alignment);
const vaddr = try self.allocateAtom(atom, size, alignment_pow_2, match);
local_sym.n_value = vaddr;
global_sym.n_value = vaddr;
} else try self.addAtomToSection(atom, match);
}
}
fn createDsoHandleAtom(self: *MachO) !void {
if (self.strtab_dir.getKeyAdapted(@as([]const u8, "___dso_handle"), StringIndexAdapter{
.bytes = &self.strtab,
})) |n_strx| blk: {
const resolv = self.symbol_resolver.getPtr(n_strx) orelse break :blk;
if (resolv.where != .undef) break :blk;
const undef = &self.undefs.items[resolv.where_index];
const match: MatchingSection = .{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_section_index.?,
};
const local_sym_index = @intCast(u32, self.locals.items.len);
var nlist = macho.nlist_64{
.n_strx = undef.n_strx,
.n_type = macho.N_SECT,
.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1),
.n_desc = 0,
.n_value = 0,
};
try self.locals.append(self.base.allocator, nlist);
const global_sym_index = @intCast(u32, self.globals.items.len);
nlist.n_type |= macho.N_EXT;
nlist.n_desc = macho.N_WEAK_DEF;
try self.globals.append(self.base.allocator, nlist);
assert(self.unresolved.swapRemove(resolv.where_index));
undef.* = .{
.n_strx = 0,
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
resolv.* = .{
.where = .global,
.where_index = global_sym_index,
.local_sym_index = local_sym_index,
};
// We create an empty atom for this symbol.
// TODO perhaps we should special-case special symbols? Create a separate
// linked list of atoms?
const atom = try self.createEmptyAtom(local_sym_index, 0, 0);
if (self.needs_prealloc) {
const sym = &self.locals.items[local_sym_index];
const vaddr = try self.allocateAtom(atom, 0, 1, match);
sym.n_value = vaddr;
} else try self.addAtomToSection(atom, match);
}
}
fn resolveSymbolsInObject(self: *MachO, object_id: u16) !void {
const object = &self.objects.items[object_id];
log.debug("resolving symbols in '{s}'", .{object.name});
for (object.symtab.items) |sym, id| {
const sym_id = @intCast(u32, id);
const sym_name = object.getString(sym.n_strx);
if (sym.stab()) {
log.err("unhandled symbol type: stab", .{});
log.err(" symbol '{s}'", .{sym_name});
log.err(" first definition in '{s}'", .{object.name});
return error.UnhandledSymbolType;
}
if (sym.indr()) {
log.err("unhandled symbol type: indirect", .{});
log.err(" symbol '{s}'", .{sym_name});
log.err(" first definition in '{s}'", .{object.name});
return error.UnhandledSymbolType;
}
if (sym.abs()) {
log.err("unhandled symbol type: absolute", .{});
log.err(" symbol '{s}'", .{sym_name});
log.err(" first definition in '{s}'", .{object.name});
return error.UnhandledSymbolType;
}
if (sym.sect()) {
// Defined symbol regardless of scope lands in the locals symbol table.
const local_sym_index = @intCast(u32, self.locals.items.len);
try self.locals.append(self.base.allocator, .{
.n_strx = if (symbolIsTemp(sym, sym_name)) 0 else try self.makeString(sym_name),
.n_type = macho.N_SECT,
.n_sect = 0,
.n_desc = 0,
.n_value = sym.n_value,
});
try object.symbol_mapping.putNoClobber(self.base.allocator, sym_id, local_sym_index);
try object.reverse_symbol_mapping.putNoClobber(self.base.allocator, local_sym_index, sym_id);
// If the symbol's scope is not local aka translation unit, then we need work out
// if we should save the symbol as a global, or potentially flag the error.
if (!sym.ext()) continue;
const n_strx = try self.makeString(sym_name);
const local = self.locals.items[local_sym_index];
const resolv = self.symbol_resolver.getPtr(n_strx) orelse {
const global_sym_index = @intCast(u32, self.globals.items.len);
try self.globals.append(self.base.allocator, .{
.n_strx = n_strx,
.n_type = sym.n_type,
.n_sect = 0,
.n_desc = sym.n_desc,
.n_value = sym.n_value,
});
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .global,
.where_index = global_sym_index,
.local_sym_index = local_sym_index,
.file = object_id,
});
continue;
};
switch (resolv.where) {
.global => {
const global = &self.globals.items[resolv.where_index];
if (global.tentative()) {
assert(self.tentatives.swapRemove(resolv.where_index));
} else if (!(sym.weakDef() or sym.pext()) and !(global.weakDef() or global.pext())) {
log.err("symbol '{s}' defined multiple times", .{sym_name});
if (resolv.file) |file| {
log.err(" first definition in '{s}'", .{self.objects.items[file].name});
}
log.err(" next definition in '{s}'", .{object.name});
return error.MultipleSymbolDefinitions;
} else if (sym.weakDef() or sym.pext()) continue; // Current symbol is weak, so skip it.
// Otherwise, update the resolver and the global symbol.
global.n_type = sym.n_type;
resolv.local_sym_index = local_sym_index;
resolv.file = object_id;
continue;
},
.undef => {
const undef = &self.undefs.items[resolv.where_index];
undef.* = .{
.n_strx = 0,
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
assert(self.unresolved.swapRemove(resolv.where_index));
},
}
const global_sym_index = @intCast(u32, self.globals.items.len);
try self.globals.append(self.base.allocator, .{
.n_strx = local.n_strx,
.n_type = sym.n_type,
.n_sect = 0,
.n_desc = sym.n_desc,
.n_value = sym.n_value,
});
resolv.* = .{
.where = .global,
.where_index = global_sym_index,
.local_sym_index = local_sym_index,
.file = object_id,
};
} else if (sym.tentative()) {
// Symbol is a tentative definition.
const n_strx = try self.makeString(sym_name);
const resolv = self.symbol_resolver.getPtr(n_strx) orelse {
const global_sym_index = @intCast(u32, self.globals.items.len);
try self.globals.append(self.base.allocator, .{
.n_strx = try self.makeString(sym_name),
.n_type = sym.n_type,
.n_sect = 0,
.n_desc = sym.n_desc,
.n_value = sym.n_value,
});
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .global,
.where_index = global_sym_index,
.file = object_id,
});
_ = try self.tentatives.getOrPut(self.base.allocator, global_sym_index);
continue;
};
switch (resolv.where) {
.global => {
const global = &self.globals.items[resolv.where_index];
if (!global.tentative()) continue;
if (global.n_value >= sym.n_value) continue;
global.n_desc = sym.n_desc;
global.n_value = sym.n_value;
resolv.file = object_id;
},
.undef => {
const undef = &self.undefs.items[resolv.where_index];
const global_sym_index = @intCast(u32, self.globals.items.len);
try self.globals.append(self.base.allocator, .{
.n_strx = undef.n_strx,
.n_type = sym.n_type,
.n_sect = 0,
.n_desc = sym.n_desc,
.n_value = sym.n_value,
});
_ = try self.tentatives.getOrPut(self.base.allocator, global_sym_index);
assert(self.unresolved.swapRemove(resolv.where_index));
resolv.* = .{
.where = .global,
.where_index = global_sym_index,
.file = object_id,
};
undef.* = .{
.n_strx = 0,
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
},
}
} else {
// Symbol is undefined.
const n_strx = try self.makeString(sym_name);
if (self.symbol_resolver.contains(n_strx)) continue;
const undef_sym_index = @intCast(u32, self.undefs.items.len);
try self.undefs.append(self.base.allocator, .{
.n_strx = try self.makeString(sym_name),
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = sym.n_desc,
.n_value = 0,
});
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .undef,
.where_index = undef_sym_index,
.file = object_id,
});
try self.unresolved.putNoClobber(self.base.allocator, undef_sym_index, .none);
}
}
}
fn resolveSymbolsInArchives(self: *MachO) !void {
if (self.archives.items.len == 0) return;
var next_sym: usize = 0;
loop: while (next_sym < self.unresolved.count()) {
const sym = self.undefs.items[self.unresolved.keys()[next_sym]];
const sym_name = self.getString(sym.n_strx);
for (self.archives.items) |archive| {
// Check if the entry exists in a static archive.
const offsets = archive.toc.get(sym_name) orelse {
// No hit.
continue;
};
assert(offsets.items.len > 0);
const object_id = @intCast(u16, self.objects.items.len);
const object = try self.objects.addOne(self.base.allocator);
object.* = try archive.parseObject(self.base.allocator, self.base.options.target, offsets.items[0]);
try self.resolveSymbolsInObject(object_id);
continue :loop;
}
next_sym += 1;
}
}
fn resolveSymbolsInDylibs(self: *MachO) !void {
if (self.dylibs.items.len == 0) return;
var next_sym: usize = 0;
loop: while (next_sym < self.unresolved.count()) {
const sym = self.undefs.items[self.unresolved.keys()[next_sym]];
const sym_name = self.getString(sym.n_strx);
for (self.dylibs.items) |dylib, id| {
if (!dylib.symbols.contains(sym_name)) continue;
const dylib_id = @intCast(u16, id);
if (!self.referenced_dylibs.contains(dylib_id)) {
try self.addLoadDylibLC(dylib_id);
try self.referenced_dylibs.putNoClobber(self.base.allocator, dylib_id, {});
}
const ordinal = self.referenced_dylibs.getIndex(dylib_id) orelse unreachable;
const resolv = self.symbol_resolver.getPtr(sym.n_strx) orelse unreachable;
const undef = &self.undefs.items[resolv.where_index];
undef.n_type |= macho.N_EXT;
undef.n_desc = @intCast(u16, ordinal + 1) * macho.N_SYMBOL_RESOLVER;
if (self.unresolved.fetchSwapRemove(resolv.where_index)) |entry| outer_blk: {
switch (entry.value) {
.none => {},
.got => return error.TODOGotHint,
.stub => {
if (self.stubs_table.contains(sym.n_strx)) break :outer_blk;
const stub_helper_atom = blk: {
const match = MatchingSection{
.seg = self.text_segment_cmd_index.?,
.sect = self.stub_helper_section_index.?,
};
const atom = try self.createStubHelperAtom();
const atom_sym = &self.locals.items[atom.local_sym_index];
const alignment = try math.powi(u32, 2, atom.alignment);
const vaddr = try self.allocateAtom(atom, atom.size, alignment, match);
atom_sym.n_value = vaddr;
atom_sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
break :blk atom;
};
const laptr_atom = blk: {
const match = MatchingSection{
.seg = self.data_segment_cmd_index.?,
.sect = self.la_symbol_ptr_section_index.?,
};
const atom = try self.createLazyPointerAtom(
stub_helper_atom.local_sym_index,
sym.n_strx,
);
const atom_sym = &self.locals.items[atom.local_sym_index];
const alignment = try math.powi(u32, 2, atom.alignment);
const vaddr = try self.allocateAtom(atom, atom.size, alignment, match);
atom_sym.n_value = vaddr;
atom_sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
break :blk atom;
};
const stub_atom = blk: {
const match = MatchingSection{
.seg = self.text_segment_cmd_index.?,
.sect = self.stubs_section_index.?,
};
const atom = try self.createStubAtom(laptr_atom.local_sym_index);
const atom_sym = &self.locals.items[atom.local_sym_index];
const alignment = try math.powi(u32, 2, atom.alignment);
const vaddr = try self.allocateAtom(atom, atom.size, alignment, match);
atom_sym.n_value = vaddr;
atom_sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
break :blk atom;
};
const stub_index = @intCast(u32, self.stubs.items.len);
try self.stubs.append(self.base.allocator, stub_atom);
try self.stubs_table.putNoClobber(self.base.allocator, sym.n_strx, stub_index);
},
}
}
continue :loop;
}
next_sym += 1;
}
}
fn createMhExecuteHeaderAtom(self: *MachO) !void {
if (self.mh_execute_header_index != null) return;
const match: MatchingSection = .{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_section_index.?,
};
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
const n_strx = try self.makeString("__mh_execute_header");
const local_sym_index = @intCast(u32, self.locals.items.len);
var nlist = macho.nlist_64{
.n_strx = n_strx,
.n_type = macho.N_SECT,
.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1),
.n_desc = 0,
.n_value = sect.addr,
};
try self.locals.append(self.base.allocator, nlist);
self.mh_execute_header_index = local_sym_index;
if (self.symbol_resolver.getPtr(n_strx)) |resolv| {
const global = &self.globals.items[resolv.where_index];
if (!(global.weakDef() or !global.pext())) {
log.err("symbol '__mh_execute_header' defined multiple times", .{});
return error.MultipleSymbolDefinitions;
}
resolv.local_sym_index = local_sym_index;
} else {
const global_sym_index = @intCast(u32, self.globals.items.len);
nlist.n_type |= macho.N_EXT;
try self.globals.append(self.base.allocator, nlist);
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .global,
.where_index = global_sym_index,
.local_sym_index = local_sym_index,
.file = null,
});
}
// We always set the __mh_execute_header to point to the beginning of the __TEXT,__text section
const atom = try self.createEmptyAtom(local_sym_index, 0, 0);
if (self.atoms.get(match)) |last| {
var first = last;
while (first.prev) |prev| {
first = prev;
}
atom.next = first;
first.prev = atom;
} else {
try self.atoms.putNoClobber(self.base.allocator, match, atom);
}
}
fn resolveDyldStubBinder(self: *MachO) !void {
if (self.dyld_stub_binder_index != null) return;
const n_strx = try self.makeString("dyld_stub_binder");
const sym_index = @intCast(u32, self.undefs.items.len);
try self.undefs.append(self.base.allocator, .{
.n_strx = n_strx,
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .undef,
.where_index = sym_index,
});
const sym = &self.undefs.items[sym_index];
const sym_name = self.getString(n_strx);
for (self.dylibs.items) |dylib, id| {
if (!dylib.symbols.contains(sym_name)) continue;
const dylib_id = @intCast(u16, id);
if (!self.referenced_dylibs.contains(dylib_id)) {
try self.addLoadDylibLC(dylib_id);
try self.referenced_dylibs.putNoClobber(self.base.allocator, dylib_id, {});
}
const ordinal = self.referenced_dylibs.getIndex(dylib_id) orelse unreachable;
sym.n_type |= macho.N_EXT;
sym.n_desc = @intCast(u16, ordinal + 1) * macho.N_SYMBOL_RESOLVER;
self.dyld_stub_binder_index = sym_index;
break;
}
if (self.dyld_stub_binder_index == null) {
log.err("undefined reference to symbol '{s}'", .{sym_name});
return error.UndefinedSymbolReference;
}
// Add dyld_stub_binder as the final GOT entry.
const target = Atom.Relocation.Target{ .global = n_strx };
const atom = try self.createGotAtom(target);
const got_index = @intCast(u32, self.got_entries.items.len);
try self.got_entries.append(self.base.allocator, .{ .target = target, .atom = atom });
try self.got_entries_table.putNoClobber(self.base.allocator, target, got_index);
const match = MatchingSection{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.got_section_index.?,
};
const atom_sym = &self.locals.items[atom.local_sym_index];
if (self.needs_prealloc) {
const vaddr = try self.allocateAtom(atom, @sizeOf(u64), 8, match);
log.debug("allocated {s} atom at 0x{x}", .{ self.getString(sym.n_strx), vaddr });
atom_sym.n_value = vaddr;
} else try self.addAtomToSection(atom, match);
atom_sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
}
fn parseObjectsIntoAtoms(self: *MachO) !void {
// TODO I need to see if I can simplify this logic, or perhaps split it into two functions:
// one for non-prealloc traditional path, and one for incremental prealloc path.
const tracy = trace(@src());
defer tracy.end();
var parsed_atoms = std.AutoArrayHashMap(MatchingSection, *Atom).init(self.base.allocator);
defer parsed_atoms.deinit();
var first_atoms = std.AutoArrayHashMap(MatchingSection, *Atom).init(self.base.allocator);
defer first_atoms.deinit();
var section_metadata = std.AutoHashMap(MatchingSection, struct {
size: u64,
alignment: u32,
}).init(self.base.allocator);
defer section_metadata.deinit();
for (self.objects.items) |*object| {
if (object.analyzed) continue;
try object.parseIntoAtoms(self.base.allocator, self);
var it = object.end_atoms.iterator();
while (it.next()) |entry| {
const match = entry.key_ptr.*;
var atom = entry.value_ptr.*;
while (atom.prev) |prev| {
atom = prev;
}
const first_atom = atom;
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
const metadata = try section_metadata.getOrPut(match);
if (!metadata.found_existing) {
metadata.value_ptr.* = .{
.size = sect.size,
.alignment = sect.@"align",
};
}
log.debug("{s},{s}", .{ sect.segName(), sect.sectName() });
while (true) {
const alignment = try math.powi(u32, 2, atom.alignment);
const curr_size = metadata.value_ptr.size;
const curr_size_aligned = mem.alignForwardGeneric(u64, curr_size, alignment);
metadata.value_ptr.size = curr_size_aligned + atom.size;
metadata.value_ptr.alignment = math.max(metadata.value_ptr.alignment, atom.alignment);
const sym = self.locals.items[atom.local_sym_index];
log.debug(" {s}: n_value=0x{x}, size=0x{x}, alignment=0x{x}", .{
self.getString(sym.n_strx),
sym.n_value,
atom.size,
atom.alignment,
});
if (atom.next) |next| {
atom = next;
} else break;
}
if (parsed_atoms.getPtr(match)) |last| {
last.*.next = first_atom;
first_atom.prev = last.*;
last.* = first_atom;
}
_ = try parsed_atoms.put(match, atom);
if (!first_atoms.contains(match)) {
try first_atoms.putNoClobber(match, first_atom);
}
}
object.analyzed = true;
}
var it = section_metadata.iterator();
while (it.next()) |entry| {
const match = entry.key_ptr.*;
const metadata = entry.value_ptr.*;
const seg = &self.load_commands.items[match.seg].segment;
const sect = &seg.sections.items[match.sect];
log.debug("{s},{s} => size: 0x{x}, alignment: 0x{x}", .{
sect.segName(),
sect.sectName(),
metadata.size,
metadata.alignment,
});
sect.@"align" = math.max(sect.@"align", metadata.alignment);
const needed_size = @intCast(u32, metadata.size);
if (self.needs_prealloc) {
try self.growSection(match, needed_size);
}
sect.size = needed_size;
}
for (&[_]?u16{
self.text_segment_cmd_index,
self.data_const_segment_cmd_index,
self.data_segment_cmd_index,
}) |maybe_seg_id| {
const seg_id = maybe_seg_id orelse continue;
const seg = self.load_commands.items[seg_id].segment;
for (seg.sections.items) |sect, sect_id| {
const match = MatchingSection{
.seg = seg_id,
.sect = @intCast(u16, sect_id),
};
if (!section_metadata.contains(match)) continue;
var base_vaddr = if (self.atoms.get(match)) |last| blk: {
const last_atom_sym = self.locals.items[last.local_sym_index];
break :blk last_atom_sym.n_value + last.size;
} else sect.addr;
if (self.atoms.getPtr(match)) |last| {
const first_atom = first_atoms.get(match).?;
last.*.next = first_atom;
first_atom.prev = last.*;
last.* = first_atom;
}
_ = try self.atoms.put(self.base.allocator, match, parsed_atoms.get(match).?);
if (!self.needs_prealloc) continue;
const n_sect = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
var atom = first_atoms.get(match).?;
while (true) {
const alignment = try math.powi(u32, 2, atom.alignment);
base_vaddr = mem.alignForwardGeneric(u64, base_vaddr, alignment);
const sym = &self.locals.items[atom.local_sym_index];
sym.n_value = base_vaddr;
sym.n_sect = n_sect;
log.debug(" {s}: start=0x{x}, end=0x{x}, size=0x{x}, alignment=0x{x}", .{
self.getString(sym.n_strx),
base_vaddr,
base_vaddr + atom.size,
atom.size,
atom.alignment,
});
// Update each alias (if any)
for (atom.aliases.items) |index| {
const alias_sym = &self.locals.items[index];
alias_sym.n_value = base_vaddr;
alias_sym.n_sect = n_sect;
}
// Update each symbol contained within the atom
for (atom.contained.items) |sym_at_off| {
const contained_sym = &self.locals.items[sym_at_off.local_sym_index];
contained_sym.n_value = base_vaddr + sym_at_off.offset;
contained_sym.n_sect = n_sect;
}
base_vaddr += atom.size;
if (atom.next) |next| {
atom = next;
} else break;
}
}
}
}
fn addLoadDylibLC(self: *MachO, id: u16) !void {
const dylib = self.dylibs.items[id];
const dylib_id = dylib.id orelse unreachable;
var dylib_cmd = try macho.createLoadDylibCommand(
self.base.allocator,
dylib_id.name,
dylib_id.timestamp,
dylib_id.current_version,
dylib_id.compatibility_version,
);
errdefer dylib_cmd.deinit(self.base.allocator);
try self.load_commands.append(self.base.allocator, .{ .dylib = dylib_cmd });
self.load_commands_dirty = true;
}
fn addCodeSignatureLC(self: *MachO) !void {
if (self.code_signature_cmd_index != null or self.code_signature == null) return;
self.code_signature_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.linkedit_data = .{
.cmd = .CODE_SIGNATURE,
.cmdsize = @sizeOf(macho.linkedit_data_command),
.dataoff = 0,
.datasize = 0,
},
});
self.load_commands_dirty = true;
}
fn setEntryPoint(self: *MachO) !void {
if (self.base.options.output_mode != .Exe) return;
const seg = self.load_commands.items[self.text_segment_cmd_index.?].segment;
const entry_name = self.base.options.entry orelse "_main";
const n_strx = self.strtab_dir.getKeyAdapted(entry_name, StringIndexAdapter{
.bytes = &self.strtab,
}) orelse {
log.err("entrypoint '{s}' not found", .{entry_name});
return error.MissingMainEntrypoint;
};
const resolv = self.symbol_resolver.get(n_strx) orelse unreachable;
assert(resolv.where == .global);
const sym = self.globals.items[resolv.where_index];
const ec = &self.load_commands.items[self.main_cmd_index.?].main;
ec.entryoff = @intCast(u32, sym.n_value - seg.inner.vmaddr);
ec.stacksize = self.base.options.stack_size_override orelse 0;
self.entry_addr = sym.n_value;
self.load_commands_dirty = true;
}
pub fn deinit(self: *MachO) void {
if (build_options.have_llvm) {
if (self.llvm_object) |llvm_object| llvm_object.destroy(self.base.allocator);
}
if (self.d_sym) |*d_sym| {
d_sym.deinit(self.base.allocator);
}
self.section_ordinals.deinit(self.base.allocator);
self.tlv_ptr_entries.deinit(self.base.allocator);
self.tlv_ptr_entries_free_list.deinit(self.base.allocator);
self.tlv_ptr_entries_table.deinit(self.base.allocator);
self.got_entries.deinit(self.base.allocator);
self.got_entries_free_list.deinit(self.base.allocator);
self.got_entries_table.deinit(self.base.allocator);
self.stubs.deinit(self.base.allocator);
self.stubs_free_list.deinit(self.base.allocator);
self.stubs_table.deinit(self.base.allocator);
self.strtab_dir.deinit(self.base.allocator);
self.strtab.deinit(self.base.allocator);
self.undefs.deinit(self.base.allocator);
self.globals.deinit(self.base.allocator);
self.globals_free_list.deinit(self.base.allocator);
self.locals.deinit(self.base.allocator);
self.locals_free_list.deinit(self.base.allocator);
self.symbol_resolver.deinit(self.base.allocator);
self.unresolved.deinit(self.base.allocator);
self.tentatives.deinit(self.base.allocator);
for (self.objects.items) |*object| {
object.deinit(self.base.allocator);
}
self.objects.deinit(self.base.allocator);
for (self.archives.items) |*archive| {
archive.deinit(self.base.allocator);
}
self.archives.deinit(self.base.allocator);
for (self.dylibs.items) |*dylib| {
dylib.deinit(self.base.allocator);
}
self.dylibs.deinit(self.base.allocator);
self.dylibs_map.deinit(self.base.allocator);
self.referenced_dylibs.deinit(self.base.allocator);
for (self.load_commands.items) |*lc| {
lc.deinit(self.base.allocator);
}
self.load_commands.deinit(self.base.allocator);
for (self.managed_atoms.items) |atom| {
atom.deinit(self.base.allocator);
self.base.allocator.destroy(atom);
}
self.managed_atoms.deinit(self.base.allocator);
self.atoms.deinit(self.base.allocator);
{
var it = self.atom_free_lists.valueIterator();
while (it.next()) |free_list| {
free_list.deinit(self.base.allocator);
}
self.atom_free_lists.deinit(self.base.allocator);
}
if (self.base.options.module) |mod| {
for (self.decls.keys()) |decl_index| {
const decl = mod.declPtr(decl_index);
decl.link.macho.deinit(self.base.allocator);
}
self.decls.deinit(self.base.allocator);
} else {
assert(self.decls.count() == 0);
}
{
var it = self.unnamed_const_atoms.valueIterator();
while (it.next()) |atoms| {
atoms.deinit(self.base.allocator);
}
self.unnamed_const_atoms.deinit(self.base.allocator);
}
self.atom_by_index_table.deinit(self.base.allocator);
if (self.code_signature) |*csig| {
csig.deinit(self.base.allocator);
}
}
pub fn closeFiles(self: MachO) void {
for (self.objects.items) |object| {
object.file.close();
}
for (self.archives.items) |archive| {
archive.file.close();
}
for (self.dylibs.items) |dylib| {
dylib.file.close();
}
if (self.d_sym) |ds| {
ds.file.close();
}
}
fn freeAtom(self: *MachO, atom: *Atom, match: MatchingSection, owns_atom: bool) void {
log.debug("freeAtom {*}", .{atom});
if (!owns_atom) {
atom.deinit(self.base.allocator);
}
const free_list = self.atom_free_lists.getPtr(match).?;
var already_have_free_list_node = false;
{
var i: usize = 0;
// TODO turn free_list into a hash map
while (i < free_list.items.len) {
if (free_list.items[i] == atom) {
_ = free_list.swapRemove(i);
continue;
}
if (free_list.items[i] == atom.prev) {
already_have_free_list_node = true;
}
i += 1;
}
}
if (self.atoms.getPtr(match)) |last_atom| {
if (last_atom.* == atom) {
if (atom.prev) |prev| {
// TODO shrink the section size here
last_atom.* = prev;
} else {
_ = self.atoms.fetchRemove(match);
}
}
}
if (atom.prev) |prev| {
prev.next = atom.next;
if (!already_have_free_list_node and prev.freeListEligible(self.*)) {
// The free list is heuristics, it doesn't have to be perfect, so we can ignore
// the OOM here.
free_list.append(self.base.allocator, prev) catch {};
}
} else {
atom.prev = null;
}
if (atom.next) |next| {
next.prev = atom.prev;
} else {
atom.next = null;
}
if (self.d_sym) |*d_sym| {
d_sym.dwarf.freeAtom(&atom.dbg_info_atom);
}
}
fn shrinkAtom(self: *MachO, atom: *Atom, new_block_size: u64, match: MatchingSection) void {
_ = self;
_ = atom;
_ = new_block_size;
_ = match;
// TODO check the new capacity, and if it crosses the size threshold into a big enough
// capacity, insert a free list node for it.
}
fn growAtom(self: *MachO, atom: *Atom, new_atom_size: u64, alignment: u64, match: MatchingSection) !u64 {
const sym = self.locals.items[atom.local_sym_index];
const align_ok = mem.alignBackwardGeneric(u64, sym.n_value, alignment) == sym.n_value;
const need_realloc = !align_ok or new_atom_size > atom.capacity(self.*);
if (!need_realloc) return sym.n_value;
return self.allocateAtom(atom, new_atom_size, alignment, match);
}
fn allocateLocalSymbol(self: *MachO) !u32 {
try self.locals.ensureUnusedCapacity(self.base.allocator, 1);
const index = blk: {
if (self.locals_free_list.popOrNull()) |index| {
log.debug(" (reusing symbol index {d})", .{index});
break :blk index;
} else {
log.debug(" (allocating symbol index {d})", .{self.locals.items.len});
const index = @intCast(u32, self.locals.items.len);
_ = self.locals.addOneAssumeCapacity();
break :blk index;
}
};
self.locals.items[index] = .{
.n_strx = 0,
.n_type = 0,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
return index;
}
pub fn allocateGotEntry(self: *MachO, target: Atom.Relocation.Target) !u32 {
try self.got_entries.ensureUnusedCapacity(self.base.allocator, 1);
const index = blk: {
if (self.got_entries_free_list.popOrNull()) |index| {
log.debug(" (reusing GOT entry index {d})", .{index});
break :blk index;
} else {
log.debug(" (allocating GOT entry at index {d})", .{self.got_entries.items.len});
const index = @intCast(u32, self.got_entries.items.len);
_ = self.got_entries.addOneAssumeCapacity();
break :blk index;
}
};
self.got_entries.items[index] = .{
.target = target,
.atom = undefined,
};
try self.got_entries_table.putNoClobber(self.base.allocator, target, index);
return index;
}
pub fn allocateStubEntry(self: *MachO, n_strx: u32) !u32 {
try self.stubs.ensureUnusedCapacity(self.base.allocator, 1);
const index = blk: {
if (self.stubs_free_list.popOrNull()) |index| {
log.debug(" (reusing stub entry index {d})", .{index});
break :blk index;
} else {
log.debug(" (allocating stub entry at index {d})", .{self.stubs.items.len});
const index = @intCast(u32, self.stubs.items.len);
_ = self.stubs.addOneAssumeCapacity();
break :blk index;
}
};
self.stubs.items[index] = undefined;
try self.stubs_table.putNoClobber(self.base.allocator, n_strx, index);
return index;
}
pub fn allocateTlvPtrEntry(self: *MachO, target: Atom.Relocation.Target) !u32 {
try self.tlv_ptr_entries.ensureUnusedCapacity(self.base.allocator, 1);
const index = blk: {
if (self.tlv_ptr_entries_free_list.popOrNull()) |index| {
log.debug(" (reusing TLV ptr entry index {d})", .{index});
break :blk index;
} else {
log.debug(" (allocating TLV ptr entry at index {d})", .{self.tlv_ptr_entries.items.len});
const index = @intCast(u32, self.tlv_ptr_entries.items.len);
_ = self.tlv_ptr_entries.addOneAssumeCapacity();
break :blk index;
}
};
self.tlv_ptr_entries.items[index] = .{ .target = target, .atom = undefined };
try self.tlv_ptr_entries_table.putNoClobber(self.base.allocator, target, index);
return index;
}
pub fn allocateDeclIndexes(self: *MachO, decl_index: Module.Decl.Index) !void {
if (self.llvm_object) |_| return;
const decl = self.base.options.module.?.declPtr(decl_index);
if (decl.link.macho.local_sym_index != 0) return;
decl.link.macho.local_sym_index = try self.allocateLocalSymbol();
try self.atom_by_index_table.putNoClobber(self.base.allocator, decl.link.macho.local_sym_index, &decl.link.macho);
try self.decls.putNoClobber(self.base.allocator, decl_index, null);
const got_target = .{ .local = decl.link.macho.local_sym_index };
const got_index = try self.allocateGotEntry(got_target);
const got_atom = try self.createGotAtom(got_target);
self.got_entries.items[got_index].atom = got_atom;
}
pub fn updateFunc(self: *MachO, module: *Module, func: *Module.Fn, air: Air, liveness: Liveness) !void {
if (build_options.skip_non_native and builtin.object_format != .macho) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (build_options.have_llvm) {
if (self.llvm_object) |llvm_object| return llvm_object.updateFunc(module, func, air, liveness);
}
const tracy = trace(@src());
defer tracy.end();
const decl_index = func.owner_decl;
const decl = module.declPtr(decl_index);
self.freeUnnamedConsts(decl_index);
// TODO clearing the code and relocs buffer should probably be orchestrated
// in a different, smarter, more automatic way somewhere else, in a more centralised
// way than this.
// If we don't clear the buffers here, we are up for some nasty surprises when
// this atom is reused later on and was not freed by freeAtom().
decl.link.macho.clearRetainingCapacity();
var code_buffer = std.ArrayList(u8).init(self.base.allocator);
defer code_buffer.deinit();
var decl_state = if (self.d_sym) |*d_sym|
try d_sym.dwarf.initDeclState(module, decl)
else
null;
defer if (decl_state) |*ds| ds.deinit();
const res = if (decl_state) |*ds|
try codegen.generateFunction(&self.base, decl.srcLoc(), func, air, liveness, &code_buffer, .{
.dwarf = ds,
})
else
try codegen.generateFunction(&self.base, decl.srcLoc(), func, air, liveness, &code_buffer, .none);
switch (res) {
.appended => {
try decl.link.macho.code.appendSlice(self.base.allocator, code_buffer.items);
},
.fail => |em| {
decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, decl_index, em);
return;
},
}
const symbol = try self.placeDecl(decl_index, decl.link.macho.code.items.len);
if (decl_state) |*ds| {
try self.d_sym.?.dwarf.commitDeclState(
&self.base,
module,
decl,
symbol.n_value,
decl.link.macho.size,
ds,
);
}
// Since we updated the vaddr and the size, each corresponding export symbol also
// needs to be updated.
const decl_exports = module.decl_exports.get(decl_index) orelse &[0]*Module.Export{};
try self.updateDeclExports(module, decl_index, decl_exports);
}
pub fn lowerUnnamedConst(self: *MachO, typed_value: TypedValue, decl_index: Module.Decl.Index) !u32 {
var code_buffer = std.ArrayList(u8).init(self.base.allocator);
defer code_buffer.deinit();
const module = self.base.options.module.?;
const gop = try self.unnamed_const_atoms.getOrPut(self.base.allocator, decl_index);
if (!gop.found_existing) {
gop.value_ptr.* = .{};
}
const unnamed_consts = gop.value_ptr;
const decl = module.declPtr(decl_index);
const decl_name = try decl.getFullyQualifiedName(module);
defer self.base.allocator.free(decl_name);
const name_str_index = blk: {
const index = unnamed_consts.items.len;
const name = try std.fmt.allocPrint(self.base.allocator, "__unnamed_{s}_{d}", .{ decl_name, index });
defer self.base.allocator.free(name);
break :blk try self.makeString(name);
};
const name = self.getString(name_str_index);
log.debug("allocating symbol indexes for {s}", .{name});
const required_alignment = typed_value.ty.abiAlignment(self.base.options.target);
const local_sym_index = try self.allocateLocalSymbol();
const atom = try self.createEmptyAtom(local_sym_index, @sizeOf(u64), math.log2(required_alignment));
try self.atom_by_index_table.putNoClobber(self.base.allocator, local_sym_index, atom);
const res = try codegen.generateSymbol(&self.base, decl.srcLoc(), typed_value, &code_buffer, .none, .{
.parent_atom_index = local_sym_index,
});
const code = switch (res) {
.externally_managed => |x| x,
.appended => code_buffer.items,
.fail => |em| {
decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, decl_index, em);
log.err("{s}", .{em.msg});
return error.AnalysisFail;
},
};
atom.code.clearRetainingCapacity();
try atom.code.appendSlice(self.base.allocator, code);
const match = try self.getMatchingSectionAtom(
atom,
decl_name,
typed_value.ty,
typed_value.val,
required_alignment,
);
const addr = try self.allocateAtom(atom, code.len, required_alignment, match);
log.debug("allocated atom for {s} at 0x{x}", .{ name, addr });
log.debug(" (required alignment 0x{x})", .{required_alignment});
errdefer self.freeAtom(atom, match, true);
const symbol = &self.locals.items[atom.local_sym_index];
symbol.* = .{
.n_strx = name_str_index,
.n_type = macho.N_SECT,
.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).?) + 1,
.n_desc = 0,
.n_value = addr,
};
try unnamed_consts.append(self.base.allocator, atom);
return atom.local_sym_index;
}
pub fn updateDecl(self: *MachO, module: *Module, decl_index: Module.Decl.Index) !void {
if (build_options.skip_non_native and builtin.object_format != .macho) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (build_options.have_llvm) {
if (self.llvm_object) |llvm_object| return llvm_object.updateDecl(module, decl_index);
}
const tracy = trace(@src());
defer tracy.end();
const decl = module.declPtr(decl_index);
if (decl.val.tag() == .extern_fn) {
return; // TODO Should we do more when front-end analyzed extern decl?
}
if (decl.val.castTag(.variable)) |payload| {
const variable = payload.data;
if (variable.is_extern) {
return; // TODO Should we do more when front-end analyzed extern decl?
}
}
var code_buffer = std.ArrayList(u8).init(self.base.allocator);
defer code_buffer.deinit();
var decl_state: ?Dwarf.DeclState = if (self.d_sym) |*d_sym|
try d_sym.dwarf.initDeclState(module, decl)
else
null;
defer if (decl_state) |*ds| ds.deinit();
const decl_val = if (decl.val.castTag(.variable)) |payload| payload.data.init else decl.val;
const res = if (decl_state) |*ds|
try codegen.generateSymbol(&self.base, decl.srcLoc(), .{
.ty = decl.ty,
.val = decl_val,
}, &code_buffer, .{
.dwarf = ds,
}, .{
.parent_atom_index = decl.link.macho.local_sym_index,
})
else
try codegen.generateSymbol(&self.base, decl.srcLoc(), .{
.ty = decl.ty,
.val = decl_val,
}, &code_buffer, .none, .{
.parent_atom_index = decl.link.macho.local_sym_index,
});
const code = blk: {
switch (res) {
.externally_managed => |x| break :blk x,
.appended => {
// TODO clearing the code and relocs buffer should probably be orchestrated
// in a different, smarter, more automatic way somewhere else, in a more centralised
// way than this.
// If we don't clear the buffers here, we are up for some nasty surprises when
// this atom is reused later on and was not freed by freeAtom().
decl.link.macho.code.clearAndFree(self.base.allocator);
try decl.link.macho.code.appendSlice(self.base.allocator, code_buffer.items);
break :blk decl.link.macho.code.items;
},
.fail => |em| {
decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, decl_index, em);
return;
},
}
};
const symbol = try self.placeDecl(decl_index, code.len);
if (decl_state) |*ds| {
try self.d_sym.?.dwarf.commitDeclState(
&self.base,
module,
decl,
symbol.n_value,
decl.link.macho.size,
ds,
);
}
// Since we updated the vaddr and the size, each corresponding export symbol also
// needs to be updated.
const decl_exports = module.decl_exports.get(decl_index) orelse &[0]*Module.Export{};
try self.updateDeclExports(module, decl_index, decl_exports);
}
/// Checks if the value, or any of its embedded values stores a pointer, and thus requires
/// a rebase opcode for the dynamic linker.
fn needsPointerRebase(ty: Type, val: Value, mod: *Module) bool {
if (ty.zigTypeTag() == .Fn) {
return false;
}
if (val.pointerDecl()) |_| {
return true;
}
switch (ty.zigTypeTag()) {
.Fn => unreachable,
.Pointer => return true,
.Array, .Vector => {
if (ty.arrayLen() == 0) return false;
const elem_ty = ty.childType();
var elem_value_buf: Value.ElemValueBuffer = undefined;
const elem_val = val.elemValueBuffer(mod, 0, &elem_value_buf);
return needsPointerRebase(elem_ty, elem_val, mod);
},
.Struct => {
const fields = ty.structFields().values();
if (fields.len == 0) return false;
if (val.castTag(.aggregate)) |payload| {
const field_values = payload.data;
for (field_values) |field_val, i| {
if (needsPointerRebase(fields[i].ty, field_val, mod)) return true;
} else return false;
} else return false;
},
.Optional => {
if (val.castTag(.opt_payload)) |payload| {
const sub_val = payload.data;
var buffer: Type.Payload.ElemType = undefined;
const sub_ty = ty.optionalChild(&buffer);
return needsPointerRebase(sub_ty, sub_val, mod);
} else return false;
},
.Union => {
const union_obj = val.cast(Value.Payload.Union).?.data;
const active_field_ty = ty.unionFieldType(union_obj.tag, mod);
return needsPointerRebase(active_field_ty, union_obj.val, mod);
},
.ErrorUnion => {
if (val.castTag(.eu_payload)) |payload| {
const payload_ty = ty.errorUnionPayload();
return needsPointerRebase(payload_ty, payload.data, mod);
} else return false;
},
else => return false,
}
}
fn getMatchingSectionAtom(
self: *MachO,
atom: *Atom,
name: []const u8,
ty: Type,
val: Value,
alignment: u32,
) !MatchingSection {
const code = atom.code.items;
const mod = self.base.options.module.?;
const align_log_2 = math.log2(alignment);
const zig_ty = ty.zigTypeTag();
const mode = self.base.options.optimize_mode;
const match: MatchingSection = blk: {
// TODO finish and audit this function
if (val.isUndefDeep()) {
if (mode == .ReleaseFast or mode == .ReleaseSmall) {
break :blk MatchingSection{
.seg = self.data_segment_cmd_index.?,
.sect = self.bss_section_index.?,
};
} else {
break :blk MatchingSection{
.seg = self.data_segment_cmd_index.?,
.sect = self.data_section_index.?,
};
}
}
if (val.castTag(.variable)) |_| {
break :blk MatchingSection{
.seg = self.data_segment_cmd_index.?,
.sect = self.data_section_index.?,
};
}
if (needsPointerRebase(ty, val, mod)) {
break :blk (try self.getMatchingSection(.{
.segname = makeStaticString("__DATA_CONST"),
.sectname = makeStaticString("__const"),
.size = code.len,
.@"align" = align_log_2,
})).?;
}
switch (zig_ty) {
.Fn => {
break :blk MatchingSection{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_section_index.?,
};
},
.Array => {
if (val.tag() == .bytes) {
switch (ty.tag()) {
.array_u8_sentinel_0,
.const_slice_u8_sentinel_0,
.manyptr_const_u8_sentinel_0,
=> {
break :blk (try self.getMatchingSection(.{
.segname = makeStaticString("__TEXT"),
.sectname = makeStaticString("__cstring"),
.flags = macho.S_CSTRING_LITERALS,
.size = code.len,
.@"align" = align_log_2,
})).?;
},
else => {},
}
}
},
else => {},
}
break :blk (try self.getMatchingSection(.{
.segname = makeStaticString("__TEXT"),
.sectname = makeStaticString("__const"),
.size = code.len,
.@"align" = align_log_2,
})).?;
};
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
log.debug(" allocating atom '{s}' in '{s},{s}' ({d},{d})", .{
name,
sect.segName(),
sect.sectName(),
match.seg,
match.sect,
});
return match;
}
fn placeDecl(self: *MachO, decl_index: Module.Decl.Index, code_len: usize) !*macho.nlist_64 {
const module = self.base.options.module.?;
const decl = module.declPtr(decl_index);
const required_alignment = decl.getAlignment(self.base.options.target);
assert(decl.link.macho.local_sym_index != 0); // Caller forgot to call allocateDeclIndexes()
const symbol = &self.locals.items[decl.link.macho.local_sym_index];
const sym_name = try decl.getFullyQualifiedName(module);
defer self.base.allocator.free(sym_name);
const decl_ptr = self.decls.getPtr(decl_index).?;
if (decl_ptr.* == null) {
decl_ptr.* = try self.getMatchingSectionAtom(
&decl.link.macho,
sym_name,
decl.ty,
decl.val,
required_alignment,
);
}
const match = decl_ptr.*.?;
if (decl.link.macho.size != 0) {
const capacity = decl.link.macho.capacity(self.*);
const need_realloc = code_len > capacity or !mem.isAlignedGeneric(u64, symbol.n_value, required_alignment);
if (need_realloc) {
const vaddr = try self.growAtom(&decl.link.macho, code_len, required_alignment, match);
log.debug("growing {s} and moving from 0x{x} to 0x{x}", .{ sym_name, symbol.n_value, vaddr });
log.debug(" (required alignment 0x{x})", .{required_alignment});
symbol.n_value = vaddr;
} else if (code_len < decl.link.macho.size) {
self.shrinkAtom(&decl.link.macho, code_len, match);
}
decl.link.macho.size = code_len;
decl.link.macho.dirty = true;
symbol.n_strx = try self.makeString(sym_name);
symbol.n_type = macho.N_SECT;
symbol.n_sect = @intCast(u8, self.text_section_index.?) + 1;
symbol.n_desc = 0;
} else {
const name_str_index = try self.makeString(sym_name);
const addr = try self.allocateAtom(&decl.link.macho, code_len, required_alignment, match);
log.debug("allocated atom for {s} at 0x{x}", .{ sym_name, addr });
log.debug(" (required alignment 0x{x})", .{required_alignment});
errdefer self.freeAtom(&decl.link.macho, match, false);
symbol.* = .{
.n_strx = name_str_index,
.n_type = macho.N_SECT,
.n_sect = @intCast(u8, self.section_ordinals.getIndex(match).?) + 1,
.n_desc = 0,
.n_value = addr,
};
const got_index = self.got_entries_table.get(.{ .local = decl.link.macho.local_sym_index }).?;
const got_atom = self.got_entries.items[got_index].atom;
const got_sym = &self.locals.items[got_atom.local_sym_index];
const vaddr = try self.allocateAtom(got_atom, @sizeOf(u64), 8, .{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.got_section_index.?,
});
got_sym.n_value = vaddr;
got_sym.n_sect = @intCast(u8, self.section_ordinals.getIndex(.{
.seg = self.data_const_segment_cmd_index.?,
.sect = self.got_section_index.?,
}).? + 1);
}
return symbol;
}
pub fn updateDeclLineNumber(self: *MachO, module: *Module, decl: *const Module.Decl) !void {
_ = module;
if (self.d_sym) |*d_sym| {
try d_sym.dwarf.updateDeclLineNumber(&self.base, decl);
}
}
pub fn updateDeclExports(
self: *MachO,
module: *Module,
decl_index: Module.Decl.Index,
exports: []const *Module.Export,
) !void {
if (build_options.skip_non_native and builtin.object_format != .macho) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (build_options.have_llvm) {
if (self.llvm_object) |llvm_object| return llvm_object.updateDeclExports(module, decl_index, exports);
}
const tracy = trace(@src());
defer tracy.end();
try self.globals.ensureUnusedCapacity(self.base.allocator, exports.len);
const decl = module.declPtr(decl_index);
if (decl.link.macho.local_sym_index == 0) return;
const decl_sym = &self.locals.items[decl.link.macho.local_sym_index];
for (exports) |exp| {
const exp_name = try std.fmt.allocPrint(self.base.allocator, "_{s}", .{exp.options.name});
defer self.base.allocator.free(exp_name);
if (exp.options.section) |section_name| {
if (!mem.eql(u8, section_name, "__text")) {
try module.failed_exports.putNoClobber(
module.gpa,
exp,
try Module.ErrorMsg.create(
self.base.allocator,
decl.srcLoc(),
"Unimplemented: ExportOptions.section",
.{},
),
);
continue;
}
}
if (exp.options.linkage == .LinkOnce) {
try module.failed_exports.putNoClobber(
module.gpa,
exp,
try Module.ErrorMsg.create(
self.base.allocator,
decl.srcLoc(),
"Unimplemented: GlobalLinkage.LinkOnce",
.{},
),
);
continue;
}
const is_weak = exp.options.linkage == .Internal or exp.options.linkage == .Weak;
const n_strx = try self.makeString(exp_name);
if (self.symbol_resolver.getPtr(n_strx)) |resolv| {
switch (resolv.where) {
.global => {
if (resolv.local_sym_index == decl.link.macho.local_sym_index) continue;
const sym = &self.globals.items[resolv.where_index];
if (sym.tentative()) {
assert(self.tentatives.swapRemove(resolv.where_index));
} else if (!is_weak and !(sym.weakDef() or sym.pext())) {
_ = try module.failed_exports.put(
module.gpa,
exp,
try Module.ErrorMsg.create(
self.base.allocator,
decl.srcLoc(),
\\LinkError: symbol '{s}' defined multiple times
\\ first definition in '{s}'
,
.{ exp_name, self.objects.items[resolv.file.?].name },
),
);
continue;
} else if (is_weak) continue; // Current symbol is weak, so skip it.
// Otherwise, update the resolver and the global symbol.
sym.n_type = macho.N_SECT | macho.N_EXT;
resolv.local_sym_index = decl.link.macho.local_sym_index;
resolv.file = null;
exp.link.macho.sym_index = resolv.where_index;
continue;
},
.undef => {
assert(self.unresolved.swapRemove(resolv.where_index));
_ = self.symbol_resolver.remove(n_strx);
},
}
}
var n_type: u8 = macho.N_SECT | macho.N_EXT;
var n_desc: u16 = 0;
switch (exp.options.linkage) {
.Internal => {
// Symbol should be hidden, or in MachO lingo, private extern.
// We should also mark the symbol as Weak: n_desc == N_WEAK_DEF.
// TODO work out when to add N_WEAK_REF.
n_type |= macho.N_PEXT;
n_desc |= macho.N_WEAK_DEF;
},
.Strong => {},
.Weak => {
// Weak linkage is specified as part of n_desc field.
// Symbol's n_type is like for a symbol with strong linkage.
n_desc |= macho.N_WEAK_DEF;
},
else => unreachable,
}
const global_sym_index = if (exp.link.macho.sym_index) |i| i else blk: {
const i = if (self.globals_free_list.popOrNull()) |i| i else inner: {
_ = self.globals.addOneAssumeCapacity();
break :inner @intCast(u32, self.globals.items.len - 1);
};
break :blk i;
};
const sym = &self.globals.items[global_sym_index];
sym.* = .{
.n_strx = try self.makeString(exp_name),
.n_type = n_type,
.n_sect = @intCast(u8, self.text_section_index.?) + 1,
.n_desc = n_desc,
.n_value = decl_sym.n_value,
};
exp.link.macho.sym_index = global_sym_index;
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .global,
.where_index = global_sym_index,
.local_sym_index = decl.link.macho.local_sym_index,
});
}
}
pub fn deleteExport(self: *MachO, exp: Export) void {
if (self.llvm_object) |_| return;
const sym_index = exp.sym_index orelse return;
self.globals_free_list.append(self.base.allocator, sym_index) catch {};
const global = &self.globals.items[sym_index];
log.debug("deleting export '{s}': {}", .{ self.getString(global.n_strx), global });
assert(self.symbol_resolver.remove(global.n_strx));
global.n_type = 0;
global.n_strx = 0;
global.n_value = 0;
}
fn freeUnnamedConsts(self: *MachO, decl_index: Module.Decl.Index) void {
const unnamed_consts = self.unnamed_const_atoms.getPtr(decl_index) orelse return;
for (unnamed_consts.items) |atom| {
self.freeAtom(atom, .{
.seg = self.text_segment_cmd_index.?,
.sect = self.text_const_section_index.?,
}, true);
self.locals_free_list.append(self.base.allocator, atom.local_sym_index) catch {};
self.locals.items[atom.local_sym_index].n_type = 0;
_ = self.atom_by_index_table.remove(atom.local_sym_index);
log.debug(" adding local symbol index {d} to free list", .{atom.local_sym_index});
atom.local_sym_index = 0;
}
unnamed_consts.clearAndFree(self.base.allocator);
}
pub fn freeDecl(self: *MachO, decl_index: Module.Decl.Index) void {
if (build_options.have_llvm) {
if (self.llvm_object) |llvm_object| return llvm_object.freeDecl(decl_index);
}
const mod = self.base.options.module.?;
const decl = mod.declPtr(decl_index);
log.debug("freeDecl {*}", .{decl});
const kv = self.decls.fetchSwapRemove(decl_index);
if (kv.?.value) |match| {
self.freeAtom(&decl.link.macho, match, false);
self.freeUnnamedConsts(decl_index);
}
// Appending to free lists is allowed to fail because the free lists are heuristics based anyway.
if (decl.link.macho.local_sym_index != 0) {
self.locals_free_list.append(self.base.allocator, decl.link.macho.local_sym_index) catch {};
// Try freeing GOT atom if this decl had one
if (self.got_entries_table.get(.{ .local = decl.link.macho.local_sym_index })) |got_index| {
self.got_entries_free_list.append(self.base.allocator, @intCast(u32, got_index)) catch {};
self.got_entries.items[got_index] = .{ .target = .{ .local = 0 }, .atom = undefined };
_ = self.got_entries_table.swapRemove(.{ .local = decl.link.macho.local_sym_index });
if (self.d_sym) |*d_sym| {
d_sym.swapRemoveRelocs(decl.link.macho.local_sym_index);
}
log.debug(" adding GOT index {d} to free list (target local@{d})", .{
got_index,
decl.link.macho.local_sym_index,
});
}
self.locals.items[decl.link.macho.local_sym_index].n_type = 0;
_ = self.atom_by_index_table.remove(decl.link.macho.local_sym_index);
log.debug(" adding local symbol index {d} to free list", .{decl.link.macho.local_sym_index});
decl.link.macho.local_sym_index = 0;
}
if (self.d_sym) |*d_sym| {
d_sym.dwarf.freeDecl(decl);
}
}
pub fn getDeclVAddr(self: *MachO, decl_index: Module.Decl.Index, reloc_info: File.RelocInfo) !u64 {
const mod = self.base.options.module.?;
const decl = mod.declPtr(decl_index);
assert(self.llvm_object == null);
assert(decl.link.macho.local_sym_index != 0);
const atom = self.atom_by_index_table.get(reloc_info.parent_atom_index).?;
try atom.relocs.append(self.base.allocator, .{
.offset = @intCast(u32, reloc_info.offset),
.target = .{ .local = decl.link.macho.local_sym_index },
.addend = reloc_info.addend,
.subtractor = null,
.pcrel = false,
.length = 3,
.@"type" = switch (self.base.options.target.cpu.arch) {
.aarch64 => @enumToInt(macho.reloc_type_arm64.ARM64_RELOC_UNSIGNED),
.x86_64 => @enumToInt(macho.reloc_type_x86_64.X86_64_RELOC_UNSIGNED),
else => unreachable,
},
});
try atom.rebases.append(self.base.allocator, reloc_info.offset);
return 0;
}
fn populateMissingMetadata(self: *MachO) !void {
const cpu_arch = self.base.options.target.cpu.arch;
const pagezero_vmsize = self.base.options.pagezero_size orelse default_pagezero_vmsize;
const aligned_pagezero_vmsize = mem.alignBackwardGeneric(u64, pagezero_vmsize, self.page_size);
if (self.pagezero_segment_cmd_index == null) blk: {
if (aligned_pagezero_vmsize == 0) break :blk;
if (aligned_pagezero_vmsize != pagezero_vmsize) {
log.warn("requested __PAGEZERO size (0x{x}) is not page aligned", .{pagezero_vmsize});
log.warn(" rounding down to 0x{x}", .{aligned_pagezero_vmsize});
}
self.pagezero_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.segment = .{
.inner = .{
.segname = makeStaticString("__PAGEZERO"),
.vmsize = aligned_pagezero_vmsize,
.cmdsize = @sizeOf(macho.segment_command_64),
},
},
});
self.load_commands_dirty = true;
}
if (self.text_segment_cmd_index == null) {
self.text_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
const needed_size = if (self.needs_prealloc) blk: {
const program_code_size_hint = self.base.options.program_code_size_hint;
const got_size_hint = @sizeOf(u64) * self.base.options.symbol_count_hint;
const ideal_size = self.header_pad + program_code_size_hint + got_size_hint;
const needed_size = mem.alignForwardGeneric(u64, padToIdeal(ideal_size), self.page_size);
log.debug("found __TEXT segment free space 0x{x} to 0x{x}", .{ 0, needed_size });
break :blk needed_size;
} else 0;
try self.load_commands.append(self.base.allocator, .{
.segment = .{
.inner = .{
.segname = makeStaticString("__TEXT"),
.vmaddr = aligned_pagezero_vmsize,
.vmsize = needed_size,
.filesize = needed_size,
.maxprot = macho.PROT.READ | macho.PROT.EXEC,
.initprot = macho.PROT.READ | macho.PROT.EXEC,
.cmdsize = @sizeOf(macho.segment_command_64),
},
},
});
self.load_commands_dirty = true;
}
if (self.text_section_index == null) {
const alignment: u2 = switch (cpu_arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const needed_size = if (self.needs_prealloc) self.base.options.program_code_size_hint else 0;
self.text_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__text",
needed_size,
alignment,
.{
.flags = macho.S_REGULAR | macho.S_ATTR_PURE_INSTRUCTIONS | macho.S_ATTR_SOME_INSTRUCTIONS,
},
);
}
if (self.stubs_section_index == null) {
const alignment: u2 = switch (cpu_arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const stub_size: u4 = switch (cpu_arch) {
.x86_64 => 6,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable, // unhandled architecture type
};
const needed_size = if (self.needs_prealloc) stub_size * self.base.options.symbol_count_hint else 0;
self.stubs_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__stubs",
needed_size,
alignment,
.{
.flags = macho.S_SYMBOL_STUBS | macho.S_ATTR_PURE_INSTRUCTIONS | macho.S_ATTR_SOME_INSTRUCTIONS,
.reserved2 = stub_size,
},
);
}
if (self.stub_helper_section_index == null) {
const alignment: u2 = switch (cpu_arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const preamble_size: u6 = switch (cpu_arch) {
.x86_64 => 15,
.aarch64 => 6 * @sizeOf(u32),
else => unreachable,
};
const stub_size: u4 = switch (cpu_arch) {
.x86_64 => 10,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable,
};
const needed_size = if (self.needs_prealloc)
stub_size * self.base.options.symbol_count_hint + preamble_size
else
0;
self.stub_helper_section_index = try self.initSection(
self.text_segment_cmd_index.?,
"__stub_helper",
needed_size,
alignment,
.{
.flags = macho.S_REGULAR | macho.S_ATTR_PURE_INSTRUCTIONS | macho.S_ATTR_SOME_INSTRUCTIONS,
},
);
}
if (self.data_const_segment_cmd_index == null) {
self.data_const_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
var vmaddr: u64 = 0;
var fileoff: u64 = 0;
var needed_size: u64 = 0;
if (self.needs_prealloc) {
const address_and_offset = self.nextSegmentAddressAndOffset();
vmaddr = address_and_offset.address;
fileoff = address_and_offset.offset;
const ideal_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
needed_size = mem.alignForwardGeneric(u64, padToIdeal(ideal_size), self.page_size);
log.debug("found __DATA_CONST segment free space 0x{x} to 0x{x}", .{
fileoff,
fileoff + needed_size,
});
}
try self.load_commands.append(self.base.allocator, .{
.segment = .{
.inner = .{
.segname = makeStaticString("__DATA_CONST"),
.vmaddr = vmaddr,
.vmsize = needed_size,
.fileoff = fileoff,
.filesize = needed_size,
.maxprot = macho.PROT.READ | macho.PROT.WRITE,
.initprot = macho.PROT.READ | macho.PROT.WRITE,
.cmdsize = @sizeOf(macho.segment_command_64),
},
},
});
self.load_commands_dirty = true;
}
if (self.got_section_index == null) {
const needed_size = if (self.needs_prealloc)
@sizeOf(u64) * self.base.options.symbol_count_hint
else
0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.got_section_index = try self.initSection(
self.data_const_segment_cmd_index.?,
"__got",
needed_size,
alignment,
.{
.flags = macho.S_NON_LAZY_SYMBOL_POINTERS,
},
);
}
if (self.data_segment_cmd_index == null) {
self.data_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
var vmaddr: u64 = 0;
var fileoff: u64 = 0;
var needed_size: u64 = 0;
if (self.needs_prealloc) {
const address_and_offset = self.nextSegmentAddressAndOffset();
vmaddr = address_and_offset.address;
fileoff = address_and_offset.offset;
const ideal_size = 2 * @sizeOf(u64) * self.base.options.symbol_count_hint;
needed_size = mem.alignForwardGeneric(u64, padToIdeal(ideal_size), self.page_size);
log.debug("found __DATA segment free space 0x{x} to 0x{x}", .{
fileoff,
fileoff + needed_size,
});
}
try self.load_commands.append(self.base.allocator, .{
.segment = .{
.inner = .{
.segname = makeStaticString("__DATA"),
.vmaddr = vmaddr,
.vmsize = needed_size,
.fileoff = fileoff,
.filesize = needed_size,
.maxprot = macho.PROT.READ | macho.PROT.WRITE,
.initprot = macho.PROT.READ | macho.PROT.WRITE,
.cmdsize = @sizeOf(macho.segment_command_64),
},
},
});
self.load_commands_dirty = true;
}
if (self.la_symbol_ptr_section_index == null) {
const needed_size = if (self.needs_prealloc)
@sizeOf(u64) * self.base.options.symbol_count_hint
else
0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.la_symbol_ptr_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__la_symbol_ptr",
needed_size,
alignment,
.{
.flags = macho.S_LAZY_SYMBOL_POINTERS,
},
);
}
if (self.data_section_index == null) {
const needed_size = if (self.needs_prealloc) @sizeOf(u64) * self.base.options.symbol_count_hint else 0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.data_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__data",
needed_size,
alignment,
.{},
);
}
if (self.tlv_section_index == null) {
const needed_size = if (self.needs_prealloc) @sizeOf(u64) * self.base.options.symbol_count_hint else 0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.tlv_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_vars",
needed_size,
alignment,
.{
.flags = macho.S_THREAD_LOCAL_VARIABLES,
},
);
}
if (self.tlv_data_section_index == null) {
const needed_size = if (self.needs_prealloc) @sizeOf(u64) * self.base.options.symbol_count_hint else 0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.tlv_data_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_data",
needed_size,
alignment,
.{
.flags = macho.S_THREAD_LOCAL_REGULAR,
},
);
}
if (self.tlv_bss_section_index == null) {
const needed_size = if (self.needs_prealloc) @sizeOf(u64) * self.base.options.symbol_count_hint else 0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.tlv_bss_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__thread_bss",
needed_size,
alignment,
.{
.flags = macho.S_THREAD_LOCAL_ZEROFILL,
},
);
}
if (self.bss_section_index == null) {
const needed_size = if (self.needs_prealloc) @sizeOf(u64) * self.base.options.symbol_count_hint else 0;
const alignment: u16 = 3; // 2^3 = @sizeOf(u64)
self.bss_section_index = try self.initSection(
self.data_segment_cmd_index.?,
"__bss",
needed_size,
alignment,
.{
.flags = macho.S_ZEROFILL,
},
);
}
if (self.linkedit_segment_cmd_index == null) {
self.linkedit_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
var vmaddr: u64 = 0;
var fileoff: u64 = 0;
if (self.needs_prealloc) {
const address_and_offset = self.nextSegmentAddressAndOffset();
vmaddr = address_and_offset.address;
fileoff = address_and_offset.offset;
log.debug("found __LINKEDIT segment free space at 0x{x}", .{fileoff});
}
try self.load_commands.append(self.base.allocator, .{
.segment = .{
.inner = .{
.segname = makeStaticString("__LINKEDIT"),
.vmaddr = vmaddr,
.fileoff = fileoff,
.maxprot = macho.PROT.READ,
.initprot = macho.PROT.READ,
.cmdsize = @sizeOf(macho.segment_command_64),
},
},
});
self.load_commands_dirty = true;
}
if (self.dyld_info_cmd_index == null) {
self.dyld_info_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.dyld_info_only = .{
.cmd = .DYLD_INFO_ONLY,
.cmdsize = @sizeOf(macho.dyld_info_command),
.rebase_off = 0,
.rebase_size = 0,
.bind_off = 0,
.bind_size = 0,
.weak_bind_off = 0,
.weak_bind_size = 0,
.lazy_bind_off = 0,
.lazy_bind_size = 0,
.export_off = 0,
.export_size = 0,
},
});
self.load_commands_dirty = true;
}
if (self.symtab_cmd_index == null) {
self.symtab_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.symtab = .{
.cmdsize = @sizeOf(macho.symtab_command),
.symoff = 0,
.nsyms = 0,
.stroff = 0,
.strsize = 0,
},
});
self.load_commands_dirty = true;
}
if (self.dysymtab_cmd_index == null) {
self.dysymtab_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.dysymtab = .{
.cmdsize = @sizeOf(macho.dysymtab_command),
.ilocalsym = 0,
.nlocalsym = 0,
.iextdefsym = 0,
.nextdefsym = 0,
.iundefsym = 0,
.nundefsym = 0,
.tocoff = 0,
.ntoc = 0,
.modtaboff = 0,
.nmodtab = 0,
.extrefsymoff = 0,
.nextrefsyms = 0,
.indirectsymoff = 0,
.nindirectsyms = 0,
.extreloff = 0,
.nextrel = 0,
.locreloff = 0,
.nlocrel = 0,
},
});
self.load_commands_dirty = true;
}
if (self.dylinker_cmd_index == null) {
self.dylinker_cmd_index = @intCast(u16, self.load_commands.items.len);
const cmdsize = @intCast(u32, mem.alignForwardGeneric(
u64,
@sizeOf(macho.dylinker_command) + mem.sliceTo(default_dyld_path, 0).len,
@sizeOf(u64),
));
var dylinker_cmd = macho.emptyGenericCommandWithData(macho.dylinker_command{
.cmd = .LOAD_DYLINKER,
.cmdsize = cmdsize,
.name = @sizeOf(macho.dylinker_command),
});
dylinker_cmd.data = try self.base.allocator.alloc(u8, cmdsize - dylinker_cmd.inner.name);
mem.set(u8, dylinker_cmd.data, 0);
mem.copy(u8, dylinker_cmd.data, mem.sliceTo(default_dyld_path, 0));
try self.load_commands.append(self.base.allocator, .{ .dylinker = dylinker_cmd });
self.load_commands_dirty = true;
}
if (self.main_cmd_index == null and self.base.options.output_mode == .Exe) {
self.main_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.main = .{
.cmdsize = @sizeOf(macho.entry_point_command),
.entryoff = 0x0,
.stacksize = 0,
},
});
self.load_commands_dirty = true;
}
if (self.dylib_id_cmd_index == null and self.base.options.output_mode == .Lib) {
self.dylib_id_cmd_index = @intCast(u16, self.load_commands.items.len);
const install_name = self.base.options.install_name orelse self.base.options.emit.?.sub_path;
const current_version = self.base.options.version orelse
std.builtin.Version{ .major = 1, .minor = 0, .patch = 0 };
const compat_version = self.base.options.compatibility_version orelse
std.builtin.Version{ .major = 1, .minor = 0, .patch = 0 };
var dylib_cmd = try macho.createLoadDylibCommand(
self.base.allocator,
install_name,
2,
current_version.major << 16 | current_version.minor << 8 | current_version.patch,
compat_version.major << 16 | compat_version.minor << 8 | compat_version.patch,
);
errdefer dylib_cmd.deinit(self.base.allocator);
dylib_cmd.inner.cmd = .ID_DYLIB;
try self.load_commands.append(self.base.allocator, .{ .dylib = dylib_cmd });
self.load_commands_dirty = true;
}
if (self.source_version_cmd_index == null) {
self.source_version_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.source_version = .{
.cmdsize = @sizeOf(macho.source_version_command),
.version = 0x0,
},
});
self.load_commands_dirty = true;
}
if (self.build_version_cmd_index == null) {
self.build_version_cmd_index = @intCast(u16, self.load_commands.items.len);
const cmdsize = @intCast(u32, mem.alignForwardGeneric(
u64,
@sizeOf(macho.build_version_command) + @sizeOf(macho.build_tool_version),
@sizeOf(u64),
));
const platform_version = blk: {
const ver = self.base.options.target.os.version_range.semver.min;
const platform_version = ver.major << 16 | ver.minor << 8;
break :blk platform_version;
};
const sdk_version = if (self.base.options.native_darwin_sdk) |sdk| blk: {
const ver = sdk.version;
const sdk_version = ver.major << 16 | ver.minor << 8;
break :blk sdk_version;
} else platform_version;
const is_simulator_abi = self.base.options.target.abi == .simulator;
var cmd = macho.emptyGenericCommandWithData(macho.build_version_command{
.cmdsize = cmdsize,
.platform = switch (self.base.options.target.os.tag) {
.macos => .MACOS,
.ios => if (is_simulator_abi) macho.PLATFORM.IOSSIMULATOR else macho.PLATFORM.IOS,
.watchos => if (is_simulator_abi) macho.PLATFORM.WATCHOSSIMULATOR else macho.PLATFORM.WATCHOS,
.tvos => if (is_simulator_abi) macho.PLATFORM.TVOSSIMULATOR else macho.PLATFORM.TVOS,
else => unreachable,
},
.minos = platform_version,
.sdk = sdk_version,
.ntools = 1,
});
const ld_ver = macho.build_tool_version{
.tool = .LD,
.version = 0x0,
};
cmd.data = try self.base.allocator.alloc(u8, cmdsize - @sizeOf(macho.build_version_command));
mem.set(u8, cmd.data, 0);
mem.copy(u8, cmd.data, mem.asBytes(&ld_ver));
try self.load_commands.append(self.base.allocator, .{ .build_version = cmd });
self.load_commands_dirty = true;
}
if (self.uuid_cmd_index == null) {
self.uuid_cmd_index = @intCast(u16, self.load_commands.items.len);
var uuid_cmd: macho.uuid_command = .{
.cmdsize = @sizeOf(macho.uuid_command),
.uuid = undefined,
};
std.crypto.random.bytes(&uuid_cmd.uuid);
try self.load_commands.append(self.base.allocator, .{ .uuid = uuid_cmd });
self.load_commands_dirty = true;
}
if (self.function_starts_cmd_index == null) {
self.function_starts_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.linkedit_data = .{
.cmd = .FUNCTION_STARTS,
.cmdsize = @sizeOf(macho.linkedit_data_command),
.dataoff = 0,
.datasize = 0,
},
});
self.load_commands_dirty = true;
}
if (self.data_in_code_cmd_index == null) {
self.data_in_code_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.linkedit_data = .{
.cmd = .DATA_IN_CODE,
.cmdsize = @sizeOf(macho.linkedit_data_command),
.dataoff = 0,
.datasize = 0,
},
});
self.load_commands_dirty = true;
}
self.cold_start = true;
}
fn allocateTextSegment(self: *MachO) !void {
const seg = &self.load_commands.items[self.text_segment_cmd_index.?].segment;
const base_vmaddr = if (self.pagezero_segment_cmd_index) |index|
self.load_commands.items[index].segment.inner.vmsize
else
0;
seg.inner.fileoff = 0;
seg.inner.vmaddr = base_vmaddr;
var sizeofcmds: u64 = 0;
for (self.load_commands.items) |lc| {
sizeofcmds += lc.cmdsize();
}
try self.allocateSegment(self.text_segment_cmd_index.?, @sizeOf(macho.mach_header_64) + sizeofcmds);
// Shift all sections to the back to minimize jump size between __TEXT and __DATA segments.
var min_alignment: u32 = 0;
for (seg.sections.items) |sect| {
const alignment = try math.powi(u32, 2, sect.@"align");
min_alignment = math.max(min_alignment, alignment);
}
assert(min_alignment > 0);
const last_sect_idx = seg.sections.items.len - 1;
const last_sect = seg.sections.items[last_sect_idx];
const shift: u32 = blk: {
const diff = seg.inner.filesize - last_sect.offset - last_sect.size;
const factor = @divTrunc(diff, min_alignment);
break :blk @intCast(u32, factor * min_alignment);
};
if (shift > 0) {
for (seg.sections.items) |*sect| {
sect.offset += shift;
sect.addr += shift;
}
}
}
fn allocateDataConstSegment(self: *MachO) !void {
const seg = &self.load_commands.items[self.data_const_segment_cmd_index.?].segment;
const text_seg = self.load_commands.items[self.text_segment_cmd_index.?].segment;
seg.inner.fileoff = text_seg.inner.fileoff + text_seg.inner.filesize;
seg.inner.vmaddr = text_seg.inner.vmaddr + text_seg.inner.vmsize;
try self.allocateSegment(self.data_const_segment_cmd_index.?, 0);
}
fn allocateDataSegment(self: *MachO) !void {
const seg = &self.load_commands.items[self.data_segment_cmd_index.?].segment;
const data_const_seg = self.load_commands.items[self.data_const_segment_cmd_index.?].segment;
seg.inner.fileoff = data_const_seg.inner.fileoff + data_const_seg.inner.filesize;
seg.inner.vmaddr = data_const_seg.inner.vmaddr + data_const_seg.inner.vmsize;
try self.allocateSegment(self.data_segment_cmd_index.?, 0);
}
fn allocateLinkeditSegment(self: *MachO) void {
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const data_seg = self.load_commands.items[self.data_segment_cmd_index.?].segment;
seg.inner.fileoff = data_seg.inner.fileoff + data_seg.inner.filesize;
seg.inner.vmaddr = data_seg.inner.vmaddr + data_seg.inner.vmsize;
}
fn allocateSegment(self: *MachO, index: u16, offset: u64) !void {
const seg = &self.load_commands.items[index].segment;
// Allocate the sections according to their alignment at the beginning of the segment.
var start: u64 = offset;
for (seg.sections.items) |*sect, sect_id| {
const is_zerofill = sect.flags == macho.S_ZEROFILL or sect.flags == macho.S_THREAD_LOCAL_ZEROFILL;
const use_llvm = build_options.have_llvm and self.base.options.use_llvm;
const use_stage1 = build_options.is_stage1 and self.base.options.use_stage1;
const alignment = try math.powi(u32, 2, sect.@"align");
const start_aligned = mem.alignForwardGeneric(u64, start, alignment);
// TODO handle zerofill sections in stage2
sect.offset = if (is_zerofill and (use_stage1 or use_llvm)) 0 else @intCast(u32, seg.inner.fileoff + start_aligned);
sect.addr = seg.inner.vmaddr + start_aligned;
// Recalculate section size given the allocated start address
sect.size = if (self.atoms.get(.{
.seg = index,
.sect = @intCast(u16, sect_id),
})) |last_atom| blk: {
var atom = last_atom;
while (atom.prev) |prev| {
atom = prev;
}
var base_addr = sect.addr;
while (true) {
const atom_alignment = try math.powi(u32, 2, atom.alignment);
base_addr = mem.alignForwardGeneric(u64, base_addr, atom_alignment) + atom.size;
if (atom.next) |next| {
atom = next;
} else break;
}
break :blk base_addr - sect.addr;
} else 0;
start = start_aligned + sect.size;
if (!(is_zerofill and (use_stage1 or use_llvm))) {
seg.inner.filesize = start;
}
seg.inner.vmsize = start;
}
seg.inner.filesize = mem.alignForwardGeneric(u64, seg.inner.filesize, self.page_size);
seg.inner.vmsize = mem.alignForwardGeneric(u64, seg.inner.vmsize, self.page_size);
}
const InitSectionOpts = struct {
flags: u32 = macho.S_REGULAR,
reserved1: u32 = 0,
reserved2: u32 = 0,
};
fn initSection(
self: *MachO,
segment_id: u16,
sectname: []const u8,
size: u64,
alignment: u32,
opts: InitSectionOpts,
) !u16 {
const seg = &self.load_commands.items[segment_id].segment;
var sect = macho.section_64{
.sectname = makeStaticString(sectname),
.segname = seg.inner.segname,
.size = if (self.needs_prealloc) @intCast(u32, size) else 0,
.@"align" = alignment,
.flags = opts.flags,
.reserved1 = opts.reserved1,
.reserved2 = opts.reserved2,
};
if (self.needs_prealloc) {
const alignment_pow_2 = try math.powi(u32, 2, alignment);
const padding: ?u64 = if (segment_id == self.text_segment_cmd_index.?) self.header_pad else null;
const off = self.findFreeSpace(segment_id, alignment_pow_2, padding);
log.debug("allocating {s},{s} section from 0x{x} to 0x{x}", .{
sect.segName(),
sect.sectName(),
off,
off + size,
});
sect.addr = seg.inner.vmaddr + off - seg.inner.fileoff;
const is_zerofill = opts.flags == macho.S_ZEROFILL or opts.flags == macho.S_THREAD_LOCAL_ZEROFILL;
const use_llvm = build_options.have_llvm and self.base.options.use_llvm;
const use_stage1 = build_options.is_stage1 and self.base.options.use_stage1;
// TODO handle zerofill in stage2
if (!(is_zerofill and (use_stage1 or use_llvm))) {
sect.offset = @intCast(u32, off);
}
}
const index = @intCast(u16, seg.sections.items.len);
try seg.sections.append(self.base.allocator, sect);
seg.inner.cmdsize += @sizeOf(macho.section_64);
seg.inner.nsects += 1;
const match = MatchingSection{
.seg = segment_id,
.sect = index,
};
_ = try self.section_ordinals.getOrPut(self.base.allocator, match);
try self.atom_free_lists.putNoClobber(self.base.allocator, match, .{});
self.load_commands_dirty = true;
self.sections_order_dirty = true;
return index;
}
fn findFreeSpace(self: MachO, segment_id: u16, alignment: u64, start: ?u64) u64 {
const seg = self.load_commands.items[segment_id].segment;
if (seg.sections.items.len == 0) {
return if (start) |v| v else seg.inner.fileoff;
}
const last_sect = seg.sections.items[seg.sections.items.len - 1];
const final_off = last_sect.offset + padToIdeal(last_sect.size);
return mem.alignForwardGeneric(u64, final_off, alignment);
}
fn growSegment(self: *MachO, seg_id: u16, new_size: u64) !void {
const seg = &self.load_commands.items[seg_id].segment;
const new_seg_size = mem.alignForwardGeneric(u64, new_size, self.page_size);
assert(new_seg_size > seg.inner.filesize);
const offset_amt = new_seg_size - seg.inner.filesize;
log.debug("growing segment {s} from 0x{x} to 0x{x}", .{
seg.inner.segname,
seg.inner.filesize,
new_seg_size,
});
seg.inner.filesize = new_seg_size;
seg.inner.vmsize = new_seg_size;
log.debug(" (new segment file offsets from 0x{x} to 0x{x} (in memory 0x{x} to 0x{x}))", .{
seg.inner.fileoff,
seg.inner.fileoff + seg.inner.filesize,
seg.inner.vmaddr,
seg.inner.vmaddr + seg.inner.vmsize,
});
var next: usize = seg_id + 1;
while (next < self.linkedit_segment_cmd_index.? + 1) : (next += 1) {
const next_seg = &self.load_commands.items[next].segment;
try MachO.copyRangeAllOverlappingAlloc(
self.base.allocator,
self.base.file.?,
next_seg.inner.fileoff,
next_seg.inner.fileoff + offset_amt,
math.cast(usize, next_seg.inner.filesize) orelse return error.Overflow,
);
next_seg.inner.fileoff += offset_amt;
next_seg.inner.vmaddr += offset_amt;
log.debug(" (new {s} segment file offsets from 0x{x} to 0x{x} (in memory 0x{x} to 0x{x}))", .{
next_seg.inner.segname,
next_seg.inner.fileoff,
next_seg.inner.fileoff + next_seg.inner.filesize,
next_seg.inner.vmaddr,
next_seg.inner.vmaddr + next_seg.inner.vmsize,
});
for (next_seg.sections.items) |*moved_sect, moved_sect_id| {
moved_sect.offset += @intCast(u32, offset_amt);
moved_sect.addr += offset_amt;
log.debug(" (new {s},{s} file offsets from 0x{x} to 0x{x} (in memory 0x{x} to 0x{x}))", .{
moved_sect.segName(),
moved_sect.sectName(),
moved_sect.offset,
moved_sect.offset + moved_sect.size,
moved_sect.addr,
moved_sect.addr + moved_sect.size,
});
try self.shiftLocalsByOffset(.{
.seg = @intCast(u16, next),
.sect = @intCast(u16, moved_sect_id),
}, @intCast(i64, offset_amt));
}
}
}
fn growSection(self: *MachO, match: MatchingSection, new_size: u32) !void {
const tracy = trace(@src());
defer tracy.end();
const seg = &self.load_commands.items[match.seg].segment;
const sect = &seg.sections.items[match.sect];
const alignment = try math.powi(u32, 2, sect.@"align");
const max_size = self.allocatedSize(match.seg, sect.offset);
const ideal_size = padToIdeal(new_size);
const needed_size = mem.alignForwardGeneric(u32, ideal_size, alignment);
if (needed_size > max_size) blk: {
log.debug(" (need to grow! needed 0x{x}, max 0x{x})", .{ needed_size, max_size });
if (match.sect == seg.sections.items.len - 1) {
// Last section, just grow segments
try self.growSegment(match.seg, seg.inner.filesize + needed_size - max_size);
break :blk;
}
// Need to move all sections below in file and address spaces.
const offset_amt = offset: {
const max_alignment = try self.getSectionMaxAlignment(match.seg, match.sect + 1);
break :offset mem.alignForwardGeneric(u64, needed_size - max_size, max_alignment);
};
// Before we commit to this, check if the segment needs to grow too.
// We assume that each section header is growing linearly with the increasing
// file offset / virtual memory address space.
const last_sect = seg.sections.items[seg.sections.items.len - 1];
const last_sect_off = last_sect.offset + last_sect.size;
const seg_off = seg.inner.fileoff + seg.inner.filesize;
if (last_sect_off + offset_amt > seg_off) {
// Need to grow segment first.
const spill_size = (last_sect_off + offset_amt) - seg_off;
try self.growSegment(match.seg, seg.inner.filesize + spill_size);
}
// We have enough space to expand within the segment, so move all sections by
// the required amount and update their header offsets.
const next_sect = seg.sections.items[match.sect + 1];
const total_size = last_sect_off - next_sect.offset;
try MachO.copyRangeAllOverlappingAlloc(
self.base.allocator,
self.base.file.?,
next_sect.offset,
next_sect.offset + offset_amt,
math.cast(usize, total_size) orelse return error.Overflow,
);
var next = match.sect + 1;
while (next < seg.sections.items.len) : (next += 1) {
const moved_sect = &seg.sections.items[next];
moved_sect.offset += @intCast(u32, offset_amt);
moved_sect.addr += offset_amt;
log.debug(" (new {s},{s} file offsets from 0x{x} to 0x{x} (in memory 0x{x} to 0x{x}))", .{
moved_sect.segName(),
moved_sect.sectName(),
moved_sect.offset,
moved_sect.offset + moved_sect.size,
moved_sect.addr,
moved_sect.addr + moved_sect.size,
});
try self.shiftLocalsByOffset(.{
.seg = match.seg,
.sect = next,
}, @intCast(i64, offset_amt));
}
}
}
fn allocatedSize(self: MachO, segment_id: u16, start: u64) u64 {
const seg = self.load_commands.items[segment_id].segment;
assert(start >= seg.inner.fileoff);
var min_pos: u64 = seg.inner.fileoff + seg.inner.filesize;
if (start > min_pos) return 0;
for (seg.sections.items) |section| {
if (section.offset <= start) continue;
if (section.offset < min_pos) min_pos = section.offset;
}
return min_pos - start;
}
fn getSectionMaxAlignment(self: *MachO, segment_id: u16, start_sect_id: u16) !u32 {
const seg = self.load_commands.items[segment_id].segment;
var max_alignment: u32 = 1;
var next = start_sect_id;
while (next < seg.sections.items.len) : (next += 1) {
const sect = seg.sections.items[next];
const alignment = try math.powi(u32, 2, sect.@"align");
max_alignment = math.max(max_alignment, alignment);
}
return max_alignment;
}
fn allocateAtom(self: *MachO, atom: *Atom, new_atom_size: u64, alignment: u64, match: MatchingSection) !u64 {
const tracy = trace(@src());
defer tracy.end();
const seg = &self.load_commands.items[match.seg].segment;
const sect = &seg.sections.items[match.sect];
var free_list = self.atom_free_lists.get(match).?;
const needs_padding = match.seg == self.text_segment_cmd_index.? and match.sect == self.text_section_index.?;
const new_atom_ideal_capacity = if (needs_padding) padToIdeal(new_atom_size) else new_atom_size;
// We use these to indicate our intention to update metadata, placing the new atom,
// and possibly removing a free list node.
// It would be simpler to do it inside the for loop below, but that would cause a
// problem if an error was returned later in the function. So this action
// is actually carried out at the end of the function, when errors are no longer possible.
var atom_placement: ?*Atom = null;
var free_list_removal: ?usize = null;
// First we look for an appropriately sized free list node.
// The list is unordered. We'll just take the first thing that works.
var vaddr = blk: {
var i: usize = 0;
while (i < free_list.items.len) {
const big_atom = free_list.items[i];
// We now have a pointer to a live atom that has too much capacity.
// Is it enough that we could fit this new atom?
const sym = self.locals.items[big_atom.local_sym_index];
const capacity = big_atom.capacity(self.*);
const ideal_capacity = if (needs_padding) padToIdeal(capacity) else capacity;
const ideal_capacity_end_vaddr = math.add(u64, sym.n_value, ideal_capacity) catch ideal_capacity;
const capacity_end_vaddr = sym.n_value + capacity;
const new_start_vaddr_unaligned = capacity_end_vaddr - new_atom_ideal_capacity;
const new_start_vaddr = mem.alignBackwardGeneric(u64, new_start_vaddr_unaligned, alignment);
if (new_start_vaddr < ideal_capacity_end_vaddr) {
// Additional bookkeeping here to notice if this free list node
// should be deleted because the atom that it points to has grown to take up
// more of the extra capacity.
if (!big_atom.freeListEligible(self.*)) {
_ = free_list.swapRemove(i);
} else {
i += 1;
}
continue;
}
// At this point we know that we will place the new atom here. But the
// remaining question is whether there is still yet enough capacity left
// over for there to still be a free list node.
const remaining_capacity = new_start_vaddr - ideal_capacity_end_vaddr;
const keep_free_list_node = remaining_capacity >= min_text_capacity;
// Set up the metadata to be updated, after errors are no longer possible.
atom_placement = big_atom;
if (!keep_free_list_node) {
free_list_removal = i;
}
break :blk new_start_vaddr;
} else if (self.atoms.get(match)) |last| {
const last_symbol = self.locals.items[last.local_sym_index];
const ideal_capacity = if (needs_padding) padToIdeal(last.size) else last.size;
const ideal_capacity_end_vaddr = last_symbol.n_value + ideal_capacity;
const new_start_vaddr = mem.alignForwardGeneric(u64, ideal_capacity_end_vaddr, alignment);
atom_placement = last;
break :blk new_start_vaddr;
} else {
break :blk mem.alignForwardGeneric(u64, sect.addr, alignment);
}
};
const expand_section = atom_placement == null or atom_placement.?.next == null;
if (expand_section) {
const needed_size = @intCast(u32, (vaddr + new_atom_size) - sect.addr);
try self.growSection(match, needed_size);
_ = try self.atoms.put(self.base.allocator, match, atom);
sect.size = needed_size;
self.load_commands_dirty = true;
}
const align_pow = @intCast(u32, math.log2(alignment));
if (sect.@"align" < align_pow) {
sect.@"align" = align_pow;
self.load_commands_dirty = true;
}
atom.size = new_atom_size;
atom.alignment = align_pow;
if (atom.prev) |prev| {
prev.next = atom.next;
}
if (atom.next) |next| {
next.prev = atom.prev;
}
if (atom_placement) |big_atom| {
atom.prev = big_atom;
atom.next = big_atom.next;
big_atom.next = atom;
} else {
atom.prev = null;
atom.next = null;
}
if (free_list_removal) |i| {
_ = free_list.swapRemove(i);
}
return vaddr;
}
fn addAtomToSection(self: *MachO, atom: *Atom, match: MatchingSection) !void {
if (self.atoms.getPtr(match)) |last| {
last.*.next = atom;
atom.prev = last.*;
last.* = atom;
} else {
try self.atoms.putNoClobber(self.base.allocator, match, atom);
}
}
pub fn getGlobalSymbol(self: *MachO, name: []const u8) !u32 {
const sym_name = try std.fmt.allocPrint(self.base.allocator, "_{s}", .{name});
defer self.base.allocator.free(sym_name);
const n_strx = try self.makeString(sym_name);
if (!self.symbol_resolver.contains(n_strx)) {
log.debug("adding new extern function '{s}'", .{sym_name});
const sym_index = @intCast(u32, self.undefs.items.len);
try self.undefs.append(self.base.allocator, .{
.n_strx = n_strx,
.n_type = macho.N_UNDF,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
try self.symbol_resolver.putNoClobber(self.base.allocator, n_strx, .{
.where = .undef,
.where_index = sym_index,
});
try self.unresolved.putNoClobber(self.base.allocator, sym_index, .stub);
}
return n_strx;
}
const NextSegmentAddressAndOffset = struct {
address: u64,
offset: u64,
};
fn nextSegmentAddressAndOffset(self: *MachO) NextSegmentAddressAndOffset {
var prev_segment_idx: ?usize = null; // We use optional here for safety.
for (self.load_commands.items) |cmd, i| {
if (cmd == .segment) {
prev_segment_idx = i;
}
}
const prev_segment = self.load_commands.items[prev_segment_idx.?].segment;
const address = prev_segment.inner.vmaddr + prev_segment.inner.vmsize;
const offset = prev_segment.inner.fileoff + prev_segment.inner.filesize;
return .{
.address = address,
.offset = offset,
};
}
fn sortSections(self: *MachO) !void {
var text_index_mapping = std.AutoHashMap(u16, u16).init(self.base.allocator);
defer text_index_mapping.deinit();
var data_const_index_mapping = std.AutoHashMap(u16, u16).init(self.base.allocator);
defer data_const_index_mapping.deinit();
var data_index_mapping = std.AutoHashMap(u16, u16).init(self.base.allocator);
defer data_index_mapping.deinit();
{
// __TEXT segment
const seg = &self.load_commands.items[self.text_segment_cmd_index.?].segment;
var sections = seg.sections.toOwnedSlice(self.base.allocator);
defer self.base.allocator.free(sections);
try seg.sections.ensureTotalCapacity(self.base.allocator, sections.len);
const indices = &[_]*?u16{
&self.text_section_index,
&self.stubs_section_index,
&self.stub_helper_section_index,
&self.gcc_except_tab_section_index,
&self.cstring_section_index,
&self.ustring_section_index,
&self.text_const_section_index,
&self.objc_methlist_section_index,
&self.objc_methname_section_index,
&self.objc_methtype_section_index,
&self.objc_classname_section_index,
&self.eh_frame_section_index,
};
for (indices) |maybe_index| {
const new_index: u16 = if (maybe_index.*) |index| blk: {
const idx = @intCast(u16, seg.sections.items.len);
seg.sections.appendAssumeCapacity(sections[index]);
try text_index_mapping.putNoClobber(index, idx);
break :blk idx;
} else continue;
maybe_index.* = new_index;
}
}
{
// __DATA_CONST segment
const seg = &self.load_commands.items[self.data_const_segment_cmd_index.?].segment;
var sections = seg.sections.toOwnedSlice(self.base.allocator);
defer self.base.allocator.free(sections);
try seg.sections.ensureTotalCapacity(self.base.allocator, sections.len);
const indices = &[_]*?u16{
&self.got_section_index,
&self.mod_init_func_section_index,
&self.mod_term_func_section_index,
&self.data_const_section_index,
&self.objc_cfstring_section_index,
&self.objc_classlist_section_index,
&self.objc_imageinfo_section_index,
};
for (indices) |maybe_index| {
const new_index: u16 = if (maybe_index.*) |index| blk: {
const idx = @intCast(u16, seg.sections.items.len);
seg.sections.appendAssumeCapacity(sections[index]);
try data_const_index_mapping.putNoClobber(index, idx);
break :blk idx;
} else continue;
maybe_index.* = new_index;
}
}
{
// __DATA segment
const seg = &self.load_commands.items[self.data_segment_cmd_index.?].segment;
var sections = seg.sections.toOwnedSlice(self.base.allocator);
defer self.base.allocator.free(sections);
try seg.sections.ensureTotalCapacity(self.base.allocator, sections.len);
// __DATA segment
const indices = &[_]*?u16{
&self.rustc_section_index,
&self.la_symbol_ptr_section_index,
&self.objc_const_section_index,
&self.objc_selrefs_section_index,
&self.objc_classrefs_section_index,
&self.objc_data_section_index,
&self.data_section_index,
&self.tlv_section_index,
&self.tlv_ptrs_section_index,
&self.tlv_data_section_index,
&self.tlv_bss_section_index,
&self.bss_section_index,
};
for (indices) |maybe_index| {
const new_index: u16 = if (maybe_index.*) |index| blk: {
const idx = @intCast(u16, seg.sections.items.len);
seg.sections.appendAssumeCapacity(sections[index]);
try data_index_mapping.putNoClobber(index, idx);
break :blk idx;
} else continue;
maybe_index.* = new_index;
}
}
{
var transient: std.AutoHashMapUnmanaged(MatchingSection, *Atom) = .{};
try transient.ensureTotalCapacity(self.base.allocator, self.atoms.count());
var it = self.atoms.iterator();
while (it.next()) |entry| {
const old = entry.key_ptr.*;
const sect = if (old.seg == self.text_segment_cmd_index.?)
text_index_mapping.get(old.sect).?
else if (old.seg == self.data_const_segment_cmd_index.?)
data_const_index_mapping.get(old.sect).?
else
data_index_mapping.get(old.sect).?;
transient.putAssumeCapacityNoClobber(.{
.seg = old.seg,
.sect = sect,
}, entry.value_ptr.*);
}
self.atoms.clearAndFree(self.base.allocator);
self.atoms.deinit(self.base.allocator);
self.atoms = transient;
}
{
// Create new section ordinals.
self.section_ordinals.clearRetainingCapacity();
const text_seg = self.load_commands.items[self.text_segment_cmd_index.?].segment;
for (text_seg.sections.items) |_, sect_id| {
const res = self.section_ordinals.getOrPutAssumeCapacity(.{
.seg = self.text_segment_cmd_index.?,
.sect = @intCast(u16, sect_id),
});
assert(!res.found_existing);
}
const data_const_seg = self.load_commands.items[self.data_const_segment_cmd_index.?].segment;
for (data_const_seg.sections.items) |_, sect_id| {
const res = self.section_ordinals.getOrPutAssumeCapacity(.{
.seg = self.data_const_segment_cmd_index.?,
.sect = @intCast(u16, sect_id),
});
assert(!res.found_existing);
}
const data_seg = self.load_commands.items[self.data_segment_cmd_index.?].segment;
for (data_seg.sections.items) |_, sect_id| {
const res = self.section_ordinals.getOrPutAssumeCapacity(.{
.seg = self.data_segment_cmd_index.?,
.sect = @intCast(u16, sect_id),
});
assert(!res.found_existing);
}
}
self.sections_order_dirty = false;
}
fn updateSectionOrdinals(self: *MachO) !void {
if (!self.sections_order_dirty) return;
const tracy = trace(@src());
defer tracy.end();
var ordinal_remap = std.AutoHashMap(u8, u8).init(self.base.allocator);
defer ordinal_remap.deinit();
var ordinals: std.AutoArrayHashMapUnmanaged(MatchingSection, void) = .{};
var new_ordinal: u8 = 0;
for (self.load_commands.items) |lc, lc_id| {
if (lc != .segment) break;
for (lc.segment.sections.items) |_, sect_id| {
const match = MatchingSection{
.seg = @intCast(u16, lc_id),
.sect = @intCast(u16, sect_id),
};
const old_ordinal = @intCast(u8, self.section_ordinals.getIndex(match).? + 1);
new_ordinal += 1;
try ordinal_remap.putNoClobber(old_ordinal, new_ordinal);
try ordinals.putNoClobber(self.base.allocator, match, {});
}
}
for (self.locals.items) |*sym| {
if (sym.n_sect == 0) continue;
sym.n_sect = ordinal_remap.get(sym.n_sect).?;
}
for (self.globals.items) |*sym| {
sym.n_sect = ordinal_remap.get(sym.n_sect).?;
}
self.section_ordinals.deinit(self.base.allocator);
self.section_ordinals = ordinals;
}
fn writeDyldInfoData(self: *MachO) !void {
const tracy = trace(@src());
defer tracy.end();
var rebase_pointers = std.ArrayList(bind.Pointer).init(self.base.allocator);
defer rebase_pointers.deinit();
var bind_pointers = std.ArrayList(bind.Pointer).init(self.base.allocator);
defer bind_pointers.deinit();
var lazy_bind_pointers = std.ArrayList(bind.Pointer).init(self.base.allocator);
defer lazy_bind_pointers.deinit();
{
var it = self.atoms.iterator();
while (it.next()) |entry| {
const match = entry.key_ptr.*;
var atom: *Atom = entry.value_ptr.*;
if (match.seg == self.text_segment_cmd_index.?) continue; // __TEXT is non-writable
const seg = self.load_commands.items[match.seg].segment;
while (true) {
const sym = self.locals.items[atom.local_sym_index];
const base_offset = sym.n_value - seg.inner.vmaddr;
for (atom.rebases.items) |offset| {
try rebase_pointers.append(.{
.offset = base_offset + offset,
.segment_id = match.seg,
});
}
for (atom.bindings.items) |binding| {
const resolv = self.symbol_resolver.get(binding.n_strx).?;
switch (resolv.where) {
.global => {
// Turn into a rebase.
try rebase_pointers.append(.{
.offset = base_offset + binding.offset,
.segment_id = match.seg,
});
},
.undef => {
const bind_sym = self.undefs.items[resolv.where_index];
try bind_pointers.append(.{
.offset = binding.offset + base_offset,
.segment_id = match.seg,
.dylib_ordinal = @divExact(@bitCast(i16, bind_sym.n_desc), macho.N_SYMBOL_RESOLVER),
.name = self.getString(bind_sym.n_strx),
});
},
}
}
for (atom.lazy_bindings.items) |binding| {
const resolv = self.symbol_resolver.get(binding.n_strx).?;
switch (resolv.where) {
.global => {
// Turn into a rebase.
try rebase_pointers.append(.{
.offset = base_offset + binding.offset,
.segment_id = match.seg,
});
},
.undef => {
const bind_sym = self.undefs.items[resolv.where_index];
try lazy_bind_pointers.append(.{
.offset = binding.offset + base_offset,
.segment_id = match.seg,
.dylib_ordinal = @divExact(@bitCast(i16, bind_sym.n_desc), macho.N_SYMBOL_RESOLVER),
.name = self.getString(bind_sym.n_strx),
});
},
}
}
if (atom.prev) |prev| {
atom = prev;
} else break;
}
}
}
var trie: Trie = .{};
defer trie.deinit(self.base.allocator);
{
// TODO handle macho.EXPORT_SYMBOL_FLAGS_REEXPORT and macho.EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER.
log.debug("generating export trie", .{});
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].segment;
const base_address = text_segment.inner.vmaddr;
for (self.globals.items) |sym| {
if (sym.n_type == 0) continue;
const sym_name = self.getString(sym.n_strx);
log.debug(" (putting '{s}' defined at 0x{x})", .{ sym_name, sym.n_value });
try trie.put(self.base.allocator, .{
.name = sym_name,
.vmaddr_offset = sym.n_value - base_address,
.export_flags = macho.EXPORT_SYMBOL_FLAGS_KIND_REGULAR,
});
}
try trie.finalize(self.base.allocator);
}
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const dyld_info = &self.load_commands.items[self.dyld_info_cmd_index.?].dyld_info_only;
const rebase_off = mem.alignForwardGeneric(u64, seg.inner.fileoff, @alignOf(u64));
const rebase_size = try bind.rebaseInfoSize(rebase_pointers.items);
dyld_info.rebase_off = @intCast(u32, rebase_off);
dyld_info.rebase_size = @intCast(u32, rebase_size);
log.debug("writing rebase info from 0x{x} to 0x{x}", .{
dyld_info.rebase_off,
dyld_info.rebase_off + dyld_info.rebase_size,
});
const bind_off = mem.alignForwardGeneric(u64, dyld_info.rebase_off + dyld_info.rebase_size, @alignOf(u64));
const bind_size = try bind.bindInfoSize(bind_pointers.items);
dyld_info.bind_off = @intCast(u32, bind_off);
dyld_info.bind_size = @intCast(u32, bind_size);
log.debug("writing bind info from 0x{x} to 0x{x}", .{
dyld_info.bind_off,
dyld_info.bind_off + dyld_info.bind_size,
});
const lazy_bind_off = mem.alignForwardGeneric(u64, dyld_info.bind_off + dyld_info.bind_size, @alignOf(u64));
const lazy_bind_size = try bind.lazyBindInfoSize(lazy_bind_pointers.items);
dyld_info.lazy_bind_off = @intCast(u32, lazy_bind_off);
dyld_info.lazy_bind_size = @intCast(u32, lazy_bind_size);
log.debug("writing lazy bind info from 0x{x} to 0x{x}", .{
dyld_info.lazy_bind_off,
dyld_info.lazy_bind_off + dyld_info.lazy_bind_size,
});
const export_off = mem.alignForwardGeneric(u64, dyld_info.lazy_bind_off + dyld_info.lazy_bind_size, @alignOf(u64));
const export_size = trie.size;
dyld_info.export_off = @intCast(u32, export_off);
dyld_info.export_size = @intCast(u32, export_size);
log.debug("writing export trie from 0x{x} to 0x{x}", .{
dyld_info.export_off,
dyld_info.export_off + dyld_info.export_size,
});
seg.inner.filesize = dyld_info.export_off + dyld_info.export_size - seg.inner.fileoff;
const needed_size = dyld_info.export_off + dyld_info.export_size - dyld_info.rebase_off;
var buffer = try self.base.allocator.alloc(u8, needed_size);
defer self.base.allocator.free(buffer);
mem.set(u8, buffer, 0);
var stream = std.io.fixedBufferStream(buffer);
const writer = stream.writer();
const base_off = dyld_info.rebase_off;
try bind.writeRebaseInfo(rebase_pointers.items, writer);
try stream.seekTo(dyld_info.bind_off - base_off);
try bind.writeBindInfo(bind_pointers.items, writer);
try stream.seekTo(dyld_info.lazy_bind_off - base_off);
try bind.writeLazyBindInfo(lazy_bind_pointers.items, writer);
try stream.seekTo(dyld_info.export_off - base_off);
_ = try trie.write(writer);
log.debug("writing dyld info from 0x{x} to 0x{x}", .{
dyld_info.rebase_off,
dyld_info.rebase_off + needed_size,
});
try self.base.file.?.pwriteAll(buffer, dyld_info.rebase_off);
try self.populateLazyBindOffsetsInStubHelper(
buffer[dyld_info.lazy_bind_off - base_off ..][0..dyld_info.lazy_bind_size],
);
self.load_commands_dirty = true;
}
fn populateLazyBindOffsetsInStubHelper(self: *MachO, buffer: []const u8) !void {
const last_atom = self.atoms.get(.{
.seg = self.text_segment_cmd_index.?,
.sect = self.stub_helper_section_index.?,
}) orelse return;
if (last_atom == self.stub_helper_preamble_atom.?) return;
var table = std.AutoHashMap(i64, *Atom).init(self.base.allocator);
defer table.deinit();
{
var stub_atom = last_atom;
var laptr_atom = self.atoms.get(.{
.seg = self.data_segment_cmd_index.?,
.sect = self.la_symbol_ptr_section_index.?,
}).?;
const base_addr = blk: {
const seg = self.load_commands.items[self.data_segment_cmd_index.?].segment;
break :blk seg.inner.vmaddr;
};
while (true) {
const laptr_off = blk: {
const sym = self.locals.items[laptr_atom.local_sym_index];
break :blk @intCast(i64, sym.n_value - base_addr);
};
try table.putNoClobber(laptr_off, stub_atom);
if (laptr_atom.prev) |prev| {
laptr_atom = prev;
stub_atom = stub_atom.prev.?;
} else break;
}
}
var stream = std.io.fixedBufferStream(buffer);
var reader = stream.reader();
var offsets = std.ArrayList(struct { sym_offset: i64, offset: u32 }).init(self.base.allocator);
try offsets.append(.{ .sym_offset = undefined, .offset = 0 });
defer offsets.deinit();
var valid_block = false;
while (true) {
const inst = reader.readByte() catch |err| switch (err) {
error.EndOfStream => break,
};
const opcode: u8 = inst & macho.BIND_OPCODE_MASK;
switch (opcode) {
macho.BIND_OPCODE_DO_BIND => {
valid_block = true;
},
macho.BIND_OPCODE_DONE => {
if (valid_block) {
const offset = try stream.getPos();
try offsets.append(.{ .sym_offset = undefined, .offset = @intCast(u32, offset) });
}
valid_block = false;
},
macho.BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM => {
var next = try reader.readByte();
while (next != @as(u8, 0)) {
next = try reader.readByte();
}
},
macho.BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB => {
var inserted = offsets.pop();
inserted.sym_offset = try std.leb.readILEB128(i64, reader);
try offsets.append(inserted);
},
macho.BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB => {
_ = try std.leb.readULEB128(u64, reader);
},
macho.BIND_OPCODE_SET_ADDEND_SLEB => {
_ = try std.leb.readILEB128(i64, reader);
},
else => {},
}
}
const sect = blk: {
const seg = self.load_commands.items[self.text_segment_cmd_index.?].segment;
break :blk seg.sections.items[self.stub_helper_section_index.?];
};
const stub_offset: u4 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 1,
.aarch64 => 2 * @sizeOf(u32),
else => unreachable,
};
var buf: [@sizeOf(u32)]u8 = undefined;
_ = offsets.pop();
while (offsets.popOrNull()) |bind_offset| {
const atom = table.get(bind_offset.sym_offset).?;
const sym = self.locals.items[atom.local_sym_index];
const file_offset = sect.offset + sym.n_value - sect.addr + stub_offset;
mem.writeIntLittle(u32, &buf, bind_offset.offset);
log.debug("writing lazy bind offset in stub helper of 0x{x} for symbol {s} at offset 0x{x}", .{
bind_offset.offset,
self.getString(sym.n_strx),
file_offset,
});
try self.base.file.?.pwriteAll(&buf, file_offset);
}
}
fn writeFunctionStarts(self: *MachO) !void {
var atom = self.atoms.get(.{
.seg = self.text_segment_cmd_index orelse return,
.sect = self.text_section_index orelse return,
}) orelse return;
const tracy = trace(@src());
defer tracy.end();
while (atom.prev) |prev| {
atom = prev;
}
var offsets = std.ArrayList(u32).init(self.base.allocator);
defer offsets.deinit();
const text_seg = self.load_commands.items[self.text_segment_cmd_index.?].segment;
var last_off: u32 = 0;
while (true) {
const atom_sym = self.locals.items[atom.local_sym_index];
if (atom_sym.n_strx != 0) blk: {
if (self.symbol_resolver.get(atom_sym.n_strx)) |resolv| {
assert(resolv.where == .global);
if (resolv.local_sym_index != atom.local_sym_index) break :blk;
}
const offset = @intCast(u32, atom_sym.n_value - text_seg.inner.vmaddr);
const diff = offset - last_off;
if (diff == 0) break :blk;
try offsets.append(diff);
last_off = offset;
}
for (atom.contained.items) |cont| {
const cont_sym = self.locals.items[cont.local_sym_index];
if (cont_sym.n_strx == 0) continue;
if (self.symbol_resolver.get(cont_sym.n_strx)) |resolv| {
assert(resolv.where == .global);
if (resolv.local_sym_index != cont.local_sym_index) continue;
}
const offset = @intCast(u32, cont_sym.n_value - text_seg.inner.vmaddr);
const diff = offset - last_off;
if (diff == 0) continue;
try offsets.append(diff);
last_off = offset;
}
if (atom.next) |next| {
atom = next;
} else break;
}
var buffer = std.ArrayList(u8).init(self.base.allocator);
defer buffer.deinit();
const max_size = @intCast(usize, offsets.items.len * @sizeOf(u64));
try buffer.ensureTotalCapacity(max_size);
for (offsets.items) |offset| {
try std.leb.writeULEB128(buffer.writer(), offset);
}
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const fn_cmd = &self.load_commands.items[self.function_starts_cmd_index.?].linkedit_data;
const dataoff = mem.alignForwardGeneric(u64, seg.inner.fileoff + seg.inner.filesize, @alignOf(u64));
const datasize = buffer.items.len;
fn_cmd.dataoff = @intCast(u32, dataoff);
fn_cmd.datasize = @intCast(u32, datasize);
seg.inner.filesize = fn_cmd.dataoff + fn_cmd.datasize - seg.inner.fileoff;
log.debug("writing function starts info from 0x{x} to 0x{x}", .{
fn_cmd.dataoff,
fn_cmd.dataoff + fn_cmd.datasize,
});
try self.base.file.?.pwriteAll(buffer.items, fn_cmd.dataoff);
self.load_commands_dirty = true;
}
fn writeDices(self: *MachO) !void {
if (!self.has_dices) return;
const tracy = trace(@src());
defer tracy.end();
var buf = std.ArrayList(u8).init(self.base.allocator);
defer buf.deinit();
var atom: *Atom = self.atoms.get(.{
.seg = self.text_segment_cmd_index orelse return,
.sect = self.text_section_index orelse return,
}) orelse return;
while (atom.prev) |prev| {
atom = prev;
}
const text_seg = self.load_commands.items[self.text_segment_cmd_index.?].segment;
const text_sect = text_seg.sections.items[self.text_section_index.?];
while (true) {
if (atom.dices.items.len > 0) {
const sym = self.locals.items[atom.local_sym_index];
const base_off = math.cast(u32, sym.n_value - text_sect.addr + text_sect.offset) orelse return error.Overflow;
try buf.ensureUnusedCapacity(atom.dices.items.len * @sizeOf(macho.data_in_code_entry));
for (atom.dices.items) |dice| {
const rebased_dice = macho.data_in_code_entry{
.offset = base_off + dice.offset,
.length = dice.length,
.kind = dice.kind,
};
buf.appendSliceAssumeCapacity(mem.asBytes(&rebased_dice));
}
}
if (atom.next) |next| {
atom = next;
} else break;
}
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const dice_cmd = &self.load_commands.items[self.data_in_code_cmd_index.?].linkedit_data;
const dataoff = mem.alignForwardGeneric(u64, seg.inner.fileoff + seg.inner.filesize, @alignOf(u64));
const datasize = buf.items.len;
dice_cmd.dataoff = @intCast(u32, dataoff);
dice_cmd.datasize = @intCast(u32, datasize);
seg.inner.filesize = dice_cmd.dataoff + dice_cmd.datasize - seg.inner.fileoff;
log.debug("writing data-in-code from 0x{x} to 0x{x}", .{
dice_cmd.dataoff,
dice_cmd.dataoff + dice_cmd.datasize,
});
try self.base.file.?.pwriteAll(buf.items, dice_cmd.dataoff);
self.load_commands_dirty = true;
}
fn writeSymbolTable(self: *MachO) !void {
const tracy = trace(@src());
defer tracy.end();
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].symtab;
const symoff = mem.alignForwardGeneric(u64, seg.inner.fileoff + seg.inner.filesize, @alignOf(macho.nlist_64));
symtab.symoff = @intCast(u32, symoff);
var locals = std.ArrayList(macho.nlist_64).init(self.base.allocator);
defer locals.deinit();
for (self.locals.items) |sym| {
if (sym.n_strx == 0) continue;
if (self.symbol_resolver.get(sym.n_strx)) |_| continue;
try locals.append(sym);
}
// TODO How do we handle null global symbols in incremental context?
var undefs = std.ArrayList(macho.nlist_64).init(self.base.allocator);
defer undefs.deinit();
var undefs_table = std.AutoHashMap(u32, u32).init(self.base.allocator);
defer undefs_table.deinit();
try undefs.ensureTotalCapacity(self.undefs.items.len);
try undefs_table.ensureTotalCapacity(@intCast(u32, self.undefs.items.len));
for (self.undefs.items) |sym, i| {
if (sym.n_strx == 0) continue;
const new_index = @intCast(u32, undefs.items.len);
undefs.appendAssumeCapacity(sym);
undefs_table.putAssumeCapacityNoClobber(@intCast(u32, i), new_index);
}
if (self.has_stabs) {
for (self.objects.items) |object| {
if (object.debug_info == null) continue;
// Open scope
try locals.ensureUnusedCapacity(3);
locals.appendAssumeCapacity(.{
.n_strx = try self.makeString(object.tu_comp_dir.?),
.n_type = macho.N_SO,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
locals.appendAssumeCapacity(.{
.n_strx = try self.makeString(object.tu_name.?),
.n_type = macho.N_SO,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
locals.appendAssumeCapacity(.{
.n_strx = try self.makeString(object.name),
.n_type = macho.N_OSO,
.n_sect = 0,
.n_desc = 1,
.n_value = object.mtime orelse 0,
});
for (object.contained_atoms.items) |atom| {
if (atom.stab) |stab| {
const nlists = try stab.asNlists(atom.local_sym_index, self);
defer self.base.allocator.free(nlists);
try locals.appendSlice(nlists);
} else {
for (atom.contained.items) |sym_at_off| {
const stab = sym_at_off.stab orelse continue;
const nlists = try stab.asNlists(sym_at_off.local_sym_index, self);
defer self.base.allocator.free(nlists);
try locals.appendSlice(nlists);
}
}
}
// Close scope
try locals.append(.{
.n_strx = 0,
.n_type = macho.N_SO,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
}
}
const nlocals = locals.items.len;
const nexports = self.globals.items.len;
const nundefs = undefs.items.len;
const locals_off = symtab.symoff;
const locals_size = nlocals * @sizeOf(macho.nlist_64);
log.debug("writing local symbols from 0x{x} to 0x{x}", .{ locals_off, locals_size + locals_off });
try self.base.file.?.pwriteAll(mem.sliceAsBytes(locals.items), locals_off);
const exports_off = locals_off + locals_size;
const exports_size = nexports * @sizeOf(macho.nlist_64);
log.debug("writing exported symbols from 0x{x} to 0x{x}", .{ exports_off, exports_size + exports_off });
try self.base.file.?.pwriteAll(mem.sliceAsBytes(self.globals.items), exports_off);
const undefs_off = exports_off + exports_size;
const undefs_size = nundefs * @sizeOf(macho.nlist_64);
log.debug("writing undefined symbols from 0x{x} to 0x{x}", .{ undefs_off, undefs_size + undefs_off });
try self.base.file.?.pwriteAll(mem.sliceAsBytes(undefs.items), undefs_off);
symtab.nsyms = @intCast(u32, nlocals + nexports + nundefs);
seg.inner.filesize = symtab.symoff + symtab.nsyms * @sizeOf(macho.nlist_64) - seg.inner.fileoff;
// Update dynamic symbol table.
const dysymtab = &self.load_commands.items[self.dysymtab_cmd_index.?].dysymtab;
dysymtab.nlocalsym = @intCast(u32, nlocals);
dysymtab.iextdefsym = dysymtab.nlocalsym;
dysymtab.nextdefsym = @intCast(u32, nexports);
dysymtab.iundefsym = dysymtab.nlocalsym + dysymtab.nextdefsym;
dysymtab.nundefsym = @intCast(u32, nundefs);
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].segment;
const stubs = &text_segment.sections.items[self.stubs_section_index.?];
const data_const_segment = &self.load_commands.items[self.data_const_segment_cmd_index.?].segment;
const got = &data_const_segment.sections.items[self.got_section_index.?];
const data_segment = &self.load_commands.items[self.data_segment_cmd_index.?].segment;
const la_symbol_ptr = &data_segment.sections.items[self.la_symbol_ptr_section_index.?];
const nstubs = @intCast(u32, self.stubs_table.keys().len);
const ngot_entries = @intCast(u32, self.got_entries_table.keys().len);
const indirectsymoff = mem.alignForwardGeneric(u64, seg.inner.fileoff + seg.inner.filesize, @alignOf(u64));
dysymtab.indirectsymoff = @intCast(u32, indirectsymoff);
dysymtab.nindirectsyms = nstubs * 2 + ngot_entries;
seg.inner.filesize = dysymtab.indirectsymoff + dysymtab.nindirectsyms * @sizeOf(u32) - seg.inner.fileoff;
log.debug("writing indirect symbol table from 0x{x} to 0x{x}", .{
dysymtab.indirectsymoff,
dysymtab.indirectsymoff + dysymtab.nindirectsyms * @sizeOf(u32),
});
var buf = std.ArrayList(u8).init(self.base.allocator);
defer buf.deinit();
try buf.ensureTotalCapacity(dysymtab.nindirectsyms * @sizeOf(u32));
const writer = buf.writer();
stubs.reserved1 = 0;
for (self.stubs_table.keys()) |key| {
const resolv = self.symbol_resolver.get(key).?;
switch (resolv.where) {
.global => try writer.writeIntLittle(u32, macho.INDIRECT_SYMBOL_LOCAL),
.undef => try writer.writeIntLittle(u32, dysymtab.iundefsym + undefs_table.get(resolv.where_index).?),
}
}
got.reserved1 = nstubs;
for (self.got_entries_table.keys()) |key| {
switch (key) {
.local => try writer.writeIntLittle(u32, macho.INDIRECT_SYMBOL_LOCAL),
.global => |n_strx| {
const resolv = self.symbol_resolver.get(n_strx).?;
switch (resolv.where) {
.global => try writer.writeIntLittle(u32, macho.INDIRECT_SYMBOL_LOCAL),
.undef => try writer.writeIntLittle(u32, dysymtab.iundefsym + undefs_table.get(resolv.where_index).?),
}
},
}
}
la_symbol_ptr.reserved1 = got.reserved1 + ngot_entries;
for (self.stubs_table.keys()) |key| {
const resolv = self.symbol_resolver.get(key).?;
switch (resolv.where) {
.global => try writer.writeIntLittle(u32, macho.INDIRECT_SYMBOL_LOCAL),
.undef => try writer.writeIntLittle(u32, dysymtab.iundefsym + undefs_table.get(resolv.where_index).?),
}
}
assert(buf.items.len == dysymtab.nindirectsyms * @sizeOf(u32));
try self.base.file.?.pwriteAll(buf.items, dysymtab.indirectsymoff);
self.load_commands_dirty = true;
}
fn writeStringTable(self: *MachO) !void {
const tracy = trace(@src());
defer tracy.end();
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].symtab;
const stroff = mem.alignForwardGeneric(u64, seg.inner.fileoff + seg.inner.filesize, @alignOf(u64));
const strsize = self.strtab.items.len;
symtab.stroff = @intCast(u32, stroff);
symtab.strsize = @intCast(u32, strsize);
seg.inner.filesize = symtab.stroff + symtab.strsize - seg.inner.fileoff;
log.debug("writing string table from 0x{x} to 0x{x}", .{ symtab.stroff, symtab.stroff + symtab.strsize });
try self.base.file.?.pwriteAll(self.strtab.items, symtab.stroff);
self.load_commands_dirty = true;
}
fn writeLinkeditSegment(self: *MachO) !void {
const tracy = trace(@src());
defer tracy.end();
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
seg.inner.filesize = 0;
try self.writeDyldInfoData();
try self.writeFunctionStarts();
try self.writeDices();
try self.writeSymbolTable();
try self.writeStringTable();
seg.inner.vmsize = mem.alignForwardGeneric(u64, seg.inner.filesize, self.page_size);
}
fn writeCodeSignaturePadding(self: *MachO, code_sig: *CodeSignature) !void {
const tracy = trace(@src());
defer tracy.end();
const seg = &self.load_commands.items[self.linkedit_segment_cmd_index.?].segment;
const cs_cmd = &self.load_commands.items[self.code_signature_cmd_index.?].linkedit_data;
// Code signature data has to be 16-bytes aligned for Apple tools to recognize the file
// https://github.com/opensource-apple/cctools/blob/fdb4825f303fd5c0751be524babd32958181b3ed/libstuff/checkout.c#L271
const dataoff = mem.alignForwardGeneric(u64, seg.inner.fileoff + seg.inner.filesize, 16);
const datasize = code_sig.estimateSize(dataoff);
cs_cmd.dataoff = @intCast(u32, dataoff);
cs_cmd.datasize = @intCast(u32, code_sig.estimateSize(dataoff));
// Advance size of __LINKEDIT segment
seg.inner.filesize = cs_cmd.dataoff + cs_cmd.datasize - seg.inner.fileoff;
seg.inner.vmsize = mem.alignForwardGeneric(u64, seg.inner.filesize, self.page_size);
log.debug("writing code signature padding from 0x{x} to 0x{x}", .{ dataoff, dataoff + datasize });
// Pad out the space. We need to do this to calculate valid hashes for everything in the file
// except for code signature data.
try self.base.file.?.pwriteAll(&[_]u8{0}, dataoff + datasize - 1);
self.load_commands_dirty = true;
}
fn writeCodeSignature(self: *MachO, code_sig: *CodeSignature) !void {
const tracy = trace(@src());
defer tracy.end();
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].segment;
const code_sig_cmd = self.load_commands.items[self.code_signature_cmd_index.?].linkedit_data;
var buffer = std.ArrayList(u8).init(self.base.allocator);
defer buffer.deinit();
try buffer.ensureTotalCapacityPrecise(code_sig.size());
try code_sig.writeAdhocSignature(self.base.allocator, .{
.file = self.base.file.?,
.text_segment = text_segment.inner,
.code_sig_cmd = code_sig_cmd,
.output_mode = self.base.options.output_mode,
}, buffer.writer());
assert(buffer.items.len == code_sig.size());
log.debug("writing code signature from 0x{x} to 0x{x}", .{
code_sig_cmd.dataoff,
code_sig_cmd.dataoff + buffer.items.len,
});
try self.base.file.?.pwriteAll(buffer.items, code_sig_cmd.dataoff);
}
/// Writes all load commands and section headers.
fn writeLoadCommands(self: *MachO) !void {
if (!self.load_commands_dirty) return;
var sizeofcmds: u32 = 0;
for (self.load_commands.items) |lc| {
sizeofcmds += lc.cmdsize();
}
var buffer = try self.base.allocator.alloc(u8, sizeofcmds);
defer self.base.allocator.free(buffer);
var fib = std.io.fixedBufferStream(buffer);
const writer = fib.writer();
for (self.load_commands.items) |lc| {
try lc.write(writer);
}
const off = @sizeOf(macho.mach_header_64);
log.debug("writing {} load commands from 0x{x} to 0x{x}", .{ self.load_commands.items.len, off, off + sizeofcmds });
try self.base.file.?.pwriteAll(buffer, off);
self.load_commands_dirty = false;
}
/// Writes Mach-O file header.
fn writeHeader(self: *MachO) !void {
var header: macho.mach_header_64 = .{};
header.flags = macho.MH_NOUNDEFS | macho.MH_DYLDLINK | macho.MH_PIE | macho.MH_TWOLEVEL;
switch (self.base.options.target.cpu.arch) {
.aarch64 => {
header.cputype = macho.CPU_TYPE_ARM64;
header.cpusubtype = macho.CPU_SUBTYPE_ARM_ALL;
},
.x86_64 => {
header.cputype = macho.CPU_TYPE_X86_64;
header.cpusubtype = macho.CPU_SUBTYPE_X86_64_ALL;
},
else => return error.UnsupportedCpuArchitecture,
}
switch (self.base.options.output_mode) {
.Exe => {
header.filetype = macho.MH_EXECUTE;
},
.Lib => {
// By this point, it can only be a dylib.
header.filetype = macho.MH_DYLIB;
header.flags |= macho.MH_NO_REEXPORTED_DYLIBS;
},
else => unreachable,
}
if (self.tlv_section_index) |_| {
header.flags |= macho.MH_HAS_TLV_DESCRIPTORS;
}
header.ncmds = @intCast(u32, self.load_commands.items.len);
header.sizeofcmds = 0;
for (self.load_commands.items) |cmd| {
header.sizeofcmds += cmd.cmdsize();
}
log.debug("writing Mach-O header {}", .{header});
try self.base.file.?.pwriteAll(mem.asBytes(&header), 0);
}
pub fn padToIdeal(actual_size: anytype) @TypeOf(actual_size) {
// TODO https://github.com/ziglang/zig/issues/1284
return std.math.add(@TypeOf(actual_size), actual_size, actual_size / ideal_factor) catch
std.math.maxInt(@TypeOf(actual_size));
}
pub fn makeStaticString(bytes: []const u8) [16]u8 {
var buf = [_]u8{0} ** 16;
assert(bytes.len <= buf.len);
mem.copy(u8, &buf, bytes);
return buf;
}
pub fn makeString(self: *MachO, string: []const u8) !u32 {
const gop = try self.strtab_dir.getOrPutContextAdapted(self.base.allocator, @as([]const u8, string), StringIndexAdapter{
.bytes = &self.strtab,
}, StringIndexContext{
.bytes = &self.strtab,
});
if (gop.found_existing) {
const off = gop.key_ptr.*;
log.debug("reusing string '{s}' at offset 0x{x}", .{ string, off });
return off;
}
try self.strtab.ensureUnusedCapacity(self.base.allocator, string.len + 1);
const new_off = @intCast(u32, self.strtab.items.len);
log.debug("writing new string '{s}' at offset 0x{x}", .{ string, new_off });
self.strtab.appendSliceAssumeCapacity(string);
self.strtab.appendAssumeCapacity(0);
gop.key_ptr.* = new_off;
return new_off;
}
pub fn getString(self: MachO, off: u32) []const u8 {
assert(off < self.strtab.items.len);
return mem.sliceTo(@ptrCast([*:0]const u8, self.strtab.items.ptr + off), 0);
}
pub fn symbolIsTemp(sym: macho.nlist_64, sym_name: []const u8) bool {
if (!sym.sect()) return false;
if (sym.ext()) return false;
return mem.startsWith(u8, sym_name, "l") or mem.startsWith(u8, sym_name, "L");
}
pub fn findFirst(comptime T: type, haystack: []T, start: usize, predicate: anytype) usize {
if (!@hasDecl(@TypeOf(predicate), "predicate"))
@compileError("Predicate is required to define fn predicate(@This(), T) bool");
if (start == haystack.len) return start;
var i = start;
while (i < haystack.len) : (i += 1) {
if (predicate.predicate(haystack[i])) break;
}
return i;
}
fn snapshotState(self: *MachO) !void {
const emit = self.base.options.emit orelse {
log.debug("no emit directory found; skipping snapshot...", .{});
return;
};
const Snapshot = struct {
const Node = struct {
const Tag = enum {
section_start,
section_end,
atom_start,
atom_end,
relocation,
pub fn jsonStringify(
tag: Tag,
options: std.json.StringifyOptions,
out_stream: anytype,
) !void {
_ = options;
switch (tag) {
.section_start => try out_stream.writeAll("\"section_start\""),
.section_end => try out_stream.writeAll("\"section_end\""),
.atom_start => try out_stream.writeAll("\"atom_start\""),
.atom_end => try out_stream.writeAll("\"atom_end\""),
.relocation => try out_stream.writeAll("\"relocation\""),
}
}
};
const Payload = struct {
name: []const u8 = "",
aliases: [][]const u8 = &[0][]const u8{},
is_global: bool = false,
target: u64 = 0,
};
address: u64,
tag: Tag,
payload: Payload,
};
timestamp: i128,
nodes: []Node,
};
var arena_allocator = std.heap.ArenaAllocator.init(self.base.allocator);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const out_file = try emit.directory.handle.createFile("snapshots.json", .{
.truncate = self.cold_start,
.read = true,
});
defer out_file.close();
if (out_file.seekFromEnd(-1)) {
try out_file.writer().writeByte(',');
} else |err| switch (err) {
error.Unseekable => try out_file.writer().writeByte('['),
else => |e| return e,
}
const writer = out_file.writer();
var snapshot = Snapshot{
.timestamp = std.time.nanoTimestamp(),
.nodes = undefined,
};
var nodes = std.ArrayList(Snapshot.Node).init(arena);
for (self.section_ordinals.keys()) |key| {
const seg = self.load_commands.items[key.seg].segment;
const sect = seg.sections.items[key.sect];
const sect_name = try std.fmt.allocPrint(arena, "{s},{s}", .{ sect.segName(), sect.sectName() });
try nodes.append(.{
.address = sect.addr,
.tag = .section_start,
.payload = .{ .name = sect_name },
});
var atom: *Atom = self.atoms.get(key) orelse {
try nodes.append(.{
.address = sect.addr + sect.size,
.tag = .section_end,
.payload = .{},
});
continue;
};
while (atom.prev) |prev| {
atom = prev;
}
while (true) {
const atom_sym = self.locals.items[atom.local_sym_index];
const should_skip_atom: bool = blk: {
if (self.mh_execute_header_index) |index| {
if (index == atom.local_sym_index) break :blk true;
}
if (mem.eql(u8, self.getString(atom_sym.n_strx), "___dso_handle")) break :blk true;
break :blk false;
};
if (should_skip_atom) {
if (atom.next) |next| {
atom = next;
} else break;
continue;
}
var node = Snapshot.Node{
.address = atom_sym.n_value,
.tag = .atom_start,
.payload = .{
.name = self.getString(atom_sym.n_strx),
.is_global = self.symbol_resolver.contains(atom_sym.n_strx),
},
};
var aliases = std.ArrayList([]const u8).init(arena);
for (atom.aliases.items) |loc| {
try aliases.append(self.getString(self.locals.items[loc].n_strx));
}
node.payload.aliases = aliases.toOwnedSlice();
try nodes.append(node);
var relocs = try std.ArrayList(Snapshot.Node).initCapacity(arena, atom.relocs.items.len);
for (atom.relocs.items) |rel| {
const arch = self.base.options.target.cpu.arch;
const source_addr = blk: {
const sym = self.locals.items[atom.local_sym_index];
break :blk sym.n_value + rel.offset;
};
const target_addr = blk: {
const is_via_got = got: {
switch (arch) {
.aarch64 => break :got switch (@intToEnum(macho.reloc_type_arm64, rel.@"type")) {
.ARM64_RELOC_GOT_LOAD_PAGE21, .ARM64_RELOC_GOT_LOAD_PAGEOFF12 => true,
else => false,
},
.x86_64 => break :got switch (@intToEnum(macho.reloc_type_x86_64, rel.@"type")) {
.X86_64_RELOC_GOT, .X86_64_RELOC_GOT_LOAD => true,
else => false,
},
else => unreachable,
}
};
if (is_via_got) {
const got_index = self.got_entries_table.get(rel.target) orelse break :blk 0;
const got_atom = self.got_entries.items[got_index].atom;
break :blk self.locals.items[got_atom.local_sym_index].n_value;
}
switch (rel.target) {
.local => |sym_index| {
const sym = self.locals.items[sym_index];
const is_tlv = is_tlv: {
const source_sym = self.locals.items[atom.local_sym_index];
const match = self.section_ordinals.keys()[source_sym.n_sect - 1];
const match_seg = self.load_commands.items[match.seg].segment;
const match_sect = match_seg.sections.items[match.sect];
break :is_tlv match_sect.type_() == macho.S_THREAD_LOCAL_VARIABLES;
};
if (is_tlv) {
const match_seg = self.load_commands.items[self.data_segment_cmd_index.?].segment;
const base_address = inner: {
if (self.tlv_data_section_index) |i| {
break :inner match_seg.sections.items[i].addr;
} else if (self.tlv_bss_section_index) |i| {
break :inner match_seg.sections.items[i].addr;
} else unreachable;
};
break :blk sym.n_value - base_address;
}
break :blk sym.n_value;
},
.global => |n_strx| {
const resolv = self.symbol_resolver.get(n_strx).?;
switch (resolv.where) {
.global => break :blk self.globals.items[resolv.where_index].n_value,
.undef => {
if (self.stubs_table.get(n_strx)) |stub_index| {
const stub_atom = self.stubs.items[stub_index];
break :blk self.locals.items[stub_atom.local_sym_index].n_value;
}
break :blk 0;
},
}
},
}
};
relocs.appendAssumeCapacity(.{
.address = source_addr,
.tag = .relocation,
.payload = .{ .target = target_addr },
});
}
if (atom.contained.items.len == 0) {
try nodes.appendSlice(relocs.items);
} else {
// Need to reverse iteration order of relocs since by default for relocatable sources
// they come in reverse. For linking, this doesn't matter in any way, however, for
// arranging the memoryline for displaying it does.
std.mem.reverse(Snapshot.Node, relocs.items);
var next_i: usize = 0;
var last_rel: usize = 0;
while (next_i < atom.contained.items.len) : (next_i += 1) {
const loc = atom.contained.items[next_i];
const cont_sym = self.locals.items[loc.local_sym_index];
const cont_sym_name = self.getString(cont_sym.n_strx);
var contained_node = Snapshot.Node{
.address = cont_sym.n_value,
.tag = .atom_start,
.payload = .{
.name = cont_sym_name,
.is_global = self.symbol_resolver.contains(cont_sym.n_strx),
},
};
// Accumulate aliases
var inner_aliases = std.ArrayList([]const u8).init(arena);
while (true) {
if (next_i + 1 >= atom.contained.items.len) break;
const next_sym = self.locals.items[atom.contained.items[next_i + 1].local_sym_index];
if (next_sym.n_value != cont_sym.n_value) break;
const next_sym_name = self.getString(next_sym.n_strx);
if (self.symbol_resolver.contains(next_sym.n_strx)) {
try inner_aliases.append(contained_node.payload.name);
contained_node.payload.name = next_sym_name;
contained_node.payload.is_global = true;
} else try inner_aliases.append(next_sym_name);
next_i += 1;
}
const cont_size = if (next_i + 1 < atom.contained.items.len)
self.locals.items[atom.contained.items[next_i + 1].local_sym_index].n_value - cont_sym.n_value
else
atom_sym.n_value + atom.size - cont_sym.n_value;
contained_node.payload.aliases = inner_aliases.toOwnedSlice();
try nodes.append(contained_node);
for (relocs.items[last_rel..]) |rel| {
if (rel.address >= cont_sym.n_value + cont_size) {
break;
}
try nodes.append(rel);
last_rel += 1;
}
try nodes.append(.{
.address = cont_sym.n_value + cont_size,
.tag = .atom_end,
.payload = .{},
});
}
}
try nodes.append(.{
.address = atom_sym.n_value + atom.size,
.tag = .atom_end,
.payload = .{},
});
if (atom.next) |next| {
atom = next;
} else break;
}
try nodes.append(.{
.address = sect.addr + sect.size,
.tag = .section_end,
.payload = .{},
});
}
snapshot.nodes = nodes.toOwnedSlice();
try std.json.stringify(snapshot, .{}, writer);
try writer.writeByte(']');
}
fn logSymtab(self: MachO) void {
log.debug("locals:", .{});
for (self.locals.items) |sym, id| {
log.debug(" {d}: {s}: @{x} in {d}", .{ id, self.getString(sym.n_strx), sym.n_value, sym.n_sect });
}
log.debug("globals:", .{});
for (self.globals.items) |sym, id| {
log.debug(" {d}: {s}: @{x} in {d}", .{ id, self.getString(sym.n_strx), sym.n_value, sym.n_sect });
}
log.debug("undefs:", .{});
for (self.undefs.items) |sym, id| {
log.debug(" {d}: {s}: in {d}", .{ id, self.getString(sym.n_strx), sym.n_desc });
}
{
log.debug("resolver:", .{});
var it = self.symbol_resolver.iterator();
while (it.next()) |entry| {
log.debug(" {s} => {}", .{ self.getString(entry.key_ptr.*), entry.value_ptr.* });
}
}
log.debug("GOT entries:", .{});
for (self.got_entries_table.values()) |value| {
const key = self.got_entries.items[value].target;
const atom = self.got_entries.items[value].atom;
const n_value = self.locals.items[atom.local_sym_index].n_value;
switch (key) {
.local => |ndx| log.debug(" {d}: @{x}", .{ ndx, n_value }),
.global => |n_strx| log.debug(" {s}: @{x}", .{ self.getString(n_strx), n_value }),
}
}
log.debug("__thread_ptrs entries:", .{});
for (self.tlv_ptr_entries_table.values()) |value| {
const key = self.tlv_ptr_entries.items[value].target;
const atom = self.tlv_ptr_entries.items[value].atom;
const n_value = self.locals.items[atom.local_sym_index].n_value;
assert(key == .global);
log.debug(" {s}: @{x}", .{ self.getString(key.global), n_value });
}
log.debug("stubs:", .{});
for (self.stubs_table.keys()) |key| {
const value = self.stubs_table.get(key).?;
const atom = self.stubs.items[value];
const sym = self.locals.items[atom.local_sym_index];
log.debug(" {s}: @{x}", .{ self.getString(key), sym.n_value });
}
}
fn logSectionOrdinals(self: MachO) void {
for (self.section_ordinals.keys()) |match, i| {
const seg = self.load_commands.items[match.seg].segment;
const sect = seg.sections.items[match.sect];
log.debug("ord {d}: {d},{d} => {s},{s}", .{
i + 1,
match.seg,
match.sect,
sect.segName(),
sect.sectName(),
});
}
}
/// Since `os.copy_file_range` cannot be used when copying overlapping ranges within the same file,
/// and since `File.copyRangeAll` uses `os.copy_file_range` under-the-hood, we use heap allocated
/// buffers on all hosts except Linux (if `copy_file_range` syscall is available).
pub fn copyRangeAllOverlappingAlloc(
allocator: Allocator,
file: std.fs.File,
in_offset: u64,
out_offset: u64,
len: usize,
) !void {
const buf = try allocator.alloc(u8, len);
defer allocator.free(buf);
_ = try file.preadAll(buf, in_offset);
try file.pwriteAll(buf, out_offset);
}