zig/lib/std/debug/Dwarf/Unwind/VirtualMachine.zig

471 lines
17 KiB
Zig

//! Virtual machine that evaluates DWARF call frame instructions
/// See section 6.4.1 of the DWARF5 specification for details on each
pub const RegisterRule = union(enum) {
/// The spec says that the default rule for each column is the undefined rule.
/// However, it also allows ABI / compiler authors to specify alternate defaults, so
/// there is a distinction made here.
default,
undefined,
same_value,
/// offset(N)
offset: i64,
/// val_offset(N)
val_offset: i64,
/// register(R)
register: u8,
/// expression(E)
expression: []const u8,
/// val_expression(E)
val_expression: []const u8,
};
pub const CfaRule = union(enum) {
none,
reg_off: struct {
register: u8,
offset: i64,
},
expression: []const u8,
};
/// Each row contains unwinding rules for a set of registers.
pub const Row = struct {
/// Offset from `FrameDescriptionEntry.pc_begin`
offset: u64 = 0,
cfa: CfaRule = .none,
/// The register fields in these columns define the register the rule applies to.
columns: ColumnRange = .{ .start = undefined, .len = 0 },
};
pub const Column = struct {
register: u8,
rule: RegisterRule,
};
const ColumnRange = struct {
start: usize,
len: u8,
};
columns: std.ArrayList(Column) = .empty,
stack: std.ArrayList(struct {
cfa: CfaRule,
columns: ColumnRange,
}) = .empty,
current_row: Row = .{},
/// The result of executing the CIE's initial_instructions
cie_row: ?Row = null,
pub fn deinit(self: *VirtualMachine, gpa: Allocator) void {
self.stack.deinit(gpa);
self.columns.deinit(gpa);
self.* = undefined;
}
pub fn reset(self: *VirtualMachine) void {
self.stack.clearRetainingCapacity();
self.columns.clearRetainingCapacity();
self.current_row = .{};
self.cie_row = null;
}
/// Return a slice backed by the row's non-CFA columns
pub fn rowColumns(self: *const VirtualMachine, row: *const Row) []Column {
if (row.columns.len == 0) return &.{};
return self.columns.items[row.columns.start..][0..row.columns.len];
}
/// Either retrieves or adds a column for `register` (non-CFA) in the current row.
fn getOrAddColumn(self: *VirtualMachine, gpa: Allocator, register: u8) !*Column {
for (self.rowColumns(&self.current_row)) |*c| {
if (c.register == register) return c;
}
if (self.current_row.columns.len == 0) {
self.current_row.columns.start = self.columns.items.len;
} else {
assert(self.current_row.columns.start + self.current_row.columns.len == self.columns.items.len);
}
self.current_row.columns.len += 1;
const column = try self.columns.addOne(gpa);
column.* = .{
.register = register,
.rule = .default,
};
return column;
}
pub fn populateCieLastRow(
gpa: Allocator,
cie: *Unwind.CommonInformationEntry,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !void {
assert(cie.last_row == null);
var vm: VirtualMachine = .{};
defer vm.deinit(gpa);
try vm.evalInstructions(
gpa,
cie,
std.math.maxInt(u64),
cie.initial_instructions,
addr_size_bytes,
endian,
);
cie.last_row = .{
.offset = vm.current_row.offset,
.cfa = vm.current_row.cfa,
.cols = try gpa.dupe(Column, vm.rowColumns(&vm.current_row)),
};
}
/// Runs the CIE instructions, then the FDE instructions. Execution halts
/// once the row that corresponds to `pc` is known, and the row is returned.
pub fn runTo(
vm: *VirtualMachine,
gpa: Allocator,
pc: u64,
cie: *const Unwind.CommonInformationEntry,
fde: *const Unwind.FrameDescriptionEntry,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Row {
assert(vm.cie_row == null);
const target_offset = pc - fde.pc_begin;
assert(target_offset < fde.pc_range);
const instruction_bytes: []const u8 = insts: {
if (target_offset < cie.last_row.?.offset) {
break :insts cie.initial_instructions;
}
// This is the more common case: start from the CIE's last row.
assert(vm.columns.items.len == 0);
vm.current_row = .{
.offset = cie.last_row.?.offset,
.cfa = cie.last_row.?.cfa,
.columns = .{
.start = 0,
.len = @intCast(cie.last_row.?.cols.len),
},
};
try vm.columns.appendSlice(gpa, cie.last_row.?.cols);
vm.cie_row = vm.current_row;
break :insts fde.instructions;
};
try vm.evalInstructions(
gpa,
cie,
target_offset,
instruction_bytes,
addr_size_bytes,
endian,
);
return vm.current_row;
}
/// Evaluates instructions from `instruction_bytes` until `target_addr` is reached or all
/// instructions have been evaluated.
fn evalInstructions(
vm: *VirtualMachine,
gpa: Allocator,
cie: *const Unwind.CommonInformationEntry,
target_addr: u64,
instruction_bytes: []const u8,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !void {
var fr: std.Io.Reader = .fixed(instruction_bytes);
while (fr.seek < fr.buffer.len) {
switch (try Instruction.read(&fr, addr_size_bytes, endian)) {
.nop => {
// If there was one nop, there's a good chance we've reached the padding and so
// everything left is a nop, which is represented by a 0 byte.
if (std.mem.allEqual(u8, fr.buffered(), 0)) return;
},
.remember_state => {
try vm.stack.append(gpa, .{
.cfa = vm.current_row.cfa,
.columns = vm.current_row.columns,
});
const cols_len = vm.current_row.columns.len;
const copy_start = vm.columns.items.len;
assert(vm.current_row.columns.start == copy_start - cols_len);
try vm.columns.ensureUnusedCapacity(gpa, cols_len); // to prevent aliasing issues
vm.columns.appendSliceAssumeCapacity(vm.columns.items[copy_start - cols_len ..]);
vm.current_row.columns.start = copy_start;
},
.restore_state => {
const restored = vm.stack.pop() orelse return error.InvalidOperation;
vm.columns.shrinkRetainingCapacity(restored.columns.start + restored.columns.len);
vm.current_row.cfa = restored.cfa;
vm.current_row.columns = restored.columns;
},
.advance_loc => |delta| {
const new_addr = vm.current_row.offset + delta * cie.code_alignment_factor;
if (new_addr > target_addr) return;
vm.current_row.offset = new_addr;
},
.set_loc => |new_addr| {
if (new_addr <= vm.current_row.offset) return error.InvalidOperation;
if (cie.segment_selector_size != 0) return error.InvalidOperation; // unsupported
// TODO: Check cie.segment_selector_size != 0 for DWARFV4
if (new_addr > target_addr) return;
vm.current_row.offset = new_addr;
},
.register => |reg| {
const column = try vm.getOrAddColumn(gpa, reg.index);
column.rule = switch (reg.rule) {
.restore => rule: {
const cie_row = &(vm.cie_row orelse return error.InvalidOperation);
for (vm.rowColumns(cie_row)) |cie_col| {
if (cie_col.register == reg.index) break :rule cie_col.rule;
}
break :rule .default;
},
.undefined => .undefined,
.same_value => .same_value,
.offset_uf => |off| .{ .offset = @as(i64, @intCast(off)) * cie.data_alignment_factor },
.offset_sf => |off| .{ .offset = off * cie.data_alignment_factor },
.val_offset_uf => |off| .{ .val_offset = @as(i64, @intCast(off)) * cie.data_alignment_factor },
.val_offset_sf => |off| .{ .val_offset = off * cie.data_alignment_factor },
.register => |callee_reg| .{ .register = callee_reg },
.expr => |len| .{ .expression = try takeExprBlock(&fr, len) },
.val_expr => |len| .{ .val_expression = try takeExprBlock(&fr, len) },
};
},
.def_cfa => |cfa| vm.current_row.cfa = .{ .reg_off = .{
.register = cfa.register,
.offset = @intCast(cfa.offset),
} },
.def_cfa_sf => |cfa| vm.current_row.cfa = .{ .reg_off = .{
.register = cfa.register,
.offset = cfa.offset_sf * cie.data_alignment_factor,
} },
.def_cfa_reg => |register| switch (vm.current_row.cfa) {
.none => {
// According to the DWARF specification, this is not valid, because this
// instruction can only be used to replace the register if the rule is already a
// `.reg_off`. However, this is emitted in practice by GNU toolchains for some
// targets, and so by convention is interpreted as equivalent to `.def_cfa` with
// an offset of 0.
vm.current_row.cfa = .{ .reg_off = .{
.register = register,
.offset = 0,
} };
},
.expression => return error.InvalidOperation,
.reg_off => |*ro| ro.register = register,
},
.def_cfa_offset => |offset| switch (vm.current_row.cfa) {
.none, .expression => return error.InvalidOperation,
.reg_off => |*ro| ro.offset = @intCast(offset),
},
.def_cfa_offset_sf => |offset_sf| switch (vm.current_row.cfa) {
.none, .expression => return error.InvalidOperation,
.reg_off => |*ro| ro.offset = offset_sf * cie.data_alignment_factor,
},
.def_cfa_expr => |len| {
vm.current_row.cfa = .{ .expression = try takeExprBlock(&fr, len) };
},
}
}
}
fn takeExprBlock(r: *std.Io.Reader, len: usize) error{ ReadFailed, InvalidOperand }![]const u8 {
return r.take(len) catch |err| switch (err) {
error.ReadFailed => |e| return e,
error.EndOfStream => return error.InvalidOperand,
};
}
const OpcodeByte = packed struct(u8) {
low: packed union {
operand: u6,
extended: enum(u6) {
nop = 0,
set_loc = 1,
advance_loc1 = 2,
advance_loc2 = 3,
advance_loc4 = 4,
offset_extended = 5,
restore_extended = 6,
undefined = 7,
same_value = 8,
register = 9,
remember_state = 10,
restore_state = 11,
def_cfa = 12,
def_cfa_register = 13,
def_cfa_offset = 14,
def_cfa_expression = 15,
expression = 16,
offset_extended_sf = 17,
def_cfa_sf = 18,
def_cfa_offset_sf = 19,
val_offset = 20,
val_offset_sf = 21,
val_expression = 22,
_,
},
},
opcode: enum(u2) {
extended = 0,
advance_loc = 1,
offset = 2,
restore = 3,
},
};
pub const Instruction = union(enum) {
nop,
remember_state,
restore_state,
advance_loc: u32,
set_loc: u64,
register: struct {
index: u8,
rule: union(enum) {
restore, // restore from cie
undefined,
same_value,
offset_uf: u64,
offset_sf: i64,
val_offset_uf: u64,
val_offset_sf: i64,
register: u8,
/// Value is the number of bytes in the DWARF expression, which the caller must read.
expr: usize,
/// Value is the number of bytes in the DWARF expression, which the caller must read.
val_expr: usize,
},
},
def_cfa: struct {
register: u8,
offset: u64,
},
def_cfa_sf: struct {
register: u8,
offset_sf: i64,
},
def_cfa_reg: u8,
def_cfa_offset: u64,
def_cfa_offset_sf: i64,
/// Value is the number of bytes in the DWARF expression, which the caller must read.
def_cfa_expr: usize,
pub fn read(
reader: *std.Io.Reader,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Instruction {
const inst: OpcodeByte = @bitCast(try reader.takeByte());
return switch (inst.opcode) {
.advance_loc => .{ .advance_loc = inst.low.operand },
.offset => .{ .register = .{
.index = inst.low.operand,
.rule = .{ .offset_uf = try reader.takeLeb128(u64) },
} },
.restore => .{ .register = .{
.index = inst.low.operand,
.rule = .restore,
} },
.extended => switch (inst.low.extended) {
.nop => .nop,
.remember_state => .remember_state,
.restore_state => .restore_state,
.advance_loc1 => .{ .advance_loc = try reader.takeByte() },
.advance_loc2 => .{ .advance_loc = try reader.takeInt(u16, endian) },
.advance_loc4 => .{ .advance_loc = try reader.takeInt(u32, endian) },
.set_loc => .{ .set_loc = switch (addr_size_bytes) {
2 => try reader.takeInt(u16, endian),
4 => try reader.takeInt(u32, endian),
8 => try reader.takeInt(u64, endian),
else => return error.UnsupportedAddrSize,
} },
.offset_extended => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .offset_uf = try reader.takeLeb128(u64) },
} },
.offset_extended_sf => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .offset_sf = try reader.takeLeb128(i64) },
} },
.restore_extended => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .restore,
} },
.undefined => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .undefined,
} },
.same_value => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .same_value,
} },
.register => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .register = try reader.takeLeb128(u8) },
} },
.val_offset => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .val_offset_uf = try reader.takeLeb128(u64) },
} },
.val_offset_sf => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .val_offset_sf = try reader.takeLeb128(i64) },
} },
.expression => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .expr = try reader.takeLeb128(usize) },
} },
.val_expression => .{ .register = .{
.index = try reader.takeLeb128(u8),
.rule = .{ .val_expr = try reader.takeLeb128(usize) },
} },
.def_cfa => .{ .def_cfa = .{
.register = try reader.takeLeb128(u8),
.offset = try reader.takeLeb128(u64),
} },
.def_cfa_sf => .{ .def_cfa_sf = .{
.register = try reader.takeLeb128(u8),
.offset_sf = try reader.takeLeb128(i64),
} },
.def_cfa_register => .{ .def_cfa_reg = try reader.takeLeb128(u8) },
.def_cfa_offset => .{ .def_cfa_offset = try reader.takeLeb128(u64) },
.def_cfa_offset_sf => .{ .def_cfa_offset_sf = try reader.takeLeb128(i64) },
.def_cfa_expression => .{ .def_cfa_expr = try reader.takeLeb128(usize) },
_ => switch (@intFromEnum(inst.low.extended)) {
0x1C...0x3F => return error.UnimplementedUserOpcode,
else => return error.InvalidOpcode,
},
},
};
}
};
const std = @import("../../../std.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Unwind = std.debug.Dwarf.Unwind;
const VirtualMachine = @This();