zig/lib/std/StaticResetEvent.zig
Frank Denis 6c2e0c2046 Year++
2020-12-31 15:45:24 -08:00

397 lines
14 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
//! A thread-safe resource which supports blocking until signaled.
//! This API is for kernel threads, not evented I/O.
//! This API is statically initializable. It cannot fail to be initialized
//! and it requires no deinitialization. The downside is that it may not
//! integrate as cleanly into other synchronization APIs, or, in a worst case,
//! may be forced to fall back on spin locking. As a rule of thumb, prefer
//! to use `std.ResetEvent` when possible, and use `StaticResetEvent` when
//! the logic needs stronger API guarantees.
const std = @import("std.zig");
const StaticResetEvent = @This();
const SpinLock = std.SpinLock;
const assert = std.debug.assert;
const os = std.os;
const time = std.time;
const linux = std.os.linux;
const windows = std.os.windows;
const testing = std.testing;
impl: Impl = .{},
pub const Impl = if (std.builtin.single_threaded)
DebugEvent
else
AtomicEvent;
/// Sets the event if not already set and wakes up all the threads waiting on
/// the event. It is safe to call `set` multiple times before calling `wait`.
/// However it is illegal to call `set` after `wait` is called until the event
/// is `reset`. This function is thread-safe.
pub fn set(ev: *StaticResetEvent) void {
return ev.impl.set();
}
/// Wait for the event to be set by blocking the current thread.
/// Thread-safe. No spurious wakeups.
/// Upon return from `wait`, the only function available to be called
/// in `StaticResetEvent` is `reset`.
pub fn wait(ev: *StaticResetEvent) void {
return ev.impl.wait();
}
/// Resets the event to its original, unset state.
/// This function is *not* thread-safe. It is equivalent to calling
/// `deinit` followed by `init` but without the possibility of failure.
pub fn reset(ev: *StaticResetEvent) void {
return ev.impl.reset();
}
pub const TimedWaitResult = std.ResetEvent.TimedWaitResult;
/// Wait for the event to be set by blocking the current thread.
/// A timeout in nanoseconds can be provided as a hint for how
/// long the thread should block on the unset event before returning
/// `TimedWaitResult.timed_out`.
/// Thread-safe. No precision of timing is guaranteed.
/// Upon return from `timedWait`, the only function available to be called
/// in `StaticResetEvent` is `reset`.
pub fn timedWait(ev: *StaticResetEvent, timeout_ns: u64) TimedWaitResult {
return ev.impl.timedWait(timeout_ns);
}
/// For single-threaded builds, we use this to detect deadlocks.
/// In unsafe modes this ends up being no-ops.
pub const DebugEvent = struct {
state: State = State.unset,
const State = enum {
unset,
set,
waited,
};
/// This function is provided so that this type can be re-used inside
/// `std.ResetEvent`.
pub fn init(ev: *DebugEvent) void {
ev.* = .{};
}
/// This function is provided so that this type can be re-used inside
/// `std.ResetEvent`.
pub fn deinit(ev: *DebugEvent) void {
ev.* = undefined;
}
pub fn set(ev: *DebugEvent) void {
switch (ev.state) {
.unset => ev.state = .set,
.set => {},
.waited => unreachable, // Not allowed to call `set` until `reset`.
}
}
pub fn wait(ev: *DebugEvent) void {
switch (ev.state) {
.unset => unreachable, // Deadlock detected.
.set => return,
.waited => unreachable, // Not allowed to call `wait` until `reset`.
}
}
pub fn timedWait(ev: *DebugEvent, timeout: u64) TimedWaitResult {
switch (ev.state) {
.unset => return .timed_out,
.set => return .event_set,
.waited => unreachable, // Not allowed to call `wait` until `reset`.
}
}
pub fn reset(ev: *DebugEvent) void {
ev.state = .unset;
}
};
pub const AtomicEvent = struct {
waiters: u32 = 0,
const WAKE = 1 << 0;
const WAIT = 1 << 1;
/// This function is provided so that this type can be re-used inside
/// `std.ResetEvent`.
pub fn init(ev: *AtomicEvent) void {
ev.* = .{};
}
/// This function is provided so that this type can be re-used inside
/// `std.ResetEvent`.
pub fn deinit(ev: *AtomicEvent) void {
ev.* = undefined;
}
pub fn set(ev: *AtomicEvent) void {
const waiters = @atomicRmw(u32, &ev.waiters, .Xchg, WAKE, .Release);
if (waiters >= WAIT) {
return Futex.wake(&ev.waiters, waiters >> 1);
}
}
pub fn wait(ev: *AtomicEvent) void {
switch (ev.timedWait(null)) {
.timed_out => unreachable,
.event_set => return,
}
}
pub fn timedWait(ev: *AtomicEvent, timeout: ?u64) TimedWaitResult {
var waiters = @atomicLoad(u32, &ev.waiters, .Acquire);
while (waiters != WAKE) {
waiters = @cmpxchgWeak(u32, &ev.waiters, waiters, waiters + WAIT, .Acquire, .Acquire) orelse {
if (Futex.wait(&ev.waiters, timeout)) |_| {
return .event_set;
} else |_| {
return .timed_out;
}
};
}
return .event_set;
}
pub fn reset(ev: *AtomicEvent) void {
@atomicStore(u32, &ev.waiters, 0, .Monotonic);
}
pub const Futex = switch (std.Target.current.os.tag) {
.windows => WindowsFutex,
.linux => LinuxFutex,
else => SpinFutex,
};
pub const SpinFutex = struct {
fn wake(waiters: *u32, wake_count: u32) void {}
fn wait(waiters: *u32, timeout: ?u64) !void {
var timer: time.Timer = undefined;
if (timeout != null)
timer = time.Timer.start() catch return error.TimedOut;
while (@atomicLoad(u32, waiters, .Acquire) != WAKE) {
SpinLock.yield();
if (timeout) |timeout_ns| {
if (timer.read() >= timeout_ns)
return error.TimedOut;
}
}
}
};
pub const LinuxFutex = struct {
fn wake(waiters: *u32, wake_count: u32) void {
const waiting = std.math.maxInt(i32); // wake_count
const ptr = @ptrCast(*const i32, waiters);
const rc = linux.futex_wake(ptr, linux.FUTEX_WAKE | linux.FUTEX_PRIVATE_FLAG, waiting);
assert(linux.getErrno(rc) == 0);
}
fn wait(waiters: *u32, timeout: ?u64) !void {
var ts: linux.timespec = undefined;
var ts_ptr: ?*linux.timespec = null;
if (timeout) |timeout_ns| {
ts_ptr = &ts;
ts.tv_sec = @intCast(isize, timeout_ns / time.ns_per_s);
ts.tv_nsec = @intCast(isize, timeout_ns % time.ns_per_s);
}
while (true) {
const waiting = @atomicLoad(u32, waiters, .Acquire);
if (waiting == WAKE)
return;
const expected = @intCast(i32, waiting);
const ptr = @ptrCast(*const i32, waiters);
const rc = linux.futex_wait(ptr, linux.FUTEX_WAIT | linux.FUTEX_PRIVATE_FLAG, expected, ts_ptr);
switch (linux.getErrno(rc)) {
0 => continue,
os.ETIMEDOUT => return error.TimedOut,
os.EINTR => continue,
os.EAGAIN => return,
else => unreachable,
}
}
}
};
pub const WindowsFutex = struct {
pub fn wake(waiters: *u32, wake_count: u32) void {
const handle = getEventHandle() orelse return SpinFutex.wake(waiters, wake_count);
const key = @ptrCast(*const c_void, waiters);
var waiting = wake_count;
while (waiting != 0) : (waiting -= 1) {
const rc = windows.ntdll.NtReleaseKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == .SUCCESS);
}
}
pub fn wait(waiters: *u32, timeout: ?u64) !void {
const handle = getEventHandle() orelse return SpinFutex.wait(waiters, timeout);
const key = @ptrCast(*const c_void, waiters);
// NT uses timeouts in units of 100ns with negative value being relative
var timeout_ptr: ?*windows.LARGE_INTEGER = null;
var timeout_value: windows.LARGE_INTEGER = undefined;
if (timeout) |timeout_ns| {
timeout_ptr = &timeout_value;
timeout_value = -@intCast(windows.LARGE_INTEGER, timeout_ns / 100);
}
// NtWaitForKeyedEvent doesnt have spurious wake-ups
var rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, timeout_ptr);
switch (rc) {
.TIMEOUT => {
// update the wait count to signal that we're not waiting anymore.
// if the .set() thread already observed that we are, perform a
// matching NtWaitForKeyedEvent so that the .set() thread doesn't
// deadlock trying to run NtReleaseKeyedEvent above.
var waiting = @atomicLoad(u32, waiters, .Monotonic);
while (true) {
if (waiting == WAKE) {
rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == .WAIT_0);
break;
} else {
waiting = @cmpxchgWeak(u32, waiters, waiting, waiting - WAIT, .Acquire, .Monotonic) orelse break;
continue;
}
}
return error.TimedOut;
},
.WAIT_0 => {},
else => unreachable,
}
}
var event_handle: usize = EMPTY;
const EMPTY = ~@as(usize, 0);
const LOADING = EMPTY - 1;
pub fn getEventHandle() ?windows.HANDLE {
var handle = @atomicLoad(usize, &event_handle, .Monotonic);
while (true) {
switch (handle) {
EMPTY => handle = @cmpxchgWeak(usize, &event_handle, EMPTY, LOADING, .Acquire, .Monotonic) orelse {
const handle_ptr = @ptrCast(*windows.HANDLE, &handle);
const access_mask = windows.GENERIC_READ | windows.GENERIC_WRITE;
if (windows.ntdll.NtCreateKeyedEvent(handle_ptr, access_mask, null, 0) != .SUCCESS)
handle = 0;
@atomicStore(usize, &event_handle, handle, .Monotonic);
return @intToPtr(?windows.HANDLE, handle);
},
LOADING => {
SpinLock.yield();
handle = @atomicLoad(usize, &event_handle, .Monotonic);
},
else => {
return @intToPtr(?windows.HANDLE, handle);
},
}
}
}
};
};
test "basic usage" {
var event = StaticResetEvent{};
// test event setting
event.set();
// test event resetting
event.reset();
// test event waiting (non-blocking)
event.set();
event.wait();
event.reset();
event.set();
testing.expectEqual(TimedWaitResult.event_set, event.timedWait(1));
// test cross-thread signaling
if (std.builtin.single_threaded)
return;
const Context = struct {
const Self = @This();
value: u128 = 0,
in: StaticResetEvent = .{},
out: StaticResetEvent = .{},
fn sender(self: *Self) void {
// update value and signal input
testing.expect(self.value == 0);
self.value = 1;
self.in.set();
// wait for receiver to update value and signal output
self.out.wait();
testing.expect(self.value == 2);
// update value and signal final input
self.value = 3;
self.in.set();
}
fn receiver(self: *Self) void {
// wait for sender to update value and signal input
self.in.wait();
assert(self.value == 1);
// update value and signal output
self.in.reset();
self.value = 2;
self.out.set();
// wait for sender to update value and signal final input
self.in.wait();
assert(self.value == 3);
}
fn sleeper(self: *Self) void {
self.in.set();
time.sleep(time.ns_per_ms * 2);
self.value = 5;
self.out.set();
}
fn timedWaiter(self: *Self) !void {
self.in.wait();
testing.expectEqual(TimedWaitResult.timed_out, self.out.timedWait(time.ns_per_us));
try self.out.timedWait(time.ns_per_ms * 100);
testing.expect(self.value == 5);
}
};
var context = Context{};
const receiver = try std.Thread.spawn(&context, Context.receiver);
defer receiver.wait();
context.sender();
if (false) {
// I have now observed this fail on macOS, Windows, and Linux.
// https://github.com/ziglang/zig/issues/7009
var timed = Context.init();
defer timed.deinit();
const sleeper = try std.Thread.spawn(&timed, Context.sleeper);
defer sleeper.wait();
try timed.timedWaiter();
}
}