zig/src/arch/x86_64/CodeGen.zig
2024-02-22 23:51:53 +01:00

17981 lines
772 KiB
Zig

const std = @import("std");
const build_options = @import("build_options");
const builtin = @import("builtin");
const assert = std.debug.assert;
const codegen = @import("../../codegen.zig");
const leb128 = std.leb;
const link = @import("../../link.zig");
const log = std.log.scoped(.codegen);
const tracking_log = std.log.scoped(.tracking);
const verbose_tracking_log = std.log.scoped(.verbose_tracking);
const wip_mir_log = std.log.scoped(.wip_mir);
const math = std.math;
const mem = std.mem;
const trace = @import("../../tracy.zig").trace;
const Air = @import("../../Air.zig");
const Allocator = mem.Allocator;
const CodeGenError = codegen.CodeGenError;
const Compilation = @import("../../Compilation.zig");
const DebugInfoOutput = codegen.DebugInfoOutput;
const DW = std.dwarf;
const ErrorMsg = Module.ErrorMsg;
const Result = codegen.Result;
const Emit = @import("Emit.zig");
const Liveness = @import("../../Liveness.zig");
const Lower = @import("Lower.zig");
const Mir = @import("Mir.zig");
const Package = @import("../../Package.zig");
const Module = @import("../../Module.zig");
const Zcu = Module;
const InternPool = @import("../../InternPool.zig");
const Alignment = InternPool.Alignment;
const Target = std.Target;
const Type = @import("../../type.zig").Type;
const TypedValue = @import("../../TypedValue.zig");
const Value = @import("../../Value.zig");
const Instruction = @import("encoder.zig").Instruction;
const abi = @import("abi.zig");
const bits = @import("bits.zig");
const errUnionErrorOffset = codegen.errUnionErrorOffset;
const errUnionPayloadOffset = codegen.errUnionPayloadOffset;
const Condition = bits.Condition;
const Immediate = bits.Immediate;
const Memory = bits.Memory;
const Register = bits.Register;
const RegisterManager = abi.RegisterManager;
const RegisterLock = RegisterManager.RegisterLock;
const FrameIndex = bits.FrameIndex;
const InnerError = CodeGenError || error{OutOfRegisters};
gpa: Allocator,
air: Air,
liveness: Liveness,
bin_file: *link.File,
debug_output: DebugInfoOutput,
target: *const std.Target,
owner: Owner,
mod: *Package.Module,
err_msg: ?*ErrorMsg,
args: []MCValue,
va_info: union {
sysv: struct {
gp_count: u32,
fp_count: u32,
overflow_arg_area: FrameAddr,
reg_save_area: FrameAddr,
},
win64: struct {},
},
ret_mcv: InstTracking,
fn_type: Type,
arg_index: u32,
src_loc: Module.SrcLoc,
eflags_inst: ?Air.Inst.Index = null,
/// MIR Instructions
mir_instructions: std.MultiArrayList(Mir.Inst) = .{},
/// MIR extra data
mir_extra: std.ArrayListUnmanaged(u32) = .{},
/// Byte offset within the source file of the ending curly.
end_di_line: u32,
end_di_column: u32,
/// The value is an offset into the `Function` `code` from the beginning.
/// To perform the reloc, write 32-bit signed little-endian integer
/// which is a relative jump, based on the address following the reloc.
exitlude_jump_relocs: std.ArrayListUnmanaged(Mir.Inst.Index) = .{},
const_tracking: ConstTrackingMap = .{},
inst_tracking: InstTrackingMap = .{},
// Key is the block instruction
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockData) = .{},
register_manager: RegisterManager = .{},
/// Generation of the current scope, increments by 1 for every entered scope.
scope_generation: u32 = 0,
frame_allocs: std.MultiArrayList(FrameAlloc) = .{},
free_frame_indices: std.AutoArrayHashMapUnmanaged(FrameIndex, void) = .{},
frame_locs: std.MultiArrayList(Mir.FrameLoc) = .{},
/// Debug field, used to find bugs in the compiler.
air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init,
const air_bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {};
const FrameAddr = struct { index: FrameIndex, off: i32 = 0 };
const RegisterOffset = struct { reg: Register, off: i32 = 0 };
const SymbolOffset = struct { sym: u32, off: i32 = 0 };
const Owner = union(enum) {
func_index: InternPool.Index,
lazy_sym: link.File.LazySymbol,
fn getDecl(owner: Owner, mod: *Module) InternPool.DeclIndex {
return switch (owner) {
.func_index => |func_index| mod.funcOwnerDeclIndex(func_index),
.lazy_sym => |lazy_sym| lazy_sym.ty.getOwnerDecl(mod),
};
}
fn getSymbolIndex(owner: Owner, ctx: *Self) !u32 {
switch (owner) {
.func_index => |func_index| {
const mod = ctx.bin_file.comp.module.?;
const decl_index = mod.funcOwnerDeclIndex(func_index);
if (ctx.bin_file.cast(link.File.Elf)) |elf_file| {
return elf_file.zigObjectPtr().?.getOrCreateMetadataForDecl(elf_file, decl_index);
} else if (ctx.bin_file.cast(link.File.MachO)) |macho_file| {
return macho_file.getZigObject().?.getOrCreateMetadataForDecl(macho_file, decl_index);
} else if (ctx.bin_file.cast(link.File.Coff)) |coff_file| {
const atom = try coff_file.getOrCreateAtomForDecl(decl_index);
return coff_file.getAtom(atom).getSymbolIndex().?;
} else if (ctx.bin_file.cast(link.File.Plan9)) |p9_file| {
return p9_file.seeDecl(decl_index);
} else unreachable;
},
.lazy_sym => |lazy_sym| {
if (ctx.bin_file.cast(link.File.Elf)) |elf_file| {
return elf_file.zigObjectPtr().?.getOrCreateMetadataForLazySymbol(elf_file, lazy_sym) catch |err|
ctx.fail("{s} creating lazy symbol", .{@errorName(err)});
} else if (ctx.bin_file.cast(link.File.MachO)) |macho_file| {
return macho_file.getZigObject().?.getOrCreateMetadataForLazySymbol(macho_file, lazy_sym) catch |err|
ctx.fail("{s} creating lazy symbol", .{@errorName(err)});
} else if (ctx.bin_file.cast(link.File.Coff)) |coff_file| {
const atom = coff_file.getOrCreateAtomForLazySymbol(lazy_sym) catch |err|
return ctx.fail("{s} creating lazy symbol", .{@errorName(err)});
return coff_file.getAtom(atom).getSymbolIndex().?;
} else if (ctx.bin_file.cast(link.File.Plan9)) |p9_file| {
return p9_file.getOrCreateAtomForLazySymbol(lazy_sym) catch |err|
return ctx.fail("{s} creating lazy symbol", .{@errorName(err)});
} else unreachable;
},
}
}
};
pub const MCValue = union(enum) {
/// No runtime bits. `void` types, empty structs, u0, enums with 1 tag, etc.
/// TODO Look into deleting this tag and using `dead` instead, since every use
/// of MCValue.none should be instead looking at the type and noticing it is 0 bits.
none,
/// Control flow will not allow this value to be observed.
unreach,
/// No more references to this value remain.
/// The payload is the value of scope_generation at the point where the death occurred
dead: u32,
/// The value is undefined.
undef,
/// A pointer-sized integer that fits in a register.
/// If the type is a pointer, this is the pointer address in virtual address space.
immediate: u64,
/// The value resides in the EFLAGS register.
eflags: Condition,
/// The value is in a register.
register: Register,
/// The value is split across two registers.
register_pair: [2]Register,
/// The value is a constant offset from the value in a register.
register_offset: RegisterOffset,
/// The value is a tuple { wrapped, overflow } where wrapped value is stored in the GP register.
register_overflow: struct { reg: Register, eflags: Condition },
/// The value is in memory at a hard-coded address.
/// If the type is a pointer, it means the pointer address is stored at this memory location.
memory: u64,
/// The value is in memory at an address not-yet-allocated by the linker.
/// This traditionally corresponds to a relocation emitted in a relocatable object file.
load_symbol: SymbolOffset,
/// The address of the memory location not-yet-allocated by the linker.
lea_symbol: SymbolOffset,
/// The value is in memory at a constant offset from the address in a register.
indirect: RegisterOffset,
/// The value is in memory.
/// Payload is a symbol index.
load_direct: u32,
/// The value is a pointer to a value in memory.
/// Payload is a symbol index.
lea_direct: u32,
/// The value is in memory referenced indirectly via GOT.
/// Payload is a symbol index.
load_got: u32,
/// The value is a pointer to a value referenced indirectly via GOT.
/// Payload is a symbol index.
lea_got: u32,
/// The value is a threadlocal variable.
/// Payload is a symbol index.
load_tlv: u32,
/// The value is a pointer to a threadlocal variable.
/// Payload is a symbol index.
lea_tlv: u32,
/// The value stored at an offset from a frame index
/// Payload is a frame address.
load_frame: FrameAddr,
/// The address of an offset from a frame index
/// Payload is a frame address.
lea_frame: FrameAddr,
/// Supports integer_per_element abi
elementwise_regs_then_frame: packed struct { regs: u3 = 0, frame_off: i29 = 0, frame_index: FrameIndex },
/// This indicates that we have already allocated a frame index for this instruction,
/// but it has not been spilled there yet in the current control flow.
/// Payload is a frame index.
reserved_frame: FrameIndex,
air_ref: Air.Inst.Ref,
fn isMemory(mcv: MCValue) bool {
return switch (mcv) {
.memory, .indirect, .load_frame => true,
else => false,
};
}
fn isImmediate(mcv: MCValue) bool {
return switch (mcv) {
.immediate => true,
else => false,
};
}
fn isRegister(mcv: MCValue) bool {
return switch (mcv) {
.register => true,
.register_offset => |reg_off| return reg_off.off == 0,
else => false,
};
}
fn isRegisterOffset(mcv: MCValue) bool {
return switch (mcv) {
.register, .register_offset => true,
else => false,
};
}
fn getReg(mcv: MCValue) ?Register {
return switch (mcv) {
.register => |reg| reg,
.register_offset, .indirect => |ro| ro.reg,
.register_overflow => |ro| ro.reg,
else => null,
};
}
fn getRegs(mcv: *const MCValue) []const Register {
return switch (mcv.*) {
.register => |*reg| @as(*const [1]Register, reg),
.register_pair => |*regs| regs,
.register_offset, .indirect => |*ro| @as(*const [1]Register, &ro.reg),
.register_overflow => |*ro| @as(*const [1]Register, &ro.reg),
else => &.{},
};
}
fn getCondition(mcv: MCValue) ?Condition {
return switch (mcv) {
.eflags => |cc| cc,
.register_overflow => |reg_ov| reg_ov.eflags,
else => null,
};
}
fn address(mcv: MCValue) MCValue {
return switch (mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register,
.register_pair,
.register_offset,
.register_overflow,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // not in memory
.memory => |addr| .{ .immediate = addr },
.indirect => |reg_off| switch (reg_off.off) {
0 => .{ .register = reg_off.reg },
else => .{ .register_offset = reg_off },
},
.load_direct => |sym_index| .{ .lea_direct = sym_index },
.load_got => |sym_index| .{ .lea_got = sym_index },
.load_tlv => |sym_index| .{ .lea_tlv = sym_index },
.load_frame => |frame_addr| .{ .lea_frame = frame_addr },
.load_symbol => |sym_off| .{ .lea_symbol = sym_off },
};
}
fn deref(mcv: MCValue) MCValue {
return switch (mcv) {
.none,
.unreach,
.dead,
.undef,
.eflags,
.register_pair,
.register_overflow,
.memory,
.indirect,
.load_direct,
.load_got,
.load_tlv,
.load_frame,
.load_symbol,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // not dereferenceable
.immediate => |addr| .{ .memory = addr },
.register => |reg| .{ .indirect = .{ .reg = reg } },
.register_offset => |reg_off| .{ .indirect = reg_off },
.lea_direct => |sym_index| .{ .load_direct = sym_index },
.lea_got => |sym_index| .{ .load_got = sym_index },
.lea_tlv => |sym_index| .{ .load_tlv = sym_index },
.lea_frame => |frame_addr| .{ .load_frame = frame_addr },
.lea_symbol => |sym_index| .{ .load_symbol = sym_index },
};
}
fn offset(mcv: MCValue, off: i32) MCValue {
return switch (mcv) {
.none,
.unreach,
.dead,
.undef,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // not valid
.eflags,
.register_pair,
.register_overflow,
.memory,
.indirect,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.load_frame,
.load_symbol,
.lea_symbol,
=> switch (off) {
0 => mcv,
else => unreachable, // not offsettable
},
.immediate => |imm| .{ .immediate = @bitCast(@as(i64, @bitCast(imm)) +% off) },
.register => |reg| .{ .register_offset = .{ .reg = reg, .off = off } },
.register_offset => |reg_off| .{
.register_offset = .{ .reg = reg_off.reg, .off = reg_off.off + off },
},
.lea_frame => |frame_addr| .{
.lea_frame = .{ .index = frame_addr.index, .off = frame_addr.off + off },
},
};
}
fn mem(mcv: MCValue, function: *Self, size: Memory.Size) !Memory {
return switch (mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register,
.register_pair,
.register_offset,
.register_overflow,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.lea_symbol,
=> unreachable,
.memory => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |small_addr| .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = size,
.disp = small_addr,
} },
} else .{ .base = .{ .reg = .ds }, .mod = .{ .off = addr } },
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = size,
.disp = reg_off.off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = size,
.disp = frame_addr.off,
} },
},
.load_symbol => |sym_off| {
assert(sym_off.off == 0);
return .{
.base = .{ .reloc = .{
.atom_index = try function.owner.getSymbolIndex(function),
.sym_index = sym_off.sym,
} },
.mod = .{ .rm = .{
.size = size,
.disp = sym_off.off,
} },
};
},
.air_ref => |ref| (try function.resolveInst(ref)).mem(function, size),
};
}
pub fn format(
mcv: MCValue,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
switch (mcv) {
.none, .unreach, .dead, .undef => try writer.print("({s})", .{@tagName(mcv)}),
.immediate => |pl| try writer.print("0x{x}", .{pl}),
.memory => |pl| try writer.print("[ds:0x{x}]", .{pl}),
inline .eflags, .register => |pl| try writer.print("{s}", .{@tagName(pl)}),
.register_pair => |pl| try writer.print("{s}:{s}", .{ @tagName(pl[1]), @tagName(pl[0]) }),
.register_offset => |pl| try writer.print("{s} + 0x{x}", .{ @tagName(pl.reg), pl.off }),
.register_overflow => |pl| try writer.print("{s}:{s}", .{
@tagName(pl.eflags), @tagName(pl.reg),
}),
.load_symbol => |pl| try writer.print("[{} + 0x{x}]", .{ pl.sym, pl.off }),
.lea_symbol => |pl| try writer.print("{} + 0x{x}", .{ pl.sym, pl.off }),
.indirect => |pl| try writer.print("[{s} + 0x{x}]", .{ @tagName(pl.reg), pl.off }),
.load_direct => |pl| try writer.print("[direct:{d}]", .{pl}),
.lea_direct => |pl| try writer.print("direct:{d}", .{pl}),
.load_got => |pl| try writer.print("[got:{d}]", .{pl}),
.lea_got => |pl| try writer.print("got:{d}", .{pl}),
.load_tlv => |pl| try writer.print("[tlv:{d}]", .{pl}),
.lea_tlv => |pl| try writer.print("tlv:{d}", .{pl}),
.load_frame => |pl| try writer.print("[{} + 0x{x}]", .{ pl.index, pl.off }),
.elementwise_regs_then_frame => |pl| try writer.print("elementwise:{d}:[{} + 0x{x}]", .{ pl.regs, pl.frame_index, pl.frame_off }),
.lea_frame => |pl| try writer.print("{} + 0x{x}", .{ pl.index, pl.off }),
.reserved_frame => |pl| try writer.print("(dead:{})", .{pl}),
.air_ref => |pl| try writer.print("(air:0x{x})", .{@intFromEnum(pl)}),
}
}
};
const InstTrackingMap = std.AutoArrayHashMapUnmanaged(Air.Inst.Index, InstTracking);
const ConstTrackingMap = std.AutoArrayHashMapUnmanaged(InternPool.Index, InstTracking);
const InstTracking = struct {
long: MCValue,
short: MCValue,
fn init(result: MCValue) InstTracking {
return .{ .long = switch (result) {
.none,
.unreach,
.undef,
.immediate,
.memory,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.load_frame,
.lea_frame,
.load_symbol,
.lea_symbol,
=> result,
.dead,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.eflags,
.register,
.register_pair,
.register_offset,
.register_overflow,
.indirect,
=> .none,
}, .short = result };
}
fn getReg(self: InstTracking) ?Register {
return self.short.getReg();
}
fn getRegs(self: *const InstTracking) []const Register {
return self.short.getRegs();
}
fn getCondition(self: InstTracking) ?Condition {
return self.short.getCondition();
}
fn spill(self: *InstTracking, function: *Self, inst: Air.Inst.Index) !void {
if (std.meta.eql(self.long, self.short)) return; // Already spilled
// Allocate or reuse frame index
switch (self.long) {
.none => self.long = try function.allocRegOrMem(inst, false),
.load_frame => {},
.reserved_frame => |index| self.long = .{ .load_frame = .{ .index = index } },
else => unreachable,
}
tracking_log.debug("spill %{d} from {} to {}", .{ inst, self.short, self.long });
try function.genCopy(function.typeOfIndex(inst), self.long, self.short, .{});
}
fn reuseFrame(self: *InstTracking) void {
switch (self.long) {
.reserved_frame => |index| self.long = .{ .load_frame = .{ .index = index } },
else => {},
}
self.short = switch (self.long) {
.none,
.unreach,
.undef,
.immediate,
.memory,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.load_frame,
.lea_frame,
.load_symbol,
.lea_symbol,
=> self.long,
.dead,
.eflags,
.register,
.register_pair,
.register_offset,
.register_overflow,
.indirect,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
};
}
fn trackSpill(self: *InstTracking, function: *Self, inst: Air.Inst.Index) !void {
try function.freeValue(self.short);
self.reuseFrame();
tracking_log.debug("%{d} => {} (spilled)", .{ inst, self.* });
}
fn verifyMaterialize(self: InstTracking, target: InstTracking) void {
switch (self.long) {
.none,
.unreach,
.undef,
.immediate,
.memory,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.lea_frame,
.load_symbol,
.lea_symbol,
=> assert(std.meta.eql(self.long, target.long)),
.load_frame,
.reserved_frame,
=> switch (target.long) {
.none,
.load_frame,
.reserved_frame,
=> {},
else => unreachable,
},
.dead,
.eflags,
.register,
.register_pair,
.register_offset,
.register_overflow,
.indirect,
.elementwise_regs_then_frame,
.air_ref,
=> unreachable,
}
}
fn materialize(
self: *InstTracking,
function: *Self,
inst: Air.Inst.Index,
target: InstTracking,
) !void {
self.verifyMaterialize(target);
try self.materializeUnsafe(function, inst, target);
}
fn materializeUnsafe(
self: InstTracking,
function: *Self,
inst: Air.Inst.Index,
target: InstTracking,
) !void {
const ty = function.typeOfIndex(inst);
if ((self.long == .none or self.long == .reserved_frame) and target.long == .load_frame)
try function.genCopy(ty, target.long, self.short, .{});
try function.genCopy(ty, target.short, self.short, .{});
}
fn trackMaterialize(self: *InstTracking, inst: Air.Inst.Index, target: InstTracking) void {
self.verifyMaterialize(target);
// Don't clobber reserved frame indices
self.long = if (target.long == .none) switch (self.long) {
.load_frame => |addr| .{ .reserved_frame = addr.index },
.reserved_frame => self.long,
else => target.long,
} else target.long;
self.short = target.short;
tracking_log.debug("%{d} => {} (materialize)", .{ inst, self.* });
}
fn resurrect(self: *InstTracking, inst: Air.Inst.Index, scope_generation: u32) void {
switch (self.short) {
.dead => |die_generation| if (die_generation >= scope_generation) {
self.reuseFrame();
tracking_log.debug("%{d} => {} (resurrect)", .{ inst, self.* });
},
else => {},
}
}
fn die(self: *InstTracking, function: *Self, inst: Air.Inst.Index) !void {
if (self.short == .dead) return;
try function.freeValue(self.short);
self.short = .{ .dead = function.scope_generation };
tracking_log.debug("%{d} => {} (death)", .{ inst, self.* });
}
fn reuse(
self: *InstTracking,
function: *Self,
new_inst: ?Air.Inst.Index,
old_inst: Air.Inst.Index,
) void {
self.short = .{ .dead = function.scope_generation };
if (new_inst) |inst|
tracking_log.debug("%{d} => {} (reuse %{d})", .{ inst, self.*, old_inst })
else
tracking_log.debug("tmp => {} (reuse %{d})", .{ self.*, old_inst });
}
fn liveOut(self: *InstTracking, function: *Self, inst: Air.Inst.Index) void {
for (self.getRegs()) |reg| {
if (function.register_manager.isRegFree(reg)) {
tracking_log.debug("%{d} => {} (live-out)", .{ inst, self.* });
continue;
}
const index = RegisterManager.indexOfRegIntoTracked(reg).?;
const tracked_inst = function.register_manager.registers[index];
const tracking = function.getResolvedInstValue(tracked_inst);
// Disable death.
var found_reg = false;
var remaining_reg: Register = .none;
for (tracking.getRegs()) |tracked_reg| if (tracked_reg.id() == reg.id()) {
assert(!found_reg);
found_reg = true;
} else {
assert(remaining_reg == .none);
remaining_reg = tracked_reg;
};
assert(found_reg);
tracking.short = switch (remaining_reg) {
.none => .{ .dead = function.scope_generation },
else => .{ .register = remaining_reg },
};
// Perform side-effects of freeValue manually.
function.register_manager.freeReg(reg);
tracking_log.debug("%{d} => {} (live-out %{d})", .{ inst, self.*, tracked_inst });
}
}
pub fn format(
self: InstTracking,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
if (!std.meta.eql(self.long, self.short)) try writer.print("|{}| ", .{self.long});
try writer.print("{}", .{self.short});
}
};
const FrameAlloc = struct {
abi_size: u31,
spill_pad: u3,
abi_align: Alignment,
ref_count: u16,
fn init(alloc_abi: struct { size: u64, pad: u3 = 0, alignment: Alignment }) FrameAlloc {
return .{
.abi_size = @intCast(alloc_abi.size),
.spill_pad = alloc_abi.pad,
.abi_align = alloc_abi.alignment,
.ref_count = 0,
};
}
fn initType(ty: Type, mod: *Module) FrameAlloc {
return init(.{
.size = ty.abiSize(mod),
.alignment = ty.abiAlignment(mod),
});
}
fn initSpill(ty: Type, mod: *Module) FrameAlloc {
const abi_size = ty.abiSize(mod);
const spill_size = if (abi_size < 8)
math.ceilPowerOfTwoAssert(u64, abi_size)
else
std.mem.alignForward(u64, abi_size, 8);
return init(.{
.size = spill_size,
.pad = @intCast(spill_size - abi_size),
.alignment = ty.abiAlignment(mod).maxStrict(
Alignment.fromNonzeroByteUnits(@min(spill_size, 8)),
),
});
}
};
const StackAllocation = struct {
inst: ?Air.Inst.Index,
/// TODO do we need size? should be determined by inst.ty.abiSize(mod)
size: u32,
};
const BlockData = struct {
relocs: std.ArrayListUnmanaged(Mir.Inst.Index) = .{},
state: State,
fn deinit(self: *BlockData, gpa: Allocator) void {
self.relocs.deinit(gpa);
self.* = undefined;
}
};
const Self = @This();
pub fn generate(
bin_file: *link.File,
src_loc: Module.SrcLoc,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
code: *std.ArrayList(u8),
debug_output: DebugInfoOutput,
) CodeGenError!Result {
const comp = bin_file.comp;
const gpa = comp.gpa;
const zcu = comp.module.?;
const func = zcu.funcInfo(func_index);
const fn_owner_decl = zcu.declPtr(func.owner_decl);
assert(fn_owner_decl.has_tv);
const fn_type = fn_owner_decl.ty;
const namespace = zcu.namespacePtr(fn_owner_decl.src_namespace);
const mod = namespace.file_scope.mod;
var function = Self{
.gpa = gpa,
.air = air,
.liveness = liveness,
.target = &mod.resolved_target.result,
.mod = mod,
.bin_file = bin_file,
.debug_output = debug_output,
.owner = .{ .func_index = func_index },
.err_msg = null,
.args = undefined, // populated after `resolveCallingConventionValues`
.va_info = undefined, // populated after `resolveCallingConventionValues`
.ret_mcv = undefined, // populated after `resolveCallingConventionValues`
.fn_type = fn_type,
.arg_index = 0,
.src_loc = src_loc,
.end_di_line = func.rbrace_line,
.end_di_column = func.rbrace_column,
};
defer {
function.frame_allocs.deinit(gpa);
function.free_frame_indices.deinit(gpa);
function.frame_locs.deinit(gpa);
var block_it = function.blocks.valueIterator();
while (block_it.next()) |block| block.deinit(gpa);
function.blocks.deinit(gpa);
function.inst_tracking.deinit(gpa);
function.const_tracking.deinit(gpa);
function.exitlude_jump_relocs.deinit(gpa);
function.mir_instructions.deinit(gpa);
function.mir_extra.deinit(gpa);
}
wip_mir_log.debug("{}:", .{function.fmtDecl(func.owner_decl)});
const ip = &zcu.intern_pool;
try function.frame_allocs.resize(gpa, FrameIndex.named_count);
function.frame_allocs.set(
@intFromEnum(FrameIndex.stack_frame),
FrameAlloc.init(.{
.size = 0,
.alignment = func.analysis(ip).stack_alignment.max(.@"1"),
}),
);
function.frame_allocs.set(
@intFromEnum(FrameIndex.call_frame),
FrameAlloc.init(.{ .size = 0, .alignment = .@"1" }),
);
const fn_info = zcu.typeToFunc(fn_type).?;
const cc = abi.resolveCallingConvention(fn_info.cc, function.target.*);
var call_info = function.resolveCallingConventionValues(fn_info, &.{}, .args_frame) catch |err| switch (err) {
error.CodegenFail => return Result{ .fail = function.err_msg.? },
error.OutOfRegisters => return Result{
.fail = try ErrorMsg.create(
gpa,
src_loc,
"CodeGen ran out of registers. This is a bug in the Zig compiler.",
.{},
),
},
else => |e| return e,
};
defer call_info.deinit(&function);
function.args = call_info.args;
function.ret_mcv = call_info.return_value;
function.frame_allocs.set(@intFromEnum(FrameIndex.ret_addr), FrameAlloc.init(.{
.size = Type.usize.abiSize(zcu),
.alignment = Type.usize.abiAlignment(zcu).min(call_info.stack_align),
}));
function.frame_allocs.set(@intFromEnum(FrameIndex.base_ptr), FrameAlloc.init(.{
.size = Type.usize.abiSize(zcu),
.alignment = Alignment.min(
call_info.stack_align,
Alignment.fromNonzeroByteUnits(function.target.stackAlignment()),
),
}));
function.frame_allocs.set(
@intFromEnum(FrameIndex.args_frame),
FrameAlloc.init(.{
.size = call_info.stack_byte_count,
.alignment = call_info.stack_align,
}),
);
function.va_info = switch (cc) {
.SysV => .{ .sysv = .{
.gp_count = call_info.gp_count,
.fp_count = call_info.fp_count,
.overflow_arg_area = .{ .index = .args_frame, .off = call_info.stack_byte_count },
.reg_save_area = undefined,
} },
.Win64 => .{ .win64 = .{} },
else => undefined,
};
function.gen() catch |err| switch (err) {
error.CodegenFail => return Result{ .fail = function.err_msg.? },
error.OutOfRegisters => return Result{
.fail = try ErrorMsg.create(gpa, src_loc, "CodeGen ran out of registers. This is a bug in the Zig compiler.", .{}),
},
else => |e| return e,
};
var mir = Mir{
.instructions = function.mir_instructions.toOwnedSlice(),
.extra = try function.mir_extra.toOwnedSlice(gpa),
.frame_locs = function.frame_locs.toOwnedSlice(),
};
defer mir.deinit(gpa);
var emit = Emit{
.lower = .{
.bin_file = bin_file,
.allocator = gpa,
.mir = mir,
.cc = cc,
.src_loc = src_loc,
.output_mode = comp.config.output_mode,
.link_mode = comp.config.link_mode,
.pic = mod.pic,
},
.debug_output = debug_output,
.code = code,
.prev_di_pc = 0,
.prev_di_line = func.lbrace_line,
.prev_di_column = func.lbrace_column,
};
defer emit.deinit();
emit.emitMir() catch |err| switch (err) {
error.LowerFail, error.EmitFail => return Result{ .fail = emit.lower.err_msg.? },
error.InvalidInstruction, error.CannotEncode => |e| {
const msg = switch (e) {
error.InvalidInstruction => "CodeGen failed to find a viable instruction.",
error.CannotEncode => "CodeGen failed to encode the instruction.",
};
return Result{
.fail = try ErrorMsg.create(
gpa,
src_loc,
"{s} This is a bug in the Zig compiler.",
.{msg},
),
};
},
else => |e| return e,
};
if (function.err_msg) |em| {
return Result{ .fail = em };
} else {
return Result.ok;
}
}
pub fn generateLazy(
bin_file: *link.File,
src_loc: Module.SrcLoc,
lazy_sym: link.File.LazySymbol,
code: *std.ArrayList(u8),
debug_output: DebugInfoOutput,
) CodeGenError!Result {
const comp = bin_file.comp;
const gpa = comp.gpa;
// This function is for generating global code, so we use the root module.
const mod = comp.root_mod;
var function = Self{
.gpa = gpa,
.air = undefined,
.liveness = undefined,
.target = &mod.resolved_target.result,
.mod = mod,
.bin_file = bin_file,
.debug_output = debug_output,
.owner = .{ .lazy_sym = lazy_sym },
.err_msg = null,
.args = undefined,
.va_info = undefined,
.ret_mcv = undefined,
.fn_type = undefined,
.arg_index = undefined,
.src_loc = src_loc,
.end_di_line = undefined, // no debug info yet
.end_di_column = undefined, // no debug info yet
};
defer {
function.mir_instructions.deinit(gpa);
function.mir_extra.deinit(gpa);
}
function.genLazy(lazy_sym) catch |err| switch (err) {
error.CodegenFail => return Result{ .fail = function.err_msg.? },
error.OutOfRegisters => return Result{
.fail = try ErrorMsg.create(gpa, src_loc, "CodeGen ran out of registers. This is a bug in the Zig compiler.", .{}),
},
else => |e| return e,
};
var mir = Mir{
.instructions = function.mir_instructions.toOwnedSlice(),
.extra = try function.mir_extra.toOwnedSlice(gpa),
.frame_locs = function.frame_locs.toOwnedSlice(),
};
defer mir.deinit(gpa);
var emit = Emit{
.lower = .{
.bin_file = bin_file,
.allocator = gpa,
.mir = mir,
.cc = abi.resolveCallingConvention(.Unspecified, function.target.*),
.src_loc = src_loc,
.output_mode = comp.config.output_mode,
.link_mode = comp.config.link_mode,
.pic = mod.pic,
},
.debug_output = debug_output,
.code = code,
.prev_di_pc = undefined, // no debug info yet
.prev_di_line = undefined, // no debug info yet
.prev_di_column = undefined, // no debug info yet
};
defer emit.deinit();
emit.emitMir() catch |err| switch (err) {
error.LowerFail, error.EmitFail => return Result{ .fail = emit.lower.err_msg.? },
error.InvalidInstruction, error.CannotEncode => |e| {
const msg = switch (e) {
error.InvalidInstruction => "CodeGen failed to find a viable instruction.",
error.CannotEncode => "CodeGen failed to encode the instruction.",
};
return Result{
.fail = try ErrorMsg.create(
gpa,
src_loc,
"{s} This is a bug in the Zig compiler.",
.{msg},
),
};
},
else => |e| return e,
};
if (function.err_msg) |em| {
return Result{ .fail = em };
} else {
return Result.ok;
}
}
const FormatDeclData = struct {
mod: *Module,
decl_index: InternPool.DeclIndex,
};
fn formatDecl(
data: FormatDeclData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
try data.mod.declPtr(data.decl_index).renderFullyQualifiedName(data.mod, writer);
}
fn fmtDecl(self: *Self, decl_index: InternPool.DeclIndex) std.fmt.Formatter(formatDecl) {
return .{ .data = .{
.mod = self.bin_file.comp.module.?,
.decl_index = decl_index,
} };
}
const FormatAirData = struct {
self: *Self,
inst: Air.Inst.Index,
};
fn formatAir(
data: FormatAirData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
@import("../../print_air.zig").dumpInst(
data.inst,
data.self.bin_file.comp.module.?,
data.self.air,
data.self.liveness,
);
}
fn fmtAir(self: *Self, inst: Air.Inst.Index) std.fmt.Formatter(formatAir) {
return .{ .data = .{ .self = self, .inst = inst } };
}
const FormatWipMirData = struct {
self: *Self,
inst: Mir.Inst.Index,
};
fn formatWipMir(
data: FormatWipMirData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
const comp = data.self.bin_file.comp;
const mod = comp.root_mod;
var lower = Lower{
.bin_file = data.self.bin_file,
.allocator = data.self.gpa,
.mir = .{
.instructions = data.self.mir_instructions.slice(),
.extra = data.self.mir_extra.items,
.frame_locs = (std.MultiArrayList(Mir.FrameLoc){}).slice(),
},
.cc = .Unspecified,
.src_loc = data.self.src_loc,
.output_mode = comp.config.output_mode,
.link_mode = comp.config.link_mode,
.pic = mod.pic,
};
var first = true;
for ((lower.lowerMir(data.inst) catch |err| switch (err) {
error.LowerFail => {
defer {
lower.err_msg.?.deinit(data.self.gpa);
lower.err_msg = null;
}
try writer.writeAll(lower.err_msg.?.msg);
return;
},
error.OutOfMemory, error.InvalidInstruction, error.CannotEncode => |e| {
try writer.writeAll(switch (e) {
error.OutOfMemory => "Out of memory",
error.InvalidInstruction => "CodeGen failed to find a viable instruction.",
error.CannotEncode => "CodeGen failed to encode the instruction.",
});
return;
},
else => |e| return e,
}).insts) |lowered_inst| {
if (!first) try writer.writeAll("\ndebug(wip_mir): ");
try writer.print(" | {}", .{lowered_inst});
first = false;
}
}
fn fmtWipMir(self: *Self, inst: Mir.Inst.Index) std.fmt.Formatter(formatWipMir) {
return .{ .data = .{ .self = self, .inst = inst } };
}
const FormatTrackingData = struct {
self: *Self,
};
fn formatTracking(
data: FormatTrackingData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
var it = data.self.inst_tracking.iterator();
while (it.next()) |entry| try writer.print("\n%{d} = {}", .{ entry.key_ptr.*, entry.value_ptr.* });
}
fn fmtTracking(self: *Self) std.fmt.Formatter(formatTracking) {
return .{ .data = .{ .self = self } };
}
fn addInst(self: *Self, inst: Mir.Inst) error{OutOfMemory}!Mir.Inst.Index {
const gpa = self.gpa;
try self.mir_instructions.ensureUnusedCapacity(gpa, 1);
const result_index: Mir.Inst.Index = @intCast(self.mir_instructions.len);
self.mir_instructions.appendAssumeCapacity(inst);
if (inst.tag != .pseudo or switch (inst.ops) {
else => true,
.pseudo_dbg_prologue_end_none,
.pseudo_dbg_line_line_column,
.pseudo_dbg_epilogue_begin_none,
.pseudo_dead_none,
=> false,
}) wip_mir_log.debug("{}", .{self.fmtWipMir(result_index)});
return result_index;
}
fn addExtra(self: *Self, extra: anytype) Allocator.Error!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try self.mir_extra.ensureUnusedCapacity(self.gpa, fields.len);
return self.addExtraAssumeCapacity(extra);
}
fn addExtraAssumeCapacity(self: *Self, extra: anytype) u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result: u32 = @intCast(self.mir_extra.items.len);
inline for (fields) |field| {
self.mir_extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
i32, Mir.Memory.Info => @bitCast(@field(extra, field.name)),
else => @compileError("bad field type: " ++ field.name ++ ": " ++ @typeName(field.type)),
});
}
return result;
}
/// A `cc` of `.z_and_np` clobbers `reg2`!
fn asmCmovccRegisterRegister(self: *Self, cc: Condition, reg1: Register, reg2: Register) !void {
_ = try self.addInst(.{
.tag = switch (cc) {
else => .cmov,
.z_and_np, .nz_or_p => .pseudo,
},
.ops = switch (cc) {
else => .rr,
.z_and_np => .pseudo_cmov_z_and_np_rr,
.nz_or_p => .pseudo_cmov_nz_or_p_rr,
},
.data = .{ .rr = .{
.fixes = switch (cc) {
else => Mir.Inst.Fixes.fromCondition(cc),
.z_and_np, .nz_or_p => ._,
},
.r1 = reg1,
.r2 = reg2,
} },
});
}
/// A `cc` of `.z_and_np` is not supported by this encoding!
fn asmCmovccRegisterMemory(self: *Self, cc: Condition, reg: Register, m: Memory) !void {
_ = try self.addInst(.{
.tag = switch (cc) {
else => .cmov,
.z_and_np => unreachable,
.nz_or_p => .pseudo,
},
.ops = switch (cc) {
else => .rm,
.z_and_np => unreachable,
.nz_or_p => .pseudo_cmov_nz_or_p_rm,
},
.data = .{ .rx = .{
.fixes = switch (cc) {
else => Mir.Inst.Fixes.fromCondition(cc),
.z_and_np => unreachable,
.nz_or_p => ._,
},
.r1 = reg,
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmSetccRegister(self: *Self, cc: Condition, reg: Register) !void {
_ = try self.addInst(.{
.tag = switch (cc) {
else => .set,
.z_and_np, .nz_or_p => .pseudo,
},
.ops = switch (cc) {
else => .r,
.z_and_np => .pseudo_set_z_and_np_r,
.nz_or_p => .pseudo_set_nz_or_p_r,
},
.data = switch (cc) {
else => .{ .r = .{
.fixes = Mir.Inst.Fixes.fromCondition(cc),
.r1 = reg,
} },
.z_and_np, .nz_or_p => .{ .rr = .{
.r1 = reg,
.r2 = (try self.register_manager.allocReg(null, abi.RegisterClass.gp)).to8(),
} },
},
});
}
fn asmSetccMemory(self: *Self, cc: Condition, m: Memory) !void {
const payload = try self.addExtra(Mir.Memory.encode(m));
_ = try self.addInst(.{
.tag = switch (cc) {
else => .set,
.z_and_np, .nz_or_p => .pseudo,
},
.ops = switch (cc) {
else => .m,
.z_and_np => .pseudo_set_z_and_np_m,
.nz_or_p => .pseudo_set_nz_or_p_m,
},
.data = switch (cc) {
else => .{ .x = .{
.fixes = Mir.Inst.Fixes.fromCondition(cc),
.payload = payload,
} },
.z_and_np, .nz_or_p => .{ .rx = .{
.r1 = (try self.register_manager.allocReg(null, abi.RegisterClass.gp)).to8(),
.payload = payload,
} },
},
});
}
fn asmJmpReloc(self: *Self, target: Mir.Inst.Index) !Mir.Inst.Index {
return self.addInst(.{
.tag = .jmp,
.ops = .inst,
.data = .{ .inst = .{
.inst = target,
} },
});
}
fn asmJccReloc(self: *Self, cc: Condition, target: Mir.Inst.Index) !Mir.Inst.Index {
return self.addInst(.{
.tag = switch (cc) {
else => .j,
.z_and_np, .nz_or_p => .pseudo,
},
.ops = switch (cc) {
else => .inst,
.z_and_np => .pseudo_j_z_and_np_inst,
.nz_or_p => .pseudo_j_nz_or_p_inst,
},
.data = .{ .inst = .{
.fixes = switch (cc) {
else => Mir.Inst.Fixes.fromCondition(cc),
.z_and_np, .nz_or_p => ._,
},
.inst = target,
} },
});
}
fn asmReloc(self: *Self, tag: Mir.Inst.FixedTag, target: Mir.Inst.Index) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .inst,
.data = .{ .inst = .{
.fixes = tag[0],
.inst = target,
} },
});
}
fn asmPlaceholder(self: *Self) !Mir.Inst.Index {
return self.addInst(.{
.tag = .pseudo,
.ops = .pseudo_dead_none,
.data = undefined,
});
}
fn asmOpOnly(self: *Self, tag: Mir.Inst.FixedTag) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .none,
.data = .{ .none = .{
.fixes = tag[0],
} },
});
}
fn asmPseudo(self: *Self, ops: Mir.Inst.Ops) !void {
_ = try self.addInst(.{
.tag = .pseudo,
.ops = ops,
.data = undefined,
});
}
fn asmRegister(self: *Self, tag: Mir.Inst.FixedTag, reg: Register) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .r,
.data = .{ .r = .{
.fixes = tag[0],
.r1 = reg,
} },
});
}
fn asmImmediate(self: *Self, tag: Mir.Inst.FixedTag, imm: Immediate) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = switch (imm) {
.signed => .i_s,
.unsigned => .i_u,
},
.data = .{ .i = .{
.fixes = tag[0],
.i = switch (imm) {
.signed => |s| @bitCast(s),
.unsigned => |u| @intCast(u),
},
} },
});
}
fn asmRegisterRegister(self: *Self, tag: Mir.Inst.FixedTag, reg1: Register, reg2: Register) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rr,
.data = .{ .rr = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
} },
});
}
fn asmRegisterImmediate(self: *Self, tag: Mir.Inst.FixedTag, reg: Register, imm: Immediate) !void {
const ops: Mir.Inst.Ops = switch (imm) {
.signed => .ri_s,
.unsigned => |u| if (math.cast(u32, u)) |_| .ri_u else .ri64,
};
_ = try self.addInst(.{
.tag = tag[1],
.ops = ops,
.data = switch (ops) {
.ri_s, .ri_u => .{ .ri = .{
.fixes = tag[0],
.r1 = reg,
.i = switch (imm) {
.signed => |s| @bitCast(s),
.unsigned => |u| @intCast(u),
},
} },
.ri64 => .{ .rx = .{
.fixes = tag[0],
.r1 = reg,
.payload = try self.addExtra(Mir.Imm64.encode(imm.unsigned)),
} },
else => unreachable,
},
});
}
fn asmRegisterRegisterRegister(
self: *Self,
tag: Mir.Inst.FixedTag,
reg1: Register,
reg2: Register,
reg3: Register,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rrr,
.data = .{ .rrr = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.r3 = reg3,
} },
});
}
fn asmRegisterRegisterRegisterRegister(
self: *Self,
tag: Mir.Inst.FixedTag,
reg1: Register,
reg2: Register,
reg3: Register,
reg4: Register,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rrrr,
.data = .{ .rrrr = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.r3 = reg3,
.r4 = reg4,
} },
});
}
fn asmRegisterRegisterRegisterImmediate(
self: *Self,
tag: Mir.Inst.FixedTag,
reg1: Register,
reg2: Register,
reg3: Register,
imm: Immediate,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rrri,
.data = .{ .rrri = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.r3 = reg3,
.i = switch (imm) {
.signed => |s| @bitCast(@as(i8, @intCast(s))),
.unsigned => |u| @intCast(u),
},
} },
});
}
fn asmRegisterRegisterImmediate(
self: *Self,
tag: Mir.Inst.FixedTag,
reg1: Register,
reg2: Register,
imm: Immediate,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = switch (imm) {
.signed => .rri_s,
.unsigned => .rri_u,
},
.data = .{ .rri = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.i = switch (imm) {
.signed => |s| @bitCast(s),
.unsigned => |u| @intCast(u),
},
} },
});
}
fn asmRegisterRegisterMemory(
self: *Self,
tag: Mir.Inst.FixedTag,
reg1: Register,
reg2: Register,
m: Memory,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rrm,
.data = .{ .rrx = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmMemory(self: *Self, tag: Mir.Inst.FixedTag, m: Memory) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .m,
.data = .{ .x = .{
.fixes = tag[0],
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmRegisterMemory(self: *Self, tag: Mir.Inst.FixedTag, reg: Register, m: Memory) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rm,
.data = .{ .rx = .{
.fixes = tag[0],
.r1 = reg,
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmRegisterMemoryImmediate(
self: *Self,
tag: Mir.Inst.FixedTag,
reg: Register,
m: Memory,
imm: Immediate,
) !void {
if (switch (imm) {
.signed => |s| if (math.cast(i16, s)) |x| @as(u16, @bitCast(x)) else null,
.unsigned => |u| math.cast(u16, u),
}) |small_imm| {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rmi,
.data = .{ .rix = .{
.fixes = tag[0],
.r1 = reg,
.i = small_imm,
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
} else {
const payload = try self.addExtra(Mir.Imm32{ .imm = switch (imm) {
.signed => |s| @bitCast(s),
.unsigned => unreachable,
} });
assert(payload + 1 == try self.addExtra(Mir.Memory.encode(m)));
_ = try self.addInst(.{
.tag = tag[1],
.ops = switch (imm) {
.signed => .rmi_s,
.unsigned => .rmi_u,
},
.data = .{ .rx = .{
.fixes = tag[0],
.r1 = reg,
.payload = payload,
} },
});
}
}
fn asmRegisterRegisterMemoryImmediate(
self: *Self,
tag: Mir.Inst.FixedTag,
reg1: Register,
reg2: Register,
m: Memory,
imm: Immediate,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .rrmi,
.data = .{ .rrix = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.i = @intCast(imm.unsigned),
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmMemoryRegister(self: *Self, tag: Mir.Inst.FixedTag, m: Memory, reg: Register) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .mr,
.data = .{ .rx = .{
.fixes = tag[0],
.r1 = reg,
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmMemoryImmediate(self: *Self, tag: Mir.Inst.FixedTag, m: Memory, imm: Immediate) !void {
const payload = try self.addExtra(Mir.Imm32{ .imm = switch (imm) {
.signed => |s| @bitCast(s),
.unsigned => |u| @intCast(u),
} });
assert(payload + 1 == try self.addExtra(Mir.Memory.encode(m)));
_ = try self.addInst(.{
.tag = tag[1],
.ops = switch (imm) {
.signed => .mi_s,
.unsigned => .mi_u,
},
.data = .{ .x = .{
.fixes = tag[0],
.payload = payload,
} },
});
}
fn asmMemoryRegisterRegister(
self: *Self,
tag: Mir.Inst.FixedTag,
m: Memory,
reg1: Register,
reg2: Register,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .mrr,
.data = .{ .rrx = .{
.fixes = tag[0],
.r1 = reg1,
.r2 = reg2,
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn asmMemoryRegisterImmediate(
self: *Self,
tag: Mir.Inst.FixedTag,
m: Memory,
reg: Register,
imm: Immediate,
) !void {
_ = try self.addInst(.{
.tag = tag[1],
.ops = .mri,
.data = .{ .rix = .{
.fixes = tag[0],
.r1 = reg,
.i = @intCast(imm.unsigned),
.payload = try self.addExtra(Mir.Memory.encode(m)),
} },
});
}
fn gen(self: *Self) InnerError!void {
const mod = self.bin_file.comp.module.?;
const fn_info = mod.typeToFunc(self.fn_type).?;
const cc = abi.resolveCallingConvention(fn_info.cc, self.target.*);
if (cc != .Naked) {
try self.asmRegister(.{ ._, .push }, .rbp);
try self.asmRegisterRegister(.{ ._, .mov }, .rbp, .rsp);
const backpatch_push_callee_preserved_regs = try self.asmPlaceholder();
const backpatch_frame_align = try self.asmPlaceholder();
const backpatch_frame_align_extra = try self.asmPlaceholder();
const backpatch_stack_alloc = try self.asmPlaceholder();
const backpatch_stack_alloc_extra = try self.asmPlaceholder();
switch (self.ret_mcv.long) {
.none, .unreach => {},
.indirect => {
// The address where to store the return value for the caller is in a
// register which the callee is free to clobber. Therefore, we purposely
// spill it to stack immediately.
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(Type.usize, mod));
try self.genSetMem(
.{ .frame = frame_index },
0,
Type.usize,
self.ret_mcv.long.address().offset(-self.ret_mcv.short.indirect.off),
.{},
);
self.ret_mcv.long = .{ .load_frame = .{ .index = frame_index } };
tracking_log.debug("spill {} to {}", .{ self.ret_mcv.long, frame_index });
},
else => unreachable,
}
if (fn_info.is_var_args) switch (cc) {
.SysV => {
const info = &self.va_info.sysv;
const reg_save_area_fi = try self.allocFrameIndex(FrameAlloc.init(.{
.size = abi.SysV.c_abi_int_param_regs.len * 8 +
abi.SysV.c_abi_sse_param_regs.len * 16,
.alignment = .@"16",
}));
info.reg_save_area = .{ .index = reg_save_area_fi };
for (abi.SysV.c_abi_int_param_regs[info.gp_count..], info.gp_count..) |reg, reg_i|
try self.genSetMem(
.{ .frame = reg_save_area_fi },
@intCast(reg_i * 8),
Type.usize,
.{ .register = reg },
.{},
);
try self.asmRegisterImmediate(.{ ._, .cmp }, .al, Immediate.u(info.fp_count));
const skip_sse_reloc = try self.asmJccReloc(.na, undefined);
const vec_2_f64 = try mod.vectorType(.{ .len = 2, .child = .f64_type });
for (abi.SysV.c_abi_sse_param_regs[info.fp_count..], info.fp_count..) |reg, reg_i|
try self.genSetMem(
.{ .frame = reg_save_area_fi },
@intCast(abi.SysV.c_abi_int_param_regs.len * 8 + reg_i * 16),
vec_2_f64,
.{ .register = reg },
.{},
);
self.performReloc(skip_sse_reloc);
},
.Win64 => return self.fail("TODO implement gen var arg function for Win64", .{}),
else => unreachable,
};
try self.asmPseudo(.pseudo_dbg_prologue_end_none);
try self.genBody(self.air.getMainBody());
// TODO can single exitlude jump reloc be elided? What if it is not at the end of the code?
// Example:
// pub fn main() void {
// maybeErr() catch return;
// unreachable;
// }
// Eliding the reloc will cause a miscompilation in this case.
for (self.exitlude_jump_relocs.items) |jmp_reloc| {
self.mir_instructions.items(.data)[jmp_reloc].inst.inst =
@intCast(self.mir_instructions.len);
}
try self.asmPseudo(.pseudo_dbg_epilogue_begin_none);
const backpatch_stack_dealloc = try self.asmPlaceholder();
const backpatch_pop_callee_preserved_regs = try self.asmPlaceholder();
try self.asmRegister(.{ ._, .pop }, .rbp);
try self.asmOpOnly(.{ ._, .ret });
const frame_layout = try self.computeFrameLayout(cc);
const need_frame_align = frame_layout.stack_mask != math.maxInt(u32);
const need_stack_adjust = frame_layout.stack_adjust > 0;
const need_save_reg = frame_layout.save_reg_list.count() > 0;
if (need_frame_align) {
const page_align = @as(u32, math.maxInt(u32)) << 12;
self.mir_instructions.set(backpatch_frame_align, .{
.tag = .@"and",
.ops = .ri_s,
.data = .{ .ri = .{
.r1 = .rsp,
.i = @max(frame_layout.stack_mask, page_align),
} },
});
if (frame_layout.stack_mask < page_align) {
self.mir_instructions.set(backpatch_frame_align_extra, .{
.tag = .pseudo,
.ops = .pseudo_probe_align_ri_s,
.data = .{ .ri = .{
.r1 = .rsp,
.i = ~frame_layout.stack_mask & page_align,
} },
});
}
}
if (need_stack_adjust) {
const page_size: u32 = 1 << 12;
if (frame_layout.stack_adjust <= page_size) {
self.mir_instructions.set(backpatch_stack_alloc, .{
.tag = .sub,
.ops = .ri_s,
.data = .{ .ri = .{
.r1 = .rsp,
.i = frame_layout.stack_adjust,
} },
});
} else if (frame_layout.stack_adjust <
page_size * Lower.pseudo_probe_adjust_unrolled_max_insts)
{
self.mir_instructions.set(backpatch_stack_alloc, .{
.tag = .pseudo,
.ops = .pseudo_probe_adjust_unrolled_ri_s,
.data = .{ .ri = .{
.r1 = .rsp,
.i = frame_layout.stack_adjust,
} },
});
} else {
self.mir_instructions.set(backpatch_stack_alloc, .{
.tag = .pseudo,
.ops = .pseudo_probe_adjust_setup_rri_s,
.data = .{ .rri = .{
.r1 = .rsp,
.r2 = .rax,
.i = frame_layout.stack_adjust,
} },
});
self.mir_instructions.set(backpatch_stack_alloc_extra, .{
.tag = .pseudo,
.ops = .pseudo_probe_adjust_loop_rr,
.data = .{ .rr = .{
.r1 = .rsp,
.r2 = .rax,
} },
});
}
}
if (need_frame_align or need_stack_adjust) {
self.mir_instructions.set(backpatch_stack_dealloc, .{
.tag = .lea,
.ops = .rm,
.data = .{ .rx = .{
.r1 = .rsp,
.payload = try self.addExtra(Mir.Memory.encode(.{
.base = .{ .reg = .rbp },
.mod = .{ .rm = .{
.size = .qword,
.disp = -frame_layout.save_reg_list.size(),
} },
})),
} },
});
}
if (need_save_reg) {
self.mir_instructions.set(backpatch_push_callee_preserved_regs, .{
.tag = .pseudo,
.ops = .pseudo_push_reg_list,
.data = .{ .reg_list = frame_layout.save_reg_list },
});
self.mir_instructions.set(backpatch_pop_callee_preserved_regs, .{
.tag = .pseudo,
.ops = .pseudo_pop_reg_list,
.data = .{ .reg_list = frame_layout.save_reg_list },
});
}
} else {
try self.asmPseudo(.pseudo_dbg_prologue_end_none);
try self.genBody(self.air.getMainBody());
try self.asmPseudo(.pseudo_dbg_epilogue_begin_none);
}
// Drop them off at the rbrace.
_ = try self.addInst(.{
.tag = .pseudo,
.ops = .pseudo_dbg_line_line_column,
.data = .{ .line_column = .{
.line = self.end_di_line,
.column = self.end_di_column,
} },
});
}
fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
const mod = self.bin_file.comp.module.?;
const ip = &mod.intern_pool;
const air_tags = self.air.instructions.items(.tag);
for (body) |inst| {
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip)) continue;
wip_mir_log.debug("{}", .{self.fmtAir(inst)});
verbose_tracking_log.debug("{}", .{self.fmtTracking()});
const old_air_bookkeeping = self.air_bookkeeping;
try self.inst_tracking.ensureUnusedCapacity(self.gpa, 1);
switch (air_tags[@intFromEnum(inst)]) {
// zig fmt: off
.not,
=> |tag| try self.airUnOp(inst, tag),
.add,
.add_wrap,
.sub,
.sub_wrap,
.bool_and,
.bool_or,
.bit_and,
.bit_or,
.xor,
.min,
.max,
=> |tag| try self.airBinOp(inst, tag),
.ptr_add, .ptr_sub => |tag| try self.airPtrArithmetic(inst, tag),
.shr, .shr_exact => try self.airShlShrBinOp(inst),
.shl, .shl_exact => try self.airShlShrBinOp(inst),
.mul => try self.airMulDivBinOp(inst),
.mul_wrap => try self.airMulDivBinOp(inst),
.rem => try self.airMulDivBinOp(inst),
.mod => try self.airMulDivBinOp(inst),
.add_sat => try self.airAddSat(inst),
.sub_sat => try self.airSubSat(inst),
.mul_sat => try self.airMulSat(inst),
.shl_sat => try self.airShlSat(inst),
.slice => try self.airSlice(inst),
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
.round,
=> |tag| try self.airUnaryMath(inst, tag),
.floor => try self.airRound(inst, .{ .mode = .down, .precision = .inexact }),
.ceil => try self.airRound(inst, .{ .mode = .up, .precision = .inexact }),
.trunc_float => try self.airRound(inst, .{ .mode = .zero, .precision = .inexact }),
.sqrt => try self.airSqrt(inst),
.neg => try self.airFloatSign(inst),
.abs => try self.airAbs(inst),
.add_with_overflow => try self.airAddSubWithOverflow(inst),
.sub_with_overflow => try self.airAddSubWithOverflow(inst),
.mul_with_overflow => try self.airMulWithOverflow(inst),
.shl_with_overflow => try self.airShlWithOverflow(inst),
.div_float, .div_trunc, .div_floor, .div_exact => try self.airMulDivBinOp(inst),
.cmp_lt => try self.airCmp(inst, .lt),
.cmp_lte => try self.airCmp(inst, .lte),
.cmp_eq => try self.airCmp(inst, .eq),
.cmp_gte => try self.airCmp(inst, .gte),
.cmp_gt => try self.airCmp(inst, .gt),
.cmp_neq => try self.airCmp(inst, .neq),
.cmp_vector => try self.airCmpVector(inst),
.cmp_lt_errors_len => try self.airCmpLtErrorsLen(inst),
.alloc => try self.airAlloc(inst),
.ret_ptr => try self.airRetPtr(inst),
.arg => try self.airArg(inst),
.assembly => try self.airAsm(inst),
.bitcast => try self.airBitCast(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.trap => try self.airTrap(),
.breakpoint => try self.airBreakpoint(),
.ret_addr => try self.airRetAddr(inst),
.frame_addr => try self.airFrameAddress(inst),
.fence => try self.airFence(inst),
.cond_br => try self.airCondBr(inst),
.dbg_stmt => try self.airDbgStmt(inst),
.fptrunc => try self.airFptrunc(inst),
.fpext => try self.airFpext(inst),
.intcast => try self.airIntCast(inst),
.trunc => try self.airTrunc(inst),
.int_from_bool => try self.airIntFromBool(inst),
.is_non_null => try self.airIsNonNull(inst),
.is_non_null_ptr => try self.airIsNonNullPtr(inst),
.is_null => try self.airIsNull(inst),
.is_null_ptr => try self.airIsNullPtr(inst),
.is_non_err => try self.airIsNonErr(inst),
.is_non_err_ptr => try self.airIsNonErrPtr(inst),
.is_err => try self.airIsErr(inst),
.is_err_ptr => try self.airIsErrPtr(inst),
.load => try self.airLoad(inst),
.loop => try self.airLoop(inst),
.int_from_ptr => try self.airIntFromPtr(inst),
.ret => try self.airRet(inst, false),
.ret_safe => try self.airRet(inst, true),
.ret_load => try self.airRetLoad(inst),
.store => try self.airStore(inst, false),
.store_safe => try self.airStore(inst, true),
.struct_field_ptr=> try self.airStructFieldPtr(inst),
.struct_field_val=> try self.airStructFieldVal(inst),
.array_to_slice => try self.airArrayToSlice(inst),
.float_from_int => try self.airFloatFromInt(inst),
.int_from_float => try self.airIntFromFloat(inst),
.cmpxchg_strong => try self.airCmpxchg(inst),
.cmpxchg_weak => try self.airCmpxchg(inst),
.atomic_rmw => try self.airAtomicRmw(inst),
.atomic_load => try self.airAtomicLoad(inst),
.memcpy => try self.airMemcpy(inst),
.memset => try self.airMemset(inst, false),
.memset_safe => try self.airMemset(inst, true),
.set_union_tag => try self.airSetUnionTag(inst),
.get_union_tag => try self.airGetUnionTag(inst),
.clz => try self.airClz(inst),
.ctz => try self.airCtz(inst),
.popcount => try self.airPopCount(inst),
.byte_swap => try self.airByteSwap(inst),
.bit_reverse => try self.airBitReverse(inst),
.tag_name => try self.airTagName(inst),
.error_name => try self.airErrorName(inst),
.splat => try self.airSplat(inst),
.select => try self.airSelect(inst),
.shuffle => try self.airShuffle(inst),
.reduce => try self.airReduce(inst),
.aggregate_init => try self.airAggregateInit(inst),
.union_init => try self.airUnionInit(inst),
.prefetch => try self.airPrefetch(inst),
.mul_add => try self.airMulAdd(inst),
.addrspace_cast => return self.fail("TODO implement addrspace_cast", .{}),
.@"try" => try self.airTry(inst),
.try_ptr => try self.airTryPtr(inst),
.dbg_var_ptr,
.dbg_var_val,
=> try self.airDbgVar(inst),
.dbg_inline_begin,
.dbg_inline_end,
=> try self.airDbgInline(inst),
.dbg_block_begin,
.dbg_block_end,
=> try self.airDbgBlock(inst),
.call => try self.airCall(inst, .auto),
.call_always_tail => try self.airCall(inst, .always_tail),
.call_never_tail => try self.airCall(inst, .never_tail),
.call_never_inline => try self.airCall(inst, .never_inline),
.atomic_store_unordered => try self.airAtomicStore(inst, .Unordered),
.atomic_store_monotonic => try self.airAtomicStore(inst, .Monotonic),
.atomic_store_release => try self.airAtomicStore(inst, .Release),
.atomic_store_seq_cst => try self.airAtomicStore(inst, .SeqCst),
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
.field_parent_ptr => try self.airFieldParentPtr(inst),
.switch_br => try self.airSwitchBr(inst),
.slice_ptr => try self.airSlicePtr(inst),
.slice_len => try self.airSliceLen(inst),
.ptr_slice_len_ptr => try self.airPtrSliceLenPtr(inst),
.ptr_slice_ptr_ptr => try self.airPtrSlicePtrPtr(inst),
.array_elem_val => try self.airArrayElemVal(inst),
.slice_elem_val => try self.airSliceElemVal(inst),
.slice_elem_ptr => try self.airSliceElemPtr(inst),
.ptr_elem_val => try self.airPtrElemVal(inst),
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.unreach => self.finishAirBookkeeping(),
.optional_payload => try self.airOptionalPayload(inst),
.optional_payload_ptr => try self.airOptionalPayloadPtr(inst),
.optional_payload_ptr_set => try self.airOptionalPayloadPtrSet(inst),
.unwrap_errunion_err => try self.airUnwrapErrUnionErr(inst),
.unwrap_errunion_payload => try self.airUnwrapErrUnionPayload(inst),
.unwrap_errunion_err_ptr => try self.airUnwrapErrUnionErrPtr(inst),
.unwrap_errunion_payload_ptr=> try self.airUnwrapErrUnionPayloadPtr(inst),
.errunion_payload_ptr_set => try self.airErrUnionPayloadPtrSet(inst),
.err_return_trace => try self.airErrReturnTrace(inst),
.set_err_return_trace => try self.airSetErrReturnTrace(inst),
.save_err_return_trace_index=> try self.airSaveErrReturnTraceIndex(inst),
.wrap_optional => try self.airWrapOptional(inst),
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
.add_optimized,
.sub_optimized,
.mul_optimized,
.div_float_optimized,
.div_trunc_optimized,
.div_floor_optimized,
.div_exact_optimized,
.rem_optimized,
.mod_optimized,
.neg_optimized,
.cmp_lt_optimized,
.cmp_lte_optimized,
.cmp_eq_optimized,
.cmp_gte_optimized,
.cmp_gt_optimized,
.cmp_neq_optimized,
.cmp_vector_optimized,
.reduce_optimized,
.int_from_float_optimized,
=> return self.fail("TODO implement optimized float mode", .{}),
.add_safe,
.sub_safe,
.mul_safe,
=> return self.fail("TODO implement safety_checked_instructions", .{}),
.is_named_enum_value => return self.fail("TODO implement is_named_enum_value", .{}),
.error_set_has_value => return self.fail("TODO implement error_set_has_value", .{}),
.vector_store_elem => return self.fail("TODO implement vector_store_elem", .{}),
.c_va_arg => try self.airVaArg(inst),
.c_va_copy => try self.airVaCopy(inst),
.c_va_end => try self.airVaEnd(inst),
.c_va_start => try self.airVaStart(inst),
.wasm_memory_size => unreachable,
.wasm_memory_grow => unreachable,
.work_item_id => unreachable,
.work_group_size => unreachable,
.work_group_id => unreachable,
// zig fmt: on
}
assert(!self.register_manager.lockedRegsExist());
if (std.debug.runtime_safety) {
if (self.air_bookkeeping < old_air_bookkeeping + 1) {
std.debug.panic("in codegen.zig, handling of AIR instruction %{d} ('{}') did not do proper bookkeeping. Look for a missing call to finishAir.", .{ inst, air_tags[@intFromEnum(inst)] });
}
{ // check consistency of tracked registers
var it = self.register_manager.free_registers.iterator(.{ .kind = .unset });
while (it.next()) |index| {
const tracked_inst = self.register_manager.registers[index];
const tracking = self.getResolvedInstValue(tracked_inst);
for (tracking.getRegs()) |reg| {
if (RegisterManager.indexOfRegIntoTracked(reg).? == index) break;
} else unreachable; // tracked register not in use
}
}
}
}
verbose_tracking_log.debug("{}", .{self.fmtTracking()});
}
fn genLazy(self: *Self, lazy_sym: link.File.LazySymbol) InnerError!void {
const mod = self.bin_file.comp.module.?;
const ip = &mod.intern_pool;
switch (lazy_sym.ty.zigTypeTag(mod)) {
.Enum => {
const enum_ty = lazy_sym.ty;
wip_mir_log.debug("{}.@tagName:", .{enum_ty.fmt(mod)});
const resolved_cc = abi.resolveCallingConvention(.Unspecified, self.target.*);
const param_regs = abi.getCAbiIntParamRegs(resolved_cc);
const param_locks = self.register_manager.lockRegsAssumeUnused(2, param_regs[0..2].*);
defer for (param_locks) |lock| self.register_manager.unlockReg(lock);
const ret_reg = param_regs[0];
const enum_mcv = MCValue{ .register = param_regs[1] };
const exitlude_jump_relocs = try self.gpa.alloc(Mir.Inst.Index, enum_ty.enumFieldCount(mod));
defer self.gpa.free(exitlude_jump_relocs);
const data_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const data_lock = self.register_manager.lockRegAssumeUnused(data_reg);
defer self.register_manager.unlockReg(data_lock);
try self.genLazySymbolRef(.lea, data_reg, .{ .kind = .const_data, .ty = enum_ty });
var data_off: i32 = 0;
const tag_names = enum_ty.enumFields(mod);
for (exitlude_jump_relocs, 0..) |*exitlude_jump_reloc, tag_index| {
const tag_name_len = ip.stringToSlice(tag_names.get(ip)[tag_index]).len;
const tag_val = try mod.enumValueFieldIndex(enum_ty, @intCast(tag_index));
const tag_mcv = try self.genTypedValue(.{ .ty = enum_ty, .val = tag_val });
try self.genBinOpMir(.{ ._, .cmp }, enum_ty, enum_mcv, tag_mcv);
const skip_reloc = try self.asmJccReloc(.ne, undefined);
try self.genSetMem(
.{ .reg = ret_reg },
0,
Type.usize,
.{ .register_offset = .{ .reg = data_reg, .off = data_off } },
.{},
);
try self.genSetMem(
.{ .reg = ret_reg },
8,
Type.usize,
.{ .immediate = tag_name_len },
.{},
);
exitlude_jump_reloc.* = try self.asmJmpReloc(undefined);
self.performReloc(skip_reloc);
data_off += @intCast(tag_name_len + 1);
}
try self.airTrap();
for (exitlude_jump_relocs) |reloc| self.performReloc(reloc);
try self.asmOpOnly(.{ ._, .ret });
},
else => return self.fail(
"TODO implement {s} for {}",
.{ @tagName(lazy_sym.kind), lazy_sym.ty.fmt(mod) },
),
}
}
fn getValue(self: *Self, value: MCValue, inst: ?Air.Inst.Index) !void {
for (value.getRegs()) |reg| try self.register_manager.getReg(reg, inst);
}
fn getValueIfFree(self: *Self, value: MCValue, inst: ?Air.Inst.Index) void {
for (value.getRegs()) |reg| if (self.register_manager.isRegFree(reg))
self.register_manager.getRegAssumeFree(reg, inst);
}
fn freeValue(self: *Self, value: MCValue) !void {
switch (value) {
.register => |reg| {
self.register_manager.freeReg(reg);
if (reg.class() == .x87) try self.asmRegister(.{ .f_, .free }, reg);
},
.register_pair => |regs| for (regs) |reg| self.register_manager.freeReg(reg),
.register_offset => |reg_off| self.register_manager.freeReg(reg_off.reg),
.register_overflow => |reg_ov| {
self.register_manager.freeReg(reg_ov.reg);
self.eflags_inst = null;
},
.eflags => self.eflags_inst = null,
else => {}, // TODO process stack allocation death
}
}
fn feed(self: *Self, bt: *Liveness.BigTomb, operand: Air.Inst.Ref) !void {
if (bt.feed()) if (operand.toIndex()) |inst| try self.processDeath(inst);
}
/// Asserts there is already capacity to insert into top branch inst_table.
fn processDeath(self: *Self, inst: Air.Inst.Index) !void {
try self.inst_tracking.getPtr(inst).?.die(self, inst);
}
/// Called when there are no operands, and the instruction is always unreferenced.
fn finishAirBookkeeping(self: *Self) void {
if (std.debug.runtime_safety) {
self.air_bookkeeping += 1;
}
}
fn finishAirResult(self: *Self, inst: Air.Inst.Index, result: MCValue) void {
if (self.liveness.isUnused(inst)) switch (result) {
.none, .dead, .unreach => {},
else => unreachable, // Why didn't the result die?
} else {
tracking_log.debug("%{d} => {} (birth)", .{ inst, result });
self.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(result));
// In some cases, an operand may be reused as the result.
// If that operand died and was a register, it was freed by
// processDeath, so we have to "re-allocate" the register.
self.getValueIfFree(result, inst);
}
self.finishAirBookkeeping();
}
fn finishAir(
self: *Self,
inst: Air.Inst.Index,
result: MCValue,
operands: [Liveness.bpi - 1]Air.Inst.Ref,
) !void {
var tomb_bits = self.liveness.getTombBits(inst);
for (operands) |op| {
const dies = @as(u1, @truncate(tomb_bits)) != 0;
tomb_bits >>= 1;
if (!dies) continue;
try self.processDeath(op.toIndexAllowNone() orelse continue);
}
self.finishAirResult(inst, result);
}
const FrameLayout = struct {
stack_mask: u32,
stack_adjust: u32,
save_reg_list: Mir.RegisterList,
};
fn setFrameLoc(
self: *Self,
frame_index: FrameIndex,
base: Register,
offset: *i32,
comptime aligned: bool,
) void {
const frame_i = @intFromEnum(frame_index);
if (aligned) {
const alignment = self.frame_allocs.items(.abi_align)[frame_i];
offset.* = @intCast(alignment.forward(@intCast(offset.*)));
}
self.frame_locs.set(frame_i, .{ .base = base, .disp = offset.* });
offset.* += self.frame_allocs.items(.abi_size)[frame_i];
}
fn computeFrameLayout(self: *Self, cc: std.builtin.CallingConvention) !FrameLayout {
const frame_allocs_len = self.frame_allocs.len;
try self.frame_locs.resize(self.gpa, frame_allocs_len);
const stack_frame_order = try self.gpa.alloc(FrameIndex, frame_allocs_len - FrameIndex.named_count);
defer self.gpa.free(stack_frame_order);
const frame_size = self.frame_allocs.items(.abi_size);
const frame_align = self.frame_allocs.items(.abi_align);
const frame_offset = self.frame_locs.items(.disp);
for (stack_frame_order, FrameIndex.named_count..) |*frame_order, frame_index|
frame_order.* = @enumFromInt(frame_index);
{
const SortContext = struct {
frame_align: @TypeOf(frame_align),
pub fn lessThan(context: @This(), lhs: FrameIndex, rhs: FrameIndex) bool {
return context.frame_align[@intFromEnum(lhs)].compare(.gt, context.frame_align[@intFromEnum(rhs)]);
}
};
const sort_context = SortContext{ .frame_align = frame_align };
mem.sort(FrameIndex, stack_frame_order, sort_context, SortContext.lessThan);
}
const call_frame_align = frame_align[@intFromEnum(FrameIndex.call_frame)];
const stack_frame_align = frame_align[@intFromEnum(FrameIndex.stack_frame)];
const args_frame_align = frame_align[@intFromEnum(FrameIndex.args_frame)];
const needed_align = call_frame_align.max(stack_frame_align);
const need_align_stack = needed_align.compare(.gt, args_frame_align);
// Create list of registers to save in the prologue.
// TODO handle register classes
var save_reg_list = Mir.RegisterList{};
const callee_preserved_regs =
abi.getCalleePreservedRegs(abi.resolveCallingConvention(cc, self.target.*));
for (callee_preserved_regs) |reg| {
if (self.register_manager.isRegAllocated(reg) or true) {
save_reg_list.push(callee_preserved_regs, reg);
}
}
var rbp_offset: i32 = 0;
self.setFrameLoc(.base_ptr, .rbp, &rbp_offset, false);
self.setFrameLoc(.ret_addr, .rbp, &rbp_offset, false);
self.setFrameLoc(.args_frame, .rbp, &rbp_offset, false);
const stack_frame_align_offset = if (need_align_stack)
0
else
save_reg_list.size() + frame_offset[@intFromEnum(FrameIndex.args_frame)];
var rsp_offset: i32 = 0;
self.setFrameLoc(.call_frame, .rsp, &rsp_offset, true);
self.setFrameLoc(.stack_frame, .rsp, &rsp_offset, true);
for (stack_frame_order) |frame_index| self.setFrameLoc(frame_index, .rsp, &rsp_offset, true);
rsp_offset += stack_frame_align_offset;
rsp_offset = @intCast(needed_align.forward(@intCast(rsp_offset)));
rsp_offset -= stack_frame_align_offset;
frame_size[@intFromEnum(FrameIndex.call_frame)] =
@intCast(rsp_offset - frame_offset[@intFromEnum(FrameIndex.stack_frame)]);
return .{
.stack_mask = @as(u32, math.maxInt(u32)) << @intCast(if (need_align_stack) @intFromEnum(needed_align) else 0),
.stack_adjust = @intCast(rsp_offset - frame_offset[@intFromEnum(FrameIndex.call_frame)]),
.save_reg_list = save_reg_list,
};
}
fn getFrameAddrAlignment(self: *Self, frame_addr: FrameAddr) Alignment {
const alloc_align = self.frame_allocs.get(@intFromEnum(frame_addr.index)).abi_align;
return @enumFromInt(@min(@intFromEnum(alloc_align), @ctz(frame_addr.off)));
}
fn getFrameAddrSize(self: *Self, frame_addr: FrameAddr) u32 {
return self.frame_allocs.get(@intFromEnum(frame_addr.index)).abi_size - @as(u31, @intCast(frame_addr.off));
}
fn allocFrameIndex(self: *Self, alloc: FrameAlloc) !FrameIndex {
const frame_allocs_slice = self.frame_allocs.slice();
const frame_size = frame_allocs_slice.items(.abi_size);
const frame_align = frame_allocs_slice.items(.abi_align);
const stack_frame_align = &frame_align[@intFromEnum(FrameIndex.stack_frame)];
stack_frame_align.* = stack_frame_align.max(alloc.abi_align);
for (self.free_frame_indices.keys(), 0..) |frame_index, free_i| {
const abi_size = frame_size[@intFromEnum(frame_index)];
if (abi_size != alloc.abi_size) continue;
const abi_align = &frame_align[@intFromEnum(frame_index)];
abi_align.* = abi_align.max(alloc.abi_align);
_ = self.free_frame_indices.swapRemoveAt(free_i);
return frame_index;
}
const frame_index: FrameIndex = @enumFromInt(self.frame_allocs.len);
try self.frame_allocs.append(self.gpa, alloc);
return frame_index;
}
/// Use a pointer instruction as the basis for allocating stack memory.
fn allocMemPtr(self: *Self, inst: Air.Inst.Index) !FrameIndex {
const mod = self.bin_file.comp.module.?;
const ptr_ty = self.typeOfIndex(inst);
const val_ty = ptr_ty.childType(mod);
return self.allocFrameIndex(FrameAlloc.init(.{
.size = math.cast(u32, val_ty.abiSize(mod)) orelse {
return self.fail("type '{}' too big to fit into stack frame", .{val_ty.fmt(mod)});
},
.alignment = ptr_ty.ptrAlignment(mod).max(.@"1"),
}));
}
fn allocRegOrMem(self: *Self, inst: Air.Inst.Index, reg_ok: bool) !MCValue {
return self.allocRegOrMemAdvanced(self.typeOfIndex(inst), inst, reg_ok);
}
fn allocTempRegOrMem(self: *Self, elem_ty: Type, reg_ok: bool) !MCValue {
return self.allocRegOrMemAdvanced(elem_ty, null, reg_ok);
}
fn allocRegOrMemAdvanced(self: *Self, ty: Type, inst: ?Air.Inst.Index, reg_ok: bool) !MCValue {
const mod = self.bin_file.comp.module.?;
const abi_size = math.cast(u32, ty.abiSize(mod)) orelse {
return self.fail("type '{}' too big to fit into stack frame", .{ty.fmt(mod)});
};
if (reg_ok) need_mem: {
if (abi_size <= @as(u32, switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
16, 32, 64, 128 => 16,
80 => break :need_mem,
else => unreachable,
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
16, 32, 64, 128 => if (self.hasFeature(.avx)) 32 else 16,
80 => break :need_mem,
else => unreachable,
},
else => if (self.hasFeature(.avx)) 32 else 16,
},
else => 8,
})) {
if (self.register_manager.tryAllocReg(inst, self.regClassForType(ty))) |reg| {
return MCValue{ .register = registerAlias(reg, abi_size) };
}
}
}
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(ty, mod));
return .{ .load_frame = .{ .index = frame_index } };
}
fn regClassForType(self: *Self, ty: Type) RegisterManager.RegisterBitSet {
const mod = self.bin_file.comp.module.?;
return switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
80 => abi.RegisterClass.x87,
else => abi.RegisterClass.sse,
},
.Vector => switch (ty.childType(mod).toIntern()) {
.bool_type, .u1_type => abi.RegisterClass.gp,
else => if (ty.isAbiInt(mod) and ty.intInfo(mod).bits == 1)
abi.RegisterClass.gp
else
abi.RegisterClass.sse,
},
else => abi.RegisterClass.gp,
};
}
const State = struct {
registers: RegisterManager.TrackedRegisters,
reg_tracking: [RegisterManager.RegisterBitSet.bit_length]InstTracking,
free_registers: RegisterManager.RegisterBitSet,
inst_tracking_len: u32,
scope_generation: u32,
};
fn initRetroactiveState(self: *Self) State {
var state: State = undefined;
state.inst_tracking_len = @intCast(self.inst_tracking.count());
state.scope_generation = self.scope_generation;
return state;
}
fn saveRetroactiveState(self: *Self, state: *State) !void {
try self.spillEflagsIfOccupied();
const free_registers = self.register_manager.free_registers;
var it = free_registers.iterator(.{ .kind = .unset });
while (it.next()) |index| {
const tracked_inst = self.register_manager.registers[index];
state.registers[index] = tracked_inst;
state.reg_tracking[index] = self.inst_tracking.get(tracked_inst).?;
}
state.free_registers = free_registers;
}
fn saveState(self: *Self) !State {
var state = self.initRetroactiveState();
try self.saveRetroactiveState(&state);
return state;
}
fn restoreState(self: *Self, state: State, deaths: []const Air.Inst.Index, comptime opts: struct {
emit_instructions: bool,
update_tracking: bool,
resurrect: bool,
close_scope: bool,
}) !void {
if (opts.close_scope) {
for (
self.inst_tracking.keys()[state.inst_tracking_len..],
self.inst_tracking.values()[state.inst_tracking_len..],
) |inst, *tracking| try tracking.die(self, inst);
self.inst_tracking.shrinkRetainingCapacity(state.inst_tracking_len);
}
if (opts.resurrect) for (
self.inst_tracking.keys()[0..state.inst_tracking_len],
self.inst_tracking.values()[0..state.inst_tracking_len],
) |inst, *tracking| tracking.resurrect(inst, state.scope_generation);
for (deaths) |death| try self.processDeath(death);
const ExpectedContents = [@typeInfo(RegisterManager.TrackedRegisters).Array.len]RegisterLock;
var stack align(@max(@alignOf(ExpectedContents), @alignOf(std.heap.StackFallbackAllocator(0)))) =
if (opts.update_tracking) ({}) else std.heap.stackFallback(@sizeOf(ExpectedContents), self.gpa);
var reg_locks = if (opts.update_tracking) {} else try std.ArrayList(RegisterLock).initCapacity(
stack.get(),
@typeInfo(ExpectedContents).Array.len,
);
defer if (!opts.update_tracking) {
for (reg_locks.items) |lock| self.register_manager.unlockReg(lock);
reg_locks.deinit();
};
for (0..state.registers.len) |index| {
const current_maybe_inst = if (self.register_manager.free_registers.isSet(index))
null
else
self.register_manager.registers[index];
const target_maybe_inst = if (state.free_registers.isSet(index))
null
else
state.registers[index];
if (std.debug.runtime_safety) if (target_maybe_inst) |target_inst|
assert(self.inst_tracking.getIndex(target_inst).? < state.inst_tracking_len);
if (opts.emit_instructions) {
if (current_maybe_inst) |current_inst| {
try self.inst_tracking.getPtr(current_inst).?.spill(self, current_inst);
}
if (target_maybe_inst) |target_inst| {
const target_tracking = self.inst_tracking.getPtr(target_inst).?;
try target_tracking.materialize(self, target_inst, state.reg_tracking[index]);
}
}
if (opts.update_tracking) {
if (current_maybe_inst) |current_inst| {
try self.inst_tracking.getPtr(current_inst).?.trackSpill(self, current_inst);
}
{
const reg = RegisterManager.regAtTrackedIndex(@intCast(index));
self.register_manager.freeReg(reg);
self.register_manager.getRegAssumeFree(reg, target_maybe_inst);
}
if (target_maybe_inst) |target_inst| {
self.inst_tracking.getPtr(target_inst).?.trackMaterialize(
target_inst,
state.reg_tracking[index],
);
}
} else if (target_maybe_inst) |_|
try reg_locks.append(self.register_manager.lockRegIndexAssumeUnused(@intCast(index)));
}
if (opts.emit_instructions) if (self.eflags_inst) |inst|
try self.inst_tracking.getPtr(inst).?.spill(self, inst);
if (opts.update_tracking) if (self.eflags_inst) |inst| {
self.eflags_inst = null;
try self.inst_tracking.getPtr(inst).?.trackSpill(self, inst);
};
if (opts.update_tracking and std.debug.runtime_safety) {
assert(self.eflags_inst == null);
assert(self.register_manager.free_registers.eql(state.free_registers));
var used_reg_it = state.free_registers.iterator(.{ .kind = .unset });
while (used_reg_it.next()) |index|
assert(self.register_manager.registers[index] == state.registers[index]);
}
}
pub fn spillInstruction(self: *Self, reg: Register, inst: Air.Inst.Index) !void {
const tracking = self.inst_tracking.getPtr(inst) orelse return;
for (tracking.getRegs()) |tracked_reg| {
if (tracked_reg.id() == reg.id()) break;
} else unreachable; // spilled reg not tracked with spilled instruciton
try tracking.spill(self, inst);
try tracking.trackSpill(self, inst);
}
pub fn spillEflagsIfOccupied(self: *Self) !void {
if (self.eflags_inst) |inst| {
self.eflags_inst = null;
const tracking = self.inst_tracking.getPtr(inst).?;
assert(tracking.getCondition() != null);
try tracking.spill(self, inst);
try tracking.trackSpill(self, inst);
}
}
pub fn spillCallerPreservedRegs(self: *Self, cc: std.builtin.CallingConvention) !void {
switch (cc) {
inline .SysV, .Win64 => |known_cc| try self.spillRegisters(
comptime abi.getCallerPreservedRegs(known_cc),
),
else => unreachable,
}
}
pub fn spillRegisters(self: *Self, comptime registers: []const Register) !void {
inline for (registers) |reg| try self.register_manager.getKnownReg(reg, null);
}
/// Copies a value to a register without tracking the register. The register is not considered
/// allocated. A second call to `copyToTmpRegister` may return the same register.
/// This can have a side effect of spilling instructions to the stack to free up a register.
fn copyToTmpRegister(self: *Self, ty: Type, mcv: MCValue) !Register {
const reg = try self.register_manager.allocReg(null, self.regClassForType(ty));
try self.genSetReg(reg, ty, mcv, .{});
return reg;
}
/// Allocates a new register and copies `mcv` into it.
/// `reg_owner` is the instruction that gets associated with the register in the register table.
/// This can have a side effect of spilling instructions to the stack to free up a register.
/// WARNING make sure that the allocated register matches the returned MCValue from an instruction!
fn copyToRegisterWithInstTracking(
self: *Self,
reg_owner: Air.Inst.Index,
ty: Type,
mcv: MCValue,
) !MCValue {
const reg: Register = try self.register_manager.allocReg(reg_owner, self.regClassForType(ty));
try self.genSetReg(reg, ty, mcv, .{});
return MCValue{ .register = reg };
}
fn airAlloc(self: *Self, inst: Air.Inst.Index) !void {
const result = MCValue{ .lea_frame = .{ .index = try self.allocMemPtr(inst) } };
return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn airRetPtr(self: *Self, inst: Air.Inst.Index) !void {
const result: MCValue = switch (self.ret_mcv.long) {
else => unreachable,
.none => .{ .lea_frame = .{ .index = try self.allocMemPtr(inst) } },
.load_frame => .{ .register_offset = .{
.reg = (try self.copyToRegisterWithInstTracking(
inst,
self.typeOfIndex(inst),
self.ret_mcv.long,
)).register,
.off = self.ret_mcv.short.indirect.off,
} },
};
return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn airFptrunc(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const dst_bits = dst_ty.floatBits(self.target.*);
const src_ty = self.typeOf(ty_op.operand);
const src_bits = src_ty.floatBits(self.target.*);
const result = result: {
if (switch (dst_bits) {
16 => switch (src_bits) {
32 => !self.hasFeature(.f16c),
64, 80, 128 => true,
else => unreachable,
},
32 => switch (src_bits) {
64 => false,
80, 128 => true,
else => unreachable,
},
64 => switch (src_bits) {
80, 128 => true,
else => unreachable,
},
80 => switch (src_bits) {
128 => true,
else => unreachable,
},
else => unreachable,
}) {
var callee_buf: ["__trunc?f?f2".len]u8 = undefined;
break :result try self.genCall(.{ .lib = .{
.return_type = self.floatCompilerRtAbiType(dst_ty, src_ty).toIntern(),
.param_types = &.{self.floatCompilerRtAbiType(src_ty, dst_ty).toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "__trunc{c}f{c}f2", .{
floatCompilerRtAbiName(src_bits),
floatCompilerRtAbiName(dst_bits),
}) catch unreachable,
} }, &.{src_ty}, &.{.{ .air_ref = ty_op.operand }});
}
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (src_mcv.isRegister() and self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, dst_ty, src_mcv);
const dst_reg = dst_mcv.getReg().?.to128();
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
if (dst_bits == 16) {
assert(self.hasFeature(.f16c));
switch (src_bits) {
32 => {
const mat_src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
mat_src_reg.to128(),
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
},
else => unreachable,
}
} else {
assert(src_bits == 64 and dst_bits == 32);
if (self.hasFeature(.avx)) if (src_mcv.isMemory()) try self.asmRegisterRegisterMemory(
.{ .v_ss, .cvtsd2 },
dst_reg,
dst_reg,
try src_mcv.mem(self, .qword),
) else try self.asmRegisterRegisterRegister(
.{ .v_ss, .cvtsd2 },
dst_reg,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv)).to128(),
) else if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._ss, .cvtsd2 },
dst_reg,
try src_mcv.mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._ss, .cvtsd2 },
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv)).to128(),
);
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airFpext(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const dst_bits = dst_ty.floatBits(self.target.*);
const src_ty = self.typeOf(ty_op.operand);
const src_bits = src_ty.floatBits(self.target.*);
const result = result: {
if (switch (src_bits) {
16 => switch (dst_bits) {
32, 64 => !self.hasFeature(.f16c),
80, 128 => true,
else => unreachable,
},
32 => switch (dst_bits) {
64 => false,
80, 128 => true,
else => unreachable,
},
64 => switch (dst_bits) {
80, 128 => true,
else => unreachable,
},
80 => switch (dst_bits) {
128 => true,
else => unreachable,
},
else => unreachable,
}) {
var callee_buf: ["__extend?f?f2".len]u8 = undefined;
break :result try self.genCall(.{ .lib = .{
.return_type = self.floatCompilerRtAbiType(dst_ty, src_ty).toIntern(),
.param_types = &.{self.floatCompilerRtAbiType(src_ty, dst_ty).toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "__extend{c}f{c}f2", .{
floatCompilerRtAbiName(src_bits),
floatCompilerRtAbiName(dst_bits),
}) catch unreachable,
} }, &.{src_ty}, &.{.{ .air_ref = ty_op.operand }});
}
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (src_mcv.isRegister() and self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, dst_ty, src_mcv);
const dst_reg = dst_mcv.getReg().?.to128();
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
if (src_bits == 16) {
assert(self.hasFeature(.f16c));
const mat_src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, mat_src_reg.to128());
switch (dst_bits) {
32 => {},
64 => try self.asmRegisterRegisterRegister(
.{ .v_sd, .cvtss2 },
dst_reg,
dst_reg,
dst_reg,
),
else => unreachable,
}
} else {
assert(src_bits == 32 and dst_bits == 64);
if (self.hasFeature(.avx)) if (src_mcv.isMemory()) try self.asmRegisterRegisterMemory(
.{ .v_sd, .cvtss2 },
dst_reg,
dst_reg,
try src_mcv.mem(self, .dword),
) else try self.asmRegisterRegisterRegister(
.{ .v_sd, .cvtss2 },
dst_reg,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv)).to128(),
) else if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._sd, .cvtss2 },
dst_reg,
try src_mcv.mem(self, .dword),
) else try self.asmRegisterRegister(
.{ ._sd, .cvtss2 },
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv)).to128(),
);
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airIntCast(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const src_ty = self.typeOf(ty_op.operand);
const src_int_info = src_ty.intInfo(mod);
const dst_ty = self.typeOfIndex(inst);
const dst_int_info = dst_ty.intInfo(mod);
const abi_size: u32 = @intCast(dst_ty.abiSize(mod));
const min_ty = if (dst_int_info.bits < src_int_info.bits) dst_ty else src_ty;
const extend = switch (src_int_info.signedness) {
.signed => dst_int_info,
.unsigned => src_int_info,
}.signedness;
const src_mcv = try self.resolveInst(ty_op.operand);
const src_storage_bits: u16 = switch (src_mcv) {
.register, .register_offset => 64,
.register_pair => 128,
.load_frame => |frame_addr| @intCast(self.getFrameAddrSize(frame_addr) * 8),
else => src_int_info.bits,
};
const dst_mcv = if (dst_int_info.bits <= src_storage_bits and
math.divCeil(u16, dst_int_info.bits, 64) catch unreachable ==
math.divCeil(u32, src_storage_bits, 64) catch unreachable and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) src_mcv else dst: {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(min_ty, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
};
if (dst_int_info.bits <= src_int_info.bits) break :result if (dst_mcv.isRegister())
.{ .register = registerAlias(dst_mcv.getReg().?, abi_size) }
else
dst_mcv;
if (dst_mcv.isRegister()) {
try self.truncateRegister(src_ty, dst_mcv.getReg().?);
break :result .{ .register = registerAlias(dst_mcv.getReg().?, abi_size) };
}
const src_limbs_len = math.divCeil(u16, src_int_info.bits, 64) catch unreachable;
const dst_limbs_len = math.divCeil(u16, dst_int_info.bits, 64) catch unreachable;
const high_mcv: MCValue = if (dst_mcv.isMemory())
dst_mcv.address().offset((src_limbs_len - 1) * 8).deref()
else
.{ .register = dst_mcv.register_pair[1] };
const high_reg = if (high_mcv.isRegister())
high_mcv.getReg().?
else
try self.copyToTmpRegister(switch (src_int_info.signedness) {
.signed => Type.isize,
.unsigned => Type.usize,
}, high_mcv);
const high_lock = self.register_manager.lockRegAssumeUnused(high_reg);
defer self.register_manager.unlockReg(high_lock);
const high_bits = src_int_info.bits % 64;
if (high_bits > 0) {
try self.truncateRegister(src_ty, high_reg);
const high_ty = if (dst_int_info.bits >= 64) Type.usize else dst_ty;
try self.genCopy(high_ty, high_mcv, .{ .register = high_reg }, .{});
}
if (dst_limbs_len > src_limbs_len) try self.genInlineMemset(
dst_mcv.address().offset(src_limbs_len * 8),
switch (extend) {
.signed => extend: {
const extend_mcv = MCValue{ .register = high_reg };
try self.genShiftBinOpMir(
.{ ._r, .sa },
Type.isize,
extend_mcv,
Type.u8,
.{ .immediate = 63 },
);
break :extend extend_mcv;
},
.unsigned => .{ .immediate = 0 },
},
.{ .immediate = (dst_limbs_len - src_limbs_len) * 8 },
.{},
);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airTrunc(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const dst_abi_size: u32 = @intCast(dst_ty.abiSize(mod));
const src_ty = self.typeOf(ty_op.operand);
const src_abi_size: u32 = @intCast(src_ty.abiSize(mod));
const result = result: {
const src_mcv = try self.resolveInst(ty_op.operand);
const src_lock =
if (src_mcv.getReg()) |reg| self.register_manager.lockRegAssumeUnused(reg) else null;
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv = if (src_mcv.isRegister() and self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else if (dst_abi_size <= 8)
try self.copyToRegisterWithInstTracking(inst, dst_ty, src_mcv)
else if (dst_abi_size <= 16) dst: {
const dst_regs =
try self.register_manager.allocRegs(2, .{ inst, inst }, abi.RegisterClass.gp);
const dst_mcv: MCValue = .{ .register_pair = dst_regs };
const dst_locks = self.register_manager.lockRegsAssumeUnused(2, dst_regs);
defer for (dst_locks) |lock| self.register_manager.unlockReg(lock);
try self.genCopy(dst_ty, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
} else dst: {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(dst_ty, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
};
if (dst_ty.zigTypeTag(mod) == .Vector) {
assert(src_ty.zigTypeTag(mod) == .Vector and dst_ty.vectorLen(mod) == src_ty.vectorLen(mod));
const dst_info = dst_ty.childType(mod).intInfo(mod);
const src_info = src_ty.childType(mod).intInfo(mod);
const mir_tag = @as(?Mir.Inst.FixedTag, switch (dst_info.bits) {
8 => switch (src_info.bits) {
16 => switch (dst_ty.vectorLen(mod)) {
1...8 => if (self.hasFeature(.avx)) .{ .vp_b, .ackusw } else .{ .p_b, .ackusw },
9...16 => if (self.hasFeature(.avx2)) .{ .vp_b, .ackusw } else null,
else => null,
},
else => null,
},
16 => switch (src_info.bits) {
32 => switch (dst_ty.vectorLen(mod)) {
1...4 => if (self.hasFeature(.avx))
.{ .vp_w, .ackusd }
else if (self.hasFeature(.sse4_1))
.{ .p_w, .ackusd }
else
null,
5...8 => if (self.hasFeature(.avx2)) .{ .vp_w, .ackusd } else null,
else => null,
},
else => null,
},
else => null,
}) orelse return self.fail("TODO implement airTrunc for {}", .{dst_ty.fmt(mod)});
const elem_ty = src_ty.childType(mod);
const mask_val = try mod.intValue(elem_ty, @as(u64, math.maxInt(u64)) >> @intCast(64 - dst_info.bits));
const splat_ty = try mod.vectorType(.{
.len = @intCast(@divExact(@as(u64, if (src_abi_size > 16) 256 else 128), src_info.bits)),
.child = elem_ty.ip_index,
});
const splat_abi_size: u32 = @intCast(splat_ty.abiSize(mod));
const splat_val = try mod.intern(.{ .aggregate = .{
.ty = splat_ty.ip_index,
.storage = .{ .repeated_elem = mask_val.ip_index },
} });
const splat_mcv = try self.genTypedValue(.{ .ty = splat_ty, .val = Value.fromInterned(splat_val) });
const splat_addr_mcv: MCValue = switch (splat_mcv) {
.memory, .indirect, .load_frame => splat_mcv.address(),
else => .{ .register = try self.copyToTmpRegister(Type.usize, splat_mcv.address()) },
};
const dst_reg = registerAlias(dst_mcv.getReg().?, src_abi_size);
if (self.hasFeature(.avx)) {
try self.asmRegisterRegisterMemory(
.{ .vp_, .@"and" },
dst_reg,
dst_reg,
try splat_addr_mcv.deref().mem(self, Memory.Size.fromSize(splat_abi_size)),
);
try self.asmRegisterRegisterRegister(mir_tag, dst_reg, dst_reg, dst_reg);
} else {
try self.asmRegisterMemory(
.{ .p_, .@"and" },
dst_reg,
try splat_addr_mcv.deref().mem(self, Memory.Size.fromSize(splat_abi_size)),
);
try self.asmRegisterRegister(mir_tag, dst_reg, dst_reg);
}
break :result dst_mcv;
}
// when truncating a `u16` to `u5`, for example, those top 3 bits in the result
// have to be removed. this only happens if the dst if not a power-of-two size.
if (dst_abi_size <= 8) {
if (self.regExtraBits(dst_ty) > 0) {
try self.truncateRegister(dst_ty, dst_mcv.register.to64());
}
} else if (dst_abi_size <= 16) {
const dst_info = dst_ty.intInfo(mod);
const high_ty = try mod.intType(dst_info.signedness, dst_info.bits - 64);
if (self.regExtraBits(high_ty) > 0) {
try self.truncateRegister(high_ty, dst_mcv.register_pair[1].to64());
}
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airIntFromBool(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ty = self.typeOfIndex(inst);
const operand = try self.resolveInst(un_op);
const dst_mcv = if (self.reuseOperand(inst, un_op, 0, operand))
operand
else
try self.copyToRegisterWithInstTracking(inst, ty, operand);
return self.finishAir(inst, dst_mcv, .{ un_op, .none, .none });
}
fn airSlice(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const slice_ty = self.typeOfIndex(inst);
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(slice_ty, mod));
const ptr_ty = self.typeOf(bin_op.lhs);
try self.genSetMem(.{ .frame = frame_index }, 0, ptr_ty, .{ .air_ref = bin_op.lhs }, .{});
const len_ty = self.typeOf(bin_op.rhs);
try self.genSetMem(
.{ .frame = frame_index },
@intCast(ptr_ty.abiSize(mod)),
len_ty,
.{ .air_ref = bin_op.rhs },
.{},
);
const result = MCValue{ .load_frame = .{ .index = frame_index } };
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airUnOp(self: *Self, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_mcv = try self.genUnOp(inst, tag, ty_op.operand);
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airBinOp(self: *Self, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dst_mcv = try self.genBinOp(inst, tag, bin_op.lhs, bin_op.rhs);
const dst_ty = self.typeOfIndex(inst);
if (dst_ty.isAbiInt(mod)) {
const abi_size: u32 = @intCast(dst_ty.abiSize(mod));
const bit_size: u32 = @intCast(dst_ty.bitSize(mod));
if (abi_size * 8 > bit_size) {
const dst_lock = switch (dst_mcv) {
.register => |dst_reg| self.register_manager.lockRegAssumeUnused(dst_reg),
else => null,
};
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
if (dst_mcv.isRegister()) {
try self.truncateRegister(dst_ty, dst_mcv.getReg().?);
} else {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const hi_ty = try mod.intType(.unsigned, @intCast((dst_ty.bitSize(mod) - 1) % 64 + 1));
const hi_mcv = dst_mcv.address().offset(@intCast(bit_size / 64 * 8)).deref();
try self.genSetReg(tmp_reg, hi_ty, hi_mcv, .{});
try self.truncateRegister(dst_ty, tmp_reg);
try self.genCopy(hi_ty, hi_mcv, .{ .register = tmp_reg }, .{});
}
}
}
return self.finishAir(inst, dst_mcv, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airPtrArithmetic(self: *Self, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const dst_mcv = try self.genBinOp(inst, tag, bin_op.lhs, bin_op.rhs);
return self.finishAir(inst, dst_mcv, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn activeIntBits(self: *Self, dst_air: Air.Inst.Ref) u16 {
const mod = self.bin_file.comp.module.?;
const air_tag = self.air.instructions.items(.tag);
const air_data = self.air.instructions.items(.data);
const dst_ty = self.typeOf(dst_air);
const dst_info = dst_ty.intInfo(mod);
if (dst_air.toIndex()) |inst| {
switch (air_tag[@intFromEnum(inst)]) {
.intcast => {
const src_ty = self.typeOf(air_data[@intFromEnum(inst)].ty_op.operand);
const src_info = src_ty.intInfo(mod);
return @min(switch (src_info.signedness) {
.signed => switch (dst_info.signedness) {
.signed => src_info.bits,
.unsigned => src_info.bits - 1,
},
.unsigned => switch (dst_info.signedness) {
.signed => src_info.bits + 1,
.unsigned => src_info.bits,
},
}, dst_info.bits);
},
else => {},
}
} else if (dst_air.toInterned()) |ip_index| {
var space: Value.BigIntSpace = undefined;
const src_int = Value.fromInterned(ip_index).toBigInt(&space, mod);
return @as(u16, @intCast(src_int.bitCountTwosComp())) +
@intFromBool(src_int.positive and dst_info.signedness == .signed);
}
return dst_info.bits;
}
fn airMulDivBinOp(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result = result: {
const tag = self.air.instructions.items(.tag)[@intFromEnum(inst)];
const dst_ty = self.typeOfIndex(inst);
switch (dst_ty.zigTypeTag(mod)) {
.Float, .Vector => break :result try self.genBinOp(inst, tag, bin_op.lhs, bin_op.rhs),
else => {},
}
const dst_abi_size: u32 = @intCast(dst_ty.abiSize(mod));
const dst_info = dst_ty.intInfo(mod);
const src_ty = try mod.intType(dst_info.signedness, switch (tag) {
else => unreachable,
.mul, .mul_wrap => @max(
self.activeIntBits(bin_op.lhs),
self.activeIntBits(bin_op.rhs),
dst_info.bits / 2,
),
.div_trunc, .div_floor, .div_exact, .rem, .mod => dst_info.bits,
});
const src_abi_size: u32 = @intCast(src_ty.abiSize(mod));
if (dst_abi_size == 16 and src_abi_size == 16) switch (tag) {
else => unreachable,
.mul, .mul_wrap => {},
.div_trunc, .div_floor, .div_exact, .rem, .mod => {
const signed = dst_ty.isSignedInt(mod);
var callee_buf: ["__udiv?i3".len]u8 = undefined;
const signed_div_floor_state: struct {
frame_index: FrameIndex,
state: State,
reloc: Mir.Inst.Index,
} = if (signed and tag == .div_floor) state: {
const frame_index = try self.allocFrameIndex(FrameAlloc.initType(Type.usize, mod));
try self.asmMemoryImmediate(
.{ ._, .mov },
.{ .base = .{ .frame = frame_index }, .mod = .{ .rm = .{ .size = .qword } } },
Immediate.u(0),
);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const mat_lhs_mcv = switch (lhs_mcv) {
.load_symbol => mat_lhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, lhs_mcv.address());
break :mat_lhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => lhs_mcv,
};
const mat_lhs_lock = switch (mat_lhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_lhs_lock) |lock| self.register_manager.unlockReg(lock);
if (mat_lhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
tmp_reg,
try mat_lhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .mov },
tmp_reg,
mat_lhs_mcv.register_pair[1],
);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const mat_rhs_mcv = switch (rhs_mcv) {
.load_symbol => mat_rhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, rhs_mcv.address());
break :mat_rhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => rhs_mcv,
};
const mat_rhs_lock = switch (mat_rhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_rhs_lock) |lock| self.register_manager.unlockReg(lock);
if (mat_rhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .xor },
tmp_reg,
try mat_rhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .xor },
tmp_reg,
mat_rhs_mcv.register_pair[1],
);
const state = try self.saveState();
const reloc = try self.asmJccReloc(.ns, undefined);
break :state .{ .frame_index = frame_index, .state = state, .reloc = reloc };
} else undefined;
const call_mcv = try self.genCall(
.{ .lib = .{
.return_type = dst_ty.toIntern(),
.param_types = &.{ src_ty.toIntern(), src_ty.toIntern() },
.callee = std.fmt.bufPrint(&callee_buf, "__{s}{s}{c}i3", .{
if (signed) "" else "u",
switch (tag) {
.div_trunc, .div_exact => "div",
.div_floor => if (signed) "mod" else "div",
.rem, .mod => "mod",
else => unreachable,
},
intCompilerRtAbiName(@intCast(dst_ty.bitSize(mod))),
}) catch unreachable,
} },
&.{ src_ty, src_ty },
&.{ .{ .air_ref = bin_op.lhs }, .{ .air_ref = bin_op.rhs } },
);
break :result if (signed) switch (tag) {
.div_floor => {
try self.asmRegisterRegister(
.{ ._, .@"or" },
call_mcv.register_pair[0],
call_mcv.register_pair[1],
);
try self.asmSetccMemory(.nz, .{
.base = .{ .frame = signed_div_floor_state.frame_index },
.mod = .{ .rm = .{ .size = .byte } },
});
try self.restoreState(signed_div_floor_state.state, &.{}, .{
.emit_instructions = true,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
self.performReloc(signed_div_floor_state.reloc);
const dst_mcv = try self.genCall(
.{ .lib = .{
.return_type = dst_ty.toIntern(),
.param_types = &.{ src_ty.toIntern(), src_ty.toIntern() },
.callee = std.fmt.bufPrint(&callee_buf, "__div{c}i3", .{
intCompilerRtAbiName(@intCast(dst_ty.bitSize(mod))),
}) catch unreachable,
} },
&.{ src_ty, src_ty },
&.{ .{ .air_ref = bin_op.lhs }, .{ .air_ref = bin_op.rhs } },
);
try self.asmRegisterMemory(
.{ ._, .sub },
dst_mcv.register_pair[0],
.{
.base = .{ .frame = signed_div_floor_state.frame_index },
.mod = .{ .rm = .{ .size = .qword } },
},
);
try self.asmRegisterImmediate(
.{ ._, .sbb },
dst_mcv.register_pair[1],
Immediate.u(0),
);
try self.freeValue(
.{ .load_frame = .{ .index = signed_div_floor_state.frame_index } },
);
break :result dst_mcv;
},
.mod => {
const dst_regs = call_mcv.register_pair;
const dst_locks = self.register_manager.lockRegsAssumeUnused(2, dst_regs);
defer for (dst_locks) |lock| self.register_manager.unlockReg(lock);
const tmp_regs =
try self.register_manager.allocRegs(2, .{null} ** 2, abi.RegisterClass.gp);
const tmp_locks = self.register_manager.lockRegsAssumeUnused(2, tmp_regs);
defer for (tmp_locks) |lock| self.register_manager.unlockReg(lock);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const mat_rhs_mcv = switch (rhs_mcv) {
.load_symbol => mat_rhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, rhs_mcv.address());
break :mat_rhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => rhs_mcv,
};
const mat_rhs_lock = switch (mat_rhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_rhs_lock) |lock| self.register_manager.unlockReg(lock);
for (tmp_regs, dst_regs) |tmp_reg, dst_reg|
try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, dst_reg);
if (mat_rhs_mcv.isMemory()) {
try self.asmRegisterMemory(
.{ ._, .add },
tmp_regs[0],
try mat_rhs_mcv.mem(self, .qword),
);
try self.asmRegisterMemory(
.{ ._, .adc },
tmp_regs[1],
try mat_rhs_mcv.address().offset(8).deref().mem(self, .qword),
);
} else for (
[_]Mir.Inst.Tag{ .add, .adc },
tmp_regs,
mat_rhs_mcv.register_pair,
) |op, tmp_reg, rhs_reg|
try self.asmRegisterRegister(.{ ._, op }, tmp_reg, rhs_reg);
try self.asmRegisterRegister(.{ ._, .@"test" }, dst_regs[1], dst_regs[1]);
for (dst_regs, tmp_regs) |dst_reg, tmp_reg|
try self.asmCmovccRegisterRegister(.s, dst_reg, tmp_reg);
break :result call_mcv;
},
else => call_mcv,
} else call_mcv;
},
};
try self.spillEflagsIfOccupied();
try self.spillRegisters(&.{ .rax, .rcx, .rdx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rax, .rcx, .rdx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
break :result try self.genMulDivBinOp(tag, inst, dst_ty, src_ty, lhs_mcv, rhs_mcv);
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airAddSat(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = self.typeOf(bin_op.lhs);
if (ty.zigTypeTag(mod) == .Vector or ty.abiSize(mod) > 8) return self.fail(
"TODO implement airAddSat for {}",
.{ty.fmt(mod)},
);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const dst_mcv = if (lhs_mcv.isRegister() and self.reuseOperand(inst, bin_op.lhs, 0, lhs_mcv))
lhs_mcv
else
try self.copyToRegisterWithInstTracking(inst, ty, lhs_mcv);
const dst_reg = dst_mcv.register;
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const rhs_lock = switch (rhs_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
const limit_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const limit_mcv = MCValue{ .register = limit_reg };
const limit_lock = self.register_manager.lockRegAssumeUnused(limit_reg);
defer self.register_manager.unlockReg(limit_lock);
const reg_bits = self.regBitSize(ty);
const reg_extra_bits = self.regExtraBits(ty);
const cc: Condition = if (ty.isSignedInt(mod)) cc: {
if (reg_extra_bits > 0) {
try self.genShiftBinOpMir(
.{ ._l, .sa },
ty,
dst_mcv,
Type.u8,
.{ .immediate = reg_extra_bits },
);
}
try self.genSetReg(limit_reg, ty, dst_mcv, .{});
try self.genShiftBinOpMir(
.{ ._r, .sa },
ty,
limit_mcv,
Type.u8,
.{ .immediate = reg_bits - 1 },
);
try self.genBinOpMir(.{ ._, .xor }, ty, limit_mcv, .{
.immediate = (@as(u64, 1) << @intCast(reg_bits - 1)) - 1,
});
if (reg_extra_bits > 0) {
const shifted_rhs_reg = try self.copyToTmpRegister(ty, rhs_mcv);
const shifted_rhs_mcv = MCValue{ .register = shifted_rhs_reg };
const shifted_rhs_lock = self.register_manager.lockRegAssumeUnused(shifted_rhs_reg);
defer self.register_manager.unlockReg(shifted_rhs_lock);
try self.genShiftBinOpMir(
.{ ._l, .sa },
ty,
shifted_rhs_mcv,
Type.u8,
.{ .immediate = reg_extra_bits },
);
try self.genBinOpMir(.{ ._, .add }, ty, dst_mcv, shifted_rhs_mcv);
} else try self.genBinOpMir(.{ ._, .add }, ty, dst_mcv, rhs_mcv);
break :cc .o;
} else cc: {
try self.genSetReg(limit_reg, ty, .{
.immediate = @as(u64, math.maxInt(u64)) >> @intCast(64 - ty.bitSize(mod)),
}, .{});
try self.genBinOpMir(.{ ._, .add }, ty, dst_mcv, rhs_mcv);
if (reg_extra_bits > 0) {
try self.genBinOpMir(.{ ._, .cmp }, ty, dst_mcv, limit_mcv);
break :cc .a;
}
break :cc .c;
};
const cmov_abi_size = @max(@as(u32, @intCast(ty.abiSize(mod))), 2);
try self.asmCmovccRegisterRegister(
cc,
registerAlias(dst_reg, cmov_abi_size),
registerAlias(limit_reg, cmov_abi_size),
);
if (reg_extra_bits > 0 and ty.isSignedInt(mod)) try self.genShiftBinOpMir(
.{ ._r, .sa },
ty,
dst_mcv,
Type.u8,
.{ .immediate = reg_extra_bits },
);
return self.finishAir(inst, dst_mcv, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airSubSat(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = self.typeOf(bin_op.lhs);
if (ty.zigTypeTag(mod) == .Vector or ty.abiSize(mod) > 8) return self.fail(
"TODO implement airSubSat for {}",
.{ty.fmt(mod)},
);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const dst_mcv = if (lhs_mcv.isRegister() and self.reuseOperand(inst, bin_op.lhs, 0, lhs_mcv))
lhs_mcv
else
try self.copyToRegisterWithInstTracking(inst, ty, lhs_mcv);
const dst_reg = dst_mcv.register;
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const rhs_lock = switch (rhs_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
const limit_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const limit_mcv = MCValue{ .register = limit_reg };
const limit_lock = self.register_manager.lockRegAssumeUnused(limit_reg);
defer self.register_manager.unlockReg(limit_lock);
const reg_bits = self.regBitSize(ty);
const reg_extra_bits = self.regExtraBits(ty);
const cc: Condition = if (ty.isSignedInt(mod)) cc: {
if (reg_extra_bits > 0) {
try self.genShiftBinOpMir(
.{ ._l, .sa },
ty,
dst_mcv,
Type.u8,
.{ .immediate = reg_extra_bits },
);
}
try self.genSetReg(limit_reg, ty, dst_mcv, .{});
try self.genShiftBinOpMir(
.{ ._r, .sa },
ty,
limit_mcv,
Type.u8,
.{ .immediate = reg_bits - 1 },
);
try self.genBinOpMir(.{ ._, .xor }, ty, limit_mcv, .{
.immediate = (@as(u64, 1) << @intCast(reg_bits - 1)) - 1,
});
if (reg_extra_bits > 0) {
const shifted_rhs_reg = try self.copyToTmpRegister(ty, rhs_mcv);
const shifted_rhs_mcv = MCValue{ .register = shifted_rhs_reg };
const shifted_rhs_lock = self.register_manager.lockRegAssumeUnused(shifted_rhs_reg);
defer self.register_manager.unlockReg(shifted_rhs_lock);
try self.genShiftBinOpMir(
.{ ._l, .sa },
ty,
shifted_rhs_mcv,
Type.u8,
.{ .immediate = reg_extra_bits },
);
try self.genBinOpMir(.{ ._, .sub }, ty, dst_mcv, shifted_rhs_mcv);
} else try self.genBinOpMir(.{ ._, .sub }, ty, dst_mcv, rhs_mcv);
break :cc .o;
} else cc: {
try self.genSetReg(limit_reg, ty, .{ .immediate = 0 }, .{});
try self.genBinOpMir(.{ ._, .sub }, ty, dst_mcv, rhs_mcv);
break :cc .c;
};
const cmov_abi_size = @max(@as(u32, @intCast(ty.abiSize(mod))), 2);
try self.asmCmovccRegisterRegister(
cc,
registerAlias(dst_reg, cmov_abi_size),
registerAlias(limit_reg, cmov_abi_size),
);
if (reg_extra_bits > 0 and ty.isSignedInt(mod)) try self.genShiftBinOpMir(
.{ ._r, .sa },
ty,
dst_mcv,
Type.u8,
.{ .immediate = reg_extra_bits },
);
return self.finishAir(inst, dst_mcv, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMulSat(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = self.typeOf(bin_op.lhs);
const result = result: {
if (ty.toIntern() == .i128_type) {
const ptr_c_int = try mod.singleMutPtrType(Type.c_int);
const overflow = try self.allocTempRegOrMem(Type.c_int, false);
const dst_mcv = try self.genCall(.{ .lib = .{
.return_type = .i128_type,
.param_types = &.{ .i128_type, .i128_type, ptr_c_int.toIntern() },
.callee = "__muloti4",
} }, &.{ Type.i128, Type.i128, ptr_c_int }, &.{
.{ .air_ref = bin_op.lhs },
.{ .air_ref = bin_op.rhs },
overflow.address(),
});
const dst_locks = self.register_manager.lockRegsAssumeUnused(2, dst_mcv.register_pair);
defer for (dst_locks) |lock| self.register_manager.unlockReg(lock);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const mat_lhs_mcv = switch (lhs_mcv) {
.load_symbol => mat_lhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, lhs_mcv.address());
break :mat_lhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => lhs_mcv,
};
const mat_lhs_lock = switch (mat_lhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_lhs_lock) |lock| self.register_manager.unlockReg(lock);
if (mat_lhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
tmp_reg,
try mat_lhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .mov },
tmp_reg,
mat_lhs_mcv.register_pair[1],
);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const mat_rhs_mcv = switch (rhs_mcv) {
.load_symbol => mat_rhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, rhs_mcv.address());
break :mat_rhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => rhs_mcv,
};
const mat_rhs_lock = switch (mat_rhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_rhs_lock) |lock| self.register_manager.unlockReg(lock);
if (mat_rhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .xor },
tmp_reg,
try mat_rhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .xor },
tmp_reg,
mat_rhs_mcv.register_pair[1],
);
try self.asmRegisterImmediate(.{ ._r, .sa }, tmp_reg, Immediate.u(63));
try self.asmRegister(.{ ._, .not }, tmp_reg);
try self.asmMemoryImmediate(.{ ._, .cmp }, try overflow.mem(self, .dword), Immediate.s(0));
try self.freeValue(overflow);
try self.asmCmovccRegisterRegister(.ne, dst_mcv.register_pair[0], tmp_reg);
try self.asmRegisterImmediate(.{ ._c, .bt }, tmp_reg, Immediate.u(63));
try self.asmCmovccRegisterRegister(.ne, dst_mcv.register_pair[1], tmp_reg);
break :result dst_mcv;
}
if (ty.zigTypeTag(mod) == .Vector or ty.abiSize(mod) > 8) return self.fail(
"TODO implement airMulSat for {}",
.{ty.fmt(mod)},
);
try self.spillRegisters(&.{ .rax, .rcx, .rdx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rax, .rcx, .rdx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const lhs_lock = switch (lhs_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (lhs_lock) |lock| self.register_manager.unlockReg(lock);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const rhs_lock = switch (rhs_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
const limit_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const limit_mcv = MCValue{ .register = limit_reg };
const limit_lock = self.register_manager.lockRegAssumeUnused(limit_reg);
defer self.register_manager.unlockReg(limit_lock);
const reg_bits = self.regBitSize(ty);
const cc: Condition = if (ty.isSignedInt(mod)) cc: {
try self.genSetReg(limit_reg, ty, lhs_mcv, .{});
try self.genBinOpMir(.{ ._, .xor }, ty, limit_mcv, rhs_mcv);
try self.genShiftBinOpMir(
.{ ._r, .sa },
ty,
limit_mcv,
Type.u8,
.{ .immediate = reg_bits - 1 },
);
try self.genBinOpMir(.{ ._, .xor }, ty, limit_mcv, .{
.immediate = (@as(u64, 1) << @intCast(reg_bits - 1)) - 1,
});
break :cc .o;
} else cc: {
try self.genSetReg(limit_reg, ty, .{
.immediate = @as(u64, math.maxInt(u64)) >> @intCast(64 - reg_bits),
}, .{});
break :cc .c;
};
const dst_mcv = try self.genMulDivBinOp(.mul, inst, ty, ty, lhs_mcv, rhs_mcv);
const cmov_abi_size = @max(@as(u32, @intCast(ty.abiSize(mod))), 2);
try self.asmCmovccRegisterRegister(
cc,
registerAlias(dst_mcv.register, cmov_abi_size),
registerAlias(limit_reg, cmov_abi_size),
);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airAddSubWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const result: MCValue = result: {
const tag = self.air.instructions.items(.tag)[@intFromEnum(inst)];
const ty = self.typeOf(bin_op.lhs);
switch (ty.zigTypeTag(mod)) {
.Vector => return self.fail("TODO implement add/sub with overflow for Vector type", .{}),
.Int => {
try self.spillEflagsIfOccupied();
try self.spillRegisters(&.{ .rcx, .rdi, .rsi });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rcx, .rdi, .rsi });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const partial_mcv = try self.genBinOp(null, switch (tag) {
.add_with_overflow => .add,
.sub_with_overflow => .sub,
else => unreachable,
}, bin_op.lhs, bin_op.rhs);
const int_info = ty.intInfo(mod);
const cc: Condition = switch (int_info.signedness) {
.unsigned => .c,
.signed => .o,
};
const tuple_ty = self.typeOfIndex(inst);
if (int_info.bits >= 8 and math.isPowerOfTwo(int_info.bits)) {
switch (partial_mcv) {
.register => |reg| {
self.eflags_inst = inst;
break :result .{ .register_overflow = .{ .reg = reg, .eflags = cc } };
},
else => {},
}
const frame_index =
try self.allocFrameIndex(FrameAlloc.initSpill(tuple_ty, mod));
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(1, mod)),
Type.u1,
.{ .eflags = cc },
.{},
);
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(0, mod)),
ty,
partial_mcv,
.{},
);
break :result .{ .load_frame = .{ .index = frame_index } };
}
const frame_index =
try self.allocFrameIndex(FrameAlloc.initSpill(tuple_ty, mod));
try self.genSetFrameTruncatedOverflowCompare(tuple_ty, frame_index, partial_mcv, cc);
break :result .{ .load_frame = .{ .index = frame_index } };
},
else => unreachable,
}
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airShlWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const result: MCValue = result: {
const lhs_ty = self.typeOf(bin_op.lhs);
const rhs_ty = self.typeOf(bin_op.rhs);
switch (lhs_ty.zigTypeTag(mod)) {
.Vector => return self.fail("TODO implement shl with overflow for Vector type", .{}),
.Int => {
try self.spillEflagsIfOccupied();
try self.spillRegisters(&.{ .rcx, .rdi, .rsi });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rcx, .rdi, .rsi });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const int_info = lhs_ty.intInfo(mod);
const partial_mcv = try self.genShiftBinOp(.shl, null, lhs, rhs, lhs_ty, rhs_ty);
const partial_lock = switch (partial_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (partial_lock) |lock| self.register_manager.unlockReg(lock);
const tmp_mcv = try self.genShiftBinOp(.shr, null, partial_mcv, rhs, lhs_ty, rhs_ty);
const tmp_lock = switch (tmp_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (tmp_lock) |lock| self.register_manager.unlockReg(lock);
try self.genBinOpMir(.{ ._, .cmp }, lhs_ty, tmp_mcv, lhs);
const cc = Condition.ne;
const tuple_ty = self.typeOfIndex(inst);
if (int_info.bits >= 8 and math.isPowerOfTwo(int_info.bits)) {
switch (partial_mcv) {
.register => |reg| {
self.eflags_inst = inst;
break :result .{ .register_overflow = .{ .reg = reg, .eflags = cc } };
},
else => {},
}
const frame_index =
try self.allocFrameIndex(FrameAlloc.initSpill(tuple_ty, mod));
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(1, mod)),
tuple_ty.structFieldType(1, mod),
.{ .eflags = cc },
.{},
);
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(0, mod)),
tuple_ty.structFieldType(0, mod),
partial_mcv,
.{},
);
break :result .{ .load_frame = .{ .index = frame_index } };
}
const frame_index =
try self.allocFrameIndex(FrameAlloc.initSpill(tuple_ty, mod));
try self.genSetFrameTruncatedOverflowCompare(tuple_ty, frame_index, partial_mcv, cc);
break :result .{ .load_frame = .{ .index = frame_index } };
},
else => unreachable,
}
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn genSetFrameTruncatedOverflowCompare(
self: *Self,
tuple_ty: Type,
frame_index: FrameIndex,
src_mcv: MCValue,
overflow_cc: ?Condition,
) !void {
const mod = self.bin_file.comp.module.?;
const src_lock = switch (src_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const ty = tuple_ty.structFieldType(0, mod);
const int_info = ty.intInfo(mod);
const hi_bits = (int_info.bits - 1) % 64 + 1;
const hi_ty = try mod.intType(int_info.signedness, hi_bits);
const limb_bits: u16 = @intCast(if (int_info.bits <= 64) self.regBitSize(ty) else 64);
const limb_ty = try mod.intType(int_info.signedness, limb_bits);
const rest_ty = try mod.intType(.unsigned, int_info.bits - hi_bits);
const temp_regs =
try self.register_manager.allocRegs(3, .{null} ** 3, abi.RegisterClass.gp);
const temp_locks = self.register_manager.lockRegsAssumeUnused(3, temp_regs);
defer for (temp_locks) |lock| self.register_manager.unlockReg(lock);
const overflow_reg = temp_regs[0];
if (overflow_cc) |cc| try self.asmSetccRegister(cc, overflow_reg.to8());
const scratch_reg = temp_regs[1];
const hi_limb_off = if (int_info.bits <= 64) 0 else (int_info.bits - 1) / 64 * 8;
const hi_limb_mcv = if (hi_limb_off > 0)
src_mcv.address().offset(int_info.bits / 64 * 8).deref()
else
src_mcv;
try self.genSetReg(scratch_reg, limb_ty, hi_limb_mcv, .{});
try self.truncateRegister(hi_ty, scratch_reg);
try self.genBinOpMir(.{ ._, .cmp }, limb_ty, .{ .register = scratch_reg }, hi_limb_mcv);
const eq_reg = temp_regs[2];
if (overflow_cc) |_| {
try self.asmSetccRegister(.ne, eq_reg.to8());
try self.genBinOpMir(
.{ ._, .@"or" },
Type.u8,
.{ .register = overflow_reg },
.{ .register = eq_reg },
);
}
const payload_off: i32 = @intCast(tuple_ty.structFieldOffset(0, mod));
if (hi_limb_off > 0) try self.genSetMem(
.{ .frame = frame_index },
payload_off,
rest_ty,
src_mcv,
.{},
);
try self.genSetMem(
.{ .frame = frame_index },
payload_off + hi_limb_off,
limb_ty,
.{ .register = scratch_reg },
.{},
);
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(1, mod)),
tuple_ty.structFieldType(1, mod),
if (overflow_cc) |_| .{ .register = overflow_reg.to8() } else .{ .eflags = .ne },
.{},
);
}
fn airMulWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const tuple_ty = self.typeOfIndex(inst);
const dst_ty = self.typeOf(bin_op.lhs);
const result: MCValue = switch (dst_ty.zigTypeTag(mod)) {
.Vector => return self.fail("TODO implement airMulWithOverflow for {}", .{dst_ty.fmt(mod)}),
.Int => result: {
const dst_info = dst_ty.intInfo(mod);
if (dst_info.bits > 128 and dst_info.signedness == .unsigned) {
const slow_inc = self.hasFeature(.slow_incdec);
const abi_size: u32 = @intCast(dst_ty.abiSize(mod));
const limb_len = std.math.divCeil(u32, abi_size, 8) catch unreachable;
try self.spillRegisters(&.{ .rax, .rcx, .rdx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rax, .rcx, .rdx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genInlineMemset(
dst_mcv.address(),
.{ .immediate = 0 },
.{ .immediate = tuple_ty.abiSize(mod) },
.{},
);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const temp_regs =
try self.register_manager.allocRegs(4, .{null} ** 4, abi.RegisterClass.gp);
const temp_locks = self.register_manager.lockRegsAssumeUnused(4, temp_regs);
defer for (temp_locks) |lock| self.register_manager.unlockReg(lock);
try self.asmRegisterRegister(.{ ._, .xor }, temp_regs[0].to32(), temp_regs[0].to32());
const outer_loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterMemory(.{ ._, .mov }, temp_regs[1].to64(), .{
.base = .{ .frame = rhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[0].to64(),
.scale = .@"8",
.disp = rhs_mcv.load_frame.off,
} },
});
try self.asmRegisterRegister(.{ ._, .@"test" }, temp_regs[1].to64(), temp_regs[1].to64());
const skip_inner = try self.asmJccReloc(.z, undefined);
try self.asmRegisterRegister(.{ ._, .xor }, temp_regs[2].to32(), temp_regs[2].to32());
try self.asmRegisterRegister(.{ ._, .mov }, temp_regs[3].to32(), temp_regs[0].to32());
try self.asmRegisterRegister(.{ ._, .xor }, .ecx, .ecx);
try self.asmRegisterRegister(.{ ._, .xor }, .edx, .edx);
const inner_loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterImmediate(.{ ._r, .sh }, .cl, Immediate.u(1));
try self.asmMemoryRegister(.{ ._, .adc }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[3].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off +
@as(i32, @intCast(tuple_ty.structFieldOffset(0, mod))),
} },
}, .rdx);
try self.asmSetccRegister(.c, .cl);
try self.asmRegisterMemory(.{ ._, .mov }, .rax, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[2].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
});
try self.asmRegister(.{ ._, .mul }, temp_regs[1].to64());
try self.asmRegisterImmediate(.{ ._r, .sh }, .ch, Immediate.u(1));
try self.asmMemoryRegister(.{ ._, .adc }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[3].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off +
@as(i32, @intCast(tuple_ty.structFieldOffset(0, mod))),
} },
}, .rax);
try self.asmSetccRegister(.c, .ch);
if (slow_inc) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[2].to32(), Immediate.u(1));
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[3].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[2].to32());
try self.asmRegister(.{ ._, .inc }, temp_regs[3].to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[3].to32(),
Immediate.u(limb_len),
);
_ = try self.asmJccReloc(.b, inner_loop);
try self.asmRegisterRegister(.{ ._, .@"or" }, .rdx, .rcx);
const overflow = try self.asmJccReloc(.nz, undefined);
const overflow_loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[2].to32(),
Immediate.u(limb_len),
);
const no_overflow = try self.asmJccReloc(.nb, undefined);
if (slow_inc) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[2].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[2].to32());
}
try self.asmMemoryImmediate(.{ ._, .cmp }, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[2].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off - 8,
} },
}, Immediate.u(0));
_ = try self.asmJccReloc(.z, overflow_loop);
self.performReloc(overflow);
try self.asmMemoryImmediate(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .byte,
.disp = dst_mcv.load_frame.off +
@as(i32, @intCast(tuple_ty.structFieldOffset(1, mod))),
} },
}, Immediate.u(1));
self.performReloc(no_overflow);
self.performReloc(skip_inner);
if (slow_inc) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[0].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[0].to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[0].to32(),
Immediate.u(limb_len),
);
_ = try self.asmJccReloc(.b, outer_loop);
break :result dst_mcv;
}
const lhs_active_bits = self.activeIntBits(bin_op.lhs);
const rhs_active_bits = self.activeIntBits(bin_op.rhs);
const src_bits = @max(lhs_active_bits, rhs_active_bits, dst_info.bits / 2);
const src_ty = try mod.intType(dst_info.signedness, src_bits);
if (src_bits > 64 and src_bits <= 128 and
dst_info.bits > 64 and dst_info.bits <= 128) switch (dst_info.signedness) {
.signed => {
const ptr_c_int = try mod.singleMutPtrType(Type.c_int);
const overflow = try self.allocTempRegOrMem(Type.c_int, false);
const result = try self.genCall(.{ .lib = .{
.return_type = .i128_type,
.param_types = &.{ .i128_type, .i128_type, ptr_c_int.toIntern() },
.callee = "__muloti4",
} }, &.{ Type.i128, Type.i128, ptr_c_int }, &.{
.{ .air_ref = bin_op.lhs },
.{ .air_ref = bin_op.rhs },
overflow.address(),
});
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genSetMem(
.{ .frame = dst_mcv.load_frame.index },
@intCast(tuple_ty.structFieldOffset(0, mod)),
tuple_ty.structFieldType(0, mod),
result,
.{},
);
try self.asmMemoryImmediate(
.{ ._, .cmp },
try overflow.mem(self, self.memSize(Type.c_int)),
Immediate.s(0),
);
try self.genSetMem(
.{ .frame = dst_mcv.load_frame.index },
@intCast(tuple_ty.structFieldOffset(1, mod)),
tuple_ty.structFieldType(1, mod),
.{ .eflags = .ne },
.{},
);
try self.freeValue(overflow);
break :result dst_mcv;
},
.unsigned => {
try self.spillEflagsIfOccupied();
try self.spillRegisters(&.{ .rax, .rdx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(2, .{ .rax, .rdx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const tmp_regs =
try self.register_manager.allocRegs(4, .{null} ** 4, abi.RegisterClass.gp);
const tmp_locks = self.register_manager.lockRegsAssumeUnused(4, tmp_regs);
defer for (tmp_locks) |lock| self.register_manager.unlockReg(lock);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const mat_lhs_mcv = switch (lhs_mcv) {
.load_symbol => mat_lhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, lhs_mcv.address());
break :mat_lhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => lhs_mcv,
};
const mat_lhs_lock = switch (mat_lhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_lhs_lock) |lock| self.register_manager.unlockReg(lock);
const mat_rhs_mcv = switch (rhs_mcv) {
.load_symbol => mat_rhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, rhs_mcv.address());
break :mat_rhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => rhs_mcv,
};
const mat_rhs_lock = switch (mat_rhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_rhs_lock) |lock| self.register_manager.unlockReg(lock);
if (mat_lhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
.rax,
try mat_lhs_mcv.mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .mov },
.rax,
mat_lhs_mcv.register_pair[0],
);
if (mat_rhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
tmp_regs[0],
try mat_rhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .mov },
tmp_regs[0],
mat_rhs_mcv.register_pair[1],
);
try self.asmRegisterRegister(.{ ._, .@"test" }, tmp_regs[0], tmp_regs[0]);
try self.asmSetccRegister(.nz, tmp_regs[1].to8());
try self.asmRegisterRegister(.{ .i_, .mul }, tmp_regs[0], .rax);
try self.asmSetccRegister(.o, tmp_regs[2].to8());
if (mat_rhs_mcv.isMemory())
try self.asmMemory(.{ ._, .mul }, try mat_rhs_mcv.mem(self, .qword))
else
try self.asmRegister(.{ ._, .mul }, mat_rhs_mcv.register_pair[0]);
try self.asmRegisterRegister(.{ ._, .add }, .rdx, tmp_regs[0]);
try self.asmSetccRegister(.c, tmp_regs[3].to8());
try self.asmRegisterRegister(.{ ._, .@"or" }, tmp_regs[2].to8(), tmp_regs[3].to8());
if (mat_lhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
tmp_regs[0],
try mat_lhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._, .mov },
tmp_regs[0],
mat_lhs_mcv.register_pair[1],
);
try self.asmRegisterRegister(.{ ._, .@"test" }, tmp_regs[0], tmp_regs[0]);
try self.asmSetccRegister(.nz, tmp_regs[3].to8());
try self.asmRegisterRegister(
.{ ._, .@"and" },
tmp_regs[1].to8(),
tmp_regs[3].to8(),
);
try self.asmRegisterRegister(.{ ._, .@"or" }, tmp_regs[1].to8(), tmp_regs[2].to8());
if (mat_rhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ .i_, .mul },
tmp_regs[0],
try mat_rhs_mcv.mem(self, .qword),
) else try self.asmRegisterRegister(
.{ .i_, .mul },
tmp_regs[0],
mat_rhs_mcv.register_pair[0],
);
try self.asmSetccRegister(.o, tmp_regs[2].to8());
try self.asmRegisterRegister(.{ ._, .@"or" }, tmp_regs[1].to8(), tmp_regs[2].to8());
try self.asmRegisterRegister(.{ ._, .add }, .rdx, tmp_regs[0]);
try self.asmSetccRegister(.c, tmp_regs[2].to8());
try self.asmRegisterRegister(.{ ._, .@"or" }, tmp_regs[1].to8(), tmp_regs[2].to8());
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genSetMem(
.{ .frame = dst_mcv.load_frame.index },
@intCast(tuple_ty.structFieldOffset(0, mod)),
tuple_ty.structFieldType(0, mod),
.{ .register_pair = .{ .rax, .rdx } },
.{},
);
try self.genSetMem(
.{ .frame = dst_mcv.load_frame.index },
@intCast(tuple_ty.structFieldOffset(1, mod)),
tuple_ty.structFieldType(1, mod),
.{ .register = tmp_regs[1] },
.{},
);
break :result dst_mcv;
},
};
try self.spillEflagsIfOccupied();
try self.spillRegisters(&.{ .rax, .rcx, .rdx, .rdi, .rsi });
const reg_locks = self.register_manager.lockRegsAssumeUnused(5, .{ .rax, .rcx, .rdx, .rdi, .rsi });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const cc: Condition = switch (dst_info.signedness) {
.unsigned => .c,
.signed => .o,
};
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const extra_bits = if (dst_info.bits <= 64)
self.regExtraBits(dst_ty)
else
dst_info.bits % 64;
const partial_mcv = try self.genMulDivBinOp(.mul, null, dst_ty, src_ty, lhs, rhs);
switch (partial_mcv) {
.register => |reg| if (extra_bits == 0) {
self.eflags_inst = inst;
break :result .{ .register_overflow = .{ .reg = reg, .eflags = cc } };
} else {
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(tuple_ty, mod));
try self.genSetFrameTruncatedOverflowCompare(tuple_ty, frame_index, partial_mcv, cc);
break :result .{ .load_frame = .{ .index = frame_index } };
},
else => {
// For now, this is the only supported multiply that doesn't fit in a register.
if (dst_info.bits > 128 or src_bits != 64)
return self.fail("TODO implement airWithOverflow from {} to {}", .{
src_ty.fmt(mod), dst_ty.fmt(mod),
});
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(tuple_ty, mod));
if (dst_info.bits >= lhs_active_bits + rhs_active_bits) {
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(0, mod)),
tuple_ty.structFieldType(0, mod),
partial_mcv,
.{},
);
try self.genSetMem(
.{ .frame = frame_index },
@intCast(tuple_ty.structFieldOffset(1, mod)),
tuple_ty.structFieldType(1, mod),
.{ .immediate = 0 }, // cc being set is impossible
.{},
);
} else try self.genSetFrameTruncatedOverflowCompare(
tuple_ty,
frame_index,
partial_mcv,
null,
);
break :result .{ .load_frame = .{ .index = frame_index } };
},
}
},
else => unreachable,
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
/// Generates signed or unsigned integer multiplication/division.
/// Clobbers .rax and .rdx registers.
/// Quotient is saved in .rax and remainder in .rdx.
fn genIntMulDivOpMir(self: *Self, tag: Mir.Inst.FixedTag, ty: Type, lhs: MCValue, rhs: MCValue) !void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(ty.abiSize(mod));
const bit_size: u32 = @intCast(self.regBitSize(ty));
if (abi_size > 8) {
return self.fail("TODO implement genIntMulDivOpMir for ABI size larger than 8", .{});
}
try self.genSetReg(.rax, ty, lhs, .{});
switch (tag[1]) {
else => unreachable,
.mul => {},
.div => switch (tag[0]) {
._ => {
const hi_reg: Register =
switch (bit_size) {
8 => .ah,
16, 32, 64 => .edx,
else => unreachable,
};
try self.asmRegisterRegister(.{ ._, .xor }, hi_reg, hi_reg);
},
.i_ => try self.asmOpOnly(.{ ._, switch (bit_size) {
8 => .cbw,
16 => .cwd,
32 => .cdq,
64 => .cqo,
else => unreachable,
} }),
else => unreachable,
},
}
const mat_rhs: MCValue = switch (rhs) {
.register, .indirect, .load_frame => rhs,
else => .{ .register = try self.copyToTmpRegister(ty, rhs) },
};
switch (mat_rhs) {
.register => |reg| try self.asmRegister(tag, registerAlias(reg, abi_size)),
.memory, .indirect, .load_frame => try self.asmMemory(
tag,
try mat_rhs.mem(self, Memory.Size.fromSize(abi_size)),
),
else => unreachable,
}
if (tag[1] == .div and bit_size == 8) try self.asmRegisterRegister(.{ ._, .mov }, .dl, .ah);
}
/// Always returns a register.
/// Clobbers .rax and .rdx registers.
fn genInlineIntDivFloor(self: *Self, ty: Type, lhs: MCValue, rhs: MCValue) !MCValue {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(ty.abiSize(mod));
const int_info = ty.intInfo(mod);
const dividend = switch (lhs) {
.register => |reg| reg,
else => try self.copyToTmpRegister(ty, lhs),
};
const dividend_lock = self.register_manager.lockReg(dividend);
defer if (dividend_lock) |lock| self.register_manager.unlockReg(lock);
const divisor = switch (rhs) {
.register => |reg| reg,
else => try self.copyToTmpRegister(ty, rhs),
};
const divisor_lock = self.register_manager.lockReg(divisor);
defer if (divisor_lock) |lock| self.register_manager.unlockReg(lock);
try self.genIntMulDivOpMir(
switch (int_info.signedness) {
.signed => .{ .i_, .div },
.unsigned => .{ ._, .div },
},
ty,
.{ .register = dividend },
.{ .register = divisor },
);
try self.asmRegisterRegister(
.{ ._, .xor },
registerAlias(divisor, abi_size),
registerAlias(dividend, abi_size),
);
try self.asmRegisterImmediate(
.{ ._r, .sa },
registerAlias(divisor, abi_size),
Immediate.u(int_info.bits - 1),
);
try self.asmRegisterRegister(
.{ ._, .@"test" },
registerAlias(.rdx, abi_size),
registerAlias(.rdx, abi_size),
);
try self.asmCmovccRegisterRegister(
.z,
registerAlias(divisor, @max(abi_size, 2)),
registerAlias(.rdx, @max(abi_size, 2)),
);
try self.genBinOpMir(.{ ._, .add }, ty, .{ .register = divisor }, .{ .register = .rax });
return MCValue{ .register = divisor };
}
fn airShlShrBinOp(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const air_tags = self.air.instructions.items(.tag);
const tag = air_tags[@intFromEnum(inst)];
const lhs_ty = self.typeOf(bin_op.lhs);
const rhs_ty = self.typeOf(bin_op.rhs);
const result: MCValue = result: {
switch (lhs_ty.zigTypeTag(mod)) {
.Int => {
try self.spillRegisters(&.{.rcx});
try self.register_manager.getReg(.rcx, null);
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const dst_mcv = try self.genShiftBinOp(tag, inst, lhs_mcv, rhs_mcv, lhs_ty, rhs_ty);
switch (tag) {
.shr, .shr_exact, .shl_exact => {},
.shl => switch (dst_mcv) {
.register => |dst_reg| try self.truncateRegister(lhs_ty, dst_reg),
.register_pair => |dst_regs| try self.truncateRegister(lhs_ty, dst_regs[1]),
.load_frame => |frame_addr| {
const tmp_reg =
try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const lhs_bits: u31 = @intCast(lhs_ty.bitSize(mod));
const tmp_ty = if (lhs_bits > 64) Type.usize else lhs_ty;
const off = frame_addr.off + (lhs_bits - 1) / 64 * 8;
try self.genSetReg(
tmp_reg,
tmp_ty,
.{ .load_frame = .{ .index = frame_addr.index, .off = off } },
.{},
);
try self.truncateRegister(lhs_ty, tmp_reg);
try self.genSetMem(
.{ .frame = frame_addr.index },
off,
tmp_ty,
.{ .register = tmp_reg },
.{},
);
},
else => {},
},
else => unreachable,
}
break :result dst_mcv;
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Int => if (@as(?Mir.Inst.FixedTag, switch (lhs_ty.childType(mod).intInfo(mod).bits) {
else => null,
16 => switch (lhs_ty.vectorLen(mod)) {
else => null,
1...8 => switch (tag) {
else => unreachable,
.shr, .shr_exact => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_w, .sra }
else
.{ .p_w, .sra },
.unsigned => if (self.hasFeature(.avx))
.{ .vp_w, .srl }
else
.{ .p_w, .srl },
},
.shl, .shl_exact => if (self.hasFeature(.avx))
.{ .vp_w, .sll }
else
.{ .p_w, .sll },
},
9...16 => switch (tag) {
else => unreachable,
.shr, .shr_exact => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_w, .sra } else null,
.unsigned => if (self.hasFeature(.avx2)) .{ .vp_w, .srl } else null,
},
.shl, .shl_exact => if (self.hasFeature(.avx2)) .{ .vp_w, .sll } else null,
},
},
32 => switch (lhs_ty.vectorLen(mod)) {
else => null,
1...4 => switch (tag) {
else => unreachable,
.shr, .shr_exact => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_d, .sra }
else
.{ .p_d, .sra },
.unsigned => if (self.hasFeature(.avx))
.{ .vp_d, .srl }
else
.{ .p_d, .srl },
},
.shl, .shl_exact => if (self.hasFeature(.avx))
.{ .vp_d, .sll }
else
.{ .p_d, .sll },
},
5...8 => switch (tag) {
else => unreachable,
.shr, .shr_exact => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_d, .sra } else null,
.unsigned => if (self.hasFeature(.avx2)) .{ .vp_d, .srl } else null,
},
.shl, .shl_exact => if (self.hasFeature(.avx2)) .{ .vp_d, .sll } else null,
},
},
64 => switch (lhs_ty.vectorLen(mod)) {
else => null,
1...2 => switch (tag) {
else => unreachable,
.shr, .shr_exact => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_q, .sra }
else
.{ .p_q, .sra },
.unsigned => if (self.hasFeature(.avx))
.{ .vp_q, .srl }
else
.{ .p_q, .srl },
},
.shl, .shl_exact => if (self.hasFeature(.avx))
.{ .vp_q, .sll }
else
.{ .p_q, .sll },
},
3...4 => switch (tag) {
else => unreachable,
.shr, .shr_exact => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_q, .sra } else null,
.unsigned => if (self.hasFeature(.avx2)) .{ .vp_q, .srl } else null,
},
.shl, .shl_exact => if (self.hasFeature(.avx2)) .{ .vp_q, .sll } else null,
},
},
})) |mir_tag| if (try self.air.value(bin_op.rhs, mod)) |rhs_val| {
switch (mod.intern_pool.indexToKey(rhs_val.toIntern())) {
.aggregate => |rhs_aggregate| switch (rhs_aggregate.storage) {
.repeated_elem => |rhs_elem| {
const abi_size: u32 = @intCast(lhs_ty.abiSize(mod));
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const dst_reg, const lhs_reg = if (lhs_mcv.isRegister() and
self.reuseOperand(inst, bin_op.lhs, 0, lhs_mcv))
.{lhs_mcv.getReg().?} ** 2
else if (lhs_mcv.isRegister() and self.hasFeature(.avx)) .{
try self.register_manager.allocReg(inst, abi.RegisterClass.sse),
lhs_mcv.getReg().?,
} else .{(try self.copyToRegisterWithInstTracking(
inst,
lhs_ty,
lhs_mcv,
)).register} ** 2;
const reg_locks =
self.register_manager.lockRegs(2, .{ dst_reg, lhs_reg });
defer for (reg_locks) |reg_lock| if (reg_lock) |lock|
self.register_manager.unlockReg(lock);
const shift_imm =
Immediate.u(@intCast(Value.fromInterned(rhs_elem).toUnsignedInt(mod)));
if (self.hasFeature(.avx)) try self.asmRegisterRegisterImmediate(
mir_tag,
registerAlias(dst_reg, abi_size),
registerAlias(lhs_reg, abi_size),
shift_imm,
) else {
assert(dst_reg.id() == lhs_reg.id());
try self.asmRegisterImmediate(
mir_tag,
registerAlias(dst_reg, abi_size),
shift_imm,
);
}
break :result .{ .register = dst_reg };
},
else => {},
},
else => {},
}
} else if (bin_op.rhs.toIndex()) |rhs_inst| switch (air_tags[@intFromEnum(rhs_inst)]) {
.splat => {
const abi_size: u32 = @intCast(lhs_ty.abiSize(mod));
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const dst_reg, const lhs_reg = if (lhs_mcv.isRegister() and
self.reuseOperand(inst, bin_op.lhs, 0, lhs_mcv))
.{lhs_mcv.getReg().?} ** 2
else if (lhs_mcv.isRegister() and self.hasFeature(.avx)) .{
try self.register_manager.allocReg(inst, abi.RegisterClass.sse),
lhs_mcv.getReg().?,
} else .{(try self.copyToRegisterWithInstTracking(
inst,
lhs_ty,
lhs_mcv,
)).register} ** 2;
const reg_locks = self.register_manager.lockRegs(2, .{ dst_reg, lhs_reg });
defer for (reg_locks) |reg_lock| if (reg_lock) |lock|
self.register_manager.unlockReg(lock);
const shift_reg =
try self.copyToTmpRegister(rhs_ty, .{ .air_ref = bin_op.rhs });
const shift_lock = self.register_manager.lockRegAssumeUnused(shift_reg);
defer self.register_manager.unlockReg(shift_lock);
const mask_ty = try mod.vectorType(.{ .len = 16, .child = .u8_type });
const mask_mcv = try self.genTypedValue(.{
.ty = mask_ty,
.val = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = mask_ty.toIntern(),
.storage = .{ .elems = &([1]InternPool.Index{
(try rhs_ty.childType(mod).maxIntScalar(mod, Type.u8)).toIntern(),
} ++ [1]InternPool.Index{
(try mod.intValue(Type.u8, 0)).toIntern(),
} ** 15) },
} }))),
});
const mask_addr_reg =
try self.copyToTmpRegister(Type.usize, mask_mcv.address());
const mask_addr_lock = self.register_manager.lockRegAssumeUnused(mask_addr_reg);
defer self.register_manager.unlockReg(mask_addr_lock);
if (self.hasFeature(.avx)) {
try self.asmRegisterRegisterMemory(
.{ .vp_, .@"and" },
shift_reg.to128(),
shift_reg.to128(),
.{
.base = .{ .reg = mask_addr_reg },
.mod = .{ .rm = .{ .size = .xword } },
},
);
try self.asmRegisterRegisterRegister(
mir_tag,
registerAlias(dst_reg, abi_size),
registerAlias(lhs_reg, abi_size),
shift_reg.to128(),
);
} else {
try self.asmRegisterMemory(
.{ .p_, .@"and" },
shift_reg.to128(),
.{
.base = .{ .reg = mask_addr_reg },
.mod = .{ .rm = .{ .size = .xword } },
},
);
assert(dst_reg.id() == lhs_reg.id());
try self.asmRegisterRegister(
mir_tag,
registerAlias(dst_reg, abi_size),
shift_reg.to128(),
);
}
break :result .{ .register = dst_reg };
},
else => {},
},
else => {},
},
else => {},
}
return self.fail("TODO implement airShlShrBinOp for {}", .{lhs_ty.fmt(mod)});
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airShlSat(self: *Self, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
_ = bin_op;
return self.fail("TODO implement shl_sat for {}", .{self.target.cpu.arch});
//return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const pl_ty = self.typeOfIndex(inst);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .none;
const opt_mcv = try self.resolveInst(ty_op.operand);
if (self.reuseOperand(inst, ty_op.operand, 0, opt_mcv)) {
const pl_mcv: MCValue = switch (opt_mcv) {
.register_overflow => |ro| pl: {
self.eflags_inst = null; // actually stop tracking the overflow part
break :pl .{ .register = ro.reg };
},
else => opt_mcv,
};
switch (pl_mcv) {
.register => |pl_reg| try self.truncateRegister(pl_ty, pl_reg),
else => {},
}
break :result pl_mcv;
}
const pl_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(pl_ty, pl_mcv, switch (opt_mcv) {
else => opt_mcv,
.register_overflow => |ro| .{ .register = ro.reg },
}, .{});
break :result pl_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airOptionalPayloadPtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const opt_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (self.reuseOperand(inst, ty_op.operand, 0, opt_mcv))
opt_mcv
else
try self.copyToRegisterWithInstTracking(inst, dst_ty, opt_mcv);
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airOptionalPayloadPtrSet(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = result: {
const dst_ty = self.typeOfIndex(inst);
const src_ty = self.typeOf(ty_op.operand);
const opt_ty = src_ty.childType(mod);
const src_mcv = try self.resolveInst(ty_op.operand);
if (opt_ty.optionalReprIsPayload(mod)) {
break :result if (self.liveness.isUnused(inst))
.unreach
else if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, dst_ty, src_mcv);
}
const dst_mcv: MCValue = if (src_mcv.isRegister() and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else if (self.liveness.isUnused(inst))
.{ .register = try self.copyToTmpRegister(dst_ty, src_mcv) }
else
try self.copyToRegisterWithInstTracking(inst, dst_ty, src_mcv);
const pl_ty = dst_ty.childType(mod);
const pl_abi_size: i32 = @intCast(pl_ty.abiSize(mod));
try self.genSetMem(
.{ .reg = dst_mcv.getReg().? },
pl_abi_size,
Type.bool,
.{ .immediate = 1 },
.{},
);
break :result if (self.liveness.isUnused(inst)) .unreach else dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airUnwrapErrUnionErr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOf(ty_op.operand);
const err_ty = err_union_ty.errorUnionSet(mod);
const payload_ty = err_union_ty.errorUnionPayload(mod);
const operand = try self.resolveInst(ty_op.operand);
const result: MCValue = result: {
if (err_ty.errorSetIsEmpty(mod)) {
break :result MCValue{ .immediate = 0 };
}
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
break :result operand;
}
const err_off = errUnionErrorOffset(payload_ty, mod);
switch (operand) {
.register => |reg| {
// TODO reuse operand
const eu_lock = self.register_manager.lockReg(reg);
defer if (eu_lock) |lock| self.register_manager.unlockReg(lock);
const result = try self.copyToRegisterWithInstTracking(inst, err_union_ty, operand);
if (err_off > 0) try self.genShiftBinOpMir(
.{ ._r, .sh },
err_union_ty,
result,
Type.u8,
.{ .immediate = @as(u6, @intCast(err_off * 8)) },
) else try self.truncateRegister(Type.anyerror, result.register);
break :result result;
},
.load_frame => |frame_addr| break :result .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + @as(i32, @intCast(err_off)),
} },
else => return self.fail("TODO implement unwrap_err_err for {}", .{operand}),
}
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airUnwrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_ty = self.typeOf(ty_op.operand);
const operand = try self.resolveInst(ty_op.operand);
const result = try self.genUnwrapErrUnionPayloadMir(inst, operand_ty, operand);
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
// *(E!T) -> E
fn airUnwrapErrUnionErrPtr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src_ty = self.typeOf(ty_op.operand);
const src_mcv = try self.resolveInst(ty_op.operand);
const src_reg = switch (src_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(src_ty, src_mcv),
};
const src_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_lock);
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
const eu_ty = src_ty.childType(mod);
const pl_ty = eu_ty.errorUnionPayload(mod);
const err_ty = eu_ty.errorUnionSet(mod);
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, mod));
const err_abi_size: u32 = @intCast(err_ty.abiSize(mod));
try self.asmRegisterMemory(
.{ ._, .mov },
registerAlias(dst_reg, err_abi_size),
.{
.base = .{ .reg = src_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(err_abi_size),
.disp = err_off,
} },
},
);
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
// *(E!T) -> *T
fn airUnwrapErrUnionPayloadPtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_ty = self.typeOf(ty_op.operand);
const operand = try self.resolveInst(ty_op.operand);
const result = try self.genUnwrapErrUnionPayloadPtrMir(inst, operand_ty, operand);
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airErrUnionPayloadPtrSet(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const src_ty = self.typeOf(ty_op.operand);
const src_mcv = try self.resolveInst(ty_op.operand);
const src_reg = switch (src_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(src_ty, src_mcv),
};
const src_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_lock);
const eu_ty = src_ty.childType(mod);
const pl_ty = eu_ty.errorUnionPayload(mod);
const err_ty = eu_ty.errorUnionSet(mod);
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, mod));
const err_abi_size: u32 = @intCast(err_ty.abiSize(mod));
try self.asmMemoryImmediate(
.{ ._, .mov },
.{
.base = .{ .reg = src_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(err_abi_size),
.disp = err_off,
} },
},
Immediate.u(0),
);
if (self.liveness.isUnused(inst)) break :result .unreach;
const dst_ty = self.typeOfIndex(inst);
const dst_reg = if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_reg
else
try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const pl_off: i32 = @intCast(errUnionPayloadOffset(pl_ty, mod));
const dst_abi_size: u32 = @intCast(dst_ty.abiSize(mod));
try self.asmRegisterMemory(
.{ ._, .lea },
registerAlias(dst_reg, dst_abi_size),
.{
.base = .{ .reg = src_reg },
.mod = .{ .rm = .{ .size = .qword, .disp = pl_off } },
},
);
break :result .{ .register = dst_reg };
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn genUnwrapErrUnionPayloadMir(
self: *Self,
maybe_inst: ?Air.Inst.Index,
err_union_ty: Type,
err_union: MCValue,
) !MCValue {
const mod = self.bin_file.comp.module.?;
const payload_ty = err_union_ty.errorUnionPayload(mod);
const result: MCValue = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .none;
const payload_off: u31 = @intCast(errUnionPayloadOffset(payload_ty, mod));
switch (err_union) {
.load_frame => |frame_addr| break :result .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + payload_off,
} },
.register => |reg| {
// TODO reuse operand
const eu_lock = self.register_manager.lockReg(reg);
defer if (eu_lock) |lock| self.register_manager.unlockReg(lock);
const payload_in_gp = self.regClassForType(payload_ty).supersetOf(abi.RegisterClass.gp);
const result_mcv: MCValue = if (payload_in_gp and maybe_inst != null)
try self.copyToRegisterWithInstTracking(maybe_inst.?, err_union_ty, err_union)
else
.{ .register = try self.copyToTmpRegister(err_union_ty, err_union) };
if (payload_off > 0) try self.genShiftBinOpMir(
.{ ._r, .sh },
err_union_ty,
result_mcv,
Type.u8,
.{ .immediate = @as(u6, @intCast(payload_off * 8)) },
) else try self.truncateRegister(payload_ty, result_mcv.register);
break :result if (payload_in_gp)
result_mcv
else if (maybe_inst) |inst|
try self.copyToRegisterWithInstTracking(inst, payload_ty, result_mcv)
else
.{ .register = try self.copyToTmpRegister(payload_ty, result_mcv) };
},
else => return self.fail("TODO implement genUnwrapErrUnionPayloadMir for {}", .{err_union}),
}
};
return result;
}
fn genUnwrapErrUnionPayloadPtrMir(
self: *Self,
maybe_inst: ?Air.Inst.Index,
ptr_ty: Type,
ptr_mcv: MCValue,
) !MCValue {
const mod = self.bin_file.comp.module.?;
const err_union_ty = ptr_ty.childType(mod);
const payload_ty = err_union_ty.errorUnionPayload(mod);
const result: MCValue = result: {
const payload_off = errUnionPayloadOffset(payload_ty, mod);
const result_mcv: MCValue = if (maybe_inst) |inst|
try self.copyToRegisterWithInstTracking(inst, ptr_ty, ptr_mcv)
else
.{ .register = try self.copyToTmpRegister(ptr_ty, ptr_mcv) };
try self.genBinOpMir(.{ ._, .add }, ptr_ty, result_mcv, .{ .immediate = payload_off });
break :result result_mcv;
};
return result;
}
fn airErrReturnTrace(self: *Self, inst: Air.Inst.Index) !void {
_ = inst;
return self.fail("TODO implement airErrReturnTrace for {}", .{self.target.cpu.arch});
//return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn airSetErrReturnTrace(self: *Self, inst: Air.Inst.Index) !void {
_ = inst;
return self.fail("TODO implement airSetErrReturnTrace for {}", .{self.target.cpu.arch});
}
fn airSaveErrReturnTraceIndex(self: *Self, inst: Air.Inst.Index) !void {
_ = inst;
return self.fail("TODO implement airSaveErrReturnTraceIndex for {}", .{self.target.cpu.arch});
}
fn airWrapOptional(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const pl_ty = self.typeOf(ty_op.operand);
if (!pl_ty.hasRuntimeBits(mod)) break :result .{ .immediate = 1 };
const opt_ty = self.typeOfIndex(inst);
const pl_mcv = try self.resolveInst(ty_op.operand);
const same_repr = opt_ty.optionalReprIsPayload(mod);
if (same_repr and self.reuseOperand(inst, ty_op.operand, 0, pl_mcv)) break :result pl_mcv;
const pl_lock: ?RegisterLock = switch (pl_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (pl_lock) |lock| self.register_manager.unlockReg(lock);
const opt_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(pl_ty, opt_mcv, pl_mcv, .{});
if (!same_repr) {
const pl_abi_size: i32 = @intCast(pl_ty.abiSize(mod));
switch (opt_mcv) {
else => unreachable,
.register => |opt_reg| {
try self.truncateRegister(pl_ty, opt_reg);
try self.asmRegisterImmediate(
.{ ._s, .bt },
opt_reg,
Immediate.u(@as(u6, @intCast(pl_abi_size * 8))),
);
},
.load_frame => |frame_addr| try self.asmMemoryImmediate(
.{ ._, .mov },
.{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = .byte,
.disp = frame_addr.off + pl_abi_size,
} },
},
Immediate.u(1),
),
}
}
break :result opt_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
/// T to E!T
fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const eu_ty = ty_op.ty.toType();
const pl_ty = eu_ty.errorUnionPayload(mod);
const err_ty = eu_ty.errorUnionSet(mod);
const operand = try self.resolveInst(ty_op.operand);
const result: MCValue = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .{ .immediate = 0 };
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(eu_ty, mod));
const pl_off: i32 = @intCast(errUnionPayloadOffset(pl_ty, mod));
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, mod));
try self.genSetMem(.{ .frame = frame_index }, pl_off, pl_ty, operand, .{});
try self.genSetMem(.{ .frame = frame_index }, err_off, err_ty, .{ .immediate = 0 }, .{});
break :result .{ .load_frame = .{ .index = frame_index } };
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
/// E to E!T
fn airWrapErrUnionErr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const eu_ty = ty_op.ty.toType();
const pl_ty = eu_ty.errorUnionPayload(mod);
const err_ty = eu_ty.errorUnionSet(mod);
const result: MCValue = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result try self.resolveInst(ty_op.operand);
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(eu_ty, mod));
const pl_off: i32 = @intCast(errUnionPayloadOffset(pl_ty, mod));
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, mod));
try self.genSetMem(.{ .frame = frame_index }, pl_off, pl_ty, .undef, .{});
const operand = try self.resolveInst(ty_op.operand);
try self.genSetMem(.{ .frame = frame_index }, err_off, err_ty, operand, .{});
break :result .{ .load_frame = .{ .index = frame_index } };
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSlicePtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = result: {
const src_mcv = try self.resolveInst(ty_op.operand);
if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result src_mcv;
const dst_mcv = try self.allocRegOrMem(inst, true);
const dst_ty = self.typeOfIndex(inst);
try self.genCopy(dst_ty, dst_mcv, src_mcv, .{});
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSliceLen(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const src_mcv = try self.resolveInst(ty_op.operand);
switch (src_mcv) {
.load_frame => |frame_addr| {
const len_mcv: MCValue = .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + 8,
} };
if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result len_mcv;
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(Type.usize, dst_mcv, len_mcv, .{});
break :result dst_mcv;
},
else => return self.fail("TODO implement slice_len for {}", .{src_mcv}),
}
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airPtrSliceLenPtr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src_ty = self.typeOf(ty_op.operand);
const src_mcv = try self.resolveInst(ty_op.operand);
const src_reg = switch (src_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(src_ty, src_mcv),
};
const src_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_lock);
const dst_ty = self.typeOfIndex(inst);
const dst_reg = if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_reg
else
try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const dst_abi_size: u32 = @intCast(dst_ty.abiSize(mod));
try self.asmRegisterMemory(
.{ ._, .lea },
registerAlias(dst_reg, dst_abi_size),
.{
.base = .{ .reg = src_reg },
.mod = .{ .rm = .{ .size = .qword, .disp = 8 } },
},
);
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airPtrSlicePtrPtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const opt_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (self.reuseOperand(inst, ty_op.operand, 0, opt_mcv))
opt_mcv
else
try self.copyToRegisterWithInstTracking(inst, dst_ty, opt_mcv);
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn elemOffset(self: *Self, index_ty: Type, index: MCValue, elem_size: u64) !Register {
const reg: Register = blk: {
switch (index) {
.immediate => |imm| {
// Optimisation: if index MCValue is an immediate, we can multiply in `comptime`
// and set the register directly to the scaled offset as an immediate.
const reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
try self.genSetReg(reg, index_ty, .{ .immediate = imm * elem_size }, .{});
break :blk reg;
},
else => {
const reg = try self.copyToTmpRegister(index_ty, index);
try self.genIntMulComplexOpMir(index_ty, .{ .register = reg }, .{ .immediate = elem_size });
break :blk reg;
},
}
};
return reg;
}
fn genSliceElemPtr(self: *Self, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref) !MCValue {
const mod = self.bin_file.comp.module.?;
const slice_ty = self.typeOf(lhs);
const slice_mcv = try self.resolveInst(lhs);
const slice_mcv_lock: ?RegisterLock = switch (slice_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (slice_mcv_lock) |lock| self.register_manager.unlockReg(lock);
const elem_ty = slice_ty.childType(mod);
const elem_size = elem_ty.abiSize(mod);
const slice_ptr_field_type = slice_ty.slicePtrFieldType(mod);
const index_ty = self.typeOf(rhs);
const index_mcv = try self.resolveInst(rhs);
const index_mcv_lock: ?RegisterLock = switch (index_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_mcv_lock) |lock| self.register_manager.unlockReg(lock);
const offset_reg = try self.elemOffset(index_ty, index_mcv, elem_size);
const offset_reg_lock = self.register_manager.lockRegAssumeUnused(offset_reg);
defer self.register_manager.unlockReg(offset_reg_lock);
const addr_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
try self.genSetReg(addr_reg, Type.usize, slice_mcv, .{});
// TODO we could allocate register here, but need to expect addr register and potentially
// offset register.
try self.genBinOpMir(.{ ._, .add }, slice_ptr_field_type, .{ .register = addr_reg }, .{
.register = offset_reg,
});
return MCValue{ .register = addr_reg.to64() };
}
fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = result: {
const elem_ty = self.typeOfIndex(inst);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .none;
const slice_ty = self.typeOf(bin_op.lhs);
const slice_ptr_field_type = slice_ty.slicePtrFieldType(mod);
const elem_ptr = try self.genSliceElemPtr(bin_op.lhs, bin_op.rhs);
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.load(dst_mcv, slice_ptr_field_type, elem_ptr);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airSliceElemPtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const dst_mcv = try self.genSliceElemPtr(extra.lhs, extra.rhs);
return self.finishAir(inst, dst_mcv, .{ extra.lhs, extra.rhs, .none });
}
fn airArrayElemVal(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = result: {
const array_ty = self.typeOf(bin_op.lhs);
const elem_ty = array_ty.childType(mod);
const array_mcv = try self.resolveInst(bin_op.lhs);
const array_lock: ?RegisterLock = switch (array_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (array_lock) |lock| self.register_manager.unlockReg(lock);
const index_ty = self.typeOf(bin_op.rhs);
const index_mcv = try self.resolveInst(bin_op.rhs);
const index_lock: ?RegisterLock = switch (index_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_lock) |lock| self.register_manager.unlockReg(lock);
try self.spillEflagsIfOccupied();
if (array_ty.isVector(mod) and elem_ty.bitSize(mod) == 1) {
const index_reg = switch (index_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(index_ty, index_mcv),
};
switch (array_mcv) {
.register => |array_reg| switch (array_reg.class()) {
.general_purpose => try self.asmRegisterRegister(
.{ ._, .bt },
array_reg.to64(),
index_reg.to64(),
),
.sse => {
const frame_index = try self.allocFrameIndex(FrameAlloc.initType(array_ty, mod));
try self.genSetMem(.{ .frame = frame_index }, 0, array_ty, array_mcv, .{});
try self.asmMemoryRegister(
.{ ._, .bt },
.{
.base = .{ .frame = frame_index },
.mod = .{ .rm = .{ .size = .qword } },
},
index_reg.to64(),
);
},
else => unreachable,
},
.load_frame => try self.asmMemoryRegister(
.{ ._, .bt },
try array_mcv.mem(self, .qword),
index_reg.to64(),
),
.memory, .load_symbol, .load_direct, .load_got, .load_tlv => try self.asmMemoryRegister(
.{ ._, .bt },
.{
.base = .{
.reg = try self.copyToTmpRegister(Type.usize, array_mcv.address()),
},
.mod = .{ .rm = .{ .size = .qword } },
},
index_reg.to64(),
),
else => return self.fail("TODO airArrayElemVal for {s} of {}", .{
@tagName(array_mcv), array_ty.fmt(mod),
}),
}
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
try self.asmSetccRegister(.c, dst_reg.to8());
break :result .{ .register = dst_reg };
}
const elem_abi_size = elem_ty.abiSize(mod);
const addr_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
switch (array_mcv) {
.register => {
const frame_index = try self.allocFrameIndex(FrameAlloc.initType(array_ty, mod));
try self.genSetMem(.{ .frame = frame_index }, 0, array_ty, array_mcv, .{});
try self.asmRegisterMemory(
.{ ._, .lea },
addr_reg,
.{ .base = .{ .frame = frame_index }, .mod = .{ .rm = .{ .size = .qword } } },
);
},
.load_frame => |frame_addr| try self.asmRegisterMemory(
.{ ._, .lea },
addr_reg,
.{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{ .size = .qword, .disp = frame_addr.off } },
},
),
.memory,
.load_symbol,
.load_direct,
.load_got,
.load_tlv,
=> try self.genSetReg(addr_reg, Type.usize, array_mcv.address(), .{}),
.lea_symbol, .lea_direct, .lea_tlv => unreachable,
else => return self.fail("TODO airArrayElemVal_val for {s} of {}", .{
@tagName(array_mcv), array_ty.fmt(mod),
}),
}
const offset_reg = try self.elemOffset(index_ty, index_mcv, elem_abi_size);
const offset_lock = self.register_manager.lockRegAssumeUnused(offset_reg);
defer self.register_manager.unlockReg(offset_lock);
// TODO we could allocate register here, but need to expect addr register and potentially
// offset register.
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genBinOpMir(
.{ ._, .add },
Type.usize,
.{ .register = addr_reg },
.{ .register = offset_reg },
);
try self.genCopy(elem_ty, dst_mcv, .{ .indirect = .{ .reg = addr_reg } }, .{});
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
// this is identical to the `airPtrElemPtr` codegen expect here an
// additional `mov` is needed at the end to get the actual value
const result = result: {
const elem_ty = ptr_ty.elemType2(mod);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .none;
const elem_abi_size: u32 = @intCast(elem_ty.abiSize(mod));
const index_ty = self.typeOf(bin_op.rhs);
const index_mcv = try self.resolveInst(bin_op.rhs);
const index_lock = switch (index_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_lock) |lock| self.register_manager.unlockReg(lock);
const offset_reg = try self.elemOffset(index_ty, index_mcv, elem_abi_size);
const offset_lock = self.register_manager.lockRegAssumeUnused(offset_reg);
defer self.register_manager.unlockReg(offset_lock);
const ptr_mcv = try self.resolveInst(bin_op.lhs);
const elem_ptr_reg = if (ptr_mcv.isRegister() and self.liveness.operandDies(inst, 0))
ptr_mcv.register
else
try self.copyToTmpRegister(ptr_ty, ptr_mcv);
const elem_ptr_lock = self.register_manager.lockRegAssumeUnused(elem_ptr_reg);
defer self.register_manager.unlockReg(elem_ptr_lock);
try self.asmRegisterRegister(
.{ ._, .add },
elem_ptr_reg,
offset_reg,
);
const dst_mcv = try self.allocRegOrMem(inst, true);
const dst_lock = switch (dst_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
try self.load(dst_mcv, ptr_ty, .{ .register = elem_ptr_reg });
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const result = result: {
const elem_ptr_ty = self.typeOfIndex(inst);
const base_ptr_ty = self.typeOf(extra.lhs);
const base_ptr_mcv = try self.resolveInst(extra.lhs);
const base_ptr_lock: ?RegisterLock = switch (base_ptr_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (base_ptr_lock) |lock| self.register_manager.unlockReg(lock);
if (elem_ptr_ty.ptrInfo(mod).flags.vector_index != .none) {
break :result if (self.reuseOperand(inst, extra.lhs, 0, base_ptr_mcv))
base_ptr_mcv
else
try self.copyToRegisterWithInstTracking(inst, elem_ptr_ty, base_ptr_mcv);
}
const elem_ty = base_ptr_ty.elemType2(mod);
const elem_abi_size = elem_ty.abiSize(mod);
const index_ty = self.typeOf(extra.rhs);
const index_mcv = try self.resolveInst(extra.rhs);
const index_lock: ?RegisterLock = switch (index_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_lock) |lock| self.register_manager.unlockReg(lock);
const offset_reg = try self.elemOffset(index_ty, index_mcv, elem_abi_size);
const offset_reg_lock = self.register_manager.lockRegAssumeUnused(offset_reg);
defer self.register_manager.unlockReg(offset_reg_lock);
const dst_mcv = try self.copyToRegisterWithInstTracking(inst, elem_ptr_ty, base_ptr_mcv);
try self.genBinOpMir(.{ ._, .add }, elem_ptr_ty, dst_mcv, .{ .register = offset_reg });
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
}
fn airSetUnionTag(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_union_ty = self.typeOf(bin_op.lhs);
const union_ty = ptr_union_ty.childType(mod);
const tag_ty = self.typeOf(bin_op.rhs);
const layout = union_ty.unionGetLayout(mod);
if (layout.tag_size == 0) {
return self.finishAir(inst, .none, .{ bin_op.lhs, bin_op.rhs, .none });
}
const ptr = try self.resolveInst(bin_op.lhs);
const ptr_lock: ?RegisterLock = switch (ptr) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (ptr_lock) |lock| self.register_manager.unlockReg(lock);
const tag = try self.resolveInst(bin_op.rhs);
const tag_lock: ?RegisterLock = switch (tag) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (tag_lock) |lock| self.register_manager.unlockReg(lock);
const adjusted_ptr: MCValue = if (layout.payload_size > 0 and layout.tag_align.compare(.lt, layout.payload_align)) blk: {
// TODO reusing the operand
const reg = try self.copyToTmpRegister(ptr_union_ty, ptr);
try self.genBinOpMir(
.{ ._, .add },
ptr_union_ty,
.{ .register = reg },
.{ .immediate = layout.payload_size },
);
break :blk MCValue{ .register = reg };
} else ptr;
const ptr_tag_ty = try mod.adjustPtrTypeChild(ptr_union_ty, tag_ty);
try self.store(ptr_tag_ty, adjusted_ptr, tag, .{});
return self.finishAir(inst, .none, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airGetUnionTag(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const tag_ty = self.typeOfIndex(inst);
const union_ty = self.typeOf(ty_op.operand);
const layout = union_ty.unionGetLayout(mod);
if (layout.tag_size == 0) {
return self.finishAir(inst, .none, .{ ty_op.operand, .none, .none });
}
// TODO reusing the operand
const operand = try self.resolveInst(ty_op.operand);
const operand_lock: ?RegisterLock = switch (operand) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (operand_lock) |lock| self.register_manager.unlockReg(lock);
const tag_abi_size = tag_ty.abiSize(mod);
const dst_mcv: MCValue = blk: {
switch (operand) {
.load_frame => |frame_addr| {
if (tag_abi_size <= 8) {
const off: i32 = if (layout.tag_align.compare(.lt, layout.payload_align))
@intCast(layout.payload_size)
else
0;
break :blk try self.copyToRegisterWithInstTracking(inst, tag_ty, .{
.load_frame = .{ .index = frame_addr.index, .off = frame_addr.off + off },
});
}
return self.fail(
"TODO implement get_union_tag for ABI larger than 8 bytes and operand {}",
.{operand},
);
},
.register => {
const shift: u6 = if (layout.tag_align.compare(.lt, layout.payload_align))
@intCast(layout.payload_size * 8)
else
0;
const result = try self.copyToRegisterWithInstTracking(inst, union_ty, operand);
try self.genShiftBinOpMir(
.{ ._r, .sh },
Type.usize,
result,
Type.u8,
.{ .immediate = shift },
);
break :blk MCValue{
.register = registerAlias(result.register, @intCast(layout.tag_size)),
};
},
else => return self.fail("TODO implement get_union_tag for {}", .{operand}),
}
};
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airClz(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = result: {
try self.spillEflagsIfOccupied();
const dst_ty = self.typeOfIndex(inst);
const src_ty = self.typeOf(ty_op.operand);
if (src_ty.zigTypeTag(mod) == .Vector) return self.fail("TODO implement airClz for {}", .{
src_ty.fmt(mod),
});
const src_mcv = try self.resolveInst(ty_op.operand);
const mat_src_mcv = switch (src_mcv) {
.immediate => MCValue{ .register = try self.copyToTmpRegister(src_ty, src_mcv) },
else => src_mcv,
};
const mat_src_lock = switch (mat_src_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (mat_src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
const abi_size: u31 = @intCast(src_ty.abiSize(mod));
const src_bits: u31 = @intCast(src_ty.bitSize(mod));
const has_lzcnt = self.hasFeature(.lzcnt);
if (src_bits > @as(u32, if (has_lzcnt) 128 else 64)) {
const limbs_len = math.divCeil(u32, abi_size, 8) catch unreachable;
const extra_bits = abi_size * 8 - src_bits;
const index_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const index_lock = self.register_manager.lockRegAssumeUnused(index_reg);
defer self.register_manager.unlockReg(index_lock);
try self.asmRegisterImmediate(.{ ._, .mov }, index_reg.to32(), Immediate.u(limbs_len));
switch (extra_bits) {
1 => try self.asmRegisterRegister(.{ ._, .xor }, dst_reg.to32(), dst_reg.to32()),
else => try self.asmRegisterImmediate(
.{ ._, .mov },
dst_reg.to32(),
Immediate.s(@as(i32, extra_bits) - 1),
),
}
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterRegister(.{ ._, .@"test" }, index_reg.to32(), index_reg.to32());
const zero = try self.asmJccReloc(.z, undefined);
if (self.hasFeature(.slow_incdec)) {
try self.asmRegisterImmediate(.{ ._, .sub }, index_reg.to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .dec }, index_reg.to32());
}
try self.asmMemoryImmediate(.{ ._, .cmp }, .{
.base = .{ .frame = src_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = index_reg.to64(),
.scale = .@"8",
.disp = src_mcv.load_frame.off,
} },
}, Immediate.u(0));
_ = try self.asmJccReloc(.e, loop);
try self.asmRegisterMemory(.{ ._, .bsr }, dst_reg.to64(), .{
.base = .{ .frame = src_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = index_reg.to64(),
.scale = .@"8",
.disp = src_mcv.load_frame.off,
} },
});
self.performReloc(zero);
try self.asmRegisterImmediate(.{ ._l, .sh }, index_reg.to32(), Immediate.u(6));
try self.asmRegisterRegister(.{ ._, .add }, index_reg.to32(), dst_reg.to32());
try self.asmRegisterImmediate(.{ ._, .mov }, dst_reg.to32(), Immediate.u(src_bits - 1));
try self.asmRegisterRegister(.{ ._, .sub }, dst_reg.to32(), index_reg.to32());
break :result dst_mcv;
}
if (has_lzcnt) {
if (src_bits <= 8) {
const wide_reg = try self.copyToTmpRegister(src_ty, mat_src_mcv);
try self.truncateRegister(src_ty, wide_reg);
try self.genBinOpMir(.{ ._, .lzcnt }, Type.u32, dst_mcv, .{ .register = wide_reg });
try self.genBinOpMir(
.{ ._, .sub },
dst_ty,
dst_mcv,
.{ .immediate = 32 - src_bits },
);
} else if (src_bits <= 64) {
try self.genBinOpMir(.{ ._, .lzcnt }, src_ty, dst_mcv, mat_src_mcv);
const extra_bits = self.regExtraBits(src_ty);
if (extra_bits > 0) {
try self.genBinOpMir(.{ ._, .sub }, dst_ty, dst_mcv, .{ .immediate = extra_bits });
}
} else {
assert(src_bits <= 128);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.genBinOpMir(
.{ ._, .lzcnt },
Type.u64,
dst_mcv,
if (mat_src_mcv.isMemory())
mat_src_mcv
else
.{ .register = mat_src_mcv.register_pair[0] },
);
try self.genBinOpMir(.{ ._, .add }, dst_ty, dst_mcv, .{ .immediate = 64 });
try self.genBinOpMir(
.{ ._, .lzcnt },
Type.u64,
tmp_mcv,
if (mat_src_mcv.isMemory())
mat_src_mcv.address().offset(8).deref()
else
.{ .register = mat_src_mcv.register_pair[1] },
);
try self.asmCmovccRegisterRegister(.nc, dst_reg.to32(), tmp_reg.to32());
if (src_bits < 128) try self.genBinOpMir(
.{ ._, .sub },
dst_ty,
dst_mcv,
.{ .immediate = 128 - src_bits },
);
}
break :result dst_mcv;
}
assert(src_bits <= 64);
const cmov_abi_size = @max(@as(u32, @intCast(dst_ty.abiSize(mod))), 2);
if (math.isPowerOfTwo(src_bits)) {
const imm_reg = try self.copyToTmpRegister(dst_ty, .{
.immediate = src_bits ^ (src_bits - 1),
});
const imm_lock = self.register_manager.lockRegAssumeUnused(imm_reg);
defer self.register_manager.unlockReg(imm_lock);
if (src_bits <= 8) {
const wide_reg = try self.copyToTmpRegister(src_ty, mat_src_mcv);
const wide_lock = self.register_manager.lockRegAssumeUnused(wide_reg);
defer self.register_manager.unlockReg(wide_lock);
try self.truncateRegister(src_ty, wide_reg);
try self.genBinOpMir(.{ ._, .bsr }, Type.u16, dst_mcv, .{ .register = wide_reg });
} else try self.genBinOpMir(.{ ._, .bsr }, src_ty, dst_mcv, mat_src_mcv);
try self.asmCmovccRegisterRegister(
.z,
registerAlias(dst_reg, cmov_abi_size),
registerAlias(imm_reg, cmov_abi_size),
);
try self.genBinOpMir(.{ ._, .xor }, dst_ty, dst_mcv, .{ .immediate = src_bits - 1 });
} else {
const imm_reg = try self.copyToTmpRegister(dst_ty, .{
.immediate = @as(u64, math.maxInt(u64)) >> @intCast(64 - self.regBitSize(dst_ty)),
});
const imm_lock = self.register_manager.lockRegAssumeUnused(imm_reg);
defer self.register_manager.unlockReg(imm_lock);
const wide_reg = try self.copyToTmpRegister(src_ty, mat_src_mcv);
const wide_lock = self.register_manager.lockRegAssumeUnused(wide_reg);
defer self.register_manager.unlockReg(wide_lock);
try self.truncateRegister(src_ty, wide_reg);
try self.genBinOpMir(
.{ ._, .bsr },
if (src_bits <= 8) Type.u16 else src_ty,
dst_mcv,
.{ .register = wide_reg },
);
try self.asmCmovccRegisterRegister(
.nz,
registerAlias(imm_reg, cmov_abi_size),
registerAlias(dst_reg, cmov_abi_size),
);
try self.genSetReg(dst_reg, dst_ty, .{ .immediate = src_bits - 1 }, .{});
try self.genBinOpMir(.{ ._, .sub }, dst_ty, dst_mcv, .{ .register = imm_reg });
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airCtz(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = result: {
try self.spillEflagsIfOccupied();
const dst_ty = self.typeOfIndex(inst);
const src_ty = self.typeOf(ty_op.operand);
if (src_ty.zigTypeTag(mod) == .Vector) return self.fail("TODO implement airCtz for {}", .{
src_ty.fmt(mod),
});
const src_mcv = try self.resolveInst(ty_op.operand);
const mat_src_mcv = switch (src_mcv) {
.immediate => MCValue{ .register = try self.copyToTmpRegister(src_ty, src_mcv) },
else => src_mcv,
};
const mat_src_lock = switch (mat_src_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (mat_src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const abi_size: u31 = @intCast(src_ty.abiSize(mod));
const src_bits: u31 = @intCast(src_ty.bitSize(mod));
const has_bmi = self.hasFeature(.bmi);
if (src_bits > @as(u32, if (has_bmi) 128 else 64)) {
const limbs_len = math.divCeil(u32, abi_size, 8) catch unreachable;
const extra_bits = abi_size * 8 - src_bits;
const index_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const index_lock = self.register_manager.lockRegAssumeUnused(index_reg);
defer self.register_manager.unlockReg(index_lock);
try self.asmRegisterImmediate(.{ ._, .mov }, index_reg.to32(), Immediate.s(-1));
switch (extra_bits) {
0 => try self.asmRegisterRegister(.{ ._, .xor }, dst_reg.to32(), dst_reg.to32()),
1 => try self.asmRegisterRegister(.{ ._, .mov }, dst_reg.to32(), dst_reg.to32()),
else => try self.asmRegisterImmediate(
.{ ._, .mov },
dst_reg.to32(),
Immediate.s(-@as(i32, extra_bits)),
),
}
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
if (self.hasFeature(.slow_incdec)) {
try self.asmRegisterImmediate(.{ ._, .add }, index_reg.to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, index_reg.to32());
}
try self.asmRegisterImmediate(.{ ._, .cmp }, index_reg.to32(), Immediate.u(limbs_len));
const zero = try self.asmJccReloc(.nb, undefined);
try self.asmMemoryImmediate(.{ ._, .cmp }, .{
.base = .{ .frame = src_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = index_reg.to64(),
.scale = .@"8",
.disp = src_mcv.load_frame.off,
} },
}, Immediate.u(0));
_ = try self.asmJccReloc(.e, loop);
try self.asmRegisterMemory(.{ ._, .bsf }, dst_reg.to64(), .{
.base = .{ .frame = src_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = index_reg.to64(),
.scale = .@"8",
.disp = src_mcv.load_frame.off,
} },
});
self.performReloc(zero);
try self.asmRegisterImmediate(.{ ._l, .sh }, index_reg.to32(), Immediate.u(6));
try self.asmRegisterRegister(.{ ._, .add }, dst_reg.to32(), index_reg.to32());
break :result dst_mcv;
}
const wide_ty = if (src_bits <= 8) Type.u16 else src_ty;
if (has_bmi) {
if (src_bits <= 64) {
const extra_bits = self.regExtraBits(src_ty) + @as(u64, if (src_bits <= 8) 8 else 0);
const masked_mcv = if (extra_bits > 0) masked: {
const tmp_mcv = tmp: {
if (src_mcv.isImmediate() or self.liveness.operandDies(inst, 0))
break :tmp src_mcv;
try self.genSetReg(dst_reg, wide_ty, src_mcv, .{});
break :tmp dst_mcv;
};
try self.genBinOpMir(
.{ ._, .@"or" },
wide_ty,
tmp_mcv,
.{ .immediate = (@as(u64, math.maxInt(u64)) >> @intCast(64 - extra_bits)) <<
@intCast(src_bits) },
);
break :masked tmp_mcv;
} else mat_src_mcv;
try self.genBinOpMir(.{ ._, .tzcnt }, wide_ty, dst_mcv, masked_mcv);
} else {
assert(src_bits <= 128);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const lo_mat_src_mcv: MCValue = if (mat_src_mcv.isMemory())
mat_src_mcv
else
.{ .register = mat_src_mcv.register_pair[0] };
const hi_mat_src_mcv: MCValue = if (mat_src_mcv.isMemory())
mat_src_mcv.address().offset(8).deref()
else
.{ .register = mat_src_mcv.register_pair[1] };
const masked_mcv = if (src_bits < 128) masked: {
try self.genCopy(Type.u64, dst_mcv, hi_mat_src_mcv, .{});
try self.genBinOpMir(
.{ ._, .@"or" },
Type.u64,
dst_mcv,
.{ .immediate = @as(u64, math.maxInt(u64)) << @intCast(src_bits - 64) },
);
break :masked dst_mcv;
} else hi_mat_src_mcv;
try self.genBinOpMir(.{ ._, .tzcnt }, Type.u64, dst_mcv, masked_mcv);
try self.genBinOpMir(.{ ._, .add }, dst_ty, dst_mcv, .{ .immediate = 64 });
try self.genBinOpMir(.{ ._, .tzcnt }, Type.u64, tmp_mcv, lo_mat_src_mcv);
try self.asmCmovccRegisterRegister(.nc, dst_reg.to32(), tmp_reg.to32());
}
break :result dst_mcv;
}
assert(src_bits <= 64);
const width_reg = try self.copyToTmpRegister(dst_ty, .{ .immediate = src_bits });
const width_lock = self.register_manager.lockRegAssumeUnused(width_reg);
defer self.register_manager.unlockReg(width_lock);
if (src_bits <= 8 or !math.isPowerOfTwo(src_bits)) {
const wide_reg = try self.copyToTmpRegister(src_ty, mat_src_mcv);
const wide_lock = self.register_manager.lockRegAssumeUnused(wide_reg);
defer self.register_manager.unlockReg(wide_lock);
try self.truncateRegister(src_ty, wide_reg);
try self.genBinOpMir(.{ ._, .bsf }, wide_ty, dst_mcv, .{ .register = wide_reg });
} else try self.genBinOpMir(.{ ._, .bsf }, src_ty, dst_mcv, mat_src_mcv);
const cmov_abi_size = @max(@as(u32, @intCast(dst_ty.abiSize(mod))), 2);
try self.asmCmovccRegisterRegister(
.z,
registerAlias(dst_reg, cmov_abi_size),
registerAlias(width_reg, cmov_abi_size),
);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airPopCount(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
try self.spillEflagsIfOccupied();
const src_ty = self.typeOf(ty_op.operand);
const src_abi_size: u32 = @intCast(src_ty.abiSize(mod));
if (src_ty.zigTypeTag(mod) == .Vector or src_abi_size > 16)
return self.fail("TODO implement airPopCount for {}", .{src_ty.fmt(mod)});
const src_mcv = try self.resolveInst(ty_op.operand);
const mat_src_mcv = switch (src_mcv) {
.immediate => MCValue{ .register = try self.copyToTmpRegister(src_ty, src_mcv) },
else => src_mcv,
};
const mat_src_lock = switch (mat_src_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (mat_src_lock) |lock| self.register_manager.unlockReg(lock);
if (src_abi_size <= 8) {
const dst_contains_src =
src_mcv.isRegister() and self.reuseOperand(inst, ty_op.operand, 0, src_mcv);
const dst_reg = if (dst_contains_src)
src_mcv.getReg().?
else
try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
try self.genPopCount(dst_reg, src_ty, mat_src_mcv, dst_contains_src);
break :result .{ .register = dst_reg };
}
assert(src_abi_size > 8 and src_abi_size <= 16);
const tmp_regs = try self.register_manager.allocRegs(2, .{ inst, null }, abi.RegisterClass.gp);
const tmp_locks = self.register_manager.lockRegsAssumeUnused(2, tmp_regs);
defer for (tmp_locks) |lock| self.register_manager.unlockReg(lock);
try self.genPopCount(tmp_regs[0], Type.usize, if (mat_src_mcv.isMemory())
mat_src_mcv
else
.{ .register = mat_src_mcv.register_pair[0] }, false);
const src_info = src_ty.intInfo(mod);
const hi_ty = try mod.intType(src_info.signedness, (src_info.bits - 1) % 64 + 1);
try self.genPopCount(tmp_regs[1], hi_ty, if (mat_src_mcv.isMemory())
mat_src_mcv.address().offset(8).deref()
else
.{ .register = mat_src_mcv.register_pair[1] }, false);
try self.asmRegisterRegister(.{ ._, .add }, tmp_regs[0].to8(), tmp_regs[1].to8());
break :result .{ .register = tmp_regs[0] };
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn genPopCount(
self: *Self,
dst_reg: Register,
src_ty: Type,
src_mcv: MCValue,
dst_contains_src: bool,
) !void {
const mod = self.bin_file.comp.module.?;
const src_abi_size: u32 = @intCast(src_ty.abiSize(mod));
if (self.hasFeature(.popcnt)) return self.genBinOpMir(
.{ ._, .popcnt },
if (src_abi_size > 1) src_ty else Type.u32,
.{ .register = dst_reg },
if (src_abi_size > 1) src_mcv else src: {
if (!dst_contains_src) try self.genSetReg(dst_reg, src_ty, src_mcv, .{});
try self.truncateRegister(try src_ty.toUnsigned(mod), dst_reg);
break :src .{ .register = dst_reg };
},
);
const mask = @as(u64, math.maxInt(u64)) >> @intCast(64 - src_abi_size * 8);
const imm_0_1 = Immediate.u(mask / 0b1_1);
const imm_00_11 = Immediate.u(mask / 0b01_01);
const imm_0000_1111 = Immediate.u(mask / 0b0001_0001);
const imm_0000_0001 = Immediate.u(mask / 0b1111_1111);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const dst = registerAlias(dst_reg, src_abi_size);
const tmp = registerAlias(tmp_reg, src_abi_size);
const imm = if (src_abi_size > 4)
try self.register_manager.allocReg(null, abi.RegisterClass.gp)
else
undefined;
if (!dst_contains_src) try self.genSetReg(dst, src_ty, src_mcv, .{});
// dst = operand
try self.asmRegisterRegister(.{ ._, .mov }, tmp, dst);
// tmp = operand
try self.asmRegisterImmediate(.{ ._r, .sh }, tmp, Immediate.u(1));
// tmp = operand >> 1
if (src_abi_size > 4) {
try self.asmRegisterImmediate(.{ ._, .mov }, imm, imm_0_1);
try self.asmRegisterRegister(.{ ._, .@"and" }, tmp, imm);
} else try self.asmRegisterImmediate(.{ ._, .@"and" }, tmp, imm_0_1);
// tmp = (operand >> 1) & 0x55...55
try self.asmRegisterRegister(.{ ._, .sub }, dst, tmp);
// dst = temp1 = operand - ((operand >> 1) & 0x55...55)
try self.asmRegisterRegister(.{ ._, .mov }, tmp, dst);
// tmp = temp1
try self.asmRegisterImmediate(.{ ._r, .sh }, dst, Immediate.u(2));
// dst = temp1 >> 2
if (src_abi_size > 4) {
try self.asmRegisterImmediate(.{ ._, .mov }, imm, imm_00_11);
try self.asmRegisterRegister(.{ ._, .@"and" }, tmp, imm);
try self.asmRegisterRegister(.{ ._, .@"and" }, dst, imm);
} else {
try self.asmRegisterImmediate(.{ ._, .@"and" }, tmp, imm_00_11);
try self.asmRegisterImmediate(.{ ._, .@"and" }, dst, imm_00_11);
}
// tmp = temp1 & 0x33...33
// dst = (temp1 >> 2) & 0x33...33
try self.asmRegisterRegister(.{ ._, .add }, tmp, dst);
// tmp = temp2 = (temp1 & 0x33...33) + ((temp1 >> 2) & 0x33...33)
try self.asmRegisterRegister(.{ ._, .mov }, dst, tmp);
// dst = temp2
try self.asmRegisterImmediate(.{ ._r, .sh }, tmp, Immediate.u(4));
// tmp = temp2 >> 4
try self.asmRegisterRegister(.{ ._, .add }, dst, tmp);
// dst = temp2 + (temp2 >> 4)
if (src_abi_size > 4) {
try self.asmRegisterImmediate(.{ ._, .mov }, imm, imm_0000_1111);
try self.asmRegisterImmediate(.{ ._, .mov }, tmp, imm_0000_0001);
try self.asmRegisterRegister(.{ ._, .@"and" }, dst, imm);
try self.asmRegisterRegister(.{ .i_, .mul }, dst, tmp);
} else {
try self.asmRegisterImmediate(.{ ._, .@"and" }, dst, imm_0000_1111);
if (src_abi_size > 1) {
try self.asmRegisterRegisterImmediate(.{ .i_, .mul }, dst, dst, imm_0000_0001);
}
}
// dst = temp3 = (temp2 + (temp2 >> 4)) & 0x0f...0f
// dst = temp3 * 0x01...01
if (src_abi_size > 1) {
try self.asmRegisterImmediate(.{ ._r, .sh }, dst, Immediate.u((src_abi_size - 1) * 8));
}
// dst = (temp3 * 0x01...01) >> (bits - 8)
}
fn genByteSwap(
self: *Self,
inst: Air.Inst.Index,
src_ty: Type,
src_mcv: MCValue,
mem_ok: bool,
) !MCValue {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const has_movbe = self.hasFeature(.movbe);
if (src_ty.zigTypeTag(mod) == .Vector) return self.fail(
"TODO implement genByteSwap for {}",
.{src_ty.fmt(mod)},
);
const src_lock = switch (src_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const abi_size: u32 = @intCast(src_ty.abiSize(mod));
switch (abi_size) {
0 => unreachable,
1 => return if ((mem_ok or src_mcv.isRegister()) and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, src_ty, src_mcv),
2 => if ((mem_ok or src_mcv.isRegister()) and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
{
try self.genBinOpMir(.{ ._l, .ro }, src_ty, src_mcv, .{ .immediate = 8 });
return src_mcv;
},
3...8 => if (src_mcv.isRegister() and self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) {
try self.genUnOpMir(.{ ._, .bswap }, src_ty, src_mcv);
return src_mcv;
},
9...16 => {
switch (src_mcv) {
.register_pair => |src_regs| if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) {
for (src_regs) |src_reg| try self.asmRegister(.{ ._, .bswap }, src_reg.to64());
return .{ .register_pair = .{ src_regs[1], src_regs[0] } };
},
else => {},
}
const dst_regs =
try self.register_manager.allocRegs(2, .{ inst, inst }, abi.RegisterClass.gp);
const dst_locks = self.register_manager.lockRegsAssumeUnused(2, dst_regs);
defer for (dst_locks) |lock| self.register_manager.unlockReg(lock);
for (dst_regs, 0..) |dst_reg, limb_index| {
if (src_mcv.isMemory()) {
try self.asmRegisterMemory(
.{ ._, if (has_movbe) .movbe else .mov },
dst_reg.to64(),
try src_mcv.address().offset(@intCast(limb_index * 8)).deref().mem(self, .qword),
);
if (!has_movbe) try self.asmRegister(.{ ._, .bswap }, dst_reg.to64());
} else {
try self.asmRegisterRegister(
.{ ._, .mov },
dst_reg.to64(),
src_mcv.register_pair[limb_index].to64(),
);
try self.asmRegister(.{ ._, .bswap }, dst_reg.to64());
}
}
return .{ .register_pair = .{ dst_regs[1], dst_regs[0] } };
},
else => {
const limbs_len = math.divCeil(u32, abi_size, 8) catch unreachable;
const temp_regs =
try self.register_manager.allocRegs(4, .{null} ** 4, abi.RegisterClass.gp);
const temp_locks = self.register_manager.lockRegsAssumeUnused(4, temp_regs);
defer for (temp_locks) |lock| self.register_manager.unlockReg(lock);
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.asmRegisterRegister(.{ ._, .xor }, temp_regs[0].to32(), temp_regs[0].to32());
try self.asmRegisterImmediate(
.{ ._, .mov },
temp_regs[1].to32(),
Immediate.u(limbs_len - 1),
);
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterMemory(
.{ ._, if (has_movbe) .movbe else .mov },
temp_regs[2].to64(),
.{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[0].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
},
);
try self.asmRegisterMemory(
.{ ._, if (has_movbe) .movbe else .mov },
temp_regs[3].to64(),
.{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[1].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
},
);
if (!has_movbe) {
try self.asmRegister(.{ ._, .bswap }, temp_regs[2].to64());
try self.asmRegister(.{ ._, .bswap }, temp_regs[3].to64());
}
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[0].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
}, temp_regs[3].to64());
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[1].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
}, temp_regs[2].to64());
if (self.hasFeature(.slow_incdec)) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[0].to32(), Immediate.u(1));
try self.asmRegisterImmediate(.{ ._, .sub }, temp_regs[1].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[0].to32());
try self.asmRegister(.{ ._, .dec }, temp_regs[1].to32());
}
try self.asmRegisterRegister(.{ ._, .cmp }, temp_regs[0].to32(), temp_regs[1].to32());
_ = try self.asmJccReloc(.be, loop);
return dst_mcv;
},
}
const dst_mcv: MCValue = if (mem_ok and has_movbe and src_mcv.isRegister())
try self.allocRegOrMem(inst, true)
else
.{ .register = try self.register_manager.allocReg(inst, abi.RegisterClass.gp) };
if (dst_mcv.getReg()) |dst_reg| {
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_mcv.register);
defer self.register_manager.unlockReg(dst_lock);
try self.genSetReg(dst_reg, src_ty, src_mcv, .{});
switch (abi_size) {
else => unreachable,
2 => try self.genBinOpMir(.{ ._l, .ro }, src_ty, dst_mcv, .{ .immediate = 8 }),
3...8 => try self.genUnOpMir(.{ ._, .bswap }, src_ty, dst_mcv),
}
} else try self.genBinOpMir(.{ ._, .movbe }, src_ty, dst_mcv, src_mcv);
return dst_mcv;
}
fn airByteSwap(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src_ty = self.typeOf(ty_op.operand);
const src_bits: u32 = @intCast(src_ty.bitSize(mod));
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = try self.genByteSwap(inst, src_ty, src_mcv, true);
try self.genShiftBinOpMir(
.{ ._r, switch (if (src_ty.isAbiInt(mod)) src_ty.intInfo(mod).signedness else .unsigned) {
.signed => .sa,
.unsigned => .sh,
} },
src_ty,
dst_mcv,
if (src_bits > 256) Type.u16 else Type.u8,
.{ .immediate = src_ty.abiSize(mod) * 8 - src_bits },
);
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airBitReverse(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src_ty = self.typeOf(ty_op.operand);
const abi_size: u32 = @intCast(src_ty.abiSize(mod));
const bit_size: u32 = @intCast(src_ty.bitSize(mod));
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = try self.genByteSwap(inst, src_ty, src_mcv, false);
const dst_locks: [2]?RegisterLock = switch (dst_mcv) {
.register => |dst_reg| .{ self.register_manager.lockReg(dst_reg), null },
.register_pair => |dst_regs| self.register_manager.lockRegs(2, dst_regs),
else => unreachable,
};
defer for (dst_locks) |dst_lock| if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const limb_abi_size: u32 = @min(abi_size, 8);
const tmp = registerAlias(tmp_reg, limb_abi_size);
const imm = if (limb_abi_size > 4)
try self.register_manager.allocReg(null, abi.RegisterClass.gp)
else
undefined;
const mask = @as(u64, math.maxInt(u64)) >> @intCast(64 - limb_abi_size * 8);
const imm_0000_1111 = Immediate.u(mask / 0b0001_0001);
const imm_00_11 = Immediate.u(mask / 0b01_01);
const imm_0_1 = Immediate.u(mask / 0b1_1);
for (dst_mcv.getRegs()) |dst_reg| {
const dst = registerAlias(dst_reg, limb_abi_size);
// dst = temp1 = bswap(operand)
try self.asmRegisterRegister(.{ ._, .mov }, tmp, dst);
// tmp = temp1
try self.asmRegisterImmediate(.{ ._r, .sh }, dst, Immediate.u(4));
// dst = temp1 >> 4
if (limb_abi_size > 4) {
try self.asmRegisterImmediate(.{ ._, .mov }, imm, imm_0000_1111);
try self.asmRegisterRegister(.{ ._, .@"and" }, tmp, imm);
try self.asmRegisterRegister(.{ ._, .@"and" }, dst, imm);
} else {
try self.asmRegisterImmediate(.{ ._, .@"and" }, tmp, imm_0000_1111);
try self.asmRegisterImmediate(.{ ._, .@"and" }, dst, imm_0000_1111);
}
// tmp = temp1 & 0x0F...0F
// dst = (temp1 >> 4) & 0x0F...0F
try self.asmRegisterImmediate(.{ ._l, .sh }, tmp, Immediate.u(4));
// tmp = (temp1 & 0x0F...0F) << 4
try self.asmRegisterRegister(.{ ._, .@"or" }, dst, tmp);
// dst = temp2 = ((temp1 >> 4) & 0x0F...0F) | ((temp1 & 0x0F...0F) << 4)
try self.asmRegisterRegister(.{ ._, .mov }, tmp, dst);
// tmp = temp2
try self.asmRegisterImmediate(.{ ._r, .sh }, dst, Immediate.u(2));
// dst = temp2 >> 2
if (limb_abi_size > 4) {
try self.asmRegisterImmediate(.{ ._, .mov }, imm, imm_00_11);
try self.asmRegisterRegister(.{ ._, .@"and" }, tmp, imm);
try self.asmRegisterRegister(.{ ._, .@"and" }, dst, imm);
} else {
try self.asmRegisterImmediate(.{ ._, .@"and" }, tmp, imm_00_11);
try self.asmRegisterImmediate(.{ ._, .@"and" }, dst, imm_00_11);
}
// tmp = temp2 & 0x33...33
// dst = (temp2 >> 2) & 0x33...33
try self.asmRegisterMemory(
.{ ._, .lea },
if (limb_abi_size > 4) tmp.to64() else tmp.to32(),
.{
.base = .{ .reg = dst.to64() },
.mod = .{ .rm = .{
.size = .qword,
.index = tmp.to64(),
.scale = .@"4",
} },
},
);
// tmp = temp3 = ((temp2 >> 2) & 0x33...33) + ((temp2 & 0x33...33) << 2)
try self.asmRegisterRegister(.{ ._, .mov }, dst, tmp);
// dst = temp3
try self.asmRegisterImmediate(.{ ._r, .sh }, tmp, Immediate.u(1));
// tmp = temp3 >> 1
if (limb_abi_size > 4) {
try self.asmRegisterImmediate(.{ ._, .mov }, imm, imm_0_1);
try self.asmRegisterRegister(.{ ._, .@"and" }, dst, imm);
try self.asmRegisterRegister(.{ ._, .@"and" }, tmp, imm);
} else {
try self.asmRegisterImmediate(.{ ._, .@"and" }, dst, imm_0_1);
try self.asmRegisterImmediate(.{ ._, .@"and" }, tmp, imm_0_1);
}
// dst = temp3 & 0x55...55
// tmp = (temp3 >> 1) & 0x55...55
try self.asmRegisterMemory(
.{ ._, .lea },
if (limb_abi_size > 4) dst.to64() else dst.to32(),
.{
.base = .{ .reg = tmp.to64() },
.mod = .{ .rm = .{
.size = .qword,
.index = dst.to64(),
.scale = .@"2",
} },
},
);
// dst = ((temp3 >> 1) & 0x55...55) + ((temp3 & 0x55...55) << 1)
}
const extra_bits = abi_size * 8 - bit_size;
const signedness: std.builtin.Signedness =
if (src_ty.isAbiInt(mod)) src_ty.intInfo(mod).signedness else .unsigned;
if (extra_bits > 0) try self.genShiftBinOpMir(switch (signedness) {
.signed => .{ ._r, .sa },
.unsigned => .{ ._r, .sh },
}, src_ty, dst_mcv, Type.u8, .{ .immediate = extra_bits });
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn floatSign(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, ty: Type) !void {
const mod = self.bin_file.comp.module.?;
const tag = self.air.instructions.items(.tag)[@intFromEnum(inst)];
const result = result: {
const scalar_bits = ty.scalarType(mod).floatBits(self.target.*);
if (scalar_bits == 80) {
if (ty.zigTypeTag(mod) != .Float) return self.fail("TODO implement floatSign for {}", .{
ty.fmt(mod),
});
const src_mcv = try self.resolveInst(operand);
const src_lock = if (src_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv: MCValue = .{ .register = .st0 };
if (!std.meta.eql(src_mcv, dst_mcv) or !self.reuseOperand(inst, operand, 0, src_mcv))
try self.register_manager.getReg(.st0, inst);
try self.genCopy(ty, dst_mcv, src_mcv, .{});
switch (tag) {
.neg => try self.asmOpOnly(.{ .f_, .chs }),
.abs => try self.asmOpOnly(.{ .f_, .abs }),
else => unreachable,
}
break :result dst_mcv;
}
const abi_size: u32 = switch (ty.abiSize(mod)) {
1...16 => 16,
17...32 => 32,
else => return self.fail("TODO implement floatSign for {}", .{
ty.fmt(mod),
}),
};
const src_mcv = try self.resolveInst(operand);
const src_lock = if (src_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv: MCValue = if (src_mcv.isRegister() and
self.reuseOperand(inst, operand, 0, src_mcv))
src_mcv
else if (self.hasFeature(.avx))
.{ .register = try self.register_manager.allocReg(inst, abi.RegisterClass.sse) }
else
try self.copyToRegisterWithInstTracking(inst, ty, src_mcv);
const dst_reg = dst_mcv.getReg().?;
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const vec_ty = try mod.vectorType(.{
.len = @divExact(abi_size * 8, scalar_bits),
.child = (try mod.intType(.signed, scalar_bits)).ip_index,
});
const sign_mcv = try self.genTypedValue(.{ .ty = vec_ty, .val = switch (tag) {
.neg => try vec_ty.minInt(mod, vec_ty),
.abs => try vec_ty.maxInt(mod, vec_ty),
else => unreachable,
} });
const sign_mem: Memory = if (sign_mcv.isMemory())
try sign_mcv.mem(self, Memory.Size.fromSize(abi_size))
else
.{
.base = .{ .reg = try self.copyToTmpRegister(Type.usize, sign_mcv.address()) },
.mod = .{ .rm = .{ .size = Memory.Size.fromSize(abi_size) } },
};
if (self.hasFeature(.avx)) try self.asmRegisterRegisterMemory(
switch (scalar_bits) {
16, 128 => if (abi_size <= 16 or self.hasFeature(.avx2)) switch (tag) {
.neg => .{ .vp_, .xor },
.abs => .{ .vp_, .@"and" },
else => unreachable,
} else switch (tag) {
.neg => .{ .v_ps, .xor },
.abs => .{ .v_ps, .@"and" },
else => unreachable,
},
32 => switch (tag) {
.neg => .{ .v_ps, .xor },
.abs => .{ .v_ps, .@"and" },
else => unreachable,
},
64 => switch (tag) {
.neg => .{ .v_pd, .xor },
.abs => .{ .v_pd, .@"and" },
else => unreachable,
},
80 => return self.fail("TODO implement floatSign for {}", .{ty.fmt(mod)}),
else => unreachable,
},
registerAlias(dst_reg, abi_size),
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv), abi_size),
sign_mem,
) else try self.asmRegisterMemory(
switch (scalar_bits) {
16, 128 => switch (tag) {
.neg => .{ .p_, .xor },
.abs => .{ .p_, .@"and" },
else => unreachable,
},
32 => switch (tag) {
.neg => .{ ._ps, .xor },
.abs => .{ ._ps, .@"and" },
else => unreachable,
},
64 => switch (tag) {
.neg => .{ ._pd, .xor },
.abs => .{ ._pd, .@"and" },
else => unreachable,
},
80 => return self.fail("TODO implement floatSign for {}", .{ty.fmt(mod)}),
else => unreachable,
},
registerAlias(dst_reg, abi_size),
sign_mem,
);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ operand, .none, .none });
}
fn airFloatSign(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ty = self.typeOf(un_op);
return self.floatSign(inst, un_op, ty);
}
const RoundMode = packed struct(u5) {
mode: enum(u4) {
/// Round to nearest (even)
nearest = 0b0_00,
/// Round down (toward -∞)
down = 0b0_01,
/// Round up (toward +∞)
up = 0b0_10,
/// Round toward zero (truncate)
zero = 0b0_11,
/// Use current rounding mode of MXCSR.RC
mxcsr = 0b1_00,
},
precision: enum(u1) {
normal = 0b0,
inexact = 0b1,
} = .normal,
};
fn airRound(self: *Self, inst: Air.Inst.Index, mode: RoundMode) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ty = self.typeOf(un_op);
const result = result: {
switch (try self.genRoundLibcall(ty, .{ .air_ref = un_op }, mode)) {
.none => {},
else => |dst_mcv| break :result dst_mcv,
}
const src_mcv = try self.resolveInst(un_op);
const dst_mcv = if (src_mcv.isRegister() and self.reuseOperand(inst, un_op, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, ty, src_mcv);
const dst_reg = dst_mcv.getReg().?;
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
try self.genRound(ty, dst_reg, src_mcv, mode);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn getRoundTag(self: *Self, ty: Type) ?Mir.Inst.FixedTag {
const mod = self.bin_file.comp.module.?;
return if (self.hasFeature(.sse4_1)) switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
32 => if (self.hasFeature(.avx)) .{ .v_ss, .round } else .{ ._ss, .round },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .round } else .{ ._sd, .round },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
32 => switch (ty.vectorLen(mod)) {
1 => if (self.hasFeature(.avx)) .{ .v_ss, .round } else .{ ._ss, .round },
2...4 => if (self.hasFeature(.avx)) .{ .v_ps, .round } else .{ ._ps, .round },
5...8 => if (self.hasFeature(.avx)) .{ .v_ps, .round } else null,
else => null,
},
64 => switch (ty.vectorLen(mod)) {
1 => if (self.hasFeature(.avx)) .{ .v_sd, .round } else .{ ._sd, .round },
2 => if (self.hasFeature(.avx)) .{ .v_pd, .round } else .{ ._pd, .round },
3...4 => if (self.hasFeature(.avx)) .{ .v_pd, .round } else null,
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => null,
},
else => unreachable,
} else null;
}
fn genRoundLibcall(self: *Self, ty: Type, src_mcv: MCValue, mode: RoundMode) !MCValue {
const mod = self.bin_file.comp.module.?;
if (self.getRoundTag(ty)) |_| return .none;
if (ty.zigTypeTag(mod) != .Float)
return self.fail("TODO implement genRound for {}", .{ty.fmt(mod)});
var callee_buf: ["__trunc?".len]u8 = undefined;
return try self.genCall(.{ .lib = .{
.return_type = ty.toIntern(),
.param_types = &.{ty.toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "{s}{s}{s}", .{
floatLibcAbiPrefix(ty),
switch (mode.mode) {
.down => "floor",
.up => "ceil",
.zero => "trunc",
else => unreachable,
},
floatLibcAbiSuffix(ty),
}) catch unreachable,
} }, &.{ty}, &.{src_mcv});
}
fn genRound(self: *Self, ty: Type, dst_reg: Register, src_mcv: MCValue, mode: RoundMode) !void {
const mod = self.bin_file.comp.module.?;
const mir_tag = self.getRoundTag(ty) orelse {
const result = try self.genRoundLibcall(ty, src_mcv, mode);
return self.genSetReg(dst_reg, ty, result, .{});
};
const abi_size: u32 = @intCast(ty.abiSize(mod));
const dst_alias = registerAlias(dst_reg, abi_size);
switch (mir_tag[0]) {
.v_ss, .v_sd => if (src_mcv.isMemory()) try self.asmRegisterRegisterMemoryImmediate(
mir_tag,
dst_alias,
dst_alias,
try src_mcv.mem(self, Memory.Size.fromSize(abi_size)),
Immediate.u(@as(u5, @bitCast(mode))),
) else try self.asmRegisterRegisterRegisterImmediate(
mir_tag,
dst_alias,
dst_alias,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv), abi_size),
Immediate.u(@as(u5, @bitCast(mode))),
),
else => if (src_mcv.isMemory()) try self.asmRegisterMemoryImmediate(
mir_tag,
dst_alias,
try src_mcv.mem(self, Memory.Size.fromSize(abi_size)),
Immediate.u(@as(u5, @bitCast(mode))),
) else try self.asmRegisterRegisterImmediate(
mir_tag,
dst_alias,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv), abi_size),
Immediate.u(@as(u5, @bitCast(mode))),
),
}
}
fn airAbs(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = self.typeOf(ty_op.operand);
const result: MCValue = result: {
const mir_tag = @as(?Mir.Inst.FixedTag, switch (ty.zigTypeTag(mod)) {
else => null,
.Int => switch (ty.abiSize(mod)) {
0 => unreachable,
1...8 => {
try self.spillEflagsIfOccupied();
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = try self.copyToRegisterWithInstTracking(inst, ty, src_mcv);
try self.genUnOpMir(.{ ._, .neg }, ty, dst_mcv);
const cmov_abi_size = @max(@as(u32, @intCast(ty.abiSize(mod))), 2);
switch (src_mcv) {
.register => |val_reg| try self.asmCmovccRegisterRegister(
.l,
registerAlias(dst_mcv.register, cmov_abi_size),
registerAlias(val_reg, cmov_abi_size),
),
.memory, .indirect, .load_frame => try self.asmCmovccRegisterMemory(
.l,
registerAlias(dst_mcv.register, cmov_abi_size),
try src_mcv.mem(self, Memory.Size.fromSize(cmov_abi_size)),
),
else => {
const val_reg = try self.copyToTmpRegister(ty, src_mcv);
try self.asmCmovccRegisterRegister(
.l,
registerAlias(dst_mcv.register, cmov_abi_size),
registerAlias(val_reg, cmov_abi_size),
);
},
}
break :result dst_mcv;
},
9...16 => {
try self.spillEflagsIfOccupied();
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (src_mcv == .register_pair and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) src_mcv else dst: {
const dst_regs = try self.register_manager.allocRegs(
2,
.{ inst, inst },
abi.RegisterClass.gp,
);
const dst_mcv: MCValue = .{ .register_pair = dst_regs };
const dst_locks = self.register_manager.lockRegsAssumeUnused(2, dst_regs);
defer for (dst_locks) |lock| self.register_manager.unlockReg(lock);
try self.genCopy(ty, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
};
const dst_regs = dst_mcv.register_pair;
const dst_locks = self.register_manager.lockRegs(2, dst_regs);
defer for (dst_locks) |dst_lock| if (dst_lock) |lock|
self.register_manager.unlockReg(lock);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, dst_regs[1]);
try self.asmRegisterImmediate(.{ ._r, .sa }, tmp_reg, Immediate.u(63));
try self.asmRegisterRegister(.{ ._, .xor }, dst_regs[0], tmp_reg);
try self.asmRegisterRegister(.{ ._, .xor }, dst_regs[1], tmp_reg);
try self.asmRegisterRegister(.{ ._, .sub }, dst_regs[0], tmp_reg);
try self.asmRegisterRegister(.{ ._, .sbb }, dst_regs[1], tmp_reg);
break :result dst_mcv;
},
else => {
const abi_size: u31 = @intCast(ty.abiSize(mod));
const limb_len = std.math.divCeil(u31, abi_size, 8) catch unreachable;
const tmp_regs =
try self.register_manager.allocRegs(3, .{null} ** 3, abi.RegisterClass.gp);
const tmp_locks = self.register_manager.lockRegsAssumeUnused(3, tmp_regs);
defer for (tmp_locks) |lock| self.register_manager.unlockReg(lock);
try self.spillEflagsIfOccupied();
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try self.allocRegOrMem(inst, false);
try self.asmMemoryImmediate(
.{ ._, .cmp },
try dst_mcv.address().offset((limb_len - 1) * 8).deref().mem(self, .qword),
Immediate.u(0),
);
const positive = try self.asmJccReloc(.ns, undefined);
try self.asmRegisterRegister(.{ ._, .xor }, tmp_regs[0].to32(), tmp_regs[0].to32());
try self.asmRegisterRegister(.{ ._, .xor }, tmp_regs[1].to8(), tmp_regs[1].to8());
const neg_loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterRegister(.{ ._, .xor }, tmp_regs[2].to32(), tmp_regs[2].to32());
try self.asmRegisterImmediate(.{ ._r, .sh }, tmp_regs[1].to8(), Immediate.u(1));
try self.asmRegisterMemory(.{ ._, .sbb }, tmp_regs[2].to64(), .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = tmp_regs[0].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
});
try self.asmSetccRegister(.c, tmp_regs[1].to8());
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = tmp_regs[0].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
}, tmp_regs[2].to64());
if (self.hasFeature(.slow_incdec)) {
try self.asmRegisterImmediate(.{ ._, .add }, tmp_regs[0].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, tmp_regs[0].to32());
}
try self.asmRegisterImmediate(.{ ._, .cmp }, tmp_regs[0].to32(), Immediate.u(limb_len));
_ = try self.asmJccReloc(.b, neg_loop);
self.performReloc(positive);
break :result dst_mcv;
},
},
.Float => return self.floatSign(inst, ty_op.operand, ty),
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
else => null,
.Int => switch (ty.childType(mod).intInfo(mod).bits) {
else => null,
8 => switch (ty.vectorLen(mod)) {
else => null,
1...16 => if (self.hasFeature(.avx))
.{ .vp_b, .abs }
else if (self.hasFeature(.ssse3))
.{ .p_b, .abs }
else
null,
17...32 => if (self.hasFeature(.avx2)) .{ .vp_b, .abs } else null,
},
16 => switch (ty.vectorLen(mod)) {
else => null,
1...8 => if (self.hasFeature(.avx))
.{ .vp_w, .abs }
else if (self.hasFeature(.ssse3))
.{ .p_w, .abs }
else
null,
9...16 => if (self.hasFeature(.avx2)) .{ .vp_w, .abs } else null,
},
32 => switch (ty.vectorLen(mod)) {
else => null,
1...4 => if (self.hasFeature(.avx))
.{ .vp_d, .abs }
else if (self.hasFeature(.ssse3))
.{ .p_d, .abs }
else
null,
5...8 => if (self.hasFeature(.avx2)) .{ .vp_d, .abs } else null,
},
},
.Float => return self.floatSign(inst, ty_op.operand, ty),
},
}) orelse return self.fail("TODO implement airAbs for {}", .{ty.fmt(mod)});
const abi_size: u32 = @intCast(ty.abiSize(mod));
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_reg = if (src_mcv.isRegister() and self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv.getReg().?
else
try self.register_manager.allocReg(inst, self.regClassForType(ty));
const dst_alias = registerAlias(dst_reg, abi_size);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
mir_tag,
dst_alias,
try src_mcv.mem(self, self.memSize(ty)),
) else try self.asmRegisterRegister(
mir_tag,
dst_alias,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv), abi_size),
);
break :result .{ .register = dst_reg };
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSqrt(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ty = self.typeOf(un_op);
const abi_size: u32 = @intCast(ty.abiSize(mod));
const result: MCValue = result: {
switch (ty.zigTypeTag(mod)) {
.Float => {
const float_bits = ty.floatBits(self.target.*);
if (switch (float_bits) {
16 => !self.hasFeature(.f16c),
32, 64 => false,
80, 128 => true,
else => unreachable,
}) {
var callee_buf: ["__sqrt?".len]u8 = undefined;
break :result try self.genCall(.{ .lib = .{
.return_type = ty.toIntern(),
.param_types = &.{ty.toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "{s}sqrt{s}", .{
floatLibcAbiPrefix(ty),
floatLibcAbiSuffix(ty),
}) catch unreachable,
} }, &.{ty}, &.{.{ .air_ref = un_op }});
}
},
else => {},
}
const src_mcv = try self.resolveInst(un_op);
const dst_mcv = if (src_mcv.isRegister() and self.reuseOperand(inst, un_op, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, ty, src_mcv);
const dst_reg = registerAlias(dst_mcv.getReg().?, abi_size);
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const mir_tag = @as(?Mir.Inst.FixedTag, switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
16 => {
assert(self.hasFeature(.f16c));
const mat_src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, mat_src_reg.to128());
try self.asmRegisterRegisterRegister(.{ .v_ss, .sqrt }, dst_reg, dst_reg, dst_reg);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
break :result dst_mcv;
},
32 => if (self.hasFeature(.avx)) .{ .v_ss, .sqrt } else .{ ._ss, .sqrt },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .sqrt } else .{ ._sd, .sqrt },
else => unreachable,
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
16 => if (self.hasFeature(.f16c)) switch (ty.vectorLen(mod)) {
1 => {
try self.asmRegisterRegister(
.{ .v_ps, .cvtph2 },
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv)).to128(),
);
try self.asmRegisterRegisterRegister(
.{ .v_ss, .sqrt },
dst_reg,
dst_reg,
dst_reg,
);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
break :result dst_mcv;
},
2...8 => {
const wide_reg = registerAlias(dst_reg, abi_size * 2);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_ps, .cvtph2 },
wide_reg,
try src_mcv.mem(self, Memory.Size.fromSize(
@intCast(@divExact(wide_reg.bitSize(), 16)),
)),
) else try self.asmRegisterRegister(
.{ .v_ps, .cvtph2 },
wide_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv)).to128(),
);
try self.asmRegisterRegister(.{ .v_ps, .sqrt }, wide_reg, wide_reg);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
wide_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
break :result dst_mcv;
},
else => null,
} else null,
32 => switch (ty.vectorLen(mod)) {
1 => if (self.hasFeature(.avx)) .{ .v_ss, .sqrt } else .{ ._ss, .sqrt },
2...4 => if (self.hasFeature(.avx)) .{ .v_ps, .sqrt } else .{ ._ps, .sqrt },
5...8 => if (self.hasFeature(.avx)) .{ .v_ps, .sqrt } else null,
else => null,
},
64 => switch (ty.vectorLen(mod)) {
1 => if (self.hasFeature(.avx)) .{ .v_sd, .sqrt } else .{ ._sd, .sqrt },
2 => if (self.hasFeature(.avx)) .{ .v_pd, .sqrt } else .{ ._pd, .sqrt },
3...4 => if (self.hasFeature(.avx)) .{ .v_pd, .sqrt } else null,
else => null,
},
80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement airSqrt for {}", .{
ty.fmt(mod),
});
switch (mir_tag[0]) {
.v_ss, .v_sd => if (src_mcv.isMemory()) try self.asmRegisterRegisterMemory(
mir_tag,
dst_reg,
dst_reg,
try src_mcv.mem(self, Memory.Size.fromSize(abi_size)),
) else try self.asmRegisterRegisterRegister(
mir_tag,
dst_reg,
dst_reg,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv), abi_size),
),
else => if (src_mcv.isMemory()) try self.asmRegisterMemory(
mir_tag,
dst_reg,
try src_mcv.mem(self, Memory.Size.fromSize(abi_size)),
) else try self.asmRegisterRegister(
mir_tag,
dst_reg,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv), abi_size),
),
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airUnaryMath(self: *Self, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ty = self.typeOf(un_op);
var callee_buf: ["__round?".len]u8 = undefined;
const result = try self.genCall(.{ .lib = .{
.return_type = ty.toIntern(),
.param_types = &.{ty.toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "{s}{s}{s}", .{
floatLibcAbiPrefix(ty),
switch (tag) {
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
.round,
=> @tagName(tag),
else => unreachable,
},
floatLibcAbiSuffix(ty),
}) catch unreachable,
} }, &.{ty}, &.{.{ .air_ref = un_op }});
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn reuseOperand(
self: *Self,
inst: Air.Inst.Index,
operand: Air.Inst.Ref,
op_index: Liveness.OperandInt,
mcv: MCValue,
) bool {
return self.reuseOperandAdvanced(inst, operand, op_index, mcv, inst);
}
fn reuseOperandAdvanced(
self: *Self,
inst: Air.Inst.Index,
operand: Air.Inst.Ref,
op_index: Liveness.OperandInt,
mcv: MCValue,
maybe_tracked_inst: ?Air.Inst.Index,
) bool {
if (!self.liveness.operandDies(inst, op_index))
return false;
switch (mcv) {
.register, .register_pair, .register_overflow => for (mcv.getRegs()) |reg| {
// If it's in the registers table, need to associate the register(s) with the
// new instruction.
if (maybe_tracked_inst) |tracked_inst| {
if (!self.register_manager.isRegFree(reg)) {
if (RegisterManager.indexOfRegIntoTracked(reg)) |index| {
self.register_manager.registers[index] = tracked_inst;
}
}
} else self.register_manager.freeReg(reg);
},
.load_frame => |frame_addr| if (frame_addr.index.isNamed()) return false,
else => return false,
}
switch (mcv) {
.eflags, .register_overflow => self.eflags_inst = maybe_tracked_inst,
else => {},
}
// Prevent the operand deaths processing code from deallocating it.
self.liveness.clearOperandDeath(inst, op_index);
const op_inst = operand.toIndex().?;
self.getResolvedInstValue(op_inst).reuse(self, maybe_tracked_inst, op_inst);
return true;
}
fn packedLoad(self: *Self, dst_mcv: MCValue, ptr_ty: Type, ptr_mcv: MCValue) InnerError!void {
const mod = self.bin_file.comp.module.?;
const ptr_info = ptr_ty.ptrInfo(mod);
const val_ty = Type.fromInterned(ptr_info.child);
if (!val_ty.hasRuntimeBitsIgnoreComptime(mod)) return;
const val_abi_size: u32 = @intCast(val_ty.abiSize(mod));
const val_bit_size: u32 = @intCast(val_ty.bitSize(mod));
const ptr_bit_off = ptr_info.packed_offset.bit_offset + switch (ptr_info.flags.vector_index) {
.none => 0,
.runtime => unreachable,
else => |vector_index| @intFromEnum(vector_index) * val_bit_size,
};
if (ptr_bit_off % 8 == 0) {
{
const mat_ptr_mcv: MCValue = switch (ptr_mcv) {
.immediate, .register, .register_offset, .lea_frame => ptr_mcv,
else => .{ .register = try self.copyToTmpRegister(ptr_ty, ptr_mcv) },
};
const mat_ptr_lock = switch (mat_ptr_mcv) {
.register => |mat_ptr_reg| self.register_manager.lockReg(mat_ptr_reg),
else => null,
};
defer if (mat_ptr_lock) |lock| self.register_manager.unlockReg(lock);
try self.load(dst_mcv, ptr_ty, mat_ptr_mcv.offset(@intCast(@divExact(ptr_bit_off, 8))));
}
if (val_abi_size * 8 > val_bit_size) {
if (dst_mcv.isRegister()) {
try self.truncateRegister(val_ty, dst_mcv.getReg().?);
} else {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const hi_mcv = dst_mcv.address().offset(@intCast(val_bit_size / 64 * 8)).deref();
try self.genSetReg(tmp_reg, Type.usize, hi_mcv, .{});
try self.truncateRegister(val_ty, tmp_reg);
try self.genCopy(Type.usize, hi_mcv, .{ .register = tmp_reg }, .{});
}
}
return;
}
if (val_abi_size > 8) return self.fail("TODO implement packed load of {}", .{val_ty.fmt(mod)});
const limb_abi_size: u31 = @min(val_abi_size, 8);
const limb_abi_bits = limb_abi_size * 8;
const val_byte_off: i32 = @intCast(ptr_bit_off / limb_abi_bits * limb_abi_size);
const val_bit_off = ptr_bit_off % limb_abi_bits;
const val_extra_bits = self.regExtraBits(val_ty);
const ptr_reg = try self.copyToTmpRegister(ptr_ty, ptr_mcv);
const ptr_lock = self.register_manager.lockRegAssumeUnused(ptr_reg);
defer self.register_manager.unlockReg(ptr_lock);
const dst_reg = switch (dst_mcv) {
.register => |reg| reg,
else => try self.register_manager.allocReg(null, abi.RegisterClass.gp),
};
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const load_abi_size =
if (val_bit_off < val_extra_bits) val_abi_size else val_abi_size * 2;
if (load_abi_size <= 8) {
const load_reg = registerAlias(dst_reg, load_abi_size);
try self.asmRegisterMemory(.{ ._, .mov }, load_reg, .{
.base = .{ .reg = ptr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(load_abi_size),
.disp = val_byte_off,
} },
});
try self.spillEflagsIfOccupied();
try self.asmRegisterImmediate(.{ ._r, .sh }, load_reg, Immediate.u(val_bit_off));
} else {
const tmp_reg =
registerAlias(try self.register_manager.allocReg(null, abi.RegisterClass.gp), val_abi_size);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const dst_alias = registerAlias(dst_reg, val_abi_size);
try self.asmRegisterMemory(.{ ._, .mov }, dst_alias, .{
.base = .{ .reg = ptr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(val_abi_size),
.disp = val_byte_off,
} },
});
try self.asmRegisterMemory(.{ ._, .mov }, tmp_reg, .{
.base = .{ .reg = ptr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(val_abi_size),
.disp = val_byte_off + limb_abi_size,
} },
});
try self.spillEflagsIfOccupied();
try self.asmRegisterRegisterImmediate(
.{ ._rd, .sh },
dst_alias,
tmp_reg,
Immediate.u(val_bit_off),
);
}
if (val_extra_bits > 0) try self.truncateRegister(val_ty, dst_reg);
try self.genCopy(val_ty, dst_mcv, .{ .register = dst_reg }, .{});
}
fn load(self: *Self, dst_mcv: MCValue, ptr_ty: Type, ptr_mcv: MCValue) InnerError!void {
const mod = self.bin_file.comp.module.?;
const dst_ty = ptr_ty.childType(mod);
if (!dst_ty.hasRuntimeBitsIgnoreComptime(mod)) return;
switch (ptr_mcv) {
.none,
.unreach,
.dead,
.undef,
.eflags,
.register_pair,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
=> unreachable, // not a valid pointer
.immediate,
.register,
.register_offset,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
=> try self.genCopy(dst_ty, dst_mcv, ptr_mcv.deref(), .{}),
.memory,
.indirect,
.load_symbol,
.load_direct,
.load_got,
.load_tlv,
.load_frame,
=> {
const addr_reg = try self.copyToTmpRegister(ptr_ty, ptr_mcv);
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
try self.genCopy(dst_ty, dst_mcv, .{ .indirect = .{ .reg = addr_reg } }, .{});
},
.air_ref => |ptr_ref| try self.load(dst_mcv, ptr_ty, try self.resolveInst(ptr_ref)),
}
}
fn airLoad(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const elem_ty = self.typeOfIndex(inst);
const result: MCValue = result: {
if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .none;
try self.spillRegisters(&.{ .rdi, .rsi, .rcx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rdi, .rsi, .rcx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const ptr_ty = self.typeOf(ty_op.operand);
const elem_size = elem_ty.abiSize(mod);
const elem_rc = self.regClassForType(elem_ty);
const ptr_rc = self.regClassForType(ptr_ty);
const ptr_mcv = try self.resolveInst(ty_op.operand);
const dst_mcv = if (elem_size <= 8 and elem_rc.supersetOf(ptr_rc) and
self.reuseOperand(inst, ty_op.operand, 0, ptr_mcv))
// The MCValue that holds the pointer can be re-used as the value.
ptr_mcv
else
try self.allocRegOrMem(inst, true);
const ptr_info = ptr_ty.ptrInfo(mod);
if (ptr_info.flags.vector_index != .none or ptr_info.packed_offset.host_size > 0) {
try self.packedLoad(dst_mcv, ptr_ty, ptr_mcv);
} else {
try self.load(dst_mcv, ptr_ty, ptr_mcv);
}
if (elem_ty.isAbiInt(mod) and elem_size * 8 > elem_ty.bitSize(mod)) {
const high_mcv: MCValue = switch (dst_mcv) {
.register => |dst_reg| .{ .register = dst_reg },
.register_pair => |dst_regs| .{ .register = dst_regs[1] },
else => dst_mcv.address().offset(@intCast((elem_size - 1) / 8 * 8)).deref(),
};
const high_reg = if (high_mcv.isRegister())
high_mcv.getReg().?
else
try self.copyToTmpRegister(Type.usize, high_mcv);
const high_lock = self.register_manager.lockReg(high_reg);
defer if (high_lock) |lock| self.register_manager.unlockReg(lock);
try self.truncateRegister(elem_ty, high_reg);
if (!high_mcv.isRegister()) try self.genCopy(
if (elem_size <= 8) elem_ty else Type.usize,
high_mcv,
.{ .register = high_reg },
.{},
);
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn packedStore(self: *Self, ptr_ty: Type, ptr_mcv: MCValue, src_mcv: MCValue) InnerError!void {
const mod = self.bin_file.comp.module.?;
const ptr_info = ptr_ty.ptrInfo(mod);
const src_ty = Type.fromInterned(ptr_info.child);
if (!src_ty.hasRuntimeBitsIgnoreComptime(mod)) return;
const limb_abi_size: u16 = @min(ptr_info.packed_offset.host_size, 8);
const limb_abi_bits = limb_abi_size * 8;
const limb_ty = try mod.intType(.unsigned, limb_abi_bits);
const src_bit_size = src_ty.bitSize(mod);
const ptr_bit_off = ptr_info.packed_offset.bit_offset + switch (ptr_info.flags.vector_index) {
.none => 0,
.runtime => unreachable,
else => |vector_index| @intFromEnum(vector_index) * src_bit_size,
};
const src_byte_off: i32 = @intCast(ptr_bit_off / limb_abi_bits * limb_abi_size);
const src_bit_off = ptr_bit_off % limb_abi_bits;
const ptr_reg = try self.copyToTmpRegister(ptr_ty, ptr_mcv);
const ptr_lock = self.register_manager.lockRegAssumeUnused(ptr_reg);
defer self.register_manager.unlockReg(ptr_lock);
var limb_i: u16 = 0;
while (limb_i * limb_abi_bits < src_bit_off + src_bit_size) : (limb_i += 1) {
const part_bit_off = if (limb_i == 0) src_bit_off else 0;
const part_bit_size =
@min(src_bit_off + src_bit_size - limb_i * limb_abi_bits, limb_abi_bits) - part_bit_off;
const limb_mem: Memory = .{
.base = .{ .reg = ptr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = src_byte_off + limb_i * limb_abi_size,
} },
};
const part_mask = (@as(u64, math.maxInt(u64)) >> @intCast(64 - part_bit_size)) <<
@intCast(part_bit_off);
const part_mask_not = part_mask ^ (@as(u64, math.maxInt(u64)) >> @intCast(64 - limb_abi_bits));
if (limb_abi_size <= 4) {
try self.asmMemoryImmediate(.{ ._, .@"and" }, limb_mem, Immediate.u(part_mask_not));
} else if (math.cast(i32, @as(i64, @bitCast(part_mask_not)))) |small| {
try self.asmMemoryImmediate(.{ ._, .@"and" }, limb_mem, Immediate.s(small));
} else {
const part_mask_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
try self.asmRegisterImmediate(.{ ._, .mov }, part_mask_reg, Immediate.u(part_mask_not));
try self.asmMemoryRegister(.{ ._, .@"and" }, limb_mem, part_mask_reg);
}
if (src_bit_size <= 64) {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.genSetReg(tmp_reg, limb_ty, src_mcv, .{});
switch (limb_i) {
0 => try self.genShiftBinOpMir(
.{ ._l, .sh },
limb_ty,
tmp_mcv,
Type.u8,
.{ .immediate = src_bit_off },
),
1 => try self.genShiftBinOpMir(
.{ ._r, .sh },
limb_ty,
tmp_mcv,
Type.u8,
.{ .immediate = limb_abi_bits - src_bit_off },
),
else => unreachable,
}
try self.genBinOpMir(.{ ._, .@"and" }, limb_ty, tmp_mcv, .{ .immediate = part_mask });
try self.asmMemoryRegister(
.{ ._, .@"or" },
limb_mem,
registerAlias(tmp_reg, limb_abi_size),
);
} else if (src_bit_size <= 128 and src_bit_off == 0) {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.genSetReg(tmp_reg, limb_ty, switch (limb_i) {
0 => src_mcv,
else => src_mcv.address().offset(limb_i * limb_abi_size).deref(),
}, .{});
try self.genBinOpMir(.{ ._, .@"and" }, limb_ty, tmp_mcv, .{ .immediate = part_mask });
try self.asmMemoryRegister(
.{ ._, .@"or" },
limb_mem,
registerAlias(tmp_reg, limb_abi_size),
);
} else return self.fail("TODO: implement packed store of {}", .{src_ty.fmt(mod)});
}
}
fn store(
self: *Self,
ptr_ty: Type,
ptr_mcv: MCValue,
src_mcv: MCValue,
opts: CopyOptions,
) InnerError!void {
const mod = self.bin_file.comp.module.?;
const src_ty = ptr_ty.childType(mod);
if (!src_ty.hasRuntimeBitsIgnoreComptime(mod)) return;
switch (ptr_mcv) {
.none,
.unreach,
.dead,
.undef,
.eflags,
.register_pair,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
=> unreachable, // not a valid pointer
.immediate,
.register,
.register_offset,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
=> try self.genCopy(src_ty, ptr_mcv.deref(), src_mcv, opts),
.memory,
.indirect,
.load_symbol,
.load_direct,
.load_got,
.load_tlv,
.load_frame,
=> {
const addr_reg = try self.copyToTmpRegister(ptr_ty, ptr_mcv);
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
try self.genCopy(src_ty, .{ .indirect = .{ .reg = addr_reg } }, src_mcv, opts);
},
.air_ref => |ptr_ref| try self.store(ptr_ty, try self.resolveInst(ptr_ref), src_mcv, opts),
}
}
fn airStore(self: *Self, inst: Air.Inst.Index, safety: bool) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
result: {
if (!safety and (try self.resolveInst(bin_op.rhs)) == .undef) break :result;
try self.spillRegisters(&.{ .rdi, .rsi, .rcx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rdi, .rsi, .rcx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const src_mcv = try self.resolveInst(bin_op.rhs);
const ptr_mcv = try self.resolveInst(bin_op.lhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const ptr_info = ptr_ty.ptrInfo(mod);
if (ptr_info.flags.vector_index != .none or ptr_info.packed_offset.host_size > 0) {
try self.packedStore(ptr_ty, ptr_mcv, src_mcv);
} else {
try self.store(ptr_ty, ptr_mcv, src_mcv, .{ .safety = safety });
}
}
return self.finishAir(inst, .none, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.StructField, ty_pl.payload).data;
const result = try self.fieldPtr(inst, extra.struct_operand, extra.field_index);
return self.finishAir(inst, result, .{ extra.struct_operand, .none, .none });
}
fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u8) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = try self.fieldPtr(inst, ty_op.operand, index);
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn fieldPtr(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, index: u32) !MCValue {
const mod = self.bin_file.comp.module.?;
const ptr_field_ty = self.typeOfIndex(inst);
const ptr_container_ty = self.typeOf(operand);
const ptr_container_ty_info = ptr_container_ty.ptrInfo(mod);
const container_ty = ptr_container_ty.childType(mod);
const field_offset: i32 = if (mod.typeToPackedStruct(container_ty)) |struct_obj|
if (ptr_field_ty.ptrInfo(mod).packed_offset.host_size == 0)
@divExact(mod.structPackedFieldBitOffset(struct_obj, index) +
ptr_container_ty_info.packed_offset.bit_offset, 8)
else
0
else
@intCast(container_ty.structFieldOffset(index, mod));
const src_mcv = try self.resolveInst(operand);
const dst_mcv = if (switch (src_mcv) {
.immediate, .lea_frame => true,
.register, .register_offset => self.reuseOperand(inst, operand, 0, src_mcv),
else => false,
}) src_mcv else try self.copyToRegisterWithInstTracking(inst, ptr_field_ty, src_mcv);
return dst_mcv.offset(field_offset);
}
fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.StructField, ty_pl.payload).data;
const result: MCValue = result: {
const operand = extra.struct_operand;
const index = extra.field_index;
const container_ty = self.typeOf(operand);
const container_rc = self.regClassForType(container_ty);
const field_ty = container_ty.structFieldType(index, mod);
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) break :result .none;
const field_rc = self.regClassForType(field_ty);
const field_is_gp = field_rc.supersetOf(abi.RegisterClass.gp);
const src_mcv = try self.resolveInst(operand);
const field_off: u32 = switch (container_ty.containerLayout(mod)) {
.Auto, .Extern => @intCast(container_ty.structFieldOffset(index, mod) * 8),
.Packed => if (mod.typeToStruct(container_ty)) |struct_type|
mod.structPackedFieldBitOffset(struct_type, index)
else
0,
};
switch (src_mcv) {
.register => |src_reg| {
const src_reg_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_reg_lock);
const src_in_field_rc =
field_rc.isSet(RegisterManager.indexOfRegIntoTracked(src_reg).?);
const dst_reg = if (src_in_field_rc and self.reuseOperand(inst, operand, 0, src_mcv))
src_reg
else if (field_off == 0)
(try self.copyToRegisterWithInstTracking(inst, field_ty, src_mcv)).register
else
try self.copyToTmpRegister(Type.usize, .{ .register = src_reg });
const dst_mcv: MCValue = .{ .register = dst_reg };
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
if (field_off > 0) {
try self.spillEflagsIfOccupied();
try self.genShiftBinOpMir(
.{ ._r, .sh },
Type.usize,
dst_mcv,
Type.u8,
.{ .immediate = field_off },
);
}
if (abi.RegisterClass.gp.isSet(RegisterManager.indexOfRegIntoTracked(dst_reg).?) and
container_ty.abiSize(mod) * 8 > field_ty.bitSize(mod))
try self.truncateRegister(field_ty, dst_reg);
break :result if (field_off == 0 or field_rc.supersetOf(abi.RegisterClass.gp))
dst_mcv
else
try self.copyToRegisterWithInstTracking(inst, field_ty, dst_mcv);
},
.register_pair => |src_regs| {
const src_regs_lock = self.register_manager.lockRegsAssumeUnused(2, src_regs);
defer for (src_regs_lock) |lock| self.register_manager.unlockReg(lock);
const field_bit_size: u32 = @intCast(field_ty.bitSize(mod));
const src_reg = if (field_off + field_bit_size <= 64)
src_regs[0]
else if (field_off >= 64)
src_regs[1]
else {
const dst_regs: [2]Register = if (field_rc.supersetOf(container_rc) and
self.reuseOperand(inst, operand, 0, src_mcv)) src_regs else dst: {
const dst_regs =
try self.register_manager.allocRegs(2, .{null} ** 2, field_rc);
const dst_locks = self.register_manager.lockRegsAssumeUnused(2, dst_regs);
defer for (dst_locks) |lock| self.register_manager.unlockReg(lock);
try self.genCopy(container_ty, .{ .register_pair = dst_regs }, src_mcv, .{});
break :dst dst_regs;
};
const dst_mcv = MCValue{ .register_pair = dst_regs };
const dst_locks = self.register_manager.lockRegs(2, dst_regs);
defer for (dst_locks) |dst_lock| if (dst_lock) |lock|
self.register_manager.unlockReg(lock);
if (field_off > 0) {
try self.spillEflagsIfOccupied();
try self.genShiftBinOpMir(
.{ ._r, .sh },
Type.u128,
dst_mcv,
Type.u8,
.{ .immediate = field_off },
);
}
if (field_bit_size <= 64) {
if (self.regExtraBits(field_ty) > 0)
try self.truncateRegister(field_ty, dst_regs[0]);
break :result if (field_rc.supersetOf(abi.RegisterClass.gp))
.{ .register = dst_regs[0] }
else
try self.copyToRegisterWithInstTracking(inst, field_ty, .{
.register = dst_regs[0],
});
}
if (field_bit_size < 128) try self.truncateRegister(
try mod.intType(.unsigned, @intCast(field_bit_size - 64)),
dst_regs[1],
);
break :result if (field_rc.supersetOf(abi.RegisterClass.gp))
dst_mcv
else
try self.copyToRegisterWithInstTracking(inst, field_ty, dst_mcv);
};
const dst_reg = try self.copyToTmpRegister(Type.usize, .{ .register = src_reg });
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
if (field_off % 64 > 0) {
try self.spillEflagsIfOccupied();
try self.genShiftBinOpMir(
.{ ._r, .sh },
Type.usize,
dst_mcv,
Type.u8,
.{ .immediate = field_off % 64 },
);
}
if (self.regExtraBits(field_ty) > 0) try self.truncateRegister(field_ty, dst_reg);
break :result if (field_rc.supersetOf(abi.RegisterClass.gp))
dst_mcv
else
try self.copyToRegisterWithInstTracking(inst, field_ty, dst_mcv);
},
.register_overflow => |ro| {
switch (index) {
// Get wrapped value for overflow operation.
0 => if (self.reuseOperand(inst, extra.struct_operand, 0, src_mcv)) {
self.eflags_inst = null; // actually stop tracking the overflow part
break :result .{ .register = ro.reg };
} else break :result try self.copyToRegisterWithInstTracking(
inst,
Type.usize,
.{ .register = ro.reg },
),
// Get overflow bit.
1 => if (self.reuseOperandAdvanced(inst, extra.struct_operand, 0, src_mcv, null)) {
self.eflags_inst = inst; // actually keep tracking the overflow part
break :result .{ .eflags = ro.eflags };
} else {
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
try self.asmSetccRegister(ro.eflags, dst_reg.to8());
break :result .{ .register = dst_reg.to8() };
},
else => unreachable,
}
},
.load_frame => |frame_addr| {
const field_abi_size: u32 = @intCast(field_ty.abiSize(mod));
if (field_off % 8 == 0) {
const field_byte_off = @divExact(field_off, 8);
const off_mcv = src_mcv.address().offset(@intCast(field_byte_off)).deref();
const field_bit_size = field_ty.bitSize(mod);
if (field_abi_size <= 8) {
const int_ty = try mod.intType(
if (field_ty.isAbiInt(mod)) field_ty.intInfo(mod).signedness else .unsigned,
@intCast(field_bit_size),
);
const dst_reg = try self.register_manager.allocReg(
if (field_is_gp) inst else null,
abi.RegisterClass.gp,
);
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
try self.genCopy(int_ty, dst_mcv, off_mcv, .{});
if (self.regExtraBits(field_ty) > 0) try self.truncateRegister(int_ty, dst_reg);
break :result if (field_is_gp)
dst_mcv
else
try self.copyToRegisterWithInstTracking(inst, field_ty, dst_mcv);
}
const container_abi_size: u32 = @intCast(container_ty.abiSize(mod));
const dst_mcv = if (field_byte_off + field_abi_size <= container_abi_size and
self.reuseOperand(inst, operand, 0, src_mcv))
off_mcv
else dst: {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(field_ty, dst_mcv, off_mcv, .{});
break :dst dst_mcv;
};
if (field_abi_size * 8 > field_bit_size and dst_mcv.isMemory()) {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const hi_mcv =
dst_mcv.address().offset(@intCast(field_bit_size / 64 * 8)).deref();
try self.genSetReg(tmp_reg, Type.usize, hi_mcv, .{});
try self.truncateRegister(field_ty, tmp_reg);
try self.genCopy(Type.usize, hi_mcv, .{ .register = tmp_reg }, .{});
}
break :result dst_mcv;
}
const limb_abi_size: u31 = @min(field_abi_size, 8);
const limb_abi_bits = limb_abi_size * 8;
const field_byte_off: i32 = @intCast(field_off / limb_abi_bits * limb_abi_size);
const field_bit_off = field_off % limb_abi_bits;
if (field_abi_size > 8) {
return self.fail("TODO implement struct_field_val with large packed field", .{});
}
const dst_reg = try self.register_manager.allocReg(
if (field_is_gp) inst else null,
abi.RegisterClass.gp,
);
const field_extra_bits = self.regExtraBits(field_ty);
const load_abi_size =
if (field_bit_off < field_extra_bits) field_abi_size else field_abi_size * 2;
if (load_abi_size <= 8) {
const load_reg = registerAlias(dst_reg, load_abi_size);
try self.asmRegisterMemory(.{ ._, .mov }, load_reg, .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(load_abi_size),
.disp = frame_addr.off + field_byte_off,
} },
});
try self.spillEflagsIfOccupied();
try self.asmRegisterImmediate(.{ ._r, .sh }, load_reg, Immediate.u(field_bit_off));
} else {
const tmp_reg = registerAlias(
try self.register_manager.allocReg(null, abi.RegisterClass.gp),
field_abi_size,
);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const dst_alias = registerAlias(dst_reg, field_abi_size);
try self.asmRegisterMemory(
.{ ._, .mov },
dst_alias,
.{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(field_abi_size),
.disp = frame_addr.off + field_byte_off,
} },
},
);
try self.asmRegisterMemory(.{ ._, .mov }, tmp_reg, .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(field_abi_size),
.disp = frame_addr.off + field_byte_off + limb_abi_size,
} },
});
try self.spillEflagsIfOccupied();
try self.asmRegisterRegisterImmediate(
.{ ._rd, .sh },
dst_alias,
tmp_reg,
Immediate.u(field_bit_off),
);
}
if (field_extra_bits > 0) try self.truncateRegister(field_ty, dst_reg);
const dst_mcv = MCValue{ .register = dst_reg };
break :result if (field_is_gp)
dst_mcv
else
try self.copyToRegisterWithInstTracking(inst, field_ty, dst_mcv);
},
else => return self.fail("TODO implement airStructFieldVal for {}", .{src_mcv}),
}
};
return self.finishAir(inst, result, .{ extra.struct_operand, .none, .none });
}
fn airFieldParentPtr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const inst_ty = self.typeOfIndex(inst);
const parent_ty = inst_ty.childType(mod);
const field_offset: i32 = @intCast(parent_ty.structFieldOffset(extra.field_index, mod));
const src_mcv = try self.resolveInst(extra.field_ptr);
const dst_mcv = if (src_mcv.isRegisterOffset() and
self.reuseOperand(inst, extra.field_ptr, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, inst_ty, src_mcv);
const result = dst_mcv.offset(-field_offset);
return self.finishAir(inst, result, .{ extra.field_ptr, .none, .none });
}
fn genUnOp(self: *Self, maybe_inst: ?Air.Inst.Index, tag: Air.Inst.Tag, src_air: Air.Inst.Ref) !MCValue {
const mod = self.bin_file.comp.module.?;
const src_ty = self.typeOf(src_air);
if (src_ty.zigTypeTag(mod) == .Vector)
return self.fail("TODO implement genUnOp for {}", .{src_ty.fmt(mod)});
var src_mcv = try self.resolveInst(src_air);
switch (src_mcv) {
.eflags => |cc| switch (tag) {
.not => {
if (maybe_inst) |inst| if (self.reuseOperand(inst, src_air, 0, src_mcv))
return .{ .eflags = cc.negate() };
try self.spillEflagsIfOccupied();
src_mcv = try self.resolveInst(src_air);
},
else => {},
},
else => {},
}
const src_lock = switch (src_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv: MCValue = dst: {
if (maybe_inst) |inst| if (self.reuseOperand(inst, src_air, 0, src_mcv)) break :dst src_mcv;
const dst_mcv = try self.allocRegOrMemAdvanced(src_ty, maybe_inst, true);
try self.genCopy(src_ty, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
};
const dst_lock = switch (dst_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const abi_size: u16 = @intCast(src_ty.abiSize(mod));
switch (tag) {
.not => {
const limb_abi_size: u16 = @min(abi_size, 8);
const int_info = if (src_ty.ip_index == .bool_type)
std.builtin.Type.Int{ .signedness = .unsigned, .bits = 1 }
else
src_ty.intInfo(mod);
var byte_off: i32 = 0;
while (byte_off * 8 < int_info.bits) : (byte_off += limb_abi_size) {
const limb_bits: u16 = @intCast(@min(switch (int_info.signedness) {
.signed => abi_size * 8,
.unsigned => int_info.bits,
} - byte_off * 8, limb_abi_size * 8));
const limb_ty = try mod.intType(int_info.signedness, limb_bits);
const limb_mcv = switch (byte_off) {
0 => dst_mcv,
else => dst_mcv.address().offset(byte_off).deref(),
};
if (int_info.signedness == .unsigned and self.regExtraBits(limb_ty) > 0) {
const mask = @as(u64, math.maxInt(u64)) >> @intCast(64 - limb_bits);
try self.genBinOpMir(.{ ._, .xor }, limb_ty, limb_mcv, .{ .immediate = mask });
} else try self.genUnOpMir(.{ ._, .not }, limb_ty, limb_mcv);
}
},
.neg => {
try self.genUnOpMir(.{ ._, .neg }, src_ty, dst_mcv);
const bit_size = src_ty.intInfo(mod).bits;
if (abi_size * 8 > bit_size) {
if (dst_mcv.isRegister()) {
try self.truncateRegister(src_ty, dst_mcv.getReg().?);
} else {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const hi_mcv = dst_mcv.address().offset(@intCast(bit_size / 64 * 8)).deref();
try self.genSetReg(tmp_reg, Type.usize, hi_mcv, .{});
try self.truncateRegister(src_ty, tmp_reg);
try self.genCopy(Type.usize, hi_mcv, .{ .register = tmp_reg }, .{});
}
}
},
else => unreachable,
}
return dst_mcv;
}
fn genUnOpMir(self: *Self, mir_tag: Mir.Inst.FixedTag, dst_ty: Type, dst_mcv: MCValue) !void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(dst_ty.abiSize(mod));
if (abi_size > 8) return self.fail("TODO implement {} for {}", .{ mir_tag, dst_ty.fmt(mod) });
switch (dst_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.register_offset,
.eflags,
.register_overflow,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // unmodifiable destination
.register => |dst_reg| try self.asmRegister(mir_tag, registerAlias(dst_reg, abi_size)),
.register_pair => unreachable, // unimplemented
.memory, .load_symbol, .load_got, .load_direct, .load_tlv => {
const addr_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const addr_reg_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_reg_lock);
try self.genSetReg(addr_reg, Type.usize, dst_mcv.address(), .{});
try self.asmMemory(mir_tag, .{ .base = .{ .reg = addr_reg }, .mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
} } });
},
.indirect, .load_frame => try self.asmMemory(
mir_tag,
try dst_mcv.mem(self, Memory.Size.fromSize(abi_size)),
),
}
}
/// Clobbers .rcx for non-immediate shift value.
fn genShiftBinOpMir(
self: *Self,
tag: Mir.Inst.FixedTag,
lhs_ty: Type,
lhs_mcv: MCValue,
rhs_ty: Type,
rhs_mcv: MCValue,
) !void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(lhs_ty.abiSize(mod));
const shift_abi_size: u32 = @intCast(rhs_ty.abiSize(mod));
try self.spillEflagsIfOccupied();
if (abi_size > 16) {
const limbs_len = math.divCeil(u32, abi_size, 8) catch unreachable;
assert(shift_abi_size >= 1 and shift_abi_size <= 2);
const rcx_lock: ?RegisterLock = switch (rhs_mcv) {
.immediate => |shift_imm| switch (shift_imm) {
0 => return,
else => null,
},
else => lock: {
if (switch (rhs_mcv) {
.register => |rhs_reg| rhs_reg.id() != Register.rcx.id(),
else => true,
}) {
self.register_manager.getRegAssumeFree(.rcx, null);
try self.genSetReg(.rcx, rhs_ty, rhs_mcv, .{});
}
break :lock self.register_manager.lockReg(.rcx);
},
};
defer if (rcx_lock) |lock| self.register_manager.unlockReg(lock);
const temp_regs = try self.register_manager.allocRegs(4, .{null} ** 4, abi.RegisterClass.gp);
const temp_locks = self.register_manager.lockRegsAssumeUnused(4, temp_regs);
defer for (temp_locks) |lock| self.register_manager.unlockReg(lock);
switch (tag[0]) {
._l => {
try self.asmRegisterImmediate(.{ ._, .mov }, temp_regs[1].to32(), Immediate.u(limbs_len - 1));
switch (rhs_mcv) {
.immediate => |shift_imm| try self.asmRegisterImmediate(
.{ ._, .mov },
temp_regs[0].to32(),
Immediate.u(limbs_len - (shift_imm >> 6) - 1),
),
else => {
try self.asmRegisterRegister(
.{ ._, .movzx },
temp_regs[2].to32(),
registerAlias(.rcx, shift_abi_size),
);
try self.asmRegisterImmediate(
.{ ._, .@"and" },
.cl,
Immediate.u(std.math.maxInt(u6)),
);
try self.asmRegisterImmediate(
.{ ._r, .sh },
temp_regs[2].to32(),
Immediate.u(6),
);
try self.asmRegisterRegister(
.{ ._, .mov },
temp_regs[0].to32(),
temp_regs[1].to32(),
);
try self.asmRegisterRegister(
.{ ._, .sub },
temp_regs[0].to32(),
temp_regs[2].to32(),
);
},
}
},
._r => {
try self.asmRegisterRegister(.{ ._, .xor }, temp_regs[1].to32(), temp_regs[1].to32());
switch (rhs_mcv) {
.immediate => |shift_imm| try self.asmRegisterImmediate(
.{ ._, .mov },
temp_regs[0].to32(),
Immediate.u(shift_imm >> 6),
),
else => {
try self.asmRegisterRegister(
.{ ._, .movzx },
temp_regs[0].to32(),
registerAlias(.rcx, shift_abi_size),
);
try self.asmRegisterImmediate(
.{ ._, .@"and" },
.cl,
Immediate.u(std.math.maxInt(u6)),
);
try self.asmRegisterImmediate(
.{ ._r, .sh },
temp_regs[0].to32(),
Immediate.u(6),
);
},
}
},
else => unreachable,
}
const slow_inc_dec = self.hasFeature(.slow_incdec);
if (switch (rhs_mcv) {
.immediate => |shift_imm| shift_imm >> 6 < limbs_len - 1,
else => true,
}) {
try self.asmRegisterMemory(.{ ._, .mov }, temp_regs[2].to64(), .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[0].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
});
const skip = switch (rhs_mcv) {
.immediate => undefined,
else => switch (tag[0]) {
._l => try self.asmJccReloc(.z, undefined),
._r => skip: {
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[0].to32(),
Immediate.u(limbs_len - 1),
);
break :skip try self.asmJccReloc(.nb, undefined);
},
else => unreachable,
},
};
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterMemory(.{ ._, .mov }, temp_regs[3].to64(), .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[0].to64(),
.scale = .@"8",
.disp = switch (tag[0]) {
._l => lhs_mcv.load_frame.off - 8,
._r => lhs_mcv.load_frame.off + 8,
else => unreachable,
},
} },
});
switch (rhs_mcv) {
.immediate => |shift_imm| try self.asmRegisterRegisterImmediate(
.{ switch (tag[0]) {
._l => ._ld,
._r => ._rd,
else => unreachable,
}, .sh },
temp_regs[2].to64(),
temp_regs[3].to64(),
Immediate.u(shift_imm & std.math.maxInt(u6)),
),
else => try self.asmRegisterRegisterRegister(.{ switch (tag[0]) {
._l => ._ld,
._r => ._rd,
else => unreachable,
}, .sh }, temp_regs[2].to64(), temp_regs[3].to64(), .cl),
}
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[1].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
}, temp_regs[2].to64());
try self.asmRegisterRegister(.{ ._, .mov }, temp_regs[2].to64(), temp_regs[3].to64());
switch (tag[0]) {
._l => {
if (slow_inc_dec) {
try self.asmRegisterImmediate(.{ ._, .sub }, temp_regs[1].to32(), Immediate.u(1));
try self.asmRegisterImmediate(.{ ._, .sub }, temp_regs[0].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .dec }, temp_regs[1].to32());
try self.asmRegister(.{ ._, .dec }, temp_regs[0].to32());
}
_ = try self.asmJccReloc(.nz, loop);
},
._r => {
if (slow_inc_dec) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[1].to32(), Immediate.u(1));
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[0].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[1].to32());
try self.asmRegister(.{ ._, .inc }, temp_regs[0].to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[0].to32(),
Immediate.u(limbs_len - 1),
);
_ = try self.asmJccReloc(.b, loop);
},
else => unreachable,
}
switch (rhs_mcv) {
.immediate => {},
else => self.performReloc(skip),
}
}
switch (rhs_mcv) {
.immediate => |shift_imm| try self.asmRegisterImmediate(
tag,
temp_regs[2].to64(),
Immediate.u(shift_imm & std.math.maxInt(u6)),
),
else => try self.asmRegisterRegister(tag, temp_regs[2].to64(), .cl),
}
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[1].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
}, temp_regs[2].to64());
if (tag[0] == ._r and tag[1] == .sa) try self.asmRegisterImmediate(
tag,
temp_regs[2].to64(),
Immediate.u(63),
);
if (switch (rhs_mcv) {
.immediate => |shift_imm| shift_imm >> 6 > 0,
else => true,
}) {
const skip = switch (rhs_mcv) {
.immediate => undefined,
else => switch (tag[0]) {
._l => skip: {
try self.asmRegisterRegister(
.{ ._, .@"test" },
temp_regs[1].to32(),
temp_regs[1].to32(),
);
break :skip try self.asmJccReloc(.z, undefined);
},
._r => skip: {
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[1].to32(),
Immediate.u(limbs_len - 1),
);
break :skip try self.asmJccReloc(.nb, undefined);
},
else => unreachable,
},
};
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
switch (tag[0]) {
._l => if (slow_inc_dec) {
try self.asmRegisterImmediate(.{ ._, .sub }, temp_regs[1].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .dec }, temp_regs[1].to32());
},
._r => if (slow_inc_dec) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[1].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[1].to32());
},
else => unreachable,
}
if (tag[0] == ._r and tag[1] == .sa) try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[1].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
}, temp_regs[2].to64()) else try self.asmMemoryImmediate(.{ ._, .mov }, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[1].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
}, Immediate.u(0));
switch (tag[0]) {
._l => _ = try self.asmJccReloc(.nz, loop),
._r => {
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[1].to32(),
Immediate.u(limbs_len - 1),
);
_ = try self.asmJccReloc(.b, loop);
},
else => unreachable,
}
switch (rhs_mcv) {
.immediate => {},
else => self.performReloc(skip),
}
}
return;
}
assert(shift_abi_size == 1);
const shift_mcv: MCValue = shift: {
switch (rhs_mcv) {
.immediate => |shift_imm| switch (shift_imm) {
0 => return,
else => break :shift rhs_mcv,
},
.register => |rhs_reg| if (rhs_reg.id() == Register.rcx.id())
break :shift rhs_mcv,
else => {},
}
self.register_manager.getRegAssumeFree(.rcx, null);
try self.genSetReg(.cl, rhs_ty, rhs_mcv, .{});
break :shift .{ .register = .rcx };
};
if (abi_size > 8) {
const info: struct { indices: [2]u31, double_tag: Mir.Inst.FixedTag } = switch (tag[0]) {
._l => .{ .indices = .{ 0, 1 }, .double_tag = .{ ._ld, .sh } },
._r => .{ .indices = .{ 1, 0 }, .double_tag = .{ ._rd, .sh } },
else => unreachable,
};
switch (lhs_mcv) {
.register_pair => |lhs_regs| switch (shift_mcv) {
.immediate => |shift_imm| if (shift_imm > 0 and shift_imm < 64) {
try self.asmRegisterRegisterImmediate(
info.double_tag,
lhs_regs[info.indices[1]],
lhs_regs[info.indices[0]],
Immediate.u(shift_imm),
);
try self.asmRegisterImmediate(
tag,
lhs_regs[info.indices[0]],
Immediate.u(shift_imm),
);
return;
} else {
assert(shift_imm < 128);
try self.asmRegisterRegister(
.{ ._, .mov },
lhs_regs[info.indices[1]],
lhs_regs[info.indices[0]],
);
if (tag[0] == ._r and tag[1] == .sa) try self.asmRegisterImmediate(
tag,
lhs_regs[info.indices[0]],
Immediate.u(63),
) else try self.asmRegisterRegister(
.{ ._, .xor },
lhs_regs[info.indices[0]],
lhs_regs[info.indices[0]],
);
if (shift_imm > 64) try self.asmRegisterImmediate(
tag,
lhs_regs[info.indices[1]],
Immediate.u(shift_imm - 64),
);
return;
},
.register => |shift_reg| {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
if (tag[0] == ._r and tag[1] == .sa) {
try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, lhs_regs[info.indices[0]]);
try self.asmRegisterImmediate(tag, tmp_reg, Immediate.u(63));
} else try self.asmRegisterRegister(
.{ ._, .xor },
tmp_reg.to32(),
tmp_reg.to32(),
);
try self.asmRegisterRegisterRegister(
info.double_tag,
lhs_regs[info.indices[1]],
lhs_regs[info.indices[0]],
registerAlias(shift_reg, 1),
);
try self.asmRegisterRegister(
tag,
lhs_regs[info.indices[0]],
registerAlias(shift_reg, 1),
);
try self.asmRegisterImmediate(
.{ ._, .cmp },
registerAlias(shift_reg, 1),
Immediate.u(64),
);
try self.asmCmovccRegisterRegister(
.ae,
lhs_regs[info.indices[1]],
lhs_regs[info.indices[0]],
);
try self.asmCmovccRegisterRegister(.ae, lhs_regs[info.indices[0]], tmp_reg);
return;
},
else => {},
},
.load_frame => |dst_frame_addr| {
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
switch (shift_mcv) {
.immediate => |shift_imm| if (shift_imm > 0 and shift_imm < 64) {
try self.asmRegisterMemory(
.{ ._, .mov },
tmp_reg,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
);
try self.asmMemoryRegisterImmediate(
info.double_tag,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[1] * 8,
} },
},
tmp_reg,
Immediate.u(shift_imm),
);
try self.asmMemoryImmediate(
tag,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
Immediate.u(shift_imm),
);
return;
} else {
assert(shift_imm < 128);
try self.asmRegisterMemory(
.{ ._, .mov },
tmp_reg,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
);
if (shift_imm > 64) try self.asmRegisterImmediate(
tag,
tmp_reg,
Immediate.u(shift_imm - 64),
);
try self.asmMemoryRegister(
.{ ._, .mov },
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[1] * 8,
} },
},
tmp_reg,
);
if (tag[0] == ._r and tag[1] == .sa) try self.asmMemoryImmediate(
tag,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
Immediate.u(63),
) else {
try self.asmRegisterRegister(.{ ._, .xor }, tmp_reg.to32(), tmp_reg.to32());
try self.asmMemoryRegister(
.{ ._, .mov },
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
tmp_reg,
);
}
return;
},
.register => |shift_reg| {
const first_reg =
try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const first_lock = self.register_manager.lockRegAssumeUnused(first_reg);
defer self.register_manager.unlockReg(first_lock);
const second_reg =
try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const second_lock = self.register_manager.lockRegAssumeUnused(second_reg);
defer self.register_manager.unlockReg(second_lock);
try self.asmRegisterMemory(
.{ ._, .mov },
first_reg,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
);
try self.asmRegisterMemory(
.{ ._, .mov },
second_reg,
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[1] * 8,
} },
},
);
if (tag[0] == ._r and tag[1] == .sa) {
try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, first_reg);
try self.asmRegisterImmediate(tag, tmp_reg, Immediate.u(63));
} else try self.asmRegisterRegister(
.{ ._, .xor },
tmp_reg.to32(),
tmp_reg.to32(),
);
try self.asmRegisterRegisterRegister(
info.double_tag,
second_reg,
first_reg,
registerAlias(shift_reg, 1),
);
try self.asmRegisterRegister(tag, first_reg, registerAlias(shift_reg, 1));
try self.asmRegisterImmediate(
.{ ._, .cmp },
registerAlias(shift_reg, 1),
Immediate.u(64),
);
try self.asmCmovccRegisterRegister(.ae, second_reg, first_reg);
try self.asmCmovccRegisterRegister(.ae, first_reg, tmp_reg);
try self.asmMemoryRegister(
.{ ._, .mov },
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[1] * 8,
} },
},
second_reg,
);
try self.asmMemoryRegister(
.{ ._, .mov },
.{
.base = .{ .frame = dst_frame_addr.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_frame_addr.off + info.indices[0] * 8,
} },
},
first_reg,
);
return;
},
else => {},
}
},
else => {},
}
} else switch (lhs_mcv) {
.register => |lhs_reg| switch (shift_mcv) {
.immediate => |shift_imm| return self.asmRegisterImmediate(
tag,
registerAlias(lhs_reg, abi_size),
Immediate.u(shift_imm),
),
.register => |shift_reg| return self.asmRegisterRegister(
tag,
registerAlias(lhs_reg, abi_size),
registerAlias(shift_reg, 1),
),
else => {},
},
.memory, .indirect, .load_frame => {
const lhs_mem: Memory = switch (lhs_mcv) {
.memory => |addr| .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = math.cast(i32, @as(i64, @bitCast(addr))) orelse
return self.fail("TODO genShiftBinOpMir between {s} and {s}", .{
@tagName(lhs_mcv),
@tagName(shift_mcv),
}),
} },
},
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = reg_off.off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = frame_addr.off,
} },
},
else => unreachable,
};
switch (shift_mcv) {
.immediate => |shift_imm| return self.asmMemoryImmediate(
tag,
lhs_mem,
Immediate.u(shift_imm),
),
.register => |shift_reg| return self.asmMemoryRegister(
tag,
lhs_mem,
registerAlias(shift_reg, 1),
),
else => {},
}
},
else => {},
}
return self.fail("TODO genShiftBinOpMir between {s} and {s}", .{
@tagName(lhs_mcv),
@tagName(shift_mcv),
});
}
/// Result is always a register.
/// Clobbers .rcx for non-immediate rhs, therefore care is needed to spill .rcx upfront.
/// Asserts .rcx is free.
fn genShiftBinOp(
self: *Self,
air_tag: Air.Inst.Tag,
maybe_inst: ?Air.Inst.Index,
lhs_mcv: MCValue,
rhs_mcv: MCValue,
lhs_ty: Type,
rhs_ty: Type,
) !MCValue {
const mod = self.bin_file.comp.module.?;
if (lhs_ty.zigTypeTag(mod) == .Vector) return self.fail("TODO implement genShiftBinOp for {}", .{
lhs_ty.fmt(mod),
});
try self.register_manager.getReg(.rcx, null);
const rcx_lock = self.register_manager.lockReg(.rcx);
defer if (rcx_lock) |lock| self.register_manager.unlockReg(lock);
const lhs_lock = switch (lhs_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (lhs_lock) |lock| self.register_manager.unlockReg(lock);
const rhs_lock = switch (rhs_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv: MCValue = dst: {
if (maybe_inst) |inst| {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
if (self.reuseOperand(inst, bin_op.lhs, 0, lhs_mcv)) break :dst lhs_mcv;
}
const dst_mcv = try self.allocRegOrMemAdvanced(lhs_ty, maybe_inst, true);
try self.genCopy(lhs_ty, dst_mcv, lhs_mcv, .{});
break :dst dst_mcv;
};
const signedness = lhs_ty.intInfo(mod).signedness;
try self.genShiftBinOpMir(switch (air_tag) {
.shl, .shl_exact => switch (signedness) {
.signed => .{ ._l, .sa },
.unsigned => .{ ._l, .sh },
},
.shr, .shr_exact => switch (signedness) {
.signed => .{ ._r, .sa },
.unsigned => .{ ._r, .sh },
},
else => unreachable,
}, lhs_ty, dst_mcv, rhs_ty, rhs_mcv);
return dst_mcv;
}
/// Result is always a register.
/// Clobbers .rax and .rdx therefore care is needed to spill .rax and .rdx upfront.
/// Asserts .rax and .rdx are free.
fn genMulDivBinOp(
self: *Self,
tag: Air.Inst.Tag,
maybe_inst: ?Air.Inst.Index,
dst_ty: Type,
src_ty: Type,
lhs_mcv: MCValue,
rhs_mcv: MCValue,
) !MCValue {
const mod = self.bin_file.comp.module.?;
if (dst_ty.zigTypeTag(mod) == .Vector or dst_ty.zigTypeTag(mod) == .Float) return self.fail(
"TODO implement genMulDivBinOp for {s} from {} to {}",
.{ @tagName(tag), src_ty.fmt(mod), dst_ty.fmt(mod) },
);
const dst_abi_size: u32 = @intCast(dst_ty.abiSize(mod));
const src_abi_size: u32 = @intCast(src_ty.abiSize(mod));
assert(self.register_manager.isRegFree(.rax));
assert(self.register_manager.isRegFree(.rcx));
assert(self.register_manager.isRegFree(.rdx));
assert(self.eflags_inst == null);
if (dst_abi_size == 16 and src_abi_size == 16) {
assert(tag == .mul or tag == .mul_wrap);
const reg_locks = self.register_manager.lockRegs(2, .{ .rax, .rdx });
defer for (reg_locks) |reg_lock| if (reg_lock) |lock| self.register_manager.unlockReg(lock);
const mat_lhs_mcv = switch (lhs_mcv) {
.load_symbol => mat_lhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, lhs_mcv.address());
break :mat_lhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => lhs_mcv,
};
const mat_lhs_lock = switch (mat_lhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_lhs_lock) |lock| self.register_manager.unlockReg(lock);
const mat_rhs_mcv = switch (rhs_mcv) {
.load_symbol => mat_rhs_mcv: {
// TODO clean this up!
const addr_reg = try self.copyToTmpRegister(Type.usize, rhs_mcv.address());
break :mat_rhs_mcv MCValue{ .indirect = .{ .reg = addr_reg } };
},
else => rhs_mcv,
};
const mat_rhs_lock = switch (mat_rhs_mcv) {
.indirect => |reg_off| self.register_manager.lockReg(reg_off.reg),
else => null,
};
defer if (mat_rhs_lock) |lock| self.register_manager.unlockReg(lock);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
if (mat_lhs_mcv.isMemory())
try self.asmRegisterMemory(.{ ._, .mov }, .rax, try mat_lhs_mcv.mem(self, .qword))
else
try self.asmRegisterRegister(.{ ._, .mov }, .rax, mat_lhs_mcv.register_pair[0]);
if (mat_rhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
tmp_reg,
try mat_rhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, mat_rhs_mcv.register_pair[1]);
try self.asmRegisterRegister(.{ .i_, .mul }, tmp_reg, .rax);
if (mat_rhs_mcv.isMemory())
try self.asmMemory(.{ ._, .mul }, try mat_rhs_mcv.mem(self, .qword))
else
try self.asmRegister(.{ ._, .mul }, mat_rhs_mcv.register_pair[0]);
try self.asmRegisterRegister(.{ ._, .add }, .rdx, tmp_reg);
if (mat_lhs_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._, .mov },
tmp_reg,
try mat_lhs_mcv.address().offset(8).deref().mem(self, .qword),
) else try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, mat_lhs_mcv.register_pair[1]);
if (mat_rhs_mcv.isMemory())
try self.asmRegisterMemory(.{ .i_, .mul }, tmp_reg, try mat_rhs_mcv.mem(self, .qword))
else
try self.asmRegisterRegister(.{ .i_, .mul }, tmp_reg, mat_rhs_mcv.register_pair[0]);
try self.asmRegisterRegister(.{ ._, .add }, .rdx, tmp_reg);
return .{ .register_pair = .{ .rax, .rdx } };
}
if (switch (tag) {
else => unreachable,
.mul, .mul_wrap => dst_abi_size != src_abi_size and dst_abi_size != src_abi_size * 2,
.div_trunc, .div_floor, .div_exact, .rem, .mod => dst_abi_size != src_abi_size,
} or src_abi_size > 8) {
const src_info = src_ty.intInfo(mod);
switch (tag) {
.mul, .mul_wrap => {
const slow_inc = self.hasFeature(.slow_incdec);
const limb_len = std.math.divCeil(u32, src_abi_size, 8) catch unreachable;
try self.spillRegisters(&.{ .rax, .rcx, .rdx });
const reg_locks = self.register_manager.lockRegs(3, .{ .rax, .rcx, .rdx });
defer for (reg_locks) |reg_lock| if (reg_lock) |lock|
self.register_manager.unlockReg(lock);
const dst_mcv = try self.allocRegOrMemAdvanced(dst_ty, maybe_inst, false);
try self.genInlineMemset(
dst_mcv.address(),
.{ .immediate = 0 },
.{ .immediate = src_abi_size },
.{},
);
const temp_regs =
try self.register_manager.allocRegs(4, .{null} ** 4, abi.RegisterClass.gp);
const temp_locks = self.register_manager.lockRegsAssumeUnused(4, temp_regs);
defer for (temp_locks) |lock| self.register_manager.unlockReg(lock);
try self.asmRegisterRegister(.{ ._, .xor }, temp_regs[0].to32(), temp_regs[0].to32());
const outer_loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterMemory(.{ ._, .mov }, temp_regs[1].to64(), .{
.base = .{ .frame = rhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[0].to64(),
.scale = .@"8",
.disp = rhs_mcv.load_frame.off,
} },
});
try self.asmRegisterRegister(.{ ._, .@"test" }, temp_regs[1].to64(), temp_regs[1].to64());
const skip_inner = try self.asmJccReloc(.z, undefined);
try self.asmRegisterRegister(.{ ._, .xor }, temp_regs[2].to32(), temp_regs[2].to32());
try self.asmRegisterRegister(.{ ._, .mov }, temp_regs[3].to32(), temp_regs[0].to32());
try self.asmRegisterRegister(.{ ._, .xor }, .ecx, .ecx);
try self.asmRegisterRegister(.{ ._, .xor }, .edx, .edx);
const inner_loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmRegisterImmediate(.{ ._r, .sh }, .cl, Immediate.u(1));
try self.asmMemoryRegister(.{ ._, .adc }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[3].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
}, .rdx);
try self.asmSetccRegister(.c, .cl);
try self.asmRegisterMemory(.{ ._, .mov }, .rax, .{
.base = .{ .frame = lhs_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[2].to64(),
.scale = .@"8",
.disp = lhs_mcv.load_frame.off,
} },
});
try self.asmRegister(.{ ._, .mul }, temp_regs[1].to64());
try self.asmRegisterImmediate(.{ ._r, .sh }, .ch, Immediate.u(1));
try self.asmMemoryRegister(.{ ._, .adc }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.index = temp_regs[3].to64(),
.scale = .@"8",
.disp = dst_mcv.load_frame.off,
} },
}, .rax);
try self.asmSetccRegister(.c, .ch);
if (slow_inc) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[2].to32(), Immediate.u(1));
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[3].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[2].to32());
try self.asmRegister(.{ ._, .inc }, temp_regs[3].to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[3].to32(),
Immediate.u(limb_len),
);
_ = try self.asmJccReloc(.b, inner_loop);
self.performReloc(skip_inner);
if (slow_inc) {
try self.asmRegisterImmediate(.{ ._, .add }, temp_regs[0].to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, temp_regs[0].to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
temp_regs[0].to32(),
Immediate.u(limb_len),
);
_ = try self.asmJccReloc(.b, outer_loop);
return dst_mcv;
},
.div_trunc, .div_floor, .div_exact, .rem, .mod => switch (src_info.signedness) {
.signed => {},
.unsigned => {
const dst_mcv = try self.allocRegOrMemAdvanced(dst_ty, maybe_inst, false);
const manyptr_u32_ty = try mod.ptrType(.{
.child = .u32_type,
.flags = .{
.size = .Many,
},
});
const manyptr_const_u32_ty = try mod.ptrType(.{
.child = .u32_type,
.flags = .{
.size = .Many,
.is_const = true,
},
});
_ = try self.genCall(.{ .lib = .{
.return_type = .void_type,
.param_types = &.{
manyptr_u32_ty.toIntern(),
manyptr_const_u32_ty.toIntern(),
manyptr_const_u32_ty.toIntern(),
.usize_type,
},
.callee = switch (tag) {
.div_trunc,
.div_floor,
.div_exact,
=> "__udivei4",
.rem,
.mod,
=> "__umodei4",
else => unreachable,
},
} }, &.{
manyptr_u32_ty,
manyptr_const_u32_ty,
manyptr_const_u32_ty,
Type.usize,
}, &.{
dst_mcv.address(),
lhs_mcv.address(),
rhs_mcv.address(),
.{ .immediate = src_info.bits },
});
return dst_mcv;
},
},
else => {},
}
return self.fail(
"TODO implement genMulDivBinOp for {s} from {} to {}",
.{ @tagName(tag), src_ty.fmt(mod), dst_ty.fmt(mod) },
);
}
const ty = if (dst_abi_size <= 8) dst_ty else src_ty;
const abi_size = if (dst_abi_size <= 8) dst_abi_size else src_abi_size;
const reg_locks = self.register_manager.lockRegs(2, .{ .rax, .rdx });
defer for (reg_locks) |reg_lock| if (reg_lock) |lock| self.register_manager.unlockReg(lock);
const signedness = ty.intInfo(mod).signedness;
switch (tag) {
.mul,
.mul_wrap,
.rem,
.div_trunc,
.div_exact,
=> {
const track_inst_rax = switch (tag) {
.mul, .mul_wrap => if (dst_abi_size <= 8) maybe_inst else null,
.div_exact, .div_trunc => maybe_inst,
else => null,
};
const track_inst_rdx = switch (tag) {
.rem => maybe_inst,
else => null,
};
try self.register_manager.getReg(.rax, track_inst_rax);
try self.register_manager.getReg(.rdx, track_inst_rdx);
try self.genIntMulDivOpMir(switch (signedness) {
.signed => switch (tag) {
.mul, .mul_wrap => .{ .i_, .mul },
.div_trunc, .div_exact, .rem => .{ .i_, .div },
else => unreachable,
},
.unsigned => switch (tag) {
.mul, .mul_wrap => .{ ._, .mul },
.div_trunc, .div_exact, .rem => .{ ._, .div },
else => unreachable,
},
}, ty, lhs_mcv, rhs_mcv);
if (dst_abi_size <= 8) return .{ .register = registerAlias(switch (tag) {
.mul, .mul_wrap, .div_trunc, .div_exact => .rax,
.rem => .rdx,
else => unreachable,
}, dst_abi_size) };
const dst_mcv = try self.allocRegOrMemAdvanced(dst_ty, maybe_inst, false);
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_mcv.load_frame.off,
} },
}, .rax);
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_mcv.load_frame.off + 8,
} },
}, .rdx);
return dst_mcv;
},
.mod => {
try self.register_manager.getReg(.rax, null);
try self.register_manager.getReg(.rdx, if (signedness == .unsigned) maybe_inst else null);
switch (signedness) {
.signed => {
const lhs_lock = switch (lhs_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (lhs_lock) |lock| self.register_manager.unlockReg(lock);
const rhs_lock = switch (rhs_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
// hack around hazard between rhs and div_floor by copying rhs to another register
const rhs_copy = try self.copyToTmpRegister(ty, rhs_mcv);
const rhs_copy_lock = self.register_manager.lockRegAssumeUnused(rhs_copy);
defer self.register_manager.unlockReg(rhs_copy_lock);
const div_floor = try self.genInlineIntDivFloor(ty, lhs_mcv, rhs_mcv);
try self.genIntMulComplexOpMir(ty, div_floor, .{ .register = rhs_copy });
const div_floor_lock = self.register_manager.lockReg(div_floor.register);
defer if (div_floor_lock) |lock| self.register_manager.unlockReg(lock);
const result: MCValue = if (maybe_inst) |inst|
try self.copyToRegisterWithInstTracking(inst, ty, lhs_mcv)
else
.{ .register = try self.copyToTmpRegister(ty, lhs_mcv) };
try self.genBinOpMir(.{ ._, .sub }, ty, result, div_floor);
return result;
},
.unsigned => {
try self.genIntMulDivOpMir(.{ ._, .div }, ty, lhs_mcv, rhs_mcv);
return .{ .register = registerAlias(.rdx, abi_size) };
},
}
},
.div_floor => {
try self.register_manager.getReg(.rax, if (signedness == .unsigned) maybe_inst else null);
try self.register_manager.getReg(.rdx, null);
const lhs_lock: ?RegisterLock = switch (lhs_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (lhs_lock) |lock| self.register_manager.unlockReg(lock);
const actual_rhs_mcv: MCValue = blk: {
switch (signedness) {
.signed => {
const rhs_lock: ?RegisterLock = switch (rhs_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
if (maybe_inst) |inst| {
break :blk try self.copyToRegisterWithInstTracking(inst, ty, rhs_mcv);
}
break :blk MCValue{ .register = try self.copyToTmpRegister(ty, rhs_mcv) };
},
.unsigned => break :blk rhs_mcv,
}
};
const rhs_lock: ?RegisterLock = switch (actual_rhs_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
switch (signedness) {
.signed => return try self.genInlineIntDivFloor(ty, lhs_mcv, actual_rhs_mcv),
.unsigned => {
try self.genIntMulDivOpMir(.{ ._, .div }, ty, lhs_mcv, actual_rhs_mcv);
return .{ .register = registerAlias(.rax, abi_size) };
},
}
},
else => unreachable,
}
}
fn genBinOp(
self: *Self,
maybe_inst: ?Air.Inst.Index,
air_tag: Air.Inst.Tag,
lhs_air: Air.Inst.Ref,
rhs_air: Air.Inst.Ref,
) !MCValue {
const mod = self.bin_file.comp.module.?;
const lhs_ty = self.typeOf(lhs_air);
const rhs_ty = self.typeOf(rhs_air);
const abi_size: u32 = @intCast(lhs_ty.abiSize(mod));
if (lhs_ty.isRuntimeFloat()) libcall: {
const float_bits = lhs_ty.floatBits(self.target.*);
const type_needs_libcall = switch (float_bits) {
16 => !self.hasFeature(.f16c),
32, 64 => false,
80, 128 => true,
else => unreachable,
};
switch (air_tag) {
.rem, .mod => {},
else => if (!type_needs_libcall) break :libcall,
}
var callee_buf: ["__mod?f3".len]u8 = undefined;
const callee = switch (air_tag) {
.add,
.sub,
.mul,
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> std.fmt.bufPrint(&callee_buf, "__{s}{c}f3", .{
@tagName(air_tag)[0..3],
floatCompilerRtAbiName(float_bits),
}),
.rem, .mod, .min, .max => std.fmt.bufPrint(&callee_buf, "{s}f{s}{s}", .{
floatLibcAbiPrefix(lhs_ty),
switch (air_tag) {
.rem, .mod => "mod",
.min => "min",
.max => "max",
else => unreachable,
},
floatLibcAbiSuffix(lhs_ty),
}),
else => return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
} catch unreachable;
const result = try self.genCall(.{ .lib = .{
.return_type = lhs_ty.toIntern(),
.param_types = &.{ lhs_ty.toIntern(), rhs_ty.toIntern() },
.callee = callee,
} }, &.{ lhs_ty, rhs_ty }, &.{ .{ .air_ref = lhs_air }, .{ .air_ref = rhs_air } });
return switch (air_tag) {
.mod => result: {
const adjusted: MCValue = if (type_needs_libcall) adjusted: {
var add_callee_buf: ["__add?f3".len]u8 = undefined;
break :adjusted try self.genCall(.{ .lib = .{
.return_type = lhs_ty.toIntern(),
.param_types = &.{
lhs_ty.toIntern(),
rhs_ty.toIntern(),
},
.callee = std.fmt.bufPrint(&add_callee_buf, "__add{c}f3", .{
floatCompilerRtAbiName(float_bits),
}) catch unreachable,
} }, &.{ lhs_ty, rhs_ty }, &.{ result, .{ .air_ref = rhs_air } });
} else switch (float_bits) {
16, 32, 64 => adjusted: {
const dst_reg = switch (result) {
.register => |reg| reg,
else => if (maybe_inst) |inst|
(try self.copyToRegisterWithInstTracking(inst, lhs_ty, result)).register
else
try self.copyToTmpRegister(lhs_ty, result),
};
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const rhs_mcv = try self.resolveInst(rhs_air);
const src_mcv: MCValue = if (float_bits == 16) src: {
assert(self.hasFeature(.f16c));
const tmp_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.sse,
)).to128();
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
if (rhs_mcv.isMemory()) try self.asmRegisterRegisterMemoryImmediate(
.{ .vp_w, .insr },
dst_reg,
dst_reg,
try rhs_mcv.mem(self, .word),
Immediate.u(1),
) else try self.asmRegisterRegisterRegister(
.{ .vp_, .unpcklwd },
dst_reg,
dst_reg,
(if (rhs_mcv.isRegister())
rhs_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, rhs_mcv)).to128(),
);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, dst_reg);
break :src .{ .register = tmp_reg };
} else rhs_mcv;
if (self.hasFeature(.avx)) {
const mir_tag: Mir.Inst.FixedTag = switch (float_bits) {
16, 32 => .{ .v_ss, .add },
64 => .{ .v_sd, .add },
else => unreachable,
};
if (src_mcv.isMemory()) try self.asmRegisterRegisterMemory(
mir_tag,
dst_reg,
dst_reg,
try src_mcv.mem(self, Memory.Size.fromBitSize(float_bits)),
) else try self.asmRegisterRegisterRegister(
mir_tag,
dst_reg,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
} else {
const mir_tag: Mir.Inst.FixedTag = switch (float_bits) {
32 => .{ ._ss, .add },
64 => .{ ._sd, .add },
else => unreachable,
};
if (src_mcv.isMemory()) try self.asmRegisterMemory(
mir_tag,
dst_reg,
try src_mcv.mem(self, Memory.Size.fromBitSize(float_bits)),
) else try self.asmRegisterRegister(
mir_tag,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
}
if (float_bits == 16) try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
break :adjusted .{ .register = dst_reg };
},
80, 128 => return self.fail("TODO implement genBinOp for {s} of {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
else => unreachable,
};
break :result try self.genCall(.{ .lib = .{
.return_type = lhs_ty.toIntern(),
.param_types = &.{ lhs_ty.toIntern(), rhs_ty.toIntern() },
.callee = callee,
} }, &.{ lhs_ty, rhs_ty }, &.{ adjusted, .{ .air_ref = rhs_air } });
},
.div_trunc, .div_floor => try self.genRoundLibcall(lhs_ty, result, .{
.mode = switch (air_tag) {
.div_trunc => .zero,
.div_floor => .down,
else => unreachable,
},
.precision = .inexact,
}),
else => result,
};
}
const sse_op = switch (lhs_ty.zigTypeTag(mod)) {
else => false,
.Float => true,
.Vector => switch (lhs_ty.childType(mod).toIntern()) {
.bool_type, .u1_type => false,
else => true,
},
};
if (sse_op and ((lhs_ty.scalarType(mod).isRuntimeFloat() and
lhs_ty.scalarType(mod).floatBits(self.target.*) == 80) or
lhs_ty.abiSize(mod) > @as(u6, if (self.hasFeature(.avx)) 32 else 16)))
return self.fail("TODO implement genBinOp for {s} {}", .{ @tagName(air_tag), lhs_ty.fmt(mod) });
const maybe_mask_reg = switch (air_tag) {
else => null,
.rem, .mod => unreachable,
.max, .min => if (lhs_ty.scalarType(mod).isRuntimeFloat()) registerAlias(
if (!self.hasFeature(.avx) and self.hasFeature(.sse4_1)) mask: {
try self.register_manager.getReg(.xmm0, null);
break :mask .xmm0;
} else try self.register_manager.allocReg(null, abi.RegisterClass.sse),
abi_size,
) else null,
};
const mask_lock =
if (maybe_mask_reg) |mask_reg| self.register_manager.lockRegAssumeUnused(mask_reg) else null;
defer if (mask_lock) |lock| self.register_manager.unlockReg(lock);
const ordered_air: [2]Air.Inst.Ref = if (lhs_ty.isVector(mod) and
switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Bool => false,
.Int => switch (air_tag) {
.cmp_lt, .cmp_gte => true,
else => false,
},
.Float => switch (air_tag) {
.cmp_gte, .cmp_gt => true,
else => false,
},
else => unreachable,
}) .{ rhs_air, lhs_air } else .{ lhs_air, rhs_air };
if (lhs_ty.isAbiInt(mod)) for (ordered_air) |op_air| {
switch (try self.resolveInst(op_air)) {
.register => |op_reg| switch (op_reg.class()) {
.sse => try self.register_manager.getReg(op_reg, null),
else => {},
},
else => {},
}
};
const lhs_mcv = try self.resolveInst(ordered_air[0]);
var rhs_mcv = try self.resolveInst(ordered_air[1]);
switch (lhs_mcv) {
.immediate => |imm| switch (imm) {
0 => switch (air_tag) {
.sub, .sub_wrap => return self.genUnOp(maybe_inst, .neg, ordered_air[1]),
else => {},
},
else => {},
},
else => {},
}
const is_commutative = switch (air_tag) {
.add,
.add_wrap,
.mul,
.bool_or,
.bit_or,
.bool_and,
.bit_and,
.xor,
.min,
.max,
.cmp_eq,
.cmp_neq,
=> true,
else => false,
};
const lhs_locks: [2]?RegisterLock = switch (lhs_mcv) {
.register => |lhs_reg| .{ self.register_manager.lockRegAssumeUnused(lhs_reg), null },
.register_pair => |lhs_regs| locks: {
const locks = self.register_manager.lockRegsAssumeUnused(2, lhs_regs);
break :locks .{ locks[0], locks[1] };
},
else => .{null} ** 2,
};
defer for (lhs_locks) |lhs_lock| if (lhs_lock) |lock| self.register_manager.unlockReg(lock);
const rhs_locks: [2]?RegisterLock = switch (rhs_mcv) {
.register => |rhs_reg| .{ self.register_manager.lockReg(rhs_reg), null },
.register_pair => |rhs_regs| self.register_manager.lockRegs(2, rhs_regs),
else => .{null} ** 2,
};
defer for (rhs_locks) |rhs_lock| if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
var flipped = false;
var copied_to_dst = true;
const dst_mcv: MCValue = dst: {
const tracked_inst = switch (air_tag) {
else => maybe_inst,
.cmp_lt, .cmp_lte, .cmp_eq, .cmp_gte, .cmp_gt, .cmp_neq => null,
};
if (maybe_inst) |inst| {
if ((!sse_op or lhs_mcv.isRegister()) and
self.reuseOperandAdvanced(inst, ordered_air[0], 0, lhs_mcv, tracked_inst))
break :dst lhs_mcv;
if (is_commutative and (!sse_op or rhs_mcv.isRegister()) and
self.reuseOperandAdvanced(inst, ordered_air[1], 1, rhs_mcv, tracked_inst))
{
flipped = true;
break :dst rhs_mcv;
}
}
const dst_mcv = try self.allocRegOrMemAdvanced(lhs_ty, tracked_inst, true);
if (sse_op and lhs_mcv.isRegister() and self.hasFeature(.avx))
copied_to_dst = false
else
try self.genCopy(lhs_ty, dst_mcv, lhs_mcv, .{});
rhs_mcv = try self.resolveInst(ordered_air[1]);
break :dst dst_mcv;
};
const dst_locks: [2]?RegisterLock = switch (dst_mcv) {
.register => |dst_reg| .{ self.register_manager.lockReg(dst_reg), null },
.register_pair => |dst_regs| self.register_manager.lockRegs(2, dst_regs),
else => .{null} ** 2,
};
defer for (dst_locks) |dst_lock| if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const unmat_src_mcv = if (flipped) lhs_mcv else rhs_mcv;
const src_mcv: MCValue = if (maybe_mask_reg) |mask_reg|
if (self.hasFeature(.avx) and unmat_src_mcv.isRegister() and maybe_inst != null and
self.liveness.operandDies(maybe_inst.?, if (flipped) 0 else 1)) unmat_src_mcv else src: {
try self.genSetReg(mask_reg, rhs_ty, unmat_src_mcv, .{});
break :src .{ .register = mask_reg };
}
else
unmat_src_mcv;
const src_locks: [2]?RegisterLock = switch (src_mcv) {
.register => |src_reg| .{ self.register_manager.lockReg(src_reg), null },
.register_pair => |src_regs| self.register_manager.lockRegs(2, src_regs),
else => .{null} ** 2,
};
defer for (src_locks) |src_lock| if (src_lock) |lock| self.register_manager.unlockReg(lock);
if (!sse_op) {
switch (air_tag) {
.add,
.add_wrap,
=> try self.genBinOpMir(.{ ._, .add }, lhs_ty, dst_mcv, src_mcv),
.sub,
.sub_wrap,
=> try self.genBinOpMir(.{ ._, .sub }, lhs_ty, dst_mcv, src_mcv),
.ptr_add,
.ptr_sub,
=> {
const tmp_reg = try self.copyToTmpRegister(rhs_ty, src_mcv);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const elem_size = lhs_ty.elemType2(mod).abiSize(mod);
try self.genIntMulComplexOpMir(rhs_ty, tmp_mcv, .{ .immediate = elem_size });
try self.genBinOpMir(
switch (air_tag) {
.ptr_add => .{ ._, .add },
.ptr_sub => .{ ._, .sub },
else => unreachable,
},
lhs_ty,
dst_mcv,
tmp_mcv,
);
},
.bool_or,
.bit_or,
=> try self.genBinOpMir(.{ ._, .@"or" }, lhs_ty, dst_mcv, src_mcv),
.bool_and,
.bit_and,
=> try self.genBinOpMir(.{ ._, .@"and" }, lhs_ty, dst_mcv, src_mcv),
.xor => try self.genBinOpMir(.{ ._, .xor }, lhs_ty, dst_mcv, src_mcv),
.min,
.max,
=> {
const resolved_src_mcv = switch (src_mcv) {
else => src_mcv,
.air_ref => |src_ref| try self.resolveInst(src_ref),
};
if (abi_size > 8) {
const dst_regs = switch (dst_mcv) {
.register_pair => |dst_regs| dst_regs,
else => dst: {
const dst_regs = try self.register_manager.allocRegs(
2,
.{null} ** 2,
abi.RegisterClass.gp,
);
const dst_regs_locks = self.register_manager.lockRegsAssumeUnused(2, dst_regs);
defer for (dst_regs_locks) |lock| self.register_manager.unlockReg(lock);
try self.genCopy(lhs_ty, .{ .register_pair = dst_regs }, dst_mcv, .{});
break :dst dst_regs;
},
};
const dst_regs_locks = self.register_manager.lockRegs(2, dst_regs);
defer for (dst_regs_locks) |dst_lock| if (dst_lock) |lock|
self.register_manager.unlockReg(lock);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
const signed = lhs_ty.isSignedInt(mod);
const cc: Condition = switch (air_tag) {
.min => if (signed) .nl else .nb,
.max => if (signed) .nge else .nae,
else => unreachable,
};
try self.asmRegisterRegister(.{ ._, .mov }, tmp_reg, dst_regs[1]);
if (src_mcv.isMemory()) {
try self.asmRegisterMemory(
.{ ._, .cmp },
dst_regs[0],
try src_mcv.mem(self, .qword),
);
try self.asmRegisterMemory(
.{ ._, .sbb },
tmp_reg,
try src_mcv.address().offset(8).deref().mem(self, .qword),
);
try self.asmCmovccRegisterMemory(
cc,
dst_regs[0],
try src_mcv.mem(self, .qword),
);
try self.asmCmovccRegisterMemory(
cc,
dst_regs[1],
try src_mcv.address().offset(8).deref().mem(self, .qword),
);
} else {
try self.asmRegisterRegister(
.{ ._, .cmp },
dst_regs[0],
src_mcv.register_pair[0],
);
try self.asmRegisterRegister(
.{ ._, .sbb },
tmp_reg,
src_mcv.register_pair[1],
);
try self.asmCmovccRegisterRegister(cc, dst_regs[0], src_mcv.register_pair[0]);
try self.asmCmovccRegisterRegister(cc, dst_regs[1], src_mcv.register_pair[1]);
}
try self.genCopy(lhs_ty, dst_mcv, .{ .register_pair = dst_regs }, .{});
} else {
const mat_src_mcv: MCValue = if (switch (resolved_src_mcv) {
.immediate,
.eflags,
.register_offset,
.load_symbol,
.lea_symbol,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.lea_frame,
=> true,
.memory => |addr| math.cast(i32, @as(i64, @bitCast(addr))) == null,
else => false,
.register_pair,
.register_overflow,
=> unreachable,
})
.{ .register = try self.copyToTmpRegister(rhs_ty, resolved_src_mcv) }
else
resolved_src_mcv;
const mat_mcv_lock = switch (mat_src_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (mat_mcv_lock) |lock| self.register_manager.unlockReg(lock);
try self.genBinOpMir(.{ ._, .cmp }, lhs_ty, dst_mcv, mat_src_mcv);
const int_info = lhs_ty.intInfo(mod);
const cc: Condition = switch (int_info.signedness) {
.unsigned => switch (air_tag) {
.min => .a,
.max => .b,
else => unreachable,
},
.signed => switch (air_tag) {
.min => .g,
.max => .l,
else => unreachable,
},
};
const cmov_abi_size = @max(@as(u32, @intCast(lhs_ty.abiSize(mod))), 2);
const tmp_reg = switch (dst_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(lhs_ty, dst_mcv),
};
const tmp_lock = self.register_manager.lockReg(tmp_reg);
defer if (tmp_lock) |lock| self.register_manager.unlockReg(lock);
switch (mat_src_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register_pair,
.register_offset,
.register_overflow,
.load_symbol,
.lea_symbol,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.register => |src_reg| try self.asmCmovccRegisterRegister(
cc,
registerAlias(tmp_reg, cmov_abi_size),
registerAlias(src_reg, cmov_abi_size),
),
.memory, .indirect, .load_frame => try self.asmCmovccRegisterMemory(
cc,
registerAlias(tmp_reg, cmov_abi_size),
switch (mat_src_mcv) {
.memory => |addr| .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(cmov_abi_size),
.disp = @intCast(@as(i64, @bitCast(addr))),
} },
},
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(cmov_abi_size),
.disp = reg_off.off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(cmov_abi_size),
.disp = frame_addr.off,
} },
},
else => unreachable,
},
),
}
try self.genCopy(lhs_ty, dst_mcv, .{ .register = tmp_reg }, .{});
}
},
.cmp_eq, .cmp_neq => {
assert(lhs_ty.isVector(mod) and lhs_ty.childType(mod).toIntern() == .bool_type);
try self.genBinOpMir(.{ ._, .xor }, lhs_ty, dst_mcv, src_mcv);
switch (air_tag) {
.cmp_eq => try self.genUnOpMir(.{ ._, .not }, lhs_ty, dst_mcv),
.cmp_neq => {},
else => unreachable,
}
},
else => return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
}
return dst_mcv;
}
const dst_reg = registerAlias(dst_mcv.getReg().?, abi_size);
const mir_tag = @as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
else => unreachable,
.Float => switch (lhs_ty.floatBits(self.target.*)) {
16 => {
assert(self.hasFeature(.f16c));
const tmp_reg =
(try self.register_manager.allocReg(null, abi.RegisterClass.sse)).to128();
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
if (src_mcv.isMemory()) try self.asmRegisterRegisterMemoryImmediate(
.{ .vp_w, .insr },
dst_reg,
dst_reg,
try src_mcv.mem(self, .word),
Immediate.u(1),
) else try self.asmRegisterRegisterRegister(
.{ .vp_, .unpcklwd },
dst_reg,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, dst_reg);
try self.asmRegisterRegister(.{ .v_, .movshdup }, tmp_reg, dst_reg);
try self.asmRegisterRegisterRegister(
switch (air_tag) {
.add => .{ .v_ss, .add },
.sub => .{ .v_ss, .sub },
.mul => .{ .v_ss, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_ss, .div },
.max => .{ .v_ss, .max },
.min => .{ .v_ss, .max },
else => unreachable,
},
dst_reg,
dst_reg,
tmp_reg,
);
switch (air_tag) {
.div_trunc, .div_floor => try self.asmRegisterRegisterRegisterImmediate(
.{ .v_ss, .round },
dst_reg,
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{
.mode = switch (air_tag) {
.div_trunc => .zero,
.div_floor => .down,
else => unreachable,
},
.precision = .inexact,
}))),
),
else => {},
}
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
return dst_mcv;
},
32 => switch (air_tag) {
.add => if (self.hasFeature(.avx)) .{ .v_ss, .add } else .{ ._ss, .add },
.sub => if (self.hasFeature(.avx)) .{ .v_ss, .sub } else .{ ._ss, .sub },
.mul => if (self.hasFeature(.avx)) .{ .v_ss, .mul } else .{ ._ss, .mul },
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> if (self.hasFeature(.avx)) .{ .v_ss, .div } else .{ ._ss, .div },
.max => if (self.hasFeature(.avx)) .{ .v_ss, .max } else .{ ._ss, .max },
.min => if (self.hasFeature(.avx)) .{ .v_ss, .min } else .{ ._ss, .min },
else => unreachable,
},
64 => switch (air_tag) {
.add => if (self.hasFeature(.avx)) .{ .v_sd, .add } else .{ ._sd, .add },
.sub => if (self.hasFeature(.avx)) .{ .v_sd, .sub } else .{ ._sd, .sub },
.mul => if (self.hasFeature(.avx)) .{ .v_sd, .mul } else .{ ._sd, .mul },
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> if (self.hasFeature(.avx)) .{ .v_sd, .div } else .{ ._sd, .div },
.max => if (self.hasFeature(.avx)) .{ .v_sd, .max } else .{ ._sd, .max },
.min => if (self.hasFeature(.avx)) .{ .v_sd, .min } else .{ ._sd, .min },
else => unreachable,
},
80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
else => null,
.Int => switch (lhs_ty.childType(mod).intInfo(mod).bits) {
8 => switch (lhs_ty.vectorLen(mod)) {
1...16 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_b, .add } else .{ .p_b, .add },
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_b, .sub } else .{ .p_b, .sub },
.bit_and => if (self.hasFeature(.avx))
.{ .vp_, .@"and" }
else
.{ .p_, .@"and" },
.bit_or => if (self.hasFeature(.avx)) .{ .vp_, .@"or" } else .{ .p_, .@"or" },
.xor => if (self.hasFeature(.avx)) .{ .vp_, .xor } else .{ .p_, .xor },
.min => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_b, .mins }
else if (self.hasFeature(.sse4_1))
.{ .p_b, .mins }
else
null,
.unsigned => if (self.hasFeature(.avx))
.{ .vp_b, .minu }
else if (self.hasFeature(.sse4_1))
.{ .p_b, .minu }
else
null,
},
.max => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_b, .maxs }
else if (self.hasFeature(.sse4_1))
.{ .p_b, .maxs }
else
null,
.unsigned => if (self.hasFeature(.avx))
.{ .vp_b, .maxu }
else if (self.hasFeature(.sse4_1))
.{ .p_b, .maxu }
else
null,
},
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_b, .cmpgt }
else
.{ .p_b, .cmpgt },
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_b, .cmpeq } else .{ .p_b, .cmpeq },
else => null,
},
17...32 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_b, .add } else null,
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_b, .sub } else null,
.bit_and => if (self.hasFeature(.avx2)) .{ .vp_, .@"and" } else null,
.bit_or => if (self.hasFeature(.avx2)) .{ .vp_, .@"or" } else null,
.xor => if (self.hasFeature(.avx2)) .{ .vp_, .xor } else null,
.min => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_b, .mins } else null,
.unsigned => if (self.hasFeature(.avx)) .{ .vp_b, .minu } else null,
},
.max => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_b, .maxs } else null,
.unsigned => if (self.hasFeature(.avx2)) .{ .vp_b, .maxu } else null,
},
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx)) .{ .vp_b, .cmpgt } else null,
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_b, .cmpeq } else null,
else => null,
},
else => null,
},
16 => switch (lhs_ty.vectorLen(mod)) {
1...8 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_w, .add } else .{ .p_w, .add },
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_w, .sub } else .{ .p_w, .sub },
.mul,
.mul_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_w, .mull } else .{ .p_d, .mull },
.bit_and => if (self.hasFeature(.avx))
.{ .vp_, .@"and" }
else
.{ .p_, .@"and" },
.bit_or => if (self.hasFeature(.avx)) .{ .vp_, .@"or" } else .{ .p_, .@"or" },
.xor => if (self.hasFeature(.avx)) .{ .vp_, .xor } else .{ .p_, .xor },
.min => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_w, .mins }
else
.{ .p_w, .mins },
.unsigned => if (self.hasFeature(.avx))
.{ .vp_w, .minu }
else
.{ .p_w, .minu },
},
.max => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_w, .maxs }
else
.{ .p_w, .maxs },
.unsigned => if (self.hasFeature(.avx))
.{ .vp_w, .maxu }
else
.{ .p_w, .maxu },
},
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_w, .cmpgt }
else
.{ .p_w, .cmpgt },
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_w, .cmpeq } else .{ .p_w, .cmpeq },
else => null,
},
9...16 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_w, .add } else null,
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_w, .sub } else null,
.mul,
.mul_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_w, .mull } else null,
.bit_and => if (self.hasFeature(.avx2)) .{ .vp_, .@"and" } else null,
.bit_or => if (self.hasFeature(.avx2)) .{ .vp_, .@"or" } else null,
.xor => if (self.hasFeature(.avx2)) .{ .vp_, .xor } else null,
.min => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_w, .mins } else null,
.unsigned => if (self.hasFeature(.avx)) .{ .vp_w, .minu } else null,
},
.max => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_w, .maxs } else null,
.unsigned => if (self.hasFeature(.avx2)) .{ .vp_w, .maxu } else null,
},
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx)) .{ .vp_w, .cmpgt } else null,
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_w, .cmpeq } else null,
else => null,
},
else => null,
},
32 => switch (lhs_ty.vectorLen(mod)) {
1...4 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_d, .add } else .{ .p_d, .add },
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_d, .sub } else .{ .p_d, .sub },
.mul,
.mul_wrap,
=> if (self.hasFeature(.avx))
.{ .vp_d, .mull }
else if (self.hasFeature(.sse4_1))
.{ .p_d, .mull }
else
null,
.bit_and => if (self.hasFeature(.avx))
.{ .vp_, .@"and" }
else
.{ .p_, .@"and" },
.bit_or => if (self.hasFeature(.avx)) .{ .vp_, .@"or" } else .{ .p_, .@"or" },
.xor => if (self.hasFeature(.avx)) .{ .vp_, .xor } else .{ .p_, .xor },
.min => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_d, .mins }
else if (self.hasFeature(.sse4_1))
.{ .p_d, .mins }
else
null,
.unsigned => if (self.hasFeature(.avx))
.{ .vp_d, .minu }
else if (self.hasFeature(.sse4_1))
.{ .p_d, .minu }
else
null,
},
.max => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_d, .maxs }
else if (self.hasFeature(.sse4_1))
.{ .p_d, .maxs }
else
null,
.unsigned => if (self.hasFeature(.avx))
.{ .vp_d, .maxu }
else if (self.hasFeature(.sse4_1))
.{ .p_d, .maxu }
else
null,
},
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_d, .cmpgt }
else
.{ .p_d, .cmpgt },
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_d, .cmpeq } else .{ .p_d, .cmpeq },
else => null,
},
5...8 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_d, .add } else null,
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_d, .sub } else null,
.mul,
.mul_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_d, .mull } else null,
.bit_and => if (self.hasFeature(.avx2)) .{ .vp_, .@"and" } else null,
.bit_or => if (self.hasFeature(.avx2)) .{ .vp_, .@"or" } else null,
.xor => if (self.hasFeature(.avx2)) .{ .vp_, .xor } else null,
.min => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_d, .mins } else null,
.unsigned => if (self.hasFeature(.avx)) .{ .vp_d, .minu } else null,
},
.max => switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx2)) .{ .vp_d, .maxs } else null,
.unsigned => if (self.hasFeature(.avx2)) .{ .vp_d, .maxu } else null,
},
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx)) .{ .vp_d, .cmpgt } else null,
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_d, .cmpeq } else null,
else => null,
},
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1...2 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_q, .add } else .{ .p_q, .add },
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx)) .{ .vp_q, .sub } else .{ .p_q, .sub },
.bit_and => if (self.hasFeature(.avx))
.{ .vp_, .@"and" }
else
.{ .p_, .@"and" },
.bit_or => if (self.hasFeature(.avx)) .{ .vp_, .@"or" } else .{ .p_, .@"or" },
.xor => if (self.hasFeature(.avx)) .{ .vp_, .xor } else .{ .p_, .xor },
.cmp_lt,
.cmp_lte,
.cmp_gte,
.cmp_gt,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx))
.{ .vp_q, .cmpgt }
else if (self.hasFeature(.sse4_2))
.{ .p_q, .cmpgt }
else
null,
.unsigned => null,
},
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx))
.{ .vp_q, .cmpeq }
else if (self.hasFeature(.sse4_1))
.{ .p_q, .cmpeq }
else
null,
else => null,
},
3...4 => switch (air_tag) {
.add,
.add_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_q, .add } else null,
.sub,
.sub_wrap,
=> if (self.hasFeature(.avx2)) .{ .vp_q, .sub } else null,
.bit_and => if (self.hasFeature(.avx2)) .{ .vp_, .@"and" } else null,
.bit_or => if (self.hasFeature(.avx2)) .{ .vp_, .@"or" } else null,
.xor => if (self.hasFeature(.avx2)) .{ .vp_, .xor } else null,
.cmp_eq,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .vp_d, .cmpeq } else null,
.cmp_lt,
.cmp_lte,
.cmp_gt,
.cmp_gte,
=> switch (lhs_ty.childType(mod).intInfo(mod).signedness) {
.signed => if (self.hasFeature(.avx)) .{ .vp_d, .cmpgt } else null,
.unsigned => null,
},
else => null,
},
else => null,
},
else => null,
},
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
16 => tag: {
assert(self.hasFeature(.f16c));
switch (lhs_ty.vectorLen(mod)) {
1 => {
const tmp_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.sse,
)).to128();
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
if (src_mcv.isMemory()) try self.asmRegisterRegisterMemoryImmediate(
.{ .vp_w, .insr },
dst_reg,
dst_reg,
try src_mcv.mem(self, .word),
Immediate.u(1),
) else try self.asmRegisterRegisterRegister(
.{ .vp_, .unpcklwd },
dst_reg,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, dst_reg);
try self.asmRegisterRegister(.{ .v_, .movshdup }, tmp_reg, dst_reg);
try self.asmRegisterRegisterRegister(
switch (air_tag) {
.add => .{ .v_ss, .add },
.sub => .{ .v_ss, .sub },
.mul => .{ .v_ss, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_ss, .div },
.max => .{ .v_ss, .max },
.min => .{ .v_ss, .max },
else => unreachable,
},
dst_reg,
dst_reg,
tmp_reg,
);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
return dst_mcv;
},
2 => {
const tmp_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.sse,
)).to128();
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
if (src_mcv.isMemory()) try self.asmRegisterMemoryImmediate(
.{ .vp_d, .insr },
dst_reg,
try src_mcv.mem(self, .dword),
Immediate.u(1),
) else try self.asmRegisterRegisterRegister(
.{ .v_ps, .unpckl },
dst_reg,
dst_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, dst_reg);
try self.asmRegisterRegisterRegister(
.{ .v_ps, .movhl },
tmp_reg,
dst_reg,
dst_reg,
);
try self.asmRegisterRegisterRegister(
switch (air_tag) {
.add => .{ .v_ps, .add },
.sub => .{ .v_ps, .sub },
.mul => .{ .v_ps, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_ps, .div },
.max => .{ .v_ps, .max },
.min => .{ .v_ps, .max },
else => unreachable,
},
dst_reg,
dst_reg,
tmp_reg,
);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
return dst_mcv;
},
3...4 => {
const tmp_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.sse,
)).to128();
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg, dst_reg);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_ps, .cvtph2 },
tmp_reg,
try src_mcv.mem(self, .qword),
) else try self.asmRegisterRegister(
.{ .v_ps, .cvtph2 },
tmp_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
try self.asmRegisterRegisterRegister(
switch (air_tag) {
.add => .{ .v_ps, .add },
.sub => .{ .v_ps, .sub },
.mul => .{ .v_ps, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_ps, .div },
.max => .{ .v_ps, .max },
.min => .{ .v_ps, .max },
else => unreachable,
},
dst_reg,
dst_reg,
tmp_reg,
);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg,
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
return dst_mcv;
},
5...8 => {
const tmp_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.sse,
)).to256();
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, dst_reg.to256(), dst_reg);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_ps, .cvtph2 },
tmp_reg,
try src_mcv.mem(self, .xword),
) else try self.asmRegisterRegister(
.{ .v_ps, .cvtph2 },
tmp_reg,
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv)).to128(),
);
try self.asmRegisterRegisterRegister(
switch (air_tag) {
.add => .{ .v_ps, .add },
.sub => .{ .v_ps, .sub },
.mul => .{ .v_ps, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_ps, .div },
.max => .{ .v_ps, .max },
.min => .{ .v_ps, .max },
else => unreachable,
},
dst_reg.to256(),
dst_reg.to256(),
tmp_reg,
);
try self.asmRegisterRegisterImmediate(
.{ .v_, .cvtps2ph },
dst_reg,
dst_reg.to256(),
Immediate.u(@as(u5, @bitCast(RoundMode{ .mode = .mxcsr }))),
);
return dst_mcv;
},
else => break :tag null,
}
},
32 => switch (lhs_ty.vectorLen(mod)) {
1 => switch (air_tag) {
.add => if (self.hasFeature(.avx)) .{ .v_ss, .add } else .{ ._ss, .add },
.sub => if (self.hasFeature(.avx)) .{ .v_ss, .sub } else .{ ._ss, .sub },
.mul => if (self.hasFeature(.avx)) .{ .v_ss, .mul } else .{ ._ss, .mul },
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> if (self.hasFeature(.avx)) .{ .v_ss, .div } else .{ ._ss, .div },
.max => if (self.hasFeature(.avx)) .{ .v_ss, .max } else .{ ._ss, .max },
.min => if (self.hasFeature(.avx)) .{ .v_ss, .min } else .{ ._ss, .min },
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .v_ss, .cmp } else .{ ._ss, .cmp },
else => unreachable,
},
2...4 => switch (air_tag) {
.add => if (self.hasFeature(.avx)) .{ .v_ps, .add } else .{ ._ps, .add },
.sub => if (self.hasFeature(.avx)) .{ .v_ps, .sub } else .{ ._ps, .sub },
.mul => if (self.hasFeature(.avx)) .{ .v_ps, .mul } else .{ ._ps, .mul },
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> if (self.hasFeature(.avx)) .{ .v_ps, .div } else .{ ._ps, .div },
.max => if (self.hasFeature(.avx)) .{ .v_ps, .max } else .{ ._ps, .max },
.min => if (self.hasFeature(.avx)) .{ .v_ps, .min } else .{ ._ps, .min },
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .v_ps, .cmp } else .{ ._ps, .cmp },
else => unreachable,
},
5...8 => if (self.hasFeature(.avx)) switch (air_tag) {
.add => .{ .v_ps, .add },
.sub => .{ .v_ps, .sub },
.mul => .{ .v_ps, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_ps, .div },
.max => .{ .v_ps, .max },
.min => .{ .v_ps, .min },
.cmp_lt, .cmp_lte, .cmp_eq, .cmp_gte, .cmp_gt, .cmp_neq => .{ .v_ps, .cmp },
else => unreachable,
} else null,
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1 => switch (air_tag) {
.add => if (self.hasFeature(.avx)) .{ .v_sd, .add } else .{ ._sd, .add },
.sub => if (self.hasFeature(.avx)) .{ .v_sd, .sub } else .{ ._sd, .sub },
.mul => if (self.hasFeature(.avx)) .{ .v_sd, .mul } else .{ ._sd, .mul },
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> if (self.hasFeature(.avx)) .{ .v_sd, .div } else .{ ._sd, .div },
.max => if (self.hasFeature(.avx)) .{ .v_sd, .max } else .{ ._sd, .max },
.min => if (self.hasFeature(.avx)) .{ .v_sd, .min } else .{ ._sd, .min },
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .v_sd, .cmp } else .{ ._sd, .cmp },
else => unreachable,
},
2 => switch (air_tag) {
.add => if (self.hasFeature(.avx)) .{ .v_pd, .add } else .{ ._pd, .add },
.sub => if (self.hasFeature(.avx)) .{ .v_pd, .sub } else .{ ._pd, .sub },
.mul => if (self.hasFeature(.avx)) .{ .v_pd, .mul } else .{ ._pd, .mul },
.div_float,
.div_trunc,
.div_floor,
.div_exact,
=> if (self.hasFeature(.avx)) .{ .v_pd, .div } else .{ ._pd, .div },
.max => if (self.hasFeature(.avx)) .{ .v_pd, .max } else .{ ._pd, .max },
.min => if (self.hasFeature(.avx)) .{ .v_pd, .min } else .{ ._pd, .min },
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
=> if (self.hasFeature(.avx)) .{ .v_pd, .cmp } else .{ ._pd, .cmp },
else => unreachable,
},
3...4 => if (self.hasFeature(.avx)) switch (air_tag) {
.add => .{ .v_pd, .add },
.sub => .{ .v_pd, .sub },
.mul => .{ .v_pd, .mul },
.div_float, .div_trunc, .div_floor, .div_exact => .{ .v_pd, .div },
.max => .{ .v_pd, .max },
.cmp_lt, .cmp_lte, .cmp_eq, .cmp_gte, .cmp_gt, .cmp_neq => .{ .v_pd, .cmp },
.min => .{ .v_pd, .min },
else => unreachable,
} else null,
else => null,
},
80, 128 => null,
else => unreachable,
},
},
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
});
const lhs_copy_reg = if (maybe_mask_reg) |_| registerAlias(
if (copied_to_dst) try self.copyToTmpRegister(lhs_ty, dst_mcv) else lhs_mcv.getReg().?,
abi_size,
) else null;
const lhs_copy_lock = if (lhs_copy_reg) |reg| self.register_manager.lockReg(reg) else null;
defer if (lhs_copy_lock) |lock| self.register_manager.unlockReg(lock);
switch (mir_tag[1]) {
else => if (self.hasFeature(.avx)) {
const lhs_reg =
if (copied_to_dst) dst_reg else registerAlias(lhs_mcv.getReg().?, abi_size);
if (src_mcv.isMemory()) try self.asmRegisterRegisterMemory(
mir_tag,
dst_reg,
lhs_reg,
try src_mcv.mem(self, switch (lhs_ty.zigTypeTag(mod)) {
else => Memory.Size.fromSize(abi_size),
.Vector => Memory.Size.fromBitSize(dst_reg.bitSize()),
}),
) else try self.asmRegisterRegisterRegister(
mir_tag,
dst_reg,
lhs_reg,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv), abi_size),
);
} else {
assert(copied_to_dst);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
mir_tag,
dst_reg,
try src_mcv.mem(self, switch (lhs_ty.zigTypeTag(mod)) {
else => Memory.Size.fromSize(abi_size),
.Vector => Memory.Size.fromBitSize(dst_reg.bitSize()),
}),
) else try self.asmRegisterRegister(
mir_tag,
dst_reg,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv), abi_size),
);
},
.cmp => {
const imm = Immediate.u(switch (air_tag) {
.cmp_eq => 0,
.cmp_lt, .cmp_gt => 1,
.cmp_lte, .cmp_gte => 2,
.cmp_neq => 4,
else => unreachable,
});
if (self.hasFeature(.avx)) {
const lhs_reg =
if (copied_to_dst) dst_reg else registerAlias(lhs_mcv.getReg().?, abi_size);
if (src_mcv.isMemory()) try self.asmRegisterRegisterMemoryImmediate(
mir_tag,
dst_reg,
lhs_reg,
try src_mcv.mem(self, switch (lhs_ty.zigTypeTag(mod)) {
else => Memory.Size.fromSize(abi_size),
.Vector => Memory.Size.fromBitSize(dst_reg.bitSize()),
}),
imm,
) else try self.asmRegisterRegisterRegisterImmediate(
mir_tag,
dst_reg,
lhs_reg,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv), abi_size),
imm,
);
} else {
assert(copied_to_dst);
if (src_mcv.isMemory()) try self.asmRegisterMemoryImmediate(
mir_tag,
dst_reg,
try src_mcv.mem(self, switch (lhs_ty.zigTypeTag(mod)) {
else => Memory.Size.fromSize(abi_size),
.Vector => Memory.Size.fromBitSize(dst_reg.bitSize()),
}),
imm,
) else try self.asmRegisterRegisterImmediate(
mir_tag,
dst_reg,
registerAlias(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(rhs_ty, src_mcv), abi_size),
imm,
);
}
},
}
switch (air_tag) {
.add, .add_wrap, .sub, .sub_wrap, .mul, .mul_wrap, .div_float, .div_exact => {},
.div_trunc, .div_floor => try self.genRound(lhs_ty, dst_reg, .{ .register = dst_reg }, .{
.mode = switch (air_tag) {
.div_trunc => .zero,
.div_floor => .down,
else => unreachable,
},
.precision = .inexact,
}),
.bit_and, .bit_or, .xor => {},
.max, .min => if (maybe_mask_reg) |mask_reg| if (self.hasFeature(.avx)) {
const rhs_copy_reg = registerAlias(src_mcv.getReg().?, abi_size);
try self.asmRegisterRegisterRegisterImmediate(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ .v_ss, .cmp },
64 => .{ .v_sd, .cmp },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1 => .{ .v_ss, .cmp },
2...8 => .{ .v_ps, .cmp },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1 => .{ .v_sd, .cmp },
2...4 => .{ .v_pd, .cmp },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
mask_reg,
rhs_copy_reg,
rhs_copy_reg,
Immediate.u(3), // unord
);
try self.asmRegisterRegisterRegisterRegister(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ .v_ps, .blendv },
64 => .{ .v_pd, .blendv },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1...8 => .{ .v_ps, .blendv },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1...4 => .{ .v_pd, .blendv },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
dst_reg,
dst_reg,
lhs_copy_reg.?,
mask_reg,
);
} else {
const has_blend = self.hasFeature(.sse4_1);
try self.asmRegisterRegisterImmediate(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ ._ss, .cmp },
64 => .{ ._sd, .cmp },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1 => .{ ._ss, .cmp },
2...4 => .{ ._ps, .cmp },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1 => .{ ._sd, .cmp },
2 => .{ ._pd, .cmp },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
mask_reg,
mask_reg,
Immediate.u(if (has_blend) 3 else 7), // unord, ord
);
if (has_blend) try self.asmRegisterRegisterRegister(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ ._ps, .blendv },
64 => .{ ._pd, .blendv },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1...4 => .{ ._ps, .blendv },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1...2 => .{ ._pd, .blendv },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
dst_reg,
lhs_copy_reg.?,
mask_reg,
) else {
try self.asmRegisterRegister(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ ._ps, .@"and" },
64 => .{ ._pd, .@"and" },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1...4 => .{ ._ps, .@"and" },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1...2 => .{ ._pd, .@"and" },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
dst_reg,
mask_reg,
);
try self.asmRegisterRegister(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ ._ps, .andn },
64 => .{ ._pd, .andn },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1...4 => .{ ._ps, .andn },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1...2 => .{ ._pd, .andn },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
mask_reg,
lhs_copy_reg.?,
);
try self.asmRegisterRegister(
@as(?Mir.Inst.FixedTag, switch (lhs_ty.zigTypeTag(mod)) {
.Float => switch (lhs_ty.floatBits(self.target.*)) {
32 => .{ ._ps, .@"or" },
64 => .{ ._pd, .@"or" },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (lhs_ty.childType(mod).floatBits(self.target.*)) {
32 => switch (lhs_ty.vectorLen(mod)) {
1...4 => .{ ._ps, .@"or" },
else => null,
},
64 => switch (lhs_ty.vectorLen(mod)) {
1...2 => .{ ._pd, .@"or" },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}) orelse return self.fail("TODO implement genBinOp for {s} {}", .{
@tagName(air_tag), lhs_ty.fmt(mod),
}),
dst_reg,
mask_reg,
);
}
},
.cmp_lt, .cmp_lte, .cmp_eq, .cmp_gte, .cmp_gt, .cmp_neq => {
switch (lhs_ty.childType(mod).zigTypeTag(mod)) {
.Int => switch (air_tag) {
.cmp_lt,
.cmp_eq,
.cmp_gt,
=> {},
.cmp_lte,
.cmp_gte,
.cmp_neq,
=> {
const unsigned_ty = try lhs_ty.toUnsigned(mod);
const not_mcv = try self.genTypedValue(.{
.ty = lhs_ty,
.val = try unsigned_ty.maxInt(mod, unsigned_ty),
});
const not_mem: Memory = if (not_mcv.isMemory())
try not_mcv.mem(self, Memory.Size.fromSize(abi_size))
else
.{ .base = .{
.reg = try self.copyToTmpRegister(Type.usize, not_mcv.address()),
}, .mod = .{ .rm = .{ .size = Memory.Size.fromSize(abi_size) } } };
switch (mir_tag[0]) {
.vp_b, .vp_d, .vp_q, .vp_w => try self.asmRegisterRegisterMemory(
.{ .vp_, .xor },
dst_reg,
dst_reg,
not_mem,
),
.p_b, .p_d, .p_q, .p_w => try self.asmRegisterMemory(
.{ .p_, .xor },
dst_reg,
not_mem,
),
else => unreachable,
}
},
else => unreachable,
},
.Float => {},
else => unreachable,
}
const gp_reg = try self.register_manager.allocReg(maybe_inst, abi.RegisterClass.gp);
const gp_lock = self.register_manager.lockRegAssumeUnused(gp_reg);
defer self.register_manager.unlockReg(gp_lock);
try self.asmRegisterRegister(switch (mir_tag[0]) {
._pd, ._sd, .p_q => .{ ._pd, .movmsk },
._ps, ._ss, .p_d => .{ ._ps, .movmsk },
.p_b => .{ .p_b, .movmsk },
.p_w => movmsk: {
try self.asmRegisterRegister(.{ .p_b, .ackssw }, dst_reg, dst_reg);
break :movmsk .{ .p_b, .movmsk };
},
.v_pd, .v_sd, .vp_q => .{ .v_pd, .movmsk },
.v_ps, .v_ss, .vp_d => .{ .v_ps, .movmsk },
.vp_b => .{ .vp_b, .movmsk },
.vp_w => movmsk: {
try self.asmRegisterRegisterRegister(
.{ .vp_b, .ackssw },
dst_reg,
dst_reg,
dst_reg,
);
break :movmsk .{ .vp_b, .movmsk };
},
else => unreachable,
}, gp_reg.to32(), dst_reg);
return .{ .register = gp_reg };
},
else => unreachable,
}
return dst_mcv;
}
fn genBinOpMir(
self: *Self,
mir_tag: Mir.Inst.FixedTag,
ty: Type,
dst_mcv: MCValue,
src_mcv: MCValue,
) !void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(ty.abiSize(mod));
try self.spillEflagsIfOccupied();
switch (dst_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register_overflow,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.lea_symbol,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // unmodifiable destination
.register, .register_pair, .register_offset => {
switch (dst_mcv) {
.register, .register_pair => {},
.register_offset => |ro| assert(ro.off == 0),
else => unreachable,
}
for (dst_mcv.getRegs(), 0..) |dst_reg, dst_reg_i| {
const dst_reg_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_reg_lock) |lock| self.register_manager.unlockReg(lock);
const mir_limb_tag: Mir.Inst.FixedTag = switch (dst_reg_i) {
0 => mir_tag,
1 => switch (mir_tag[1]) {
.add => .{ ._, .adc },
.sub, .cmp => .{ ._, .sbb },
.@"or", .@"and", .xor => mir_tag,
else => return self.fail("TODO genBinOpMir implement large ABI for {s}", .{
@tagName(mir_tag[1]),
}),
},
else => unreachable,
};
const off: u4 = @intCast(dst_reg_i * 8);
const limb_abi_size = @min(abi_size - off, 8);
const dst_alias = registerAlias(dst_reg, limb_abi_size);
switch (src_mcv) {
.none,
.unreach,
.dead,
.undef,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
=> unreachable,
.register, .register_pair => try self.asmRegisterRegister(
mir_limb_tag,
dst_alias,
registerAlias(src_mcv.getRegs()[dst_reg_i], limb_abi_size),
),
.immediate => |imm| {
assert(off == 0);
switch (self.regBitSize(ty)) {
8 => try self.asmRegisterImmediate(
mir_limb_tag,
dst_alias,
if (math.cast(i8, @as(i64, @bitCast(imm)))) |small|
Immediate.s(small)
else
Immediate.u(@as(u8, @intCast(imm))),
),
16 => try self.asmRegisterImmediate(
mir_limb_tag,
dst_alias,
if (math.cast(i16, @as(i64, @bitCast(imm)))) |small|
Immediate.s(small)
else
Immediate.u(@as(u16, @intCast(imm))),
),
32 => try self.asmRegisterImmediate(
mir_limb_tag,
dst_alias,
if (math.cast(i32, @as(i64, @bitCast(imm)))) |small|
Immediate.s(small)
else
Immediate.u(@as(u32, @intCast(imm))),
),
64 => if (math.cast(i32, @as(i64, @bitCast(imm)))) |small|
try self.asmRegisterImmediate(mir_limb_tag, dst_alias, Immediate.s(small))
else
try self.asmRegisterRegister(mir_limb_tag, dst_alias, registerAlias(
try self.copyToTmpRegister(ty, src_mcv),
limb_abi_size,
)),
else => unreachable,
}
},
.eflags,
.register_offset,
.memory,
.indirect,
.load_symbol,
.lea_symbol,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.load_frame,
.lea_frame,
=> {
direct: {
try self.asmRegisterMemory(mir_limb_tag, dst_alias, switch (src_mcv) {
.memory => |addr| .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = math.cast(i32, addr + off) orelse break :direct,
} },
},
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = reg_off.off + off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = frame_addr.off + off,
} },
},
else => break :direct,
});
continue;
}
switch (src_mcv) {
.eflags,
.register_offset,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
=> {
assert(off == 0);
const reg = try self.copyToTmpRegister(ty, src_mcv);
return self.genBinOpMir(
mir_limb_tag,
ty,
dst_mcv,
.{ .register = reg },
);
},
.memory,
.load_symbol,
.load_direct,
.load_got,
.load_tlv,
=> {
const ptr_ty = try mod.singleConstPtrType(ty);
const addr_reg = try self.copyToTmpRegister(ptr_ty, src_mcv.address());
return self.genBinOpMir(mir_limb_tag, ty, dst_mcv, .{
.indirect = .{ .reg = addr_reg, .off = off },
});
},
else => unreachable,
}
},
.air_ref => |src_ref| return self.genBinOpMir(
mir_tag,
ty,
dst_mcv,
try self.resolveInst(src_ref),
),
}
}
},
.memory, .indirect, .load_symbol, .load_got, .load_direct, .load_tlv, .load_frame => {
const OpInfo = ?struct { addr_reg: Register, addr_lock: RegisterLock };
const limb_abi_size: u32 = @min(abi_size, 8);
const dst_info: OpInfo = switch (dst_mcv) {
else => unreachable,
.memory, .load_symbol, .load_got, .load_direct, .load_tlv => dst: {
const dst_addr_reg =
(try self.register_manager.allocReg(null, abi.RegisterClass.gp)).to64();
const dst_addr_lock = self.register_manager.lockRegAssumeUnused(dst_addr_reg);
errdefer self.register_manager.unlockReg(dst_addr_lock);
try self.genSetReg(dst_addr_reg, Type.usize, dst_mcv.address(), .{});
break :dst .{ .addr_reg = dst_addr_reg, .addr_lock = dst_addr_lock };
},
.load_frame => null,
};
defer if (dst_info) |info| self.register_manager.unlockReg(info.addr_lock);
const resolved_src_mcv = switch (src_mcv) {
else => src_mcv,
.air_ref => |src_ref| try self.resolveInst(src_ref),
};
const src_info: OpInfo = switch (resolved_src_mcv) {
.none,
.unreach,
.dead,
.undef,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.immediate,
.eflags,
.register,
.register_pair,
.register_offset,
.indirect,
.lea_direct,
.lea_got,
.lea_tlv,
.load_frame,
.lea_frame,
.lea_symbol,
=> null,
.memory, .load_symbol, .load_got, .load_direct, .load_tlv => src: {
switch (resolved_src_mcv) {
.memory => |addr| if (math.cast(i32, @as(i64, @bitCast(addr))) != null and
math.cast(i32, @as(i64, @bitCast(addr)) + abi_size - limb_abi_size) != null)
break :src null,
.load_symbol, .load_got, .load_direct, .load_tlv => {},
else => unreachable,
}
const src_addr_reg =
(try self.register_manager.allocReg(null, abi.RegisterClass.gp)).to64();
const src_addr_lock = self.register_manager.lockRegAssumeUnused(src_addr_reg);
errdefer self.register_manager.unlockReg(src_addr_lock);
try self.genSetReg(src_addr_reg, Type.usize, resolved_src_mcv.address(), .{});
break :src .{ .addr_reg = src_addr_reg, .addr_lock = src_addr_lock };
},
};
defer if (src_info) |info| self.register_manager.unlockReg(info.addr_lock);
const ty_signedness =
if (ty.isAbiInt(mod)) ty.intInfo(mod).signedness else .unsigned;
const limb_ty = if (abi_size <= 8) ty else switch (ty_signedness) {
.signed => Type.usize,
.unsigned => Type.isize,
};
var limb_i: usize = 0;
var off: i32 = 0;
while (off < abi_size) : ({
limb_i += 1;
off += 8;
}) {
const mir_limb_tag: Mir.Inst.FixedTag = switch (limb_i) {
0 => mir_tag,
else => switch (mir_tag[1]) {
.add => .{ ._, .adc },
.sub, .cmp => .{ ._, .sbb },
.@"or", .@"and", .xor => mir_tag,
else => return self.fail("TODO genBinOpMir implement large ABI for {s}", .{
@tagName(mir_tag[1]),
}),
},
};
const dst_limb_mem: Memory = switch (dst_mcv) {
.memory,
.load_symbol,
.load_got,
.load_direct,
.load_tlv,
=> .{
.base = .{ .reg = dst_info.?.addr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = off,
} },
},
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = reg_off.off + off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(limb_abi_size),
.disp = frame_addr.off + off,
} },
},
else => unreachable,
};
switch (resolved_src_mcv) {
.none,
.unreach,
.dead,
.undef,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.immediate => |src_imm| {
const imm: u64 = switch (limb_i) {
0 => src_imm,
else => switch (ty_signedness) {
.signed => @bitCast(@as(i64, @bitCast(src_imm)) >> 63),
.unsigned => 0,
},
};
switch (self.regBitSize(limb_ty)) {
8 => try self.asmMemoryImmediate(
mir_limb_tag,
dst_limb_mem,
if (math.cast(i8, @as(i64, @bitCast(imm)))) |small|
Immediate.s(small)
else
Immediate.u(@as(u8, @intCast(imm))),
),
16 => try self.asmMemoryImmediate(
mir_limb_tag,
dst_limb_mem,
if (math.cast(i16, @as(i64, @bitCast(imm)))) |small|
Immediate.s(small)
else
Immediate.u(@as(u16, @intCast(imm))),
),
32 => try self.asmMemoryImmediate(
mir_limb_tag,
dst_limb_mem,
if (math.cast(i32, @as(i64, @bitCast(imm)))) |small|
Immediate.s(small)
else
Immediate.u(@as(u32, @intCast(imm))),
),
64 => if (math.cast(i32, @as(i64, @bitCast(imm)))) |small|
try self.asmMemoryImmediate(
mir_limb_tag,
dst_limb_mem,
Immediate.s(small),
)
else
try self.asmMemoryRegister(
mir_limb_tag,
dst_limb_mem,
registerAlias(
try self.copyToTmpRegister(limb_ty, .{ .immediate = imm }),
limb_abi_size,
),
),
else => unreachable,
}
},
.register,
.register_pair,
.register_offset,
.eflags,
.memory,
.indirect,
.load_symbol,
.lea_symbol,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.load_frame,
.lea_frame,
=> {
const src_limb_mcv: MCValue = if (src_info) |info| .{
.indirect = .{ .reg = info.addr_reg, .off = off },
} else switch (resolved_src_mcv) {
.register, .register_pair => .{
.register = resolved_src_mcv.getRegs()[limb_i],
},
.eflags,
.register_offset,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
=> switch (limb_i) {
0 => resolved_src_mcv,
else => .{ .immediate = 0 },
},
.memory => |addr| .{ .memory = @bitCast(@as(i64, @bitCast(addr)) + off) },
.indirect => |reg_off| .{ .indirect = .{
.reg = reg_off.reg,
.off = reg_off.off + off,
} },
.load_frame => |frame_addr| .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + off,
} },
else => unreachable,
};
const src_limb_reg = if (src_limb_mcv.isRegister())
src_limb_mcv.getReg().?
else
try self.copyToTmpRegister(limb_ty, src_limb_mcv);
try self.asmMemoryRegister(
mir_limb_tag,
dst_limb_mem,
registerAlias(src_limb_reg, limb_abi_size),
);
},
}
}
},
}
}
/// Performs multi-operand integer multiplication between dst_mcv and src_mcv, storing the result in dst_mcv.
/// Does not support byte-size operands.
fn genIntMulComplexOpMir(self: *Self, dst_ty: Type, dst_mcv: MCValue, src_mcv: MCValue) InnerError!void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(dst_ty.abiSize(mod));
try self.spillEflagsIfOccupied();
switch (dst_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register_offset,
.register_overflow,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // unmodifiable destination
.register => |dst_reg| {
const dst_alias = registerAlias(dst_reg, abi_size);
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const resolved_src_mcv = switch (src_mcv) {
else => src_mcv,
.air_ref => |src_ref| try self.resolveInst(src_ref),
};
switch (resolved_src_mcv) {
.none,
.unreach,
.dead,
.undef,
.register_pair,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.register => |src_reg| try self.asmRegisterRegister(
.{ .i_, .mul },
dst_alias,
registerAlias(src_reg, abi_size),
),
.immediate => |imm| {
if (math.cast(i32, imm)) |small| {
try self.asmRegisterRegisterImmediate(
.{ .i_, .mul },
dst_alias,
dst_alias,
Immediate.s(small),
);
} else {
const src_reg = try self.copyToTmpRegister(dst_ty, resolved_src_mcv);
return self.genIntMulComplexOpMir(dst_ty, dst_mcv, MCValue{ .register = src_reg });
}
},
.register_offset,
.eflags,
.load_symbol,
.lea_symbol,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.lea_frame,
=> try self.asmRegisterRegister(
.{ .i_, .mul },
dst_alias,
registerAlias(try self.copyToTmpRegister(dst_ty, resolved_src_mcv), abi_size),
),
.memory, .indirect, .load_frame => try self.asmRegisterMemory(
.{ .i_, .mul },
dst_alias,
switch (resolved_src_mcv) {
.memory => |addr| .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = math.cast(i32, @as(i64, @bitCast(addr))) orelse
return self.asmRegisterRegister(
.{ .i_, .mul },
dst_alias,
registerAlias(
try self.copyToTmpRegister(dst_ty, resolved_src_mcv),
abi_size,
),
),
} },
},
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = reg_off.off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = frame_addr.off,
} },
},
else => unreachable,
},
),
}
},
.register_pair => unreachable, // unimplemented
.memory, .indirect, .load_symbol, .load_direct, .load_got, .load_tlv, .load_frame => {
const tmp_reg = try self.copyToTmpRegister(dst_ty, dst_mcv);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.genIntMulComplexOpMir(dst_ty, tmp_mcv, src_mcv);
try self.genCopy(dst_ty, dst_mcv, tmp_mcv, .{});
},
}
}
fn airArg(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
// skip zero-bit arguments as they don't have a corresponding arg instruction
var arg_index = self.arg_index;
while (self.args[arg_index] == .none) arg_index += 1;
self.arg_index = arg_index + 1;
const result: MCValue = if (self.liveness.isUnused(inst)) .unreach else result: {
const arg_ty = self.typeOfIndex(inst);
const src_mcv = self.args[arg_index];
const dst_mcv = switch (src_mcv) {
.register, .register_pair, .load_frame => dst: {
for (src_mcv.getRegs()) |reg| self.register_manager.getRegAssumeFree(reg, inst);
break :dst src_mcv;
},
.indirect => |reg_off| dst: {
self.register_manager.getRegAssumeFree(reg_off.reg, inst);
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genCopy(arg_ty, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
},
.elementwise_regs_then_frame => |regs_frame_addr| dst: {
try self.spillEflagsIfOccupied();
const fn_info = mod.typeToFunc(self.fn_type).?;
const cc = abi.resolveCallingConvention(fn_info.cc, self.target.*);
const param_int_regs = abi.getCAbiIntParamRegs(cc);
var prev_reg: Register = undefined;
for (
param_int_regs[param_int_regs.len - regs_frame_addr.regs ..],
0..,
) |dst_reg, elem_index| {
assert(self.register_manager.isRegFree(dst_reg));
if (elem_index > 0) {
try self.asmRegisterImmediate(
.{ ._l, .sh },
dst_reg.to8(),
Immediate.u(elem_index),
);
try self.asmRegisterRegister(
.{ ._, .@"or" },
dst_reg.to8(),
prev_reg.to8(),
);
}
prev_reg = dst_reg;
}
const prev_lock = if (regs_frame_addr.regs > 0)
self.register_manager.lockRegAssumeUnused(prev_reg)
else
null;
defer if (prev_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv = try self.allocRegOrMem(inst, false);
if (regs_frame_addr.regs > 0) try self.asmMemoryRegister(
.{ ._, .mov },
try dst_mcv.mem(self, .byte),
prev_reg.to8(),
);
try self.genInlineMemset(
dst_mcv.address().offset(@intFromBool(regs_frame_addr.regs > 0)),
.{ .immediate = 0 },
.{ .immediate = arg_ty.abiSize(mod) - @intFromBool(regs_frame_addr.regs > 0) },
.{},
);
const index_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const index_lock = self.register_manager.lockRegAssumeUnused(index_reg);
defer self.register_manager.unlockReg(index_lock);
try self.asmRegisterImmediate(
.{ ._, .mov },
index_reg.to32(),
Immediate.u(regs_frame_addr.regs),
);
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmMemoryImmediate(.{ ._, .cmp }, .{
.base = .{ .frame = regs_frame_addr.frame_index },
.mod = .{ .rm = .{
.size = .byte,
.index = index_reg.to64(),
.scale = .@"8",
.disp = regs_frame_addr.frame_off - @as(u6, regs_frame_addr.regs) * 8,
} },
}, Immediate.u(0));
const unset = try self.asmJccReloc(.e, undefined);
try self.asmMemoryRegister(
.{ ._s, .bt },
try dst_mcv.mem(self, .dword),
index_reg.to32(),
);
self.performReloc(unset);
if (self.hasFeature(.slow_incdec)) {
try self.asmRegisterImmediate(.{ ._, .add }, index_reg.to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, index_reg.to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
index_reg.to32(),
Immediate.u(arg_ty.vectorLen(mod)),
);
_ = try self.asmJccReloc(.b, loop);
break :dst dst_mcv;
},
else => return self.fail("TODO implement arg for {}", .{src_mcv}),
};
const src_index = self.air.instructions.items(.data)[@intFromEnum(inst)].arg.src_index;
const name = mod.getParamName(self.owner.func_index, src_index);
try self.genArgDbgInfo(arg_ty, name, src_mcv);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn genArgDbgInfo(self: Self, ty: Type, name: [:0]const u8, mcv: MCValue) !void {
const mod = self.bin_file.comp.module.?;
switch (self.debug_output) {
.dwarf => |dw| {
const loc: link.File.Dwarf.DeclState.DbgInfoLoc = switch (mcv) {
.register => |reg| .{ .register = reg.dwarfNum() },
.register_pair => |regs| .{ .register_pair = .{
regs[0].dwarfNum(), regs[1].dwarfNum(),
} },
// TODO use a frame index
.load_frame, .elementwise_regs_then_frame => return,
//.stack_offset => |off| .{
// .stack = .{
// // TODO handle -fomit-frame-pointer
// .fp_register = Register.rbp.dwarfNum(),
// .offset = -off,
// },
//},
else => unreachable, // not a valid function parameter
};
// TODO: this might need adjusting like the linkers do.
// Instead of flattening the owner and passing Decl.Index here we may
// want to special case LazySymbol in DWARF linker too.
try dw.genArgDbgInfo(name, ty, self.owner.getDecl(mod), loc);
},
.plan9 => {},
.none => {},
}
}
fn genVarDbgInfo(
self: Self,
tag: Air.Inst.Tag,
ty: Type,
mcv: MCValue,
name: [:0]const u8,
) !void {
const mod = self.bin_file.comp.module.?;
const is_ptr = switch (tag) {
.dbg_var_ptr => true,
.dbg_var_val => false,
else => unreachable,
};
switch (self.debug_output) {
.dwarf => |dw| {
const loc: link.File.Dwarf.DeclState.DbgInfoLoc = switch (mcv) {
.register => |reg| .{ .register = reg.dwarfNum() },
// TODO use a frame index
.load_frame, .lea_frame => return,
//=> |off| .{ .stack = .{
// .fp_register = Register.rbp.dwarfNum(),
// .offset = -off,
//} },
.memory => |address| .{ .memory = address },
.load_symbol => |sym_off| loc: {
assert(sym_off.off == 0);
break :loc .{ .linker_load = .{ .type = .direct, .sym_index = sym_off.sym } };
}, // TODO
.load_got => |sym_index| .{ .linker_load = .{ .type = .got, .sym_index = sym_index } },
.load_direct => |sym_index| .{
.linker_load = .{ .type = .direct, .sym_index = sym_index },
},
.immediate => |x| .{ .immediate = x },
.undef => .undef,
.none => .none,
else => blk: {
log.debug("TODO generate debug info for {}", .{mcv});
break :blk .nop;
},
};
// TODO: this might need adjusting like the linkers do.
// Instead of flattening the owner and passing Decl.Index here we may
// want to special case LazySymbol in DWARF linker too.
try dw.genVarDbgInfo(name, ty, self.owner.getDecl(mod), is_ptr, loc);
},
.plan9 => {},
.none => {},
}
}
fn airTrap(self: *Self) !void {
try self.asmOpOnly(.{ ._, .ud2 });
self.finishAirBookkeeping();
}
fn airBreakpoint(self: *Self) !void {
try self.asmOpOnly(.{ ._, .int3 });
self.finishAirBookkeeping();
}
fn airRetAddr(self: *Self, inst: Air.Inst.Index) !void {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(Type.usize, dst_mcv, .{ .load_frame = .{ .index = .ret_addr } }, .{});
return self.finishAir(inst, dst_mcv, .{ .none, .none, .none });
}
fn airFrameAddress(self: *Self, inst: Air.Inst.Index) !void {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(Type.usize, dst_mcv, .{ .lea_frame = .{ .index = .base_ptr } }, .{});
return self.finishAir(inst, dst_mcv, .{ .none, .none, .none });
}
fn airFence(self: *Self, inst: Air.Inst.Index) !void {
const order = self.air.instructions.items(.data)[@intFromEnum(inst)].fence;
switch (order) {
.Unordered, .Monotonic => unreachable,
.Acquire, .Release, .AcqRel => {},
.SeqCst => try self.asmOpOnly(.{ ._, .mfence }),
}
self.finishAirBookkeeping();
}
fn airCall(self: *Self, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !void {
if (modifier == .always_tail) return self.fail("TODO implement tail calls for x86_64", .{});
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Call, pl_op.payload);
const arg_refs: []const Air.Inst.Ref =
@ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]);
const ExpectedContents = extern struct {
tys: [16][@sizeOf(Type)]u8 align(@alignOf(Type)),
vals: [16][@sizeOf(MCValue)]u8 align(@alignOf(MCValue)),
};
var stack align(@max(@alignOf(ExpectedContents), @alignOf(std.heap.StackFallbackAllocator(0)))) =
std.heap.stackFallback(@sizeOf(ExpectedContents), self.gpa);
const allocator = stack.get();
const arg_tys = try allocator.alloc(Type, arg_refs.len);
defer allocator.free(arg_tys);
for (arg_tys, arg_refs) |*arg_ty, arg_ref| arg_ty.* = self.typeOf(arg_ref);
const arg_vals = try allocator.alloc(MCValue, arg_refs.len);
defer allocator.free(arg_vals);
for (arg_vals, arg_refs) |*arg_val, arg_ref| arg_val.* = .{ .air_ref = arg_ref };
const ret = try self.genCall(.{ .air = pl_op.operand }, arg_tys, arg_vals);
var bt = self.liveness.iterateBigTomb(inst);
try self.feed(&bt, pl_op.operand);
for (arg_refs) |arg_ref| try self.feed(&bt, arg_ref);
const result = if (self.liveness.isUnused(inst)) .unreach else ret;
return self.finishAirResult(inst, result);
}
fn genCall(self: *Self, info: union(enum) {
air: Air.Inst.Ref,
lib: struct {
return_type: InternPool.Index,
param_types: []const InternPool.Index,
lib: ?[]const u8 = null,
callee: []const u8,
},
}, arg_types: []const Type, args: []const MCValue) !MCValue {
const mod = self.bin_file.comp.module.?;
const fn_ty = switch (info) {
.air => |callee| fn_info: {
const callee_ty = self.typeOf(callee);
break :fn_info switch (callee_ty.zigTypeTag(mod)) {
.Fn => callee_ty,
.Pointer => callee_ty.childType(mod),
else => unreachable,
};
},
.lib => |lib| try mod.funcType(.{
.param_types = lib.param_types,
.return_type = lib.return_type,
.cc = .C,
}),
};
const fn_info = mod.typeToFunc(fn_ty).?;
const resolved_cc = abi.resolveCallingConvention(fn_info.cc, self.target.*);
const ExpectedContents = extern struct {
var_args: [16][@sizeOf(Type)]u8 align(@alignOf(Type)),
frame_indices: [16]FrameIndex,
reg_locks: [16][@sizeOf(?RegisterLock)]u8 align(@alignOf(?RegisterLock)),
};
var stack align(@max(@alignOf(ExpectedContents), @alignOf(std.heap.StackFallbackAllocator(0)))) =
std.heap.stackFallback(@sizeOf(ExpectedContents), self.gpa);
const allocator = stack.get();
const var_args = try allocator.alloc(Type, args.len - fn_info.param_types.len);
defer allocator.free(var_args);
for (var_args, arg_types[fn_info.param_types.len..]) |*var_arg, arg_ty| var_arg.* = arg_ty;
const frame_indices = try allocator.alloc(FrameIndex, args.len);
defer allocator.free(frame_indices);
var reg_locks = std.ArrayList(?RegisterLock).init(allocator);
defer reg_locks.deinit();
try reg_locks.ensureTotalCapacity(16);
defer for (reg_locks.items) |reg_lock| if (reg_lock) |lock| self.register_manager.unlockReg(lock);
var call_info = try self.resolveCallingConventionValues(fn_info, var_args, .call_frame);
defer call_info.deinit(self);
// We need a properly aligned and sized call frame to be able to call this function.
{
const needed_call_frame = FrameAlloc.init(.{
.size = call_info.stack_byte_count,
.alignment = call_info.stack_align,
});
const frame_allocs_slice = self.frame_allocs.slice();
const stack_frame_size =
&frame_allocs_slice.items(.abi_size)[@intFromEnum(FrameIndex.call_frame)];
stack_frame_size.* = @max(stack_frame_size.*, needed_call_frame.abi_size);
const stack_frame_align =
&frame_allocs_slice.items(.abi_align)[@intFromEnum(FrameIndex.call_frame)];
stack_frame_align.* = stack_frame_align.max(needed_call_frame.abi_align);
}
try self.spillEflagsIfOccupied();
try self.spillCallerPreservedRegs(resolved_cc);
// set stack arguments first because this can clobber registers
// also clobber spill arguments as we go
switch (call_info.return_value.long) {
.none, .unreach => {},
.indirect => |reg_off| try self.register_manager.getReg(reg_off.reg, null),
else => unreachable,
}
for (call_info.args, arg_types, args, frame_indices) |dst_arg, arg_ty, src_arg, *frame_index|
switch (dst_arg) {
.none => {},
.register => |reg| {
try self.register_manager.getReg(reg, null);
try reg_locks.append(self.register_manager.lockReg(reg));
},
.register_pair => |regs| {
for (regs) |reg| try self.register_manager.getReg(reg, null);
try reg_locks.appendSlice(&self.register_manager.lockRegs(2, regs));
},
.indirect => |reg_off| {
frame_index.* = try self.allocFrameIndex(FrameAlloc.initType(arg_ty, mod));
try self.genSetMem(.{ .frame = frame_index.* }, 0, arg_ty, src_arg, .{});
try self.register_manager.getReg(reg_off.reg, null);
try reg_locks.append(self.register_manager.lockReg(reg_off.reg));
},
.load_frame => {
try self.genCopy(arg_ty, dst_arg, src_arg, .{});
try self.freeValue(src_arg);
},
.elementwise_regs_then_frame => |regs_frame_addr| {
const index_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const index_lock = self.register_manager.lockRegAssumeUnused(index_reg);
defer self.register_manager.unlockReg(index_lock);
const src_mem: Memory = if (src_arg.isMemory()) try src_arg.mem(self, .dword) else .{
.base = .{ .reg = try self.copyToTmpRegister(
Type.usize,
switch (src_arg) {
else => src_arg,
.air_ref => |src_ref| try self.resolveInst(src_ref),
}.address(),
) },
.mod = .{ .rm = .{ .size = .dword } },
};
const src_lock = switch (src_mem.base) {
.reg => |src_reg| self.register_manager.lockReg(src_reg),
else => null,
};
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
try self.asmRegisterImmediate(
.{ ._, .mov },
index_reg.to32(),
Immediate.u(regs_frame_addr.regs),
);
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.asmMemoryRegister(.{ ._, .bt }, src_mem, index_reg.to32());
try self.asmSetccMemory(.c, .{
.base = .{ .frame = regs_frame_addr.frame_index },
.mod = .{ .rm = .{
.size = .byte,
.index = index_reg.to64(),
.scale = .@"8",
.disp = regs_frame_addr.frame_off - @as(u6, regs_frame_addr.regs) * 8,
} },
});
if (self.hasFeature(.slow_incdec)) {
try self.asmRegisterImmediate(.{ ._, .add }, index_reg.to32(), Immediate.u(1));
} else {
try self.asmRegister(.{ ._, .inc }, index_reg.to32());
}
try self.asmRegisterImmediate(
.{ ._, .cmp },
index_reg.to32(),
Immediate.u(arg_ty.vectorLen(mod)),
);
_ = try self.asmJccReloc(.b, loop);
const param_int_regs = abi.getCAbiIntParamRegs(resolved_cc);
for (param_int_regs[param_int_regs.len - regs_frame_addr.regs ..]) |dst_reg| {
try self.register_manager.getReg(dst_reg, null);
try reg_locks.append(self.register_manager.lockReg(dst_reg));
}
},
else => unreachable,
};
// now we are free to set register arguments
switch (call_info.return_value.long) {
.none, .unreach => {},
.indirect => |reg_off| {
const ret_ty = Type.fromInterned(fn_info.return_type);
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(ret_ty, mod));
try self.genSetReg(reg_off.reg, Type.usize, .{
.lea_frame = .{ .index = frame_index, .off = -reg_off.off },
}, .{});
call_info.return_value.short = .{ .load_frame = .{ .index = frame_index } };
try reg_locks.append(self.register_manager.lockReg(reg_off.reg));
},
else => unreachable,
}
for (call_info.args, arg_types, args, frame_indices) |dst_arg, arg_ty, src_arg, frame_index|
switch (dst_arg) {
.none, .load_frame => {},
.register => |dst_reg| switch (fn_info.cc) {
else => try self.genSetReg(
registerAlias(dst_reg, @intCast(arg_ty.abiSize(mod))),
arg_ty,
src_arg,
.{},
),
.C, .SysV, .Win64 => {
const promoted_ty = self.promoteInt(arg_ty);
const promoted_abi_size: u32 = @intCast(promoted_ty.abiSize(mod));
const dst_alias = registerAlias(dst_reg, promoted_abi_size);
try self.genSetReg(dst_alias, promoted_ty, src_arg, .{});
if (promoted_ty.toIntern() != arg_ty.toIntern())
try self.truncateRegister(arg_ty, dst_alias);
},
},
.register_pair => try self.genCopy(arg_ty, dst_arg, src_arg, .{}),
.indirect => |reg_off| try self.genSetReg(reg_off.reg, Type.usize, .{
.lea_frame = .{ .index = frame_index, .off = -reg_off.off },
}, .{}),
.elementwise_regs_then_frame => |regs_frame_addr| {
const src_mem: Memory = if (src_arg.isMemory()) try src_arg.mem(self, .dword) else .{
.base = .{ .reg = try self.copyToTmpRegister(
Type.usize,
switch (src_arg) {
else => src_arg,
.air_ref => |src_ref| try self.resolveInst(src_ref),
}.address(),
) },
.mod = .{ .rm = .{ .size = .dword } },
};
const src_lock = switch (src_mem.base) {
.reg => |src_reg| self.register_manager.lockReg(src_reg),
else => null,
};
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const param_int_regs = abi.getCAbiIntParamRegs(resolved_cc);
for (
param_int_regs[param_int_regs.len - regs_frame_addr.regs ..],
0..,
) |dst_reg, elem_index| {
try self.asmRegisterRegister(.{ ._, .xor }, dst_reg.to32(), dst_reg.to32());
try self.asmMemoryImmediate(
.{ ._, .bt },
src_mem,
Immediate.u(elem_index),
);
try self.asmSetccRegister(.c, dst_reg.to8());
}
},
else => unreachable,
};
if (fn_info.is_var_args)
try self.asmRegisterImmediate(.{ ._, .mov }, .al, Immediate.u(call_info.fp_count));
// Due to incremental compilation, how function calls are generated depends
// on linking.
switch (info) {
.air => |callee| if (try self.air.value(callee, mod)) |func_value| {
const func_key = mod.intern_pool.indexToKey(func_value.ip_index);
switch (switch (func_key) {
else => func_key,
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| mod.intern_pool.indexToKey(try mod.declPtr(decl).internValue(mod)),
else => func_key,
},
}) {
.func => |func| {
try mod.markDeclAlive(mod.declPtr(func.owner_decl));
if (self.bin_file.cast(link.File.Elf)) |elf_file| {
const sym_index = try elf_file.zigObjectPtr().?.getOrCreateMetadataForDecl(elf_file, func.owner_decl);
const sym = elf_file.symbol(sym_index);
if (self.mod.pic) {
const callee_reg: Register = switch (resolved_cc) {
.SysV => callee: {
if (!fn_info.is_var_args) break :callee .rax;
const param_regs = abi.getCAbiIntParamRegs(resolved_cc);
break :callee if (call_info.gp_count < param_regs.len)
param_regs[call_info.gp_count]
else
.r10;
},
.Win64 => .rax,
else => unreachable,
};
try self.genSetReg(
callee_reg,
Type.usize,
.{ .load_symbol = .{ .sym = sym.esym_index } },
.{},
);
try self.asmRegister(.{ ._, .call }, callee_reg);
} else try self.asmMemory(.{ ._, .call }, .{
.base = .{ .reloc = .{
.atom_index = try self.owner.getSymbolIndex(self),
.sym_index = sym.esym_index,
} },
.mod = .{ .rm = .{ .size = .qword } },
});
} else if (self.bin_file.cast(link.File.Coff)) |coff_file| {
const atom = try coff_file.getOrCreateAtomForDecl(func.owner_decl);
const sym_index = coff_file.getAtom(atom).getSymbolIndex().?;
try self.genSetReg(.rax, Type.usize, .{ .lea_got = sym_index }, .{});
try self.asmRegister(.{ ._, .call }, .rax);
} else if (self.bin_file.cast(link.File.MachO)) |macho_file| {
const sym_index = try macho_file.getZigObject().?.getOrCreateMetadataForDecl(macho_file, func.owner_decl);
const sym = macho_file.getSymbol(sym_index);
try self.genSetReg(
.rax,
Type.usize,
.{ .load_symbol = .{ .sym = sym.nlist_idx } },
.{},
);
try self.asmRegister(.{ ._, .call }, .rax);
} else if (self.bin_file.cast(link.File.Plan9)) |p9| {
const atom_index = try p9.seeDecl(func.owner_decl);
const atom = p9.getAtom(atom_index);
try self.asmMemory(.{ ._, .call }, .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = .qword,
.disp = @intCast(atom.getOffsetTableAddress(p9)),
} },
});
} else unreachable;
},
.extern_func => |extern_func| {
const owner_decl = mod.declPtr(extern_func.decl);
try mod.markDeclAlive(owner_decl);
const lib_name = mod.intern_pool.stringToSliceUnwrap(extern_func.lib_name);
const decl_name = mod.intern_pool.stringToSlice(owner_decl.name);
try self.genExternSymbolRef(.call, lib_name, decl_name);
},
else => return self.fail("TODO implement calling bitcasted functions", .{}),
}
} else {
assert(self.typeOf(callee).zigTypeTag(mod) == .Pointer);
try self.genSetReg(.rax, Type.usize, .{ .air_ref = callee }, .{});
try self.asmRegister(.{ ._, .call }, .rax);
},
.lib => |lib| try self.genExternSymbolRef(.call, lib.lib, lib.callee),
}
return call_info.return_value.short;
}
fn airRet(self: *Self, inst: Air.Inst.Index, safety: bool) !void {
const mod = self.bin_file.comp.module.?;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ret_ty = self.fn_type.fnReturnType(mod);
switch (self.ret_mcv.short) {
.none => {},
.register,
.register_pair,
=> try self.genCopy(ret_ty, self.ret_mcv.short, .{ .air_ref = un_op }, .{ .safety = safety }),
.indirect => |reg_off| {
try self.register_manager.getReg(reg_off.reg, null);
const lock = self.register_manager.lockRegAssumeUnused(reg_off.reg);
defer self.register_manager.unlockReg(lock);
try self.genSetReg(reg_off.reg, Type.usize, self.ret_mcv.long, .{});
try self.genSetMem(
.{ .reg = reg_off.reg },
reg_off.off,
ret_ty,
.{ .air_ref = un_op },
.{ .safety = safety },
);
},
else => unreachable,
}
self.ret_mcv.liveOut(self, inst);
try self.finishAir(inst, .unreach, .{ un_op, .none, .none });
// TODO optimization opportunity: figure out when we can emit this as a 2 byte instruction
// which is available if the jump is 127 bytes or less forward.
const jmp_reloc = try self.asmJmpReloc(undefined);
try self.exitlude_jump_relocs.append(self.gpa, jmp_reloc);
}
fn airRetLoad(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ptr = try self.resolveInst(un_op);
const ptr_ty = self.typeOf(un_op);
switch (self.ret_mcv.short) {
.none => {},
.register, .register_pair => try self.load(self.ret_mcv.short, ptr_ty, ptr),
.indirect => |reg_off| try self.genSetReg(reg_off.reg, ptr_ty, ptr, .{}),
else => unreachable,
}
self.ret_mcv.liveOut(self, inst);
try self.finishAir(inst, .unreach, .{ un_op, .none, .none });
// TODO optimization opportunity: figure out when we can emit this as a 2 byte instruction
// which is available if the jump is 127 bytes or less forward.
const jmp_reloc = try self.asmJmpReloc(undefined);
try self.exitlude_jump_relocs.append(self.gpa, jmp_reloc);
}
fn airCmp(self: *Self, inst: Air.Inst.Index, op: math.CompareOperator) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = self.typeOf(bin_op.lhs);
const result: Condition = result: {
switch (ty.zigTypeTag(mod)) {
.Float => {
const float_bits = ty.floatBits(self.target.*);
if (switch (float_bits) {
16 => !self.hasFeature(.f16c),
32, 64 => false,
80, 128 => true,
else => unreachable,
}) {
var callee_buf: ["__???f2".len]u8 = undefined;
const ret = try self.genCall(.{ .lib = .{
.return_type = .i32_type,
.param_types = &.{ ty.toIntern(), ty.toIntern() },
.callee = std.fmt.bufPrint(&callee_buf, "__{s}{c}f2", .{
switch (op) {
.eq => "eq",
.neq => "ne",
.lt => "lt",
.lte => "le",
.gt => "gt",
.gte => "ge",
},
floatCompilerRtAbiName(float_bits),
}) catch unreachable,
} }, &.{ ty, ty }, &.{ .{ .air_ref = bin_op.lhs }, .{ .air_ref = bin_op.rhs } });
try self.genBinOpMir(.{ ._, .@"test" }, Type.i32, ret, ret);
break :result switch (op) {
.eq => .e,
.neq => .ne,
.lt => .l,
.lte => .le,
.gt => .g,
.gte => .ge,
};
}
},
else => {},
}
try self.spillEflagsIfOccupied();
const lhs_mcv = try self.resolveInst(bin_op.lhs);
const lhs_locks: [2]?RegisterLock = switch (lhs_mcv) {
.register => |lhs_reg| .{ self.register_manager.lockRegAssumeUnused(lhs_reg), null },
.register_pair => |lhs_regs| locks: {
const locks = self.register_manager.lockRegsAssumeUnused(2, lhs_regs);
break :locks .{ locks[0], locks[1] };
},
.register_offset => |lhs_ro| .{
self.register_manager.lockRegAssumeUnused(lhs_ro.reg),
null,
},
else => .{null} ** 2,
};
defer for (lhs_locks) |lhs_lock| if (lhs_lock) |lock| self.register_manager.unlockReg(lock);
const rhs_mcv = try self.resolveInst(bin_op.rhs);
const rhs_locks: [2]?RegisterLock = switch (rhs_mcv) {
.register => |rhs_reg| .{ self.register_manager.lockReg(rhs_reg), null },
.register_pair => |rhs_regs| self.register_manager.lockRegs(2, rhs_regs),
.register_offset => |rhs_ro| .{ self.register_manager.lockReg(rhs_ro.reg), null },
else => .{null} ** 2,
};
defer for (rhs_locks) |rhs_lock| if (rhs_lock) |lock| self.register_manager.unlockReg(lock);
switch (ty.zigTypeTag(mod)) {
else => {
const abi_size: u16 = @intCast(ty.abiSize(mod));
const may_flip: enum {
may_flip,
must_flip,
must_not_flip,
} = if (abi_size > 8) switch (op) {
.lt, .gte => .must_not_flip,
.lte, .gt => .must_flip,
.eq, .neq => .may_flip,
} else .may_flip;
const flipped = switch (may_flip) {
.may_flip => !lhs_mcv.isRegister() and !lhs_mcv.isMemory(),
.must_flip => true,
.must_not_flip => false,
};
const unmat_dst_mcv = if (flipped) rhs_mcv else lhs_mcv;
const dst_mcv = if (unmat_dst_mcv.isRegister() or
(abi_size <= 8 and unmat_dst_mcv.isMemory())) unmat_dst_mcv else dst: {
const dst_mcv = try self.allocTempRegOrMem(ty, true);
try self.genCopy(ty, dst_mcv, unmat_dst_mcv, .{});
break :dst dst_mcv;
};
const dst_lock =
if (dst_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const src_mcv = try self.resolveInst(if (flipped) bin_op.lhs else bin_op.rhs);
const src_lock =
if (src_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
break :result Condition.fromCompareOperator(
if (ty.isAbiInt(mod)) ty.intInfo(mod).signedness else .unsigned,
result_op: {
const flipped_op = if (flipped) op.reverse() else op;
if (abi_size > 8) switch (flipped_op) {
.lt, .gte => {},
.lte, .gt => unreachable,
.eq, .neq => {
const OpInfo = ?struct { addr_reg: Register, addr_lock: RegisterLock };
const resolved_dst_mcv = switch (dst_mcv) {
else => dst_mcv,
.air_ref => |dst_ref| try self.resolveInst(dst_ref),
};
const dst_info: OpInfo = switch (resolved_dst_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register,
.register_offset,
.register_overflow,
.indirect,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.lea_symbol,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.register_pair, .load_frame => null,
.memory, .load_symbol, .load_got, .load_direct, .load_tlv => dst: {
switch (resolved_dst_mcv) {
.memory => |addr| if (math.cast(
i32,
@as(i64, @bitCast(addr)),
) != null and math.cast(
i32,
@as(i64, @bitCast(addr)) + abi_size - 8,
) != null) break :dst null,
.load_symbol, .load_got, .load_direct, .load_tlv => {},
else => unreachable,
}
const dst_addr_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.gp,
)).to64();
const dst_addr_lock =
self.register_manager.lockRegAssumeUnused(dst_addr_reg);
errdefer self.register_manager.unlockReg(dst_addr_lock);
try self.genSetReg(
dst_addr_reg,
Type.usize,
resolved_dst_mcv.address(),
.{},
);
break :dst .{
.addr_reg = dst_addr_reg,
.addr_lock = dst_addr_lock,
};
},
};
defer if (dst_info) |info|
self.register_manager.unlockReg(info.addr_lock);
const resolved_src_mcv = switch (src_mcv) {
else => src_mcv,
.air_ref => |src_ref| try self.resolveInst(src_ref),
};
const src_info: OpInfo = switch (resolved_src_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register,
.register_offset,
.register_overflow,
.indirect,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.register_pair, .load_frame => null,
.memory, .load_symbol, .load_got, .load_direct, .load_tlv => src: {
switch (resolved_src_mcv) {
.memory => |addr| if (math.cast(
i32,
@as(i64, @bitCast(addr)),
) != null and math.cast(
i32,
@as(i64, @bitCast(addr)) + abi_size - 8,
) != null) break :src null,
.load_symbol, .load_got, .load_direct, .load_tlv => {},
else => unreachable,
}
const src_addr_reg = (try self.register_manager.allocReg(
null,
abi.RegisterClass.gp,
)).to64();
const src_addr_lock =
self.register_manager.lockRegAssumeUnused(src_addr_reg);
errdefer self.register_manager.unlockReg(src_addr_lock);
try self.genSetReg(
src_addr_reg,
Type.usize,
resolved_src_mcv.address(),
.{},
);
break :src .{
.addr_reg = src_addr_reg,
.addr_lock = src_addr_lock,
};
},
};
defer if (src_info) |info|
self.register_manager.unlockReg(info.addr_lock);
const regs = try self.register_manager.allocRegs(
2,
.{null} ** 2,
abi.RegisterClass.gp,
);
const acc_reg = regs[0].to64();
const locks = self.register_manager.lockRegsAssumeUnused(2, regs);
defer for (locks) |lock| self.register_manager.unlockReg(lock);
const limbs_len = math.divCeil(u16, abi_size, 8) catch unreachable;
var limb_i: u16 = 0;
while (limb_i < limbs_len) : (limb_i += 1) {
const off = limb_i * 8;
const tmp_reg = regs[@min(limb_i, 1)].to64();
try self.genSetReg(tmp_reg, Type.usize, if (dst_info) |info| .{
.indirect = .{ .reg = info.addr_reg, .off = off },
} else switch (resolved_dst_mcv) {
.register_pair => |dst_regs| .{ .register = dst_regs[limb_i] },
.memory => |dst_addr| .{
.memory = @bitCast(@as(i64, @bitCast(dst_addr)) + off),
},
.indirect => |reg_off| .{ .indirect = .{
.reg = reg_off.reg,
.off = reg_off.off + off,
} },
.load_frame => |frame_addr| .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + off,
} },
else => unreachable,
}, .{});
try self.genBinOpMir(
.{ ._, .xor },
Type.usize,
.{ .register = tmp_reg },
if (src_info) |info| .{
.indirect = .{ .reg = info.addr_reg, .off = off },
} else switch (resolved_src_mcv) {
.register_pair => |src_regs| .{
.register = src_regs[limb_i],
},
.memory => |src_addr| .{
.memory = @bitCast(@as(i64, @bitCast(src_addr)) + off),
},
.indirect => |reg_off| .{ .indirect = .{
.reg = reg_off.reg,
.off = reg_off.off + off,
} },
.load_frame => |frame_addr| .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + off,
} },
else => unreachable,
},
);
if (limb_i > 0)
try self.asmRegisterRegister(.{ ._, .@"or" }, acc_reg, tmp_reg);
}
assert(limbs_len >= 2); // use flags from or
break :result_op flipped_op;
},
};
try self.genBinOpMir(.{ ._, .cmp }, ty, dst_mcv, src_mcv);
break :result_op flipped_op;
},
);
},
.Float => {
const flipped = switch (op) {
.lt, .lte => true,
.eq, .gte, .gt, .neq => false,
};
const dst_mcv = if (flipped) rhs_mcv else lhs_mcv;
const dst_reg = if (dst_mcv.isRegister())
dst_mcv.getReg().?
else
try self.copyToTmpRegister(ty, dst_mcv);
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
const src_mcv = if (flipped) lhs_mcv else rhs_mcv;
switch (ty.floatBits(self.target.*)) {
16 => {
assert(self.hasFeature(.f16c));
const tmp1_reg =
(try self.register_manager.allocReg(null, abi.RegisterClass.sse)).to128();
const tmp1_mcv = MCValue{ .register = tmp1_reg };
const tmp1_lock = self.register_manager.lockRegAssumeUnused(tmp1_reg);
defer self.register_manager.unlockReg(tmp1_lock);
const tmp2_reg =
(try self.register_manager.allocReg(null, abi.RegisterClass.sse)).to128();
const tmp2_mcv = MCValue{ .register = tmp2_reg };
const tmp2_lock = self.register_manager.lockRegAssumeUnused(tmp2_reg);
defer self.register_manager.unlockReg(tmp2_lock);
if (src_mcv.isMemory()) try self.asmRegisterRegisterMemoryImmediate(
.{ .vp_w, .insr },
tmp1_reg,
dst_reg.to128(),
try src_mcv.mem(self, .word),
Immediate.u(1),
) else try self.asmRegisterRegisterRegister(
.{ .vp_, .unpcklwd },
tmp1_reg,
dst_reg.to128(),
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(ty, src_mcv)).to128(),
);
try self.asmRegisterRegister(.{ .v_ps, .cvtph2 }, tmp1_reg, tmp1_reg);
try self.asmRegisterRegister(.{ .v_, .movshdup }, tmp2_reg, tmp1_reg);
try self.genBinOpMir(.{ ._ss, .ucomi }, ty, tmp1_mcv, tmp2_mcv);
},
32 => try self.genBinOpMir(
.{ ._ss, .ucomi },
ty,
.{ .register = dst_reg },
src_mcv,
),
64 => try self.genBinOpMir(
.{ ._sd, .ucomi },
ty,
.{ .register = dst_reg },
src_mcv,
),
else => unreachable,
}
break :result switch (if (flipped) op.reverse() else op) {
.lt, .lte => unreachable, // required to have been canonicalized to gt(e)
.gt => .a,
.gte => .ae,
.eq => .z_and_np,
.neq => .nz_or_p,
};
},
}
};
self.eflags_inst = inst;
return self.finishAir(inst, .{ .eflags = result }, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airCmpVector(self: *Self, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.VectorCmp, ty_pl.payload).data;
const dst_mcv = try self.genBinOp(
inst,
Air.Inst.Tag.fromCmpOp(extra.compareOperator(), false),
extra.lhs,
extra.rhs,
);
return self.finishAir(inst, dst_mcv, .{ extra.lhs, extra.rhs, .none });
}
fn airCmpLtErrorsLen(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const addr_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
try self.genLazySymbolRef(.lea, addr_reg, link.File.LazySymbol.initDecl(.const_data, null, mod));
try self.spillEflagsIfOccupied();
const op_ty = self.typeOf(un_op);
const op_abi_size: u32 = @intCast(op_ty.abiSize(mod));
const op_mcv = try self.resolveInst(un_op);
const dst_reg = switch (op_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(op_ty, op_mcv),
};
try self.asmRegisterMemory(
.{ ._, .cmp },
registerAlias(dst_reg, op_abi_size),
.{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{ .size = Memory.Size.fromSize(op_abi_size) } },
},
);
self.eflags_inst = inst;
return self.finishAir(inst, .{ .eflags = .b }, .{ un_op, .none, .none });
}
fn airTry(self: *Self, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
const operand_ty = self.typeOf(pl_op.operand);
const result = try self.genTry(inst, pl_op.operand, body, operand_ty, false);
return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn airTryPtr(self: *Self, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.TryPtr, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
const operand_ty = self.typeOf(extra.data.ptr);
const result = try self.genTry(inst, extra.data.ptr, body, operand_ty, true);
return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn genTry(
self: *Self,
inst: Air.Inst.Index,
operand: Air.Inst.Ref,
body: []const Air.Inst.Index,
operand_ty: Type,
operand_is_ptr: bool,
) !MCValue {
const liveness_cond_br = self.liveness.getCondBr(inst);
const operand_mcv = try self.resolveInst(operand);
const is_err_mcv = if (operand_is_ptr)
try self.isErrPtr(null, operand_ty, operand_mcv)
else
try self.isErr(null, operand_ty, operand_mcv);
const reloc = try self.genCondBrMir(Type.anyerror, is_err_mcv);
if (self.liveness.operandDies(inst, 0)) {
if (operand.toIndex()) |operand_inst| try self.processDeath(operand_inst);
}
self.scope_generation += 1;
const state = try self.saveState();
for (liveness_cond_br.else_deaths) |death| try self.processDeath(death);
try self.genBody(body);
try self.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
self.performReloc(reloc);
for (liveness_cond_br.then_deaths) |death| try self.processDeath(death);
const result = if (self.liveness.isUnused(inst))
.unreach
else if (operand_is_ptr)
try self.genUnwrapErrUnionPayloadPtrMir(inst, operand_ty, operand_mcv)
else
try self.genUnwrapErrUnionPayloadMir(inst, operand_ty, operand_mcv);
return result;
}
fn airDbgStmt(self: *Self, inst: Air.Inst.Index) !void {
const dbg_stmt = self.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
_ = try self.addInst(.{
.tag = .pseudo,
.ops = .pseudo_dbg_line_line_column,
.data = .{ .line_column = .{
.line = dbg_stmt.line,
.column = dbg_stmt.column,
} },
});
self.finishAirBookkeeping();
}
fn airDbgInline(self: *Self, inst: Air.Inst.Index) !void {
const ty_fn = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_fn;
_ = try self.addInst(.{
.tag = .pseudo,
.ops = .pseudo_dbg_inline_func,
.data = .{ .func = ty_fn.func },
});
self.finishAirBookkeeping();
}
fn airDbgBlock(self: *Self, inst: Air.Inst.Index) !void {
_ = inst;
// TODO emit debug info lexical block
self.finishAirBookkeeping();
}
fn airDbgVar(self: *Self, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const operand = pl_op.operand;
const ty = self.typeOf(operand);
const mcv = try self.resolveInst(operand);
const name = self.air.nullTerminatedString(pl_op.payload);
const tag = self.air.instructions.items(.tag)[@intFromEnum(inst)];
try self.genVarDbgInfo(tag, ty, mcv, name);
return self.finishAir(inst, .unreach, .{ operand, .none, .none });
}
fn genCondBrMir(self: *Self, ty: Type, mcv: MCValue) !Mir.Inst.Index {
const mod = self.bin_file.comp.module.?;
const abi_size = ty.abiSize(mod);
switch (mcv) {
.eflags => |cc| {
// Here we map the opposites since the jump is to the false branch.
return self.asmJccReloc(cc.negate(), undefined);
},
.register => |reg| {
try self.spillEflagsIfOccupied();
try self.asmRegisterImmediate(.{ ._, .@"test" }, reg.to8(), Immediate.u(1));
return self.asmJccReloc(.z, undefined);
},
.immediate,
.load_frame,
=> {
try self.spillEflagsIfOccupied();
if (abi_size <= 8) {
const reg = try self.copyToTmpRegister(ty, mcv);
return self.genCondBrMir(ty, .{ .register = reg });
}
return self.fail("TODO implement condbr when condition is {} with abi larger than 8 bytes", .{mcv});
},
else => return self.fail("TODO implement condbr when condition is {s}", .{@tagName(mcv)}),
}
}
fn airCondBr(self: *Self, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond = try self.resolveInst(pl_op.operand);
const cond_ty = self.typeOf(pl_op.operand);
const extra = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index =
@ptrCast(self.air.extra[extra.end..][0..extra.data.then_body_len]);
const else_body: []const Air.Inst.Index =
@ptrCast(self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]);
const liveness_cond_br = self.liveness.getCondBr(inst);
// If the condition dies here in this condbr instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (self.liveness.operandDies(inst, 0)) {
if (pl_op.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
self.scope_generation += 1;
const state = try self.saveState();
const reloc = try self.genCondBrMir(cond_ty, cond);
for (liveness_cond_br.then_deaths) |death| try self.processDeath(death);
try self.genBody(then_body);
try self.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
self.performReloc(reloc);
for (liveness_cond_br.else_deaths) |death| try self.processDeath(death);
try self.genBody(else_body);
try self.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
// We already took care of pl_op.operand earlier, so there's nothing left to do.
self.finishAirBookkeeping();
}
fn isNull(self: *Self, inst: Air.Inst.Index, opt_ty: Type, opt_mcv: MCValue) !MCValue {
const mod = self.bin_file.comp.module.?;
switch (opt_mcv) {
.register_overflow => |ro| return .{ .eflags = ro.eflags.negate() },
else => {},
}
try self.spillEflagsIfOccupied();
const pl_ty = opt_ty.optionalChild(mod);
const some_info: struct { off: i32, ty: Type } = if (opt_ty.optionalReprIsPayload(mod))
.{ .off = 0, .ty = if (pl_ty.isSlice(mod)) pl_ty.slicePtrFieldType(mod) else pl_ty }
else
.{ .off = @intCast(pl_ty.abiSize(mod)), .ty = Type.bool };
self.eflags_inst = inst;
switch (opt_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register_pair,
.register_offset,
.register_overflow,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.lea_symbol,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable,
.register => |opt_reg| {
if (some_info.off == 0) {
const some_abi_size: u32 = @intCast(some_info.ty.abiSize(mod));
const alias_reg = registerAlias(opt_reg, some_abi_size);
assert(some_abi_size * 8 == alias_reg.bitSize());
try self.asmRegisterRegister(.{ ._, .@"test" }, alias_reg, alias_reg);
return .{ .eflags = .z };
}
assert(some_info.ty.ip_index == .bool_type);
const opt_abi_size: u32 = @intCast(opt_ty.abiSize(mod));
try self.asmRegisterImmediate(
.{ ._, .bt },
registerAlias(opt_reg, opt_abi_size),
Immediate.u(@as(u6, @intCast(some_info.off * 8))),
);
return .{ .eflags = .nc };
},
.memory,
.load_symbol,
.load_got,
.load_direct,
.load_tlv,
=> {
const addr_reg = (try self.register_manager.allocReg(null, abi.RegisterClass.gp)).to64();
const addr_reg_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_reg_lock);
try self.genSetReg(addr_reg, Type.usize, opt_mcv.address(), .{});
const some_abi_size: u32 = @intCast(some_info.ty.abiSize(mod));
try self.asmMemoryImmediate(
.{ ._, .cmp },
.{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(some_abi_size),
.disp = some_info.off,
} },
},
Immediate.u(0),
);
return .{ .eflags = .e };
},
.indirect, .load_frame => {
const some_abi_size: u32 = @intCast(some_info.ty.abiSize(mod));
try self.asmMemoryImmediate(
.{ ._, .cmp },
switch (opt_mcv) {
.indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(some_abi_size),
.disp = reg_off.off + some_info.off,
} },
},
.load_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(some_abi_size),
.disp = frame_addr.off + some_info.off,
} },
},
else => unreachable,
},
Immediate.u(0),
);
return .{ .eflags = .e };
},
}
}
fn isNullPtr(self: *Self, inst: Air.Inst.Index, ptr_ty: Type, ptr_mcv: MCValue) !MCValue {
const mod = self.bin_file.comp.module.?;
const opt_ty = ptr_ty.childType(mod);
const pl_ty = opt_ty.optionalChild(mod);
try self.spillEflagsIfOccupied();
const some_info: struct { off: i32, ty: Type } = if (opt_ty.optionalReprIsPayload(mod))
.{ .off = 0, .ty = if (pl_ty.isSlice(mod)) pl_ty.slicePtrFieldType(mod) else pl_ty }
else
.{ .off = @intCast(pl_ty.abiSize(mod)), .ty = Type.bool };
const ptr_reg = switch (ptr_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(ptr_ty, ptr_mcv),
};
const ptr_lock = self.register_manager.lockReg(ptr_reg);
defer if (ptr_lock) |lock| self.register_manager.unlockReg(lock);
const some_abi_size: u32 = @intCast(some_info.ty.abiSize(mod));
try self.asmMemoryImmediate(
.{ ._, .cmp },
.{
.base = .{ .reg = ptr_reg },
.mod = .{ .rm = .{
.size = Memory.Size.fromSize(some_abi_size),
.disp = some_info.off,
} },
},
Immediate.u(0),
);
self.eflags_inst = inst;
return .{ .eflags = .e };
}
fn isErr(self: *Self, maybe_inst: ?Air.Inst.Index, eu_ty: Type, eu_mcv: MCValue) !MCValue {
const mod = self.bin_file.comp.module.?;
const err_ty = eu_ty.errorUnionSet(mod);
if (err_ty.errorSetIsEmpty(mod)) return MCValue{ .immediate = 0 }; // always false
try self.spillEflagsIfOccupied();
const err_off: u31 = @intCast(errUnionErrorOffset(eu_ty.errorUnionPayload(mod), mod));
switch (eu_mcv) {
.register => |reg| {
const eu_lock = self.register_manager.lockReg(reg);
defer if (eu_lock) |lock| self.register_manager.unlockReg(lock);
const tmp_reg = try self.copyToTmpRegister(eu_ty, eu_mcv);
if (err_off > 0) {
try self.genShiftBinOpMir(
.{ ._r, .sh },
eu_ty,
.{ .register = tmp_reg },
Type.u8,
.{ .immediate = @as(u6, @intCast(err_off * 8)) },
);
} else {
try self.truncateRegister(Type.anyerror, tmp_reg);
}
try self.genBinOpMir(
.{ ._, .cmp },
Type.anyerror,
.{ .register = tmp_reg },
.{ .immediate = 0 },
);
},
.load_frame => |frame_addr| try self.genBinOpMir(
.{ ._, .cmp },
Type.anyerror,
.{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + err_off,
} },
.{ .immediate = 0 },
),
else => return self.fail("TODO implement isErr for {}", .{eu_mcv}),
}
if (maybe_inst) |inst| self.eflags_inst = inst;
return MCValue{ .eflags = .a };
}
fn isErrPtr(self: *Self, maybe_inst: ?Air.Inst.Index, ptr_ty: Type, ptr_mcv: MCValue) !MCValue {
const mod = self.bin_file.comp.module.?;
const eu_ty = ptr_ty.childType(mod);
const err_ty = eu_ty.errorUnionSet(mod);
if (err_ty.errorSetIsEmpty(mod)) return MCValue{ .immediate = 0 }; // always false
try self.spillEflagsIfOccupied();
const ptr_reg = switch (ptr_mcv) {
.register => |reg| reg,
else => try self.copyToTmpRegister(ptr_ty, ptr_mcv),
};
const ptr_lock = self.register_manager.lockReg(ptr_reg);
defer if (ptr_lock) |lock| self.register_manager.unlockReg(lock);
const err_off: u31 = @intCast(errUnionErrorOffset(eu_ty.errorUnionPayload(mod), mod));
try self.asmMemoryImmediate(
.{ ._, .cmp },
.{
.base = .{ .reg = ptr_reg },
.mod = .{ .rm = .{
.size = self.memSize(Type.anyerror),
.disp = err_off,
} },
},
Immediate.u(0),
);
if (maybe_inst) |inst| self.eflags_inst = inst;
return MCValue{ .eflags = .a };
}
fn isNonErr(self: *Self, inst: Air.Inst.Index, eu_ty: Type, eu_mcv: MCValue) !MCValue {
const is_err_res = try self.isErr(inst, eu_ty, eu_mcv);
switch (is_err_res) {
.eflags => |cc| {
assert(cc == .a);
return MCValue{ .eflags = cc.negate() };
},
.immediate => |imm| {
assert(imm == 0);
return MCValue{ .immediate = @intFromBool(imm == 0) };
},
else => unreachable,
}
}
fn isNonErrPtr(self: *Self, inst: Air.Inst.Index, ptr_ty: Type, ptr_mcv: MCValue) !MCValue {
const is_err_res = try self.isErrPtr(inst, ptr_ty, ptr_mcv);
switch (is_err_res) {
.eflags => |cc| {
assert(cc == .a);
return MCValue{ .eflags = cc.negate() };
},
.immediate => |imm| {
assert(imm == 0);
return MCValue{ .immediate = @intFromBool(imm == 0) };
},
else => unreachable,
}
}
fn airIsNull(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = try self.isNull(inst, ty, operand);
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNullPtr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = try self.isNullPtr(inst, ty, operand);
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNonNull(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = switch (try self.isNull(inst, ty, operand)) {
.eflags => |cc| .{ .eflags = cc.negate() },
else => unreachable,
};
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNonNullPtr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = switch (try self.isNullPtr(inst, ty, operand)) {
.eflags => |cc| .{ .eflags = cc.negate() },
else => unreachable,
};
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsErr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = try self.isErr(inst, ty, operand);
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsErrPtr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = try self.isErrPtr(inst, ty, operand);
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNonErr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = try self.isNonErr(inst, ty, operand);
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNonErrPtr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.resolveInst(un_op);
const ty = self.typeOf(un_op);
const result = try self.isNonErrPtr(inst, ty, operand);
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airLoop(self: *Self, inst: Air.Inst.Index) !void {
// A loop is a setup to be able to jump back to the beginning.
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[loop.end..][0..loop.data.body_len]);
self.scope_generation += 1;
const state = try self.saveState();
const jmp_target: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.genBody(body);
try self.restoreState(state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = true,
});
_ = try self.asmJmpReloc(jmp_target);
self.finishAirBookkeeping();
}
fn airBlock(self: *Self, inst: Air.Inst.Index) !void {
// A block is a setup to be able to jump to the end.
const inst_tracking_i = self.inst_tracking.count();
self.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(.unreach));
self.scope_generation += 1;
try self.blocks.putNoClobber(self.gpa, inst, .{ .state = self.initRetroactiveState() });
const liveness = self.liveness.getBlock(inst);
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
try self.genBody(body);
var block_data = self.blocks.fetchRemove(inst).?;
defer block_data.value.deinit(self.gpa);
if (block_data.value.relocs.items.len > 0) {
try self.restoreState(block_data.value.state, liveness.deaths, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
for (block_data.value.relocs.items) |reloc| self.performReloc(reloc);
}
if (std.debug.runtime_safety) assert(self.inst_tracking.getIndex(inst).? == inst_tracking_i);
const tracking = &self.inst_tracking.values()[inst_tracking_i];
if (self.liveness.isUnused(inst)) try tracking.die(self, inst);
self.getValueIfFree(tracking.short, inst);
self.finishAirBookkeeping();
}
fn airSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const condition = try self.resolveInst(pl_op.operand);
const condition_ty = self.typeOf(pl_op.operand);
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
var extra_index: usize = switch_br.end;
var case_i: u32 = 0;
const liveness = try self.liveness.getSwitchBr(self.gpa, inst, switch_br.data.cases_len + 1);
defer self.gpa.free(liveness.deaths);
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (self.liveness.operandDies(inst, 0)) {
if (pl_op.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
self.scope_generation += 1;
const state = try self.saveState();
while (case_i < switch_br.data.cases_len) : (case_i += 1) {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items: []const Air.Inst.Ref =
@ptrCast(self.air.extra[case.end..][0..case.data.items_len]);
const case_body: []const Air.Inst.Index =
@ptrCast(self.air.extra[case.end + items.len ..][0..case.data.body_len]);
extra_index = case.end + items.len + case_body.len;
var relocs = try self.gpa.alloc(Mir.Inst.Index, items.len);
defer self.gpa.free(relocs);
try self.spillEflagsIfOccupied();
for (items, relocs, 0..) |item, *reloc, i| {
const item_mcv = try self.resolveInst(item);
const cc: Condition = switch (condition) {
.eflags => |cc| switch (item_mcv.immediate) {
0 => cc.negate(),
1 => cc,
else => unreachable,
},
else => cc: {
try self.genBinOpMir(.{ ._, .cmp }, condition_ty, condition, item_mcv);
break :cc .e;
},
};
reloc.* = try self.asmJccReloc(if (i < relocs.len - 1) cc else cc.negate(), undefined);
}
for (liveness.deaths[case_i]) |operand| try self.processDeath(operand);
for (relocs[0 .. relocs.len - 1]) |reloc| self.performReloc(reloc);
try self.genBody(case_body);
try self.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
self.performReloc(relocs[relocs.len - 1]);
}
if (switch_br.data.else_body_len > 0) {
const else_body: []const Air.Inst.Index =
@ptrCast(self.air.extra[extra_index..][0..switch_br.data.else_body_len]);
const else_deaths = liveness.deaths.len - 1;
for (liveness.deaths[else_deaths]) |operand| try self.processDeath(operand);
try self.genBody(else_body);
try self.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
}
// We already took care of pl_op.operand earlier, so there's nothing left to do
self.finishAirBookkeeping();
}
fn performReloc(self: *Self, reloc: Mir.Inst.Index) void {
const next_inst: u32 = @intCast(self.mir_instructions.len);
switch (self.mir_instructions.items(.tag)[reloc]) {
.j, .jmp => {},
.pseudo => switch (self.mir_instructions.items(.ops)[reloc]) {
.pseudo_j_z_and_np_inst, .pseudo_j_nz_or_p_inst => {},
else => unreachable,
},
else => unreachable,
}
self.mir_instructions.items(.data)[reloc].inst.inst = next_inst;
}
fn airBr(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block_ty = self.typeOfIndex(br.block_inst);
const block_unused =
!block_ty.hasRuntimeBitsIgnoreComptime(mod) or self.liveness.isUnused(br.block_inst);
const block_tracking = self.inst_tracking.getPtr(br.block_inst).?;
const block_data = self.blocks.getPtr(br.block_inst).?;
const first_br = block_data.relocs.items.len == 0;
const block_result = result: {
if (block_unused) break :result .none;
if (!first_br) try self.getValue(block_tracking.short, null);
const src_mcv = try self.resolveInst(br.operand);
if (self.reuseOperandAdvanced(inst, br.operand, 0, src_mcv, br.block_inst)) {
if (first_br) break :result src_mcv;
try self.getValue(block_tracking.short, br.block_inst);
// .long = .none to avoid merging operand and block result stack frames.
const current_tracking: InstTracking = .{ .long = .none, .short = src_mcv };
try current_tracking.materializeUnsafe(self, br.block_inst, block_tracking.*);
for (current_tracking.getRegs()) |src_reg| self.register_manager.freeReg(src_reg);
break :result block_tracking.short;
}
const dst_mcv = if (first_br) try self.allocRegOrMem(br.block_inst, true) else dst: {
try self.getValue(block_tracking.short, br.block_inst);
break :dst block_tracking.short;
};
try self.genCopy(block_ty, dst_mcv, try self.resolveInst(br.operand), .{});
break :result dst_mcv;
};
// Process operand death so that it is properly accounted for in the State below.
if (self.liveness.operandDies(inst, 0)) {
if (br.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
if (first_br) {
block_tracking.* = InstTracking.init(block_result);
try self.saveRetroactiveState(&block_data.state);
} else try self.restoreState(block_data.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = false,
});
// Emit a jump with a relocation. It will be patched up after the block ends.
// Leave the jump offset undefined
const jmp_reloc = try self.asmJmpReloc(undefined);
try block_data.relocs.append(self.gpa, jmp_reloc);
// Stop tracking block result without forgetting tracking info
try self.freeValue(block_tracking.short);
self.finishAirBookkeeping();
}
fn airAsm(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
const clobbers_len: u31 = @truncate(extra.data.flags);
var extra_i: usize = extra.end;
const outputs: []const Air.Inst.Ref =
@ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]);
extra_i += outputs.len;
const inputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]);
extra_i += inputs.len;
var result: MCValue = .none;
var args = std.ArrayList(MCValue).init(self.gpa);
try args.ensureTotalCapacity(outputs.len + inputs.len);
defer {
for (args.items) |arg| if (arg.getReg()) |reg| self.register_manager.unlockReg(.{
.tracked_index = RegisterManager.indexOfRegIntoTracked(reg) orelse continue,
});
args.deinit();
}
var arg_map = std.StringHashMap(u8).init(self.gpa);
try arg_map.ensureTotalCapacity(@intCast(outputs.len + inputs.len));
defer arg_map.deinit();
var outputs_extra_i = extra_i;
for (outputs) |output| {
const extra_bytes = mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = mem.sliceTo(mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
const name = mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const maybe_inst = switch (output) {
.none => inst,
else => null,
};
const ty = switch (output) {
.none => self.typeOfIndex(inst),
else => self.typeOf(output).childType(mod),
};
const is_read = switch (constraint[0]) {
'=' => false,
'+' => read: {
if (output == .none) return self.fail(
"read-write constraint unsupported for asm result: '{s}'",
.{constraint},
);
break :read true;
},
else => return self.fail("invalid constraint: '{s}'", .{constraint}),
};
const is_early_clobber = constraint[1] == '&';
const rest = constraint[@as(usize, 1) + @intFromBool(is_early_clobber) ..];
const arg_mcv: MCValue = arg_mcv: {
const arg_maybe_reg: ?Register = if (mem.eql(u8, rest, "r") or
mem.eql(u8, rest, "f") or mem.eql(u8, rest, "x"))
registerAlias(
self.register_manager.tryAllocReg(maybe_inst, switch (rest[0]) {
'r' => abi.RegisterClass.gp,
'f' => abi.RegisterClass.x87,
'x' => abi.RegisterClass.sse,
else => unreachable,
}) orelse return self.fail("ran out of registers lowering inline asm", .{}),
@intCast(ty.abiSize(mod)),
)
else if (mem.eql(u8, rest, "m"))
if (output != .none) null else return self.fail(
"memory constraint unsupported for asm result: '{s}'",
.{constraint},
)
else if (mem.eql(u8, rest, "g") or
mem.eql(u8, rest, "rm") or mem.eql(u8, rest, "mr") or
mem.eql(u8, rest, "r,m") or mem.eql(u8, rest, "m,r"))
self.register_manager.tryAllocReg(maybe_inst, abi.RegisterClass.gp) orelse
if (output != .none)
null
else
return self.fail("ran out of registers lowering inline asm", .{})
else if (mem.startsWith(u8, rest, "{") and mem.endsWith(u8, rest, "}"))
parseRegName(rest["{".len .. rest.len - "}".len]) orelse
return self.fail("invalid register constraint: '{s}'", .{constraint})
else if (rest.len == 1 and std.ascii.isDigit(rest[0])) {
const index = std.fmt.charToDigit(rest[0], 10) catch unreachable;
if (index >= args.items.len) return self.fail("constraint out of bounds: '{s}'", .{
constraint,
});
break :arg_mcv args.items[index];
} else return self.fail("invalid constraint: '{s}'", .{constraint});
break :arg_mcv if (arg_maybe_reg) |reg| .{ .register = reg } else arg: {
const ptr_mcv = try self.resolveInst(output);
switch (ptr_mcv) {
.immediate => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |_|
break :arg ptr_mcv.deref(),
.register, .register_offset, .lea_frame => break :arg ptr_mcv.deref(),
else => {},
}
break :arg .{ .indirect = .{ .reg = try self.copyToTmpRegister(Type.usize, ptr_mcv) } };
};
};
if (arg_mcv.getReg()) |reg| if (RegisterManager.indexOfRegIntoTracked(reg)) |_| {
_ = self.register_manager.lockReg(reg);
};
if (!mem.eql(u8, name, "_"))
arg_map.putAssumeCapacityNoClobber(name, @intCast(args.items.len));
args.appendAssumeCapacity(arg_mcv);
if (output == .none) result = arg_mcv;
if (is_read) try self.load(arg_mcv, self.typeOf(output), .{ .air_ref = output });
}
for (inputs) |input| {
const input_bytes = mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = mem.sliceTo(input_bytes, 0);
const name = mem.sliceTo(input_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const ty = self.typeOf(input);
const input_mcv = try self.resolveInst(input);
const arg_mcv: MCValue = if (mem.eql(u8, constraint, "r") or
mem.eql(u8, constraint, "f") or mem.eql(u8, constraint, "x"))
arg: {
const rc = switch (constraint[0]) {
'r' => abi.RegisterClass.gp,
'f' => abi.RegisterClass.x87,
'x' => abi.RegisterClass.sse,
else => unreachable,
};
if (input_mcv.isRegister() and
rc.isSet(RegisterManager.indexOfRegIntoTracked(input_mcv.getReg().?).?))
break :arg input_mcv;
const reg = try self.register_manager.allocReg(null, rc);
try self.genSetReg(reg, ty, input_mcv, .{});
break :arg .{ .register = registerAlias(reg, @intCast(ty.abiSize(mod))) };
} else if (mem.eql(u8, constraint, "i") or mem.eql(u8, constraint, "n"))
switch (input_mcv) {
.immediate => |imm| .{ .immediate = imm },
else => return self.fail("immediate operand requires comptime value: '{s}'", .{
constraint,
}),
}
else if (mem.eql(u8, constraint, "m")) arg: {
switch (input_mcv) {
.memory => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |_|
break :arg input_mcv,
.indirect, .load_frame => break :arg input_mcv,
.load_symbol, .load_direct, .load_got, .load_tlv => {},
else => {
const temp_mcv = try self.allocTempRegOrMem(ty, false);
try self.genCopy(ty, temp_mcv, input_mcv, .{});
break :arg temp_mcv;
},
}
const addr_reg = self.register_manager.tryAllocReg(null, abi.RegisterClass.gp) orelse {
const temp_mcv = try self.allocTempRegOrMem(ty, false);
try self.genCopy(ty, temp_mcv, input_mcv, .{});
break :arg temp_mcv;
};
try self.genSetReg(addr_reg, Type.usize, input_mcv.address(), .{});
break :arg .{ .indirect = .{ .reg = addr_reg } };
} else if (mem.eql(u8, constraint, "g") or
mem.eql(u8, constraint, "rm") or mem.eql(u8, constraint, "mr") or
mem.eql(u8, constraint, "r,m") or mem.eql(u8, constraint, "m,r"))
arg: {
switch (input_mcv) {
.register, .indirect, .load_frame => break :arg input_mcv,
.memory => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |_|
break :arg input_mcv,
else => {},
}
const temp_mcv = try self.allocTempRegOrMem(ty, true);
try self.genCopy(ty, temp_mcv, input_mcv, .{});
break :arg temp_mcv;
} else if (mem.eql(u8, constraint, "X"))
input_mcv
else if (mem.startsWith(u8, constraint, "{") and mem.endsWith(u8, constraint, "}")) arg: {
const reg = parseRegName(constraint["{".len .. constraint.len - "}".len]) orelse
return self.fail("invalid register constraint: '{s}'", .{constraint});
try self.register_manager.getReg(reg, null);
try self.genSetReg(reg, ty, input_mcv, .{});
break :arg .{ .register = reg };
} else if (constraint.len == 1 and std.ascii.isDigit(constraint[0])) arg: {
const index = std.fmt.charToDigit(constraint[0], 10) catch unreachable;
if (index >= args.items.len) return self.fail("constraint out of bounds: '{s}'", .{constraint});
break :arg args.items[index];
} else return self.fail("invalid constraint: '{s}'", .{constraint});
if (arg_mcv.getReg()) |reg| if (RegisterManager.indexOfRegIntoTracked(reg)) |_| {
_ = self.register_manager.lockReg(reg);
};
if (!mem.eql(u8, name, "_"))
arg_map.putAssumeCapacityNoClobber(name, @intCast(args.items.len));
args.appendAssumeCapacity(arg_mcv);
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = mem.sliceTo(mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += clobber.len / 4 + 1;
if (std.mem.eql(u8, clobber, "") or std.mem.eql(u8, clobber, "memory")) {
// ok, sure
} else if (std.mem.eql(u8, clobber, "cc") or
std.mem.eql(u8, clobber, "flags") or
std.mem.eql(u8, clobber, "eflags") or
std.mem.eql(u8, clobber, "rflags"))
{
try self.spillEflagsIfOccupied();
} else {
try self.register_manager.getReg(parseRegName(clobber) orelse
return self.fail("invalid clobber: '{s}'", .{clobber}), null);
}
}
}
const Label = struct {
target: Mir.Inst.Index = undefined,
pending_relocs: std.ArrayListUnmanaged(Mir.Inst.Index) = .{},
const Kind = enum { definition, reference };
fn isValid(kind: Kind, name: []const u8) bool {
for (name, 0..) |c, i| switch (c) {
else => return false,
'$' => if (i == 0) return false,
'.' => {},
'0'...'9' => if (i == 0) switch (kind) {
.definition => if (name.len != 1) return false,
.reference => {
if (name.len != 2) return false;
switch (name[1]) {
else => return false,
'B', 'F', 'b', 'f' => {},
}
},
},
'@', 'A'...'Z', '_', 'a'...'z' => {},
};
return name.len > 0;
}
};
var labels: std.StringHashMapUnmanaged(Label) = .{};
defer {
var label_it = labels.valueIterator();
while (label_it.next()) |label| label.pending_relocs.deinit(self.gpa);
labels.deinit(self.gpa);
}
const asm_source = mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
var line_it = mem.tokenizeAny(u8, asm_source, "\n\r;");
next_line: while (line_it.next()) |line| {
var mnem_it = mem.tokenizeAny(u8, line, " \t");
var prefix: Instruction.Prefix = .none;
const mnem_str = while (mnem_it.next()) |mnem_str| {
if (mem.startsWith(u8, mnem_str, "#")) continue :next_line;
if (mem.startsWith(u8, mnem_str, "//")) continue :next_line;
if (std.meta.stringToEnum(Instruction.Prefix, mnem_str)) |pre| {
if (prefix != .none) return self.fail("extra prefix: '{s}'", .{mnem_str});
prefix = pre;
continue;
}
if (!mem.endsWith(u8, mnem_str, ":")) break mnem_str;
const label_name = mnem_str[0 .. mnem_str.len - ":".len];
if (!Label.isValid(.definition, label_name))
return self.fail("invalid label: '{s}'", .{label_name});
const label_gop = try labels.getOrPut(self.gpa, label_name);
if (!label_gop.found_existing) label_gop.value_ptr.* = .{} else {
const anon = std.ascii.isDigit(label_name[0]);
if (!anon and label_gop.value_ptr.pending_relocs.items.len == 0)
return self.fail("redefined label: '{s}'", .{label_name});
for (label_gop.value_ptr.pending_relocs.items) |pending_reloc|
self.performReloc(pending_reloc);
if (anon)
label_gop.value_ptr.pending_relocs.clearRetainingCapacity()
else
label_gop.value_ptr.pending_relocs.clearAndFree(self.gpa);
}
label_gop.value_ptr.target = @intCast(self.mir_instructions.len);
} else continue;
var mnem_size: ?Memory.Size = null;
const mnem_tag = mnem: {
mnem_size = if (mem.endsWith(u8, mnem_str, "b"))
.byte
else if (mem.endsWith(u8, mnem_str, "w"))
.word
else if (mem.endsWith(u8, mnem_str, "l"))
.dword
else if (mem.endsWith(u8, mnem_str, "q"))
.qword
else if (mem.endsWith(u8, mnem_str, "t"))
.tbyte
else
break :mnem null;
break :mnem std.meta.stringToEnum(Instruction.Mnemonic, mnem_str[0 .. mnem_str.len - 1]);
} orelse mnem: {
mnem_size = null;
break :mnem std.meta.stringToEnum(Instruction.Mnemonic, mnem_str);
} orelse return self.fail("invalid mnemonic: '{s}'", .{mnem_str});
if (@as(?Memory.Size, switch (mnem_tag) {
.clflush => .byte,
.fldenv, .fnstenv, .fstenv => .none,
.ldmxcsr, .stmxcsr, .vldmxcsr, .vstmxcsr => .dword,
else => null,
})) |fixed_mnem_size| {
if (mnem_size) |size| if (size != fixed_mnem_size)
return self.fail("invalid size: '{s}'", .{mnem_str});
mnem_size = fixed_mnem_size;
}
const mnem_name = @tagName(mnem_tag);
const mnem_fixed_tag: Mir.Inst.FixedTag = for (std.enums.values(Mir.Inst.Fixes)) |fixes| {
const fixes_name = @tagName(fixes);
const space_i = mem.indexOfScalar(u8, fixes_name, ' ');
const fixes_prefix = if (space_i) |i|
std.meta.stringToEnum(Instruction.Prefix, fixes_name[0..i]).?
else
.none;
if (fixes_prefix != prefix) continue;
const pattern = fixes_name[if (space_i) |i| i + " ".len else 0..];
const wildcard_i = mem.indexOfScalar(u8, pattern, '_').?;
const mnem_prefix = pattern[0..wildcard_i];
const mnem_suffix = pattern[wildcard_i + "_".len ..];
if (!mem.startsWith(u8, mnem_name, mnem_prefix)) continue;
if (!mem.endsWith(u8, mnem_name, mnem_suffix)) continue;
break .{ fixes, std.meta.stringToEnum(
Mir.Inst.Tag,
mnem_name[mnem_prefix.len .. mnem_name.len - mnem_suffix.len],
) orelse continue };
} else {
assert(prefix != .none); // no combination of fixes produced a known mnemonic
return self.fail("invalid prefix for mnemonic: '{s} {s}'", .{
@tagName(prefix), mnem_str,
});
};
const Operand = union(enum) {
none,
reg: Register,
mem: Memory,
imm: Immediate,
inst: Mir.Inst.Index,
};
var ops: [4]Operand = .{.none} ** 4;
var last_op = false;
var op_it = mem.splitScalar(u8, mnem_it.rest(), ',');
next_op: for (&ops) |*op| {
const op_str = while (!last_op) {
const full_str = op_it.next() orelse break :next_op;
const code_str = if (mem.indexOfScalar(u8, full_str, '#') orelse
mem.indexOf(u8, full_str, "//")) |comment|
code: {
last_op = true;
break :code full_str[0..comment];
} else full_str;
const trim_str = mem.trim(u8, code_str, " \t*");
if (trim_str.len > 0) break trim_str;
} else break;
if (mem.startsWith(u8, op_str, "%%")) {
const colon = mem.indexOfScalarPos(u8, op_str, "%%".len + 2, ':');
const reg = parseRegName(op_str["%%".len .. colon orelse op_str.len]) orelse
return self.fail("invalid register: '{s}'", .{op_str});
if (colon) |colon_pos| {
const disp = std.fmt.parseInt(i32, op_str[colon_pos + ":".len ..], 0) catch
return self.fail("invalid displacement: '{s}'", .{op_str});
op.* = .{ .mem = .{
.base = .{ .reg = reg },
.mod = .{ .rm = .{
.size = mnem_size orelse return self.fail("unknown size: '{s}'", .{op_str}),
.disp = disp,
} },
} };
} else {
if (mnem_size) |size| if (reg.bitSize() != size.bitSize())
return self.fail("invalid register size: '{s}'", .{op_str});
op.* = .{ .reg = reg };
}
} else if (mem.startsWith(u8, op_str, "%[") and mem.endsWith(u8, op_str, "]")) {
const colon = mem.indexOfScalarPos(u8, op_str, "%[".len, ':');
const modifier = if (colon) |colon_pos|
op_str[colon_pos + ":".len .. op_str.len - "]".len]
else
"";
op.* = switch (args.items[
arg_map.get(op_str["%[".len .. colon orelse op_str.len - "]".len]) orelse
return self.fail("no matching constraint: '{s}'", .{op_str})
]) {
.immediate => |imm| if (mem.eql(u8, modifier, "") or mem.eql(u8, modifier, "c"))
.{ .imm = Immediate.u(imm) }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
.register => |reg| if (mem.eql(u8, modifier, ""))
.{ .reg = reg }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
.memory => |addr| if (mem.eql(u8, modifier, "") or mem.eql(u8, modifier, "P"))
.{ .mem = .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = mnem_size orelse
return self.fail("unknown size: '{s}'", .{op_str}),
.disp = @intCast(@as(i64, @bitCast(addr))),
} },
} }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
.indirect => |reg_off| if (mem.eql(u8, modifier, ""))
.{ .mem = .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = mnem_size orelse
return self.fail("unknown size: '{s}'", .{op_str}),
.disp = reg_off.off,
} },
} }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
.load_frame => |frame_addr| if (mem.eql(u8, modifier, ""))
.{ .mem = .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = mnem_size orelse
return self.fail("unknown size: '{s}'", .{op_str}),
.disp = frame_addr.off,
} },
} }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
.lea_got => |sym_index| if (mem.eql(u8, modifier, "P"))
.{ .reg = try self.copyToTmpRegister(Type.usize, .{ .lea_got = sym_index }) }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
.load_symbol => |sym_off| if (mem.eql(u8, modifier, "P"))
.{ .reg = try self.copyToTmpRegister(Type.usize, .{ .load_symbol = sym_off }) }
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
else => return self.fail("invalid constraint: '{s}'", .{op_str}),
};
} else if (mem.startsWith(u8, op_str, "$")) {
if (std.fmt.parseInt(i32, op_str["$".len..], 0)) |s| {
if (mnem_size) |size| {
const max = @as(u64, math.maxInt(u64)) >> @intCast(64 - (size.bitSize() - 1));
if ((if (s < 0) ~s else s) > max)
return self.fail("invalid immediate size: '{s}'", .{op_str});
}
op.* = .{ .imm = Immediate.s(s) };
} else |_| if (std.fmt.parseInt(u64, op_str["$".len..], 0)) |u| {
if (mnem_size) |size| {
const max = @as(u64, math.maxInt(u64)) >> @intCast(64 - size.bitSize());
if (u > max)
return self.fail("invalid immediate size: '{s}'", .{op_str});
}
op.* = .{ .imm = Immediate.u(u) };
} else |_| return self.fail("invalid immediate: '{s}'", .{op_str});
} else if (mem.endsWith(u8, op_str, ")")) {
const open = mem.indexOfScalar(u8, op_str, '(') orelse
return self.fail("invalid operand: '{s}'", .{op_str});
var sib_it = mem.splitScalar(u8, op_str[open + "(".len .. op_str.len - ")".len], ',');
const base_str = sib_it.next() orelse
return self.fail("invalid memory operand: '{s}'", .{op_str});
if (base_str.len > 0 and !mem.startsWith(u8, base_str, "%%"))
return self.fail("invalid memory operand: '{s}'", .{op_str});
const index_str = sib_it.next() orelse "";
if (index_str.len > 0 and !mem.startsWith(u8, base_str, "%%"))
return self.fail("invalid memory operand: '{s}'", .{op_str});
const scale_str = sib_it.next() orelse "";
if (index_str.len == 0 and scale_str.len > 0)
return self.fail("invalid memory operand: '{s}'", .{op_str});
const scale: Memory.Scale = if (scale_str.len > 0)
switch (std.fmt.parseInt(u4, scale_str, 10) catch
return self.fail("invalid scale: '{s}'", .{op_str})) {
1 => .@"1",
2 => .@"2",
4 => .@"4",
8 => .@"8",
else => return self.fail("invalid scale: '{s}'", .{op_str}),
}
else
.@"1";
if (sib_it.next()) |_| return self.fail("invalid memory operand: '{s}'", .{op_str});
op.* = .{
.mem = .{
.base = if (base_str.len > 0)
.{ .reg = parseRegName(base_str["%%".len..]) orelse
return self.fail("invalid base register: '{s}'", .{base_str}) }
else
.none,
.mod = .{ .rm = .{
.size = mnem_size orelse return self.fail("unknown size: '{s}'", .{op_str}),
.index = if (index_str.len > 0)
parseRegName(index_str["%%".len..]) orelse
return self.fail("invalid index register: '{s}'", .{op_str})
else
.none,
.scale = scale,
.disp = if (mem.startsWith(u8, op_str[0..open], "%[") and
mem.endsWith(u8, op_str[0..open], "]"))
disp: {
const colon = mem.indexOfScalarPos(u8, op_str[0..open], "%[".len, ':');
const modifier = if (colon) |colon_pos|
op_str[colon_pos + ":".len .. open - "]".len]
else
"";
break :disp switch (args.items[
arg_map.get(op_str["%[".len .. colon orelse open - "]".len]) orelse
return self.fail("no matching constraint: '{s}'", .{op_str})
]) {
.immediate => |imm| if (mem.eql(u8, modifier, "") or
mem.eql(u8, modifier, "c"))
math.cast(i32, @as(i64, @bitCast(imm))) orelse
return self.fail("invalid displacement: '{s}'", .{op_str})
else
return self.fail("invalid modifier: '{s}'", .{modifier}),
else => return self.fail("invalid constraint: '{s}'", .{op_str}),
};
} else if (open > 0)
std.fmt.parseInt(i32, op_str[0..open], 0) catch
return self.fail("invalid displacement: '{s}'", .{op_str})
else
0,
} },
},
};
} else if (Label.isValid(.reference, op_str)) {
const anon = std.ascii.isDigit(op_str[0]);
const label_gop = try labels.getOrPut(self.gpa, op_str[0..if (anon) 1 else op_str.len]);
if (!label_gop.found_existing) label_gop.value_ptr.* = .{};
if (anon and (op_str[1] == 'b' or op_str[1] == 'B') and !label_gop.found_existing)
return self.fail("undefined label: '{s}'", .{op_str});
const pending_relocs = &label_gop.value_ptr.pending_relocs;
if (if (anon)
op_str[1] == 'f' or op_str[1] == 'F'
else
!label_gop.found_existing or pending_relocs.items.len > 0)
try pending_relocs.append(self.gpa, @intCast(self.mir_instructions.len));
op.* = .{ .inst = label_gop.value_ptr.target };
} else return self.fail("invalid operand: '{s}'", .{op_str});
} else if (op_it.next()) |op_str| return self.fail("extra operand: '{s}'", .{op_str});
(switch (ops[0]) {
.none => self.asmOpOnly(mnem_fixed_tag),
.reg => |reg0| switch (ops[1]) {
.none => self.asmRegister(mnem_fixed_tag, reg0),
.reg => |reg1| switch (ops[2]) {
.none => self.asmRegisterRegister(mnem_fixed_tag, reg1, reg0),
.reg => |reg2| switch (ops[3]) {
.none => self.asmRegisterRegisterRegister(mnem_fixed_tag, reg2, reg1, reg0),
else => error.InvalidInstruction,
},
.mem => |mem2| switch (ops[3]) {
.none => self.asmMemoryRegisterRegister(mnem_fixed_tag, mem2, reg1, reg0),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
.mem => |mem1| switch (ops[2]) {
.none => self.asmMemoryRegister(mnem_fixed_tag, mem1, reg0),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
.mem => |mem0| switch (ops[1]) {
.none => self.asmMemory(mnem_fixed_tag, mem0),
.reg => |reg1| switch (ops[2]) {
.none => self.asmRegisterMemory(mnem_fixed_tag, reg1, mem0),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
.imm => |imm0| switch (ops[1]) {
.none => self.asmImmediate(mnem_fixed_tag, imm0),
.reg => |reg1| switch (ops[2]) {
.none => self.asmRegisterImmediate(mnem_fixed_tag, reg1, imm0),
.reg => |reg2| switch (ops[3]) {
.none => self.asmRegisterRegisterImmediate(mnem_fixed_tag, reg2, reg1, imm0),
.reg => |reg3| self.asmRegisterRegisterRegisterImmediate(
mnem_fixed_tag,
reg3,
reg2,
reg1,
imm0,
),
else => error.InvalidInstruction,
},
.mem => |mem2| switch (ops[3]) {
.none => self.asmMemoryRegisterImmediate(mnem_fixed_tag, mem2, reg1, imm0),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
.mem => |mem1| switch (ops[2]) {
.none => self.asmMemoryImmediate(mnem_fixed_tag, mem1, imm0),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
.inst => |inst0| switch (ops[1]) {
.none => self.asmReloc(mnem_fixed_tag, inst0),
else => error.InvalidInstruction,
},
}) catch |err| switch (err) {
error.InvalidInstruction => return self.fail(
"invalid instruction: '{s} {s} {s} {s} {s}'",
.{
mnem_str,
@tagName(ops[0]),
@tagName(ops[1]),
@tagName(ops[2]),
@tagName(ops[3]),
},
),
else => |e| return e,
};
}
var label_it = labels.iterator();
while (label_it.next()) |label| if (label.value_ptr.pending_relocs.items.len > 0)
return self.fail("undefined label: '{s}'", .{label.key_ptr.*});
for (outputs, args.items[0..outputs.len]) |output, arg_mcv| {
const extra_bytes = mem.sliceAsBytes(self.air.extra[outputs_extra_i..]);
const constraint =
mem.sliceTo(mem.sliceAsBytes(self.air.extra[outputs_extra_i..]), 0);
const name = mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
outputs_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
if (output == .none) continue;
if (arg_mcv != .register) continue;
if (constraint.len == 2 and std.ascii.isDigit(constraint[1])) continue;
try self.store(self.typeOf(output), .{ .air_ref = output }, arg_mcv, .{});
}
simple: {
var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
var buf_index: usize = 0;
for (outputs) |output| {
if (output == .none) continue;
if (buf_index >= buf.len) break :simple;
buf[buf_index] = output;
buf_index += 1;
}
if (buf_index + inputs.len > buf.len) break :simple;
@memcpy(buf[buf_index..][0..inputs.len], inputs);
return self.finishAir(inst, result, buf);
}
var bt = self.liveness.iterateBigTomb(inst);
for (outputs) |output| if (output != .none) try self.feed(&bt, output);
for (inputs) |input| try self.feed(&bt, input);
return self.finishAirResult(inst, result);
}
const MoveStrategy = union(enum) {
move: Mir.Inst.FixedTag,
x87_load_store,
insert_extract: InsertExtract,
vex_insert_extract: InsertExtract,
const InsertExtract = struct {
insert: Mir.Inst.FixedTag,
extract: Mir.Inst.FixedTag,
};
pub fn read(strat: MoveStrategy, self: *Self, dst_reg: Register, src_mem: Memory) !void {
switch (strat) {
.move => |tag| try self.asmRegisterMemory(tag, dst_reg, src_mem),
.x87_load_store => {
try self.asmMemory(.{ .f_, .ld }, src_mem);
assert(dst_reg != .st7);
try self.asmRegister(.{ .f_p, .st }, @enumFromInt(@intFromEnum(dst_reg) + 1));
},
.insert_extract => |ie| try self.asmRegisterMemoryImmediate(
ie.insert,
dst_reg,
src_mem,
Immediate.u(0),
),
.vex_insert_extract => |ie| try self.asmRegisterRegisterMemoryImmediate(
ie.insert,
dst_reg,
dst_reg,
src_mem,
Immediate.u(0),
),
}
}
pub fn write(strat: MoveStrategy, self: *Self, dst_mem: Memory, src_reg: Register) !void {
switch (strat) {
.move => |tag| try self.asmMemoryRegister(tag, dst_mem, src_reg),
.x87_load_store => {
try self.asmRegister(.{ .f_, .ld }, src_reg);
try self.asmMemory(.{ .f_p, .st }, dst_mem);
},
.insert_extract, .vex_insert_extract => |ie| try self.asmMemoryRegisterImmediate(
ie.extract,
dst_mem,
src_reg,
Immediate.u(0),
),
}
}
};
fn moveStrategy(self: *Self, ty: Type, class: Register.Class, aligned: bool) !MoveStrategy {
const mod = self.bin_file.comp.module.?;
switch (class) {
.general_purpose, .segment => return .{ .move = .{ ._, .mov } },
.x87 => return .x87_load_store,
.mmx => {},
.sse => switch (ty.zigTypeTag(mod)) {
else => {
const classes = mem.sliceTo(&abi.classifySystemV(ty, mod, .other), .none);
assert(std.mem.indexOfNone(abi.Class, classes, &.{
.integer, .sse, .memory, .float, .float_combine,
}) == null);
const abi_size = ty.abiSize(mod);
if (abi_size < 4 or
std.mem.indexOfScalar(abi.Class, classes, .integer) != null) switch (abi_size) {
1 => if (self.hasFeature(.avx)) return .{ .vex_insert_extract = .{
.insert = .{ .vp_b, .insr },
.extract = .{ .vp_b, .extr },
} } else if (self.hasFeature(.sse4_2)) return .{ .insert_extract = .{
.insert = .{ .p_b, .insr },
.extract = .{ .p_b, .extr },
} },
2 => return if (self.hasFeature(.avx)) .{ .vex_insert_extract = .{
.insert = .{ .vp_w, .insr },
.extract = .{ .vp_w, .extr },
} } else .{ .insert_extract = .{
.insert = .{ .p_w, .insr },
.extract = .{ .p_w, .extr },
} },
3...4 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_d, .mov }
else
.{ ._d, .mov } },
5...8 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
9...16 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
17...32 => if (self.hasFeature(.avx))
return .{ .move = if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu } },
else => {},
} else switch (abi_size) {
4 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_ss, .mov }
else
.{ ._ss, .mov } },
5...8 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_sd, .mov }
else
.{ ._sd, .mov } },
9...16 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_pd, .mova } else .{ .v_pd, .movu }
else if (aligned) .{ ._pd, .mova } else .{ ._pd, .movu } },
17...32 => if (self.hasFeature(.avx)) return .{ .move = if (aligned)
.{ .v_pd, .mova }
else
.{ .v_pd, .movu } },
else => {},
}
},
.Float => switch (ty.floatBits(self.target.*)) {
16 => return if (self.hasFeature(.avx)) .{ .vex_insert_extract = .{
.insert = .{ .vp_w, .insr },
.extract = .{ .vp_w, .extr },
} } else .{ .insert_extract = .{
.insert = .{ .p_w, .insr },
.extract = .{ .p_w, .extr },
} },
32 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_ss, .mov }
else
.{ ._ss, .mov } },
64 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_sd, .mov }
else
.{ ._sd, .mov } },
128 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
else => {},
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Bool => switch (ty.vectorLen(mod)) {
33...64 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
else => {},
},
.Int => switch (ty.childType(mod).intInfo(mod).bits) {
8 => switch (ty.vectorLen(mod)) {
1 => if (self.hasFeature(.avx)) return .{ .vex_insert_extract = .{
.insert = .{ .vp_b, .insr },
.extract = .{ .vp_b, .extr },
} } else if (self.hasFeature(.sse4_2)) return .{ .insert_extract = .{
.insert = .{ .p_b, .insr },
.extract = .{ .p_b, .extr },
} },
2 => return if (self.hasFeature(.avx)) .{ .vex_insert_extract = .{
.insert = .{ .vp_w, .insr },
.extract = .{ .vp_w, .extr },
} } else .{ .insert_extract = .{
.insert = .{ .p_w, .insr },
.extract = .{ .p_w, .extr },
} },
3...4 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_d, .mov }
else
.{ ._d, .mov } },
5...8 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
9...16 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
17...32 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
16 => switch (ty.vectorLen(mod)) {
1 => return if (self.hasFeature(.avx)) .{ .vex_insert_extract = .{
.insert = .{ .vp_w, .insr },
.extract = .{ .vp_w, .extr },
} } else .{ .insert_extract = .{
.insert = .{ .p_w, .insr },
.extract = .{ .p_w, .extr },
} },
2 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_d, .mov }
else
.{ ._d, .mov } },
3...4 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
5...8 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
9...16 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
32 => switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_d, .mov }
else
.{ ._d, .mov } },
2 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
3...4 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
5...8 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
64 => switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
2 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
3...4 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
128 => switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
2 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
256 => switch (ty.vectorLen(mod)) {
1 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
else => {},
},
.Pointer, .Optional => if (ty.childType(mod).isPtrAtRuntime(mod))
switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
2 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
3...4 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
}
else
unreachable,
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
16 => switch (ty.vectorLen(mod)) {
1 => return if (self.hasFeature(.avx)) .{ .vex_insert_extract = .{
.insert = .{ .vp_w, .insr },
.extract = .{ .vp_w, .extr },
} } else .{ .insert_extract = .{
.insert = .{ .p_w, .insr },
.extract = .{ .p_w, .extr },
} },
2 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_d, .mov }
else
.{ ._d, .mov } },
3...4 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_q, .mov }
else
.{ ._q, .mov } },
5...8 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
9...16 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
32 => switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_ss, .mov }
else
.{ ._ss, .mov } },
2 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_sd, .mov }
else
.{ ._sd, .mov } },
3...4 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_ps, .mova } else .{ .v_ps, .movu }
else if (aligned) .{ ._ps, .mova } else .{ ._ps, .movu } },
5...8 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_ps, .mova }
else
.{ .v_ps, .movu } },
else => {},
},
64 => switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
.{ .v_sd, .mov }
else
.{ ._sd, .mov } },
2 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_pd, .mova } else .{ .v_pd, .movu }
else if (aligned) .{ ._pd, .mova } else .{ ._pd, .movu } },
3...4 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_pd, .mova }
else
.{ .v_pd, .movu } },
else => {},
},
128 => switch (ty.vectorLen(mod)) {
1 => return .{ .move = if (self.hasFeature(.avx))
if (aligned) .{ .v_, .movdqa } else .{ .v_, .movdqu }
else if (aligned) .{ ._, .movdqa } else .{ ._, .movdqu } },
2 => if (self.hasFeature(.avx))
return .{ .move = if (aligned)
.{ .v_, .movdqa }
else
.{ .v_, .movdqu } },
else => {},
},
else => {},
},
else => {},
},
},
}
return self.fail("TODO moveStrategy for {}", .{ty.fmt(mod)});
}
const CopyOptions = struct {
safety: bool = false,
};
fn genCopy(self: *Self, ty: Type, dst_mcv: MCValue, src_mcv: MCValue, opts: CopyOptions) InnerError!void {
const mod = self.bin_file.comp.module.?;
const src_lock = if (src_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
switch (dst_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.eflags,
.register_overflow,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.lea_symbol,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> unreachable, // unmodifiable destination
.register => |reg| try self.genSetReg(reg, ty, src_mcv, opts),
.register_offset => |dst_reg_off| try self.genSetReg(dst_reg_off.reg, ty, switch (src_mcv) {
.none,
.unreach,
.dead,
.undef,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
=> unreachable,
.immediate,
.register,
.register_offset,
.lea_frame,
=> src_mcv.offset(-dst_reg_off.off),
else => .{ .register_offset = .{
.reg = try self.copyToTmpRegister(ty, src_mcv),
.off = -dst_reg_off.off,
} },
}, opts),
.register_pair => |dst_regs| {
const src_info: ?struct { addr_reg: Register, addr_lock: RegisterLock } = switch (src_mcv) {
.register_pair, .memory, .indirect, .load_frame => null,
.load_symbol, .load_direct, .load_got, .load_tlv => src: {
const src_addr_reg =
(try self.register_manager.allocReg(null, abi.RegisterClass.gp)).to64();
const src_addr_lock = self.register_manager.lockRegAssumeUnused(src_addr_reg);
errdefer self.register_manager.unlockReg(src_addr_lock);
try self.genSetReg(src_addr_reg, Type.usize, src_mcv.address(), opts);
break :src .{ .addr_reg = src_addr_reg, .addr_lock = src_addr_lock };
},
.air_ref => |src_ref| return self.genCopy(
ty,
dst_mcv,
try self.resolveInst(src_ref),
opts,
),
else => return self.fail("TODO implement genCopy for {s} of {}", .{
@tagName(src_mcv), ty.fmt(mod),
}),
};
defer if (src_info) |info| self.register_manager.unlockReg(info.addr_lock);
var part_disp: i32 = 0;
for (dst_regs, try self.splitType(ty), 0..) |dst_reg, dst_ty, part_i| {
try self.genSetReg(dst_reg, dst_ty, switch (src_mcv) {
.register_pair => |src_regs| .{ .register = src_regs[part_i] },
.memory, .indirect, .load_frame => src_mcv.address().offset(part_disp).deref(),
.load_symbol, .load_direct, .load_got, .load_tlv => .{ .indirect = .{
.reg = src_info.?.addr_reg,
.off = part_disp,
} },
else => unreachable,
}, opts);
part_disp += @intCast(dst_ty.abiSize(mod));
}
},
.indirect => |reg_off| try self.genSetMem(
.{ .reg = reg_off.reg },
reg_off.off,
ty,
src_mcv,
opts,
),
.memory, .load_symbol, .load_direct, .load_got, .load_tlv => {
switch (dst_mcv) {
.memory => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |small_addr|
return self.genSetMem(.{ .reg = .ds }, small_addr, ty, src_mcv, opts),
.load_symbol, .load_direct, .load_got, .load_tlv => {},
else => unreachable,
}
const addr_reg = try self.copyToTmpRegister(Type.usize, dst_mcv.address());
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
try self.genSetMem(.{ .reg = addr_reg }, 0, ty, src_mcv, opts);
},
.load_frame => |frame_addr| try self.genSetMem(
.{ .frame = frame_addr.index },
frame_addr.off,
ty,
src_mcv,
opts,
),
}
}
fn genSetReg(
self: *Self,
dst_reg: Register,
ty: Type,
src_mcv: MCValue,
opts: CopyOptions,
) InnerError!void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(ty.abiSize(mod));
if (ty.bitSize(mod) > dst_reg.bitSize())
return self.fail("genSetReg called with a value larger than dst_reg", .{});
switch (src_mcv) {
.none,
.unreach,
.dead,
.register_overflow,
.elementwise_regs_then_frame,
.reserved_frame,
=> unreachable,
.undef => if (opts.safety) switch (dst_reg.class()) {
.general_purpose => switch (abi_size) {
1 => try self.asmRegisterImmediate(.{ ._, .mov }, dst_reg.to8(), Immediate.u(0xAA)),
2 => try self.asmRegisterImmediate(.{ ._, .mov }, dst_reg.to16(), Immediate.u(0xAAAA)),
3...4 => try self.asmRegisterImmediate(
.{ ._, .mov },
dst_reg.to32(),
Immediate.s(@as(i32, @bitCast(@as(u32, 0xAAAAAAAA)))),
),
5...8 => try self.asmRegisterImmediate(
.{ ._, .mov },
dst_reg.to64(),
Immediate.u(0xAAAAAAAAAAAAAAAA),
),
else => unreachable,
},
.segment, .x87, .mmx, .sse => try self.genSetReg(dst_reg, ty, try self.genTypedValue(.{
.ty = ty,
.val = try mod.undefValue(ty),
}), opts),
},
.eflags => |cc| try self.asmSetccRegister(cc, dst_reg.to8()),
.immediate => |imm| {
if (imm == 0) {
// 32-bit moves zero-extend to 64-bit, so xoring the 32-bit
// register is the fastest way to zero a register.
try self.spillEflagsIfOccupied();
try self.asmRegisterRegister(.{ ._, .xor }, dst_reg.to32(), dst_reg.to32());
} else if (abi_size > 4 and math.cast(u32, imm) != null) {
// 32-bit moves zero-extend to 64-bit.
try self.asmRegisterImmediate(.{ ._, .mov }, dst_reg.to32(), Immediate.u(imm));
} else if (abi_size <= 4 and @as(i64, @bitCast(imm)) < 0) {
try self.asmRegisterImmediate(
.{ ._, .mov },
registerAlias(dst_reg, abi_size),
Immediate.s(@intCast(@as(i64, @bitCast(imm)))),
);
} else {
try self.asmRegisterImmediate(
.{ ._, .mov },
registerAlias(dst_reg, abi_size),
Immediate.u(imm),
);
}
},
.register => |src_reg| if (dst_reg.id() != src_reg.id()) switch (dst_reg.class()) {
.general_purpose => switch (src_reg.class()) {
.general_purpose => try self.asmRegisterRegister(
.{ ._, .mov },
registerAlias(dst_reg, abi_size),
registerAlias(src_reg, abi_size),
),
.segment => try self.asmRegisterRegister(
.{ ._, .mov },
registerAlias(dst_reg, abi_size),
src_reg,
),
.x87, .mmx => unreachable,
.sse => try self.asmRegisterRegister(
switch (abi_size) {
1...4 => if (self.hasFeature(.avx)) .{ .v_d, .mov } else .{ ._d, .mov },
5...8 => if (self.hasFeature(.avx)) .{ .v_q, .mov } else .{ ._q, .mov },
else => unreachable,
},
registerAlias(dst_reg, @max(abi_size, 4)),
src_reg.to128(),
),
},
.segment => try self.asmRegisterRegister(
.{ ._, .mov },
dst_reg,
switch (src_reg.class()) {
.general_purpose, .segment => registerAlias(src_reg, abi_size),
.x87, .mmx => unreachable,
.sse => try self.copyToTmpRegister(ty, src_mcv),
},
),
.x87 => switch (src_reg.class()) {
.general_purpose, .segment => unreachable,
.x87 => switch (src_reg) {
.st0 => try self.asmRegister(.{ .f_, .st }, dst_reg),
.st1, .st2, .st3, .st4, .st5, .st6 => {
try self.asmRegister(.{ .f_, .ld }, src_reg);
assert(dst_reg != .st7);
try self.asmRegister(.{ .f_p, .st }, @enumFromInt(@intFromEnum(dst_reg) + 1));
},
else => unreachable,
},
.mmx, .sse => unreachable,
},
.mmx => unreachable,
.sse => switch (src_reg.class()) {
.general_purpose => try self.asmRegisterRegister(
switch (abi_size) {
1...4 => if (self.hasFeature(.avx)) .{ .v_d, .mov } else .{ ._d, .mov },
5...8 => if (self.hasFeature(.avx)) .{ .v_q, .mov } else .{ ._q, .mov },
else => unreachable,
},
dst_reg.to128(),
registerAlias(src_reg, @max(abi_size, 4)),
),
.segment => try self.genSetReg(
dst_reg,
ty,
.{ .register = try self.copyToTmpRegister(ty, src_mcv) },
opts,
),
.x87, .mmx => unreachable,
.sse => try self.asmRegisterRegister(
@as(?Mir.Inst.FixedTag, switch (ty.scalarType(mod).zigTypeTag(mod)) {
else => switch (abi_size) {
1...16 => if (self.hasFeature(.avx)) .{ .v_, .movdqa } else .{ ._, .movdqa },
17...32 => if (self.hasFeature(.avx)) .{ .v_, .movdqa } else null,
else => null,
},
.Float => switch (ty.scalarType(mod).floatBits(self.target.*)) {
16, 128 => switch (abi_size) {
2...16 => if (self.hasFeature(.avx))
.{ .v_, .movdqa }
else
.{ ._, .movdqa },
17...32 => if (self.hasFeature(.avx)) .{ .v_, .movdqa } else null,
else => null,
},
32 => if (self.hasFeature(.avx)) .{ .v_ps, .mova } else .{ ._ps, .mova },
64 => if (self.hasFeature(.avx)) .{ .v_pd, .mova } else .{ ._pd, .mova },
80 => null,
else => unreachable,
},
}) orelse return self.fail("TODO implement genSetReg for {}", .{ty.fmt(mod)}),
registerAlias(dst_reg, abi_size),
registerAlias(src_reg, abi_size),
),
},
},
.register_pair => |src_regs| try self.genSetReg(dst_reg, ty, .{ .register = src_regs[0] }, opts),
.register_offset,
.indirect,
.load_frame,
.lea_frame,
=> try @as(MoveStrategy, switch (src_mcv) {
.register_offset => |reg_off| switch (reg_off.off) {
0 => return self.genSetReg(dst_reg, ty, .{ .register = reg_off.reg }, opts),
else => .{ .move = .{ ._, .lea } },
},
.indirect => try self.moveStrategy(ty, dst_reg.class(), false),
.load_frame => |frame_addr| try self.moveStrategy(
ty,
dst_reg.class(),
self.getFrameAddrAlignment(frame_addr).compare(.gte, Alignment.fromLog2Units(
std.math.log2_int_ceil(u10, @divExact(dst_reg.bitSize(), 8)),
)),
),
.lea_frame => .{ .move = .{ ._, .lea } },
else => unreachable,
}).read(self, registerAlias(dst_reg, abi_size), switch (src_mcv) {
.register_offset, .indirect => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{ .rm = .{
.size = self.memSize(ty),
.disp = reg_off.off,
} },
},
.load_frame, .lea_frame => |frame_addr| .{
.base = .{ .frame = frame_addr.index },
.mod = .{ .rm = .{
.size = self.memSize(ty),
.disp = frame_addr.off,
} },
},
else => unreachable,
}),
.memory, .load_symbol, .load_direct, .load_got, .load_tlv => {
switch (src_mcv) {
.memory => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |small_addr|
return (try self.moveStrategy(
ty,
dst_reg.class(),
ty.abiAlignment(mod).check(@as(u32, @bitCast(small_addr))),
)).read(self, registerAlias(dst_reg, abi_size), .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = self.memSize(ty),
.disp = small_addr,
} },
}),
.load_symbol => |sym_off| switch (dst_reg.class()) {
.general_purpose => {
assert(sym_off.off == 0);
try self.asmRegisterMemory(.{ ._, .mov }, registerAlias(dst_reg, abi_size), .{
.base = .{ .reloc = .{
.atom_index = try self.owner.getSymbolIndex(self),
.sym_index = sym_off.sym,
} },
.mod = .{ .rm = .{
.size = self.memSize(ty),
.disp = sym_off.off,
} },
});
return;
},
.segment, .mmx => unreachable,
.x87, .sse => {},
},
.load_direct => |sym_index| switch (dst_reg.class()) {
.general_purpose => {
_ = try self.addInst(.{
.tag = .mov,
.ops = .direct_reloc,
.data = .{ .rx = .{
.r1 = registerAlias(dst_reg, abi_size),
.payload = try self.addExtra(bits.Symbol{
.atom_index = try self.owner.getSymbolIndex(self),
.sym_index = sym_index,
}),
} },
});
return;
},
.segment, .mmx => unreachable,
.x87, .sse => {},
},
.load_got, .load_tlv => {},
else => unreachable,
}
const addr_reg = try self.copyToTmpRegister(Type.usize, src_mcv.address());
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
try (try self.moveStrategy(ty, dst_reg.class(), false)).read(
self,
registerAlias(dst_reg, abi_size),
.{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{ .size = self.memSize(ty) } },
},
);
},
.lea_symbol => |sym_index| {
const atom_index = try self.owner.getSymbolIndex(self);
switch (self.bin_file.tag) {
.elf, .macho => {
try self.asmRegisterMemory(
.{ ._, .lea },
dst_reg.to64(),
.{
.base = .{ .reloc = .{
.atom_index = atom_index,
.sym_index = sym_index.sym,
} },
.mod = .{ .rm = .{
.size = .qword,
.disp = sym_index.off,
} },
},
);
},
else => return self.fail("TODO emit symbol sequence on {s}", .{
@tagName(self.bin_file.tag),
}),
}
},
.lea_direct, .lea_got => |sym_index| {
const atom_index = try self.owner.getSymbolIndex(self);
_ = try self.addInst(.{
.tag = switch (src_mcv) {
.lea_direct => .lea,
.lea_got => .mov,
else => unreachable,
},
.ops = switch (src_mcv) {
.lea_direct => .direct_reloc,
.lea_got => .got_reloc,
else => unreachable,
},
.data = .{ .rx = .{
.r1 = dst_reg.to64(),
.payload = try self.addExtra(bits.Symbol{
.atom_index = atom_index,
.sym_index = sym_index,
}),
} },
});
},
.lea_tlv => unreachable, // TODO: remove this
.air_ref => |src_ref| try self.genSetReg(dst_reg, ty, try self.resolveInst(src_ref), opts),
}
}
fn genSetMem(
self: *Self,
base: Memory.Base,
disp: i32,
ty: Type,
src_mcv: MCValue,
opts: CopyOptions,
) InnerError!void {
const mod = self.bin_file.comp.module.?;
const abi_size: u32 = @intCast(ty.abiSize(mod));
const dst_ptr_mcv: MCValue = switch (base) {
.none => .{ .immediate = @bitCast(@as(i64, disp)) },
.reg => |base_reg| .{ .register_offset = .{ .reg = base_reg, .off = disp } },
.frame => |base_frame_index| .{ .lea_frame = .{ .index = base_frame_index, .off = disp } },
.reloc => |base_symbol| .{ .lea_symbol = .{ .sym = base_symbol.sym_index, .off = disp } },
};
switch (src_mcv) {
.none,
.unreach,
.dead,
.elementwise_regs_then_frame,
.reserved_frame,
=> unreachable,
.undef => if (opts.safety) try self.genInlineMemset(
dst_ptr_mcv,
src_mcv,
.{ .immediate = abi_size },
opts,
),
.immediate => |imm| switch (abi_size) {
1, 2, 4 => {
const immediate = switch (if (ty.isAbiInt(mod))
ty.intInfo(mod).signedness
else
.unsigned) {
.signed => Immediate.s(@truncate(@as(i64, @bitCast(imm)))),
.unsigned => Immediate.u(@as(u32, @intCast(imm))),
};
try self.asmMemoryImmediate(
.{ ._, .mov },
.{ .base = base, .mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = disp,
} } },
immediate,
);
},
3, 5...7 => unreachable,
else => if (math.cast(i32, @as(i64, @bitCast(imm)))) |small| {
try self.asmMemoryImmediate(
.{ ._, .mov },
.{ .base = base, .mod = .{ .rm = .{
.size = Memory.Size.fromSize(abi_size),
.disp = disp,
} } },
Immediate.s(small),
);
} else {
var offset: i32 = 0;
while (offset < abi_size) : (offset += 4) try self.asmMemoryImmediate(
.{ ._, .mov },
.{ .base = base, .mod = .{ .rm = .{
.size = .dword,
.disp = disp + offset,
} } },
if (ty.isSignedInt(mod)) Immediate.s(
@truncate(@as(i64, @bitCast(imm)) >> (math.cast(u6, offset * 8) orelse 63)),
) else Immediate.u(
@as(u32, @truncate(if (math.cast(u6, offset * 8)) |shift| imm >> shift else 0)),
),
);
},
},
.eflags => |cc| try self.asmSetccMemory(cc, .{ .base = base, .mod = .{
.rm = .{ .size = .byte, .disp = disp },
} }),
.register => |src_reg| {
const mem_size = switch (base) {
.frame => |base_fi| mem_size: {
assert(disp >= 0);
const frame_abi_size = self.frame_allocs.items(.abi_size)[@intFromEnum(base_fi)];
const frame_spill_pad = self.frame_allocs.items(.spill_pad)[@intFromEnum(base_fi)];
assert(frame_abi_size - frame_spill_pad - disp >= abi_size);
break :mem_size if (frame_abi_size - frame_spill_pad - disp == abi_size)
frame_abi_size
else
abi_size;
},
else => abi_size,
};
const src_alias = registerAlias(src_reg, abi_size);
const src_size: u32 = @intCast(switch (src_alias.class()) {
.general_purpose, .segment, .x87 => @divExact(src_alias.bitSize(), 8),
.mmx, .sse => abi_size,
});
if (src_size > mem_size) {
const frame_index = try self.allocFrameIndex(FrameAlloc.init(.{
.size = src_size,
.alignment = Alignment.fromNonzeroByteUnits(src_size),
}));
const frame_mcv: MCValue = .{ .load_frame = .{ .index = frame_index } };
try (try self.moveStrategy(ty, src_alias.class(), true)).write(
self,
.{ .base = .{ .frame = frame_index }, .mod = .{ .rm = .{
.size = Memory.Size.fromSize(src_size),
} } },
src_alias,
);
try self.genSetMem(base, disp, ty, frame_mcv, opts);
try self.freeValue(frame_mcv);
} else try (try self.moveStrategy(ty, src_alias.class(), switch (base) {
.none => ty.abiAlignment(mod).check(@as(u32, @bitCast(disp))),
.reg => |reg| switch (reg) {
.es, .cs, .ss, .ds => ty.abiAlignment(mod).check(@as(u32, @bitCast(disp))),
else => false,
},
.frame => |frame_index| self.getFrameAddrAlignment(
.{ .index = frame_index, .off = disp },
).compare(.gte, ty.abiAlignment(mod)),
.reloc => false,
})).write(
self,
.{ .base = base, .mod = .{ .rm = .{
.size = self.memSize(ty),
.disp = disp,
} } },
src_alias,
);
},
.register_pair => |src_regs| {
var part_disp: i32 = disp;
for (try self.splitType(ty), src_regs) |src_ty, src_reg| {
try self.genSetMem(base, part_disp, src_ty, .{ .register = src_reg }, opts);
part_disp += @intCast(src_ty.abiSize(mod));
}
},
.register_overflow => |ro| switch (ty.zigTypeTag(mod)) {
.Struct => {
try self.genSetMem(
base,
disp + @as(i32, @intCast(ty.structFieldOffset(0, mod))),
ty.structFieldType(0, mod),
.{ .register = ro.reg },
opts,
);
try self.genSetMem(
base,
disp + @as(i32, @intCast(ty.structFieldOffset(1, mod))),
ty.structFieldType(1, mod),
.{ .eflags = ro.eflags },
opts,
);
},
.Optional => {
assert(!ty.optionalReprIsPayload(mod));
const child_ty = ty.optionalChild(mod);
try self.genSetMem(base, disp, child_ty, .{ .register = ro.reg }, opts);
try self.genSetMem(
base,
disp + @as(i32, @intCast(child_ty.abiSize(mod))),
Type.bool,
.{ .eflags = ro.eflags },
opts,
);
},
else => return self.fail("TODO implement genSetMem for {s} of {}", .{
@tagName(src_mcv), ty.fmt(mod),
}),
},
.register_offset,
.memory,
.indirect,
.load_direct,
.lea_direct,
.load_got,
.lea_got,
.load_tlv,
.lea_tlv,
.load_frame,
.lea_frame,
.load_symbol,
.lea_symbol,
=> switch (abi_size) {
0 => {},
1, 2, 4, 8 => {
const src_reg = try self.copyToTmpRegister(ty, src_mcv);
const src_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_lock);
try self.genSetMem(base, disp, ty, .{ .register = src_reg }, opts);
},
else => try self.genInlineMemcpy(
dst_ptr_mcv,
src_mcv.address(),
.{ .immediate = abi_size },
),
},
.air_ref => |src_ref| try self.genSetMem(base, disp, ty, try self.resolveInst(src_ref), opts),
}
}
fn genInlineMemcpy(self: *Self, dst_ptr: MCValue, src_ptr: MCValue, len: MCValue) InnerError!void {
try self.spillRegisters(&.{ .rsi, .rdi, .rcx });
try self.genSetReg(.rsi, Type.usize, src_ptr, .{});
try self.genSetReg(.rdi, Type.usize, dst_ptr, .{});
try self.genSetReg(.rcx, Type.usize, len, .{});
try self.asmOpOnly(.{ .@"rep _sb", .mov });
}
fn genInlineMemset(
self: *Self,
dst_ptr: MCValue,
value: MCValue,
len: MCValue,
opts: CopyOptions,
) InnerError!void {
try self.spillRegisters(&.{ .rdi, .al, .rcx });
try self.genSetReg(.rdi, Type.usize, dst_ptr, .{});
try self.genSetReg(.al, Type.u8, value, opts);
try self.genSetReg(.rcx, Type.usize, len, .{});
try self.asmOpOnly(.{ .@"rep _sb", .sto });
}
fn genExternSymbolRef(
self: *Self,
comptime tag: Mir.Inst.Tag,
lib: ?[]const u8,
callee: []const u8,
) InnerError!void {
const atom_index = try self.owner.getSymbolIndex(self);
if (self.bin_file.cast(link.File.Elf)) |elf_file| {
_ = try self.addInst(.{
.tag = tag,
.ops = .extern_fn_reloc,
.data = .{ .reloc = .{
.atom_index = atom_index,
.sym_index = try elf_file.getGlobalSymbol(callee, lib),
} },
});
} else if (self.bin_file.cast(link.File.Coff)) |coff_file| {
const global_index = try coff_file.getGlobalSymbol(callee, lib);
_ = try self.addInst(.{
.tag = .mov,
.ops = .import_reloc,
.data = .{ .rx = .{
.r1 = .rax,
.payload = try self.addExtra(bits.Symbol{
.atom_index = atom_index,
.sym_index = link.File.Coff.global_symbol_bit | global_index,
}),
} },
});
switch (tag) {
.mov => {},
.call => try self.asmRegister(.{ ._, .call }, .rax),
else => unreachable,
}
} else if (self.bin_file.cast(link.File.MachO)) |macho_file| {
_ = try self.addInst(.{
.tag = .call,
.ops = .extern_fn_reloc,
.data = .{ .reloc = .{
.atom_index = atom_index,
.sym_index = try macho_file.getGlobalSymbol(callee, lib),
} },
});
} else return self.fail("TODO implement calling extern functions", .{});
}
fn genLazySymbolRef(
self: *Self,
comptime tag: Mir.Inst.Tag,
reg: Register,
lazy_sym: link.File.LazySymbol,
) InnerError!void {
if (self.bin_file.cast(link.File.Elf)) |elf_file| {
const sym_index = elf_file.zigObjectPtr().?.getOrCreateMetadataForLazySymbol(elf_file, lazy_sym) catch |err|
return self.fail("{s} creating lazy symbol", .{@errorName(err)});
const sym = elf_file.symbol(sym_index);
if (self.mod.pic) {
switch (tag) {
.lea, .call => try self.genSetReg(reg, Type.usize, .{
.load_symbol = .{ .sym = sym.esym_index },
}, .{}),
.mov => try self.genSetReg(reg, Type.usize, .{
.load_symbol = .{ .sym = sym.esym_index },
}, .{}),
else => unreachable,
}
switch (tag) {
.lea, .mov => {},
.call => try self.asmRegister(.{ ._, .call }, reg),
else => unreachable,
}
} else {
const reloc = bits.Symbol{
.atom_index = try self.owner.getSymbolIndex(self),
.sym_index = sym.esym_index,
};
switch (tag) {
.lea, .mov => try self.asmRegisterMemory(.{ ._, .mov }, reg.to64(), .{
.base = .{ .reloc = reloc },
.mod = .{ .rm = .{ .size = .qword } },
}),
.call => try self.asmMemory(.{ ._, .call }, .{
.base = .{ .reloc = reloc },
.mod = .{ .rm = .{ .size = .qword } },
}),
else => unreachable,
}
}
} else if (self.bin_file.cast(link.File.Plan9)) |p9_file| {
const atom_index = p9_file.getOrCreateAtomForLazySymbol(lazy_sym) catch |err|
return self.fail("{s} creating lazy symbol", .{@errorName(err)});
var atom = p9_file.getAtom(atom_index);
_ = atom.getOrCreateOffsetTableEntry(p9_file);
const got_addr = atom.getOffsetTableAddress(p9_file);
const got_mem: Memory = .{
.base = .{ .reg = .ds },
.mod = .{ .rm = .{
.size = .qword,
.disp = @intCast(got_addr),
} },
};
switch (tag) {
.lea, .mov => try self.asmRegisterMemory(.{ ._, .mov }, reg.to64(), got_mem),
.call => try self.asmMemory(.{ ._, .call }, got_mem),
else => unreachable,
}
switch (tag) {
.lea, .call => {},
.mov => try self.asmRegisterMemory(
.{ ._, tag },
reg.to64(),
Memory.sib(.qword, .{ .base = .{ .reg = reg.to64() } }),
),
else => unreachable,
}
} else if (self.bin_file.cast(link.File.Coff)) |coff_file| {
const atom_index = coff_file.getOrCreateAtomForLazySymbol(lazy_sym) catch |err|
return self.fail("{s} creating lazy symbol", .{@errorName(err)});
const sym_index = coff_file.getAtom(atom_index).getSymbolIndex().?;
switch (tag) {
.lea, .call => try self.genSetReg(reg, Type.usize, .{ .lea_got = sym_index }, .{}),
.mov => try self.genSetReg(reg, Type.usize, .{ .load_got = sym_index }, .{}),
else => unreachable,
}
switch (tag) {
.lea, .mov => {},
.call => try self.asmRegister(.{ ._, .call }, reg),
else => unreachable,
}
} else if (self.bin_file.cast(link.File.MachO)) |macho_file| {
const sym_index = macho_file.getZigObject().?.getOrCreateMetadataForLazySymbol(macho_file, lazy_sym) catch |err|
return self.fail("{s} creating lazy symbol", .{@errorName(err)});
const sym = macho_file.getSymbol(sym_index);
switch (tag) {
.lea, .call => try self.genSetReg(
reg,
Type.usize,
.{ .load_symbol = .{ .sym = sym.nlist_idx } },
.{},
),
.mov => try self.genSetReg(reg, Type.usize, .{ .load_symbol = .{ .sym = sym.nlist_idx } }, .{}),
else => unreachable,
}
switch (tag) {
.lea, .mov => {},
.call => try self.asmRegister(.{ ._, .call }, reg),
else => unreachable,
}
} else {
return self.fail("TODO implement genLazySymbol for x86_64 {s}", .{@tagName(self.bin_file.tag)});
}
}
fn airIntFromPtr(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result = result: {
// TODO: handle case where the operand is a slice not a raw pointer
const src_mcv = try self.resolveInst(un_op);
if (self.reuseOperand(inst, un_op, 0, src_mcv)) break :result src_mcv;
const dst_mcv = try self.allocRegOrMem(inst, true);
const dst_ty = self.typeOfIndex(inst);
try self.genCopy(dst_ty, dst_mcv, src_mcv, .{});
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airBitCast(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const src_ty = self.typeOf(ty_op.operand);
const result = result: {
const dst_rc = self.regClassForType(dst_ty);
const src_rc = self.regClassForType(src_ty);
const src_mcv = try self.resolveInst(ty_op.operand);
const src_lock = if (src_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (src_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv = if (dst_rc.supersetOf(src_rc) and dst_ty.abiSize(mod) <= src_ty.abiSize(mod) and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) src_mcv else dst: {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(switch (math.order(dst_ty.abiSize(mod), src_ty.abiSize(mod))) {
.lt => dst_ty,
.eq => if (!dst_mcv.isMemory() or src_mcv.isMemory()) dst_ty else src_ty,
.gt => src_ty,
}, dst_mcv, src_mcv, .{});
break :dst dst_mcv;
};
if (dst_ty.isRuntimeFloat()) break :result dst_mcv;
if (dst_ty.isAbiInt(mod) and src_ty.isAbiInt(mod) and
dst_ty.intInfo(mod).signedness == src_ty.intInfo(mod).signedness) break :result dst_mcv;
const abi_size = dst_ty.abiSize(mod);
const bit_size = dst_ty.bitSize(mod);
if (abi_size * 8 <= bit_size or dst_ty.isVector(mod)) break :result dst_mcv;
const dst_limbs_len = math.divCeil(i32, @intCast(bit_size), 64) catch unreachable;
const high_mcv: MCValue = switch (dst_mcv) {
.register => |dst_reg| .{ .register = dst_reg },
.register_pair => |dst_regs| .{ .register = dst_regs[1] },
else => dst_mcv.address().offset((dst_limbs_len - 1) * 8).deref(),
};
const high_reg = if (high_mcv.isRegister())
high_mcv.getReg().?
else
try self.copyToTmpRegister(Type.usize, high_mcv);
const high_lock = self.register_manager.lockReg(high_reg);
defer if (high_lock) |lock| self.register_manager.unlockReg(lock);
try self.truncateRegister(dst_ty, high_reg);
if (!high_mcv.isRegister()) try self.genCopy(
if (abi_size <= 8) dst_ty else Type.usize,
high_mcv,
.{ .register = high_reg },
.{},
);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airArrayToSlice(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const slice_ty = self.typeOfIndex(inst);
const ptr_ty = self.typeOf(ty_op.operand);
const ptr = try self.resolveInst(ty_op.operand);
const array_ty = ptr_ty.childType(mod);
const array_len = array_ty.arrayLen(mod);
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(slice_ty, mod));
try self.genSetMem(.{ .frame = frame_index }, 0, ptr_ty, ptr, .{});
try self.genSetMem(
.{ .frame = frame_index },
@intCast(ptr_ty.abiSize(mod)),
Type.usize,
.{ .immediate = array_len },
.{},
);
const result = MCValue{ .load_frame = .{ .index = frame_index } };
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airFloatFromInt(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const dst_bits = dst_ty.floatBits(self.target.*);
const src_ty = self.typeOf(ty_op.operand);
const src_bits: u32 = @intCast(src_ty.bitSize(mod));
const src_signedness =
if (src_ty.isAbiInt(mod)) src_ty.intInfo(mod).signedness else .unsigned;
const src_size = math.divCeil(u32, @max(switch (src_signedness) {
.signed => src_bits,
.unsigned => src_bits + 1,
}, 32), 8) catch unreachable;
const result = result: {
if (switch (dst_bits) {
16, 80, 128 => true,
32, 64 => src_size > 8,
else => unreachable,
}) {
if (src_bits > 128) return self.fail("TODO implement airFloatFromInt from {} to {}", .{
src_ty.fmt(mod), dst_ty.fmt(mod),
});
var callee_buf: ["__floatun?i?f".len]u8 = undefined;
break :result try self.genCall(.{ .lib = .{
.return_type = dst_ty.toIntern(),
.param_types = &.{src_ty.toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "__float{s}{c}i{c}f", .{
switch (src_signedness) {
.signed => "",
.unsigned => "un",
},
intCompilerRtAbiName(src_bits),
floatCompilerRtAbiName(dst_bits),
}) catch unreachable,
} }, &.{src_ty}, &.{.{ .air_ref = ty_op.operand }});
}
const src_mcv = try self.resolveInst(ty_op.operand);
const src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv);
const src_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_lock);
if (src_bits < src_size * 8) try self.truncateRegister(src_ty, src_reg);
const dst_reg = try self.register_manager.allocReg(inst, self.regClassForType(dst_ty));
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
const mir_tag = @as(?Mir.Inst.FixedTag, switch (dst_ty.zigTypeTag(mod)) {
.Float => switch (dst_ty.floatBits(self.target.*)) {
32 => if (self.hasFeature(.avx)) .{ .v_ss, .cvtsi2 } else .{ ._ss, .cvtsi2 },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .cvtsi2 } else .{ ._sd, .cvtsi2 },
16, 80, 128 => null,
else => unreachable,
},
else => null,
}) orelse return self.fail("TODO implement airFloatFromInt from {} to {}", .{
src_ty.fmt(mod), dst_ty.fmt(mod),
});
const dst_alias = dst_reg.to128();
const src_alias = registerAlias(src_reg, src_size);
switch (mir_tag[0]) {
.v_ss, .v_sd => try self.asmRegisterRegisterRegister(mir_tag, dst_alias, dst_alias, src_alias),
else => try self.asmRegisterRegister(mir_tag, dst_alias, src_alias),
}
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airIntFromFloat(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dst_ty = self.typeOfIndex(inst);
const dst_bits: u32 = @intCast(dst_ty.bitSize(mod));
const dst_signedness =
if (dst_ty.isAbiInt(mod)) dst_ty.intInfo(mod).signedness else .unsigned;
const dst_size = math.divCeil(u32, @max(switch (dst_signedness) {
.signed => dst_bits,
.unsigned => dst_bits + 1,
}, 32), 8) catch unreachable;
const src_ty = self.typeOf(ty_op.operand);
const src_bits = src_ty.floatBits(self.target.*);
const result = result: {
if (switch (src_bits) {
16, 80, 128 => true,
32, 64 => dst_size > 8,
else => unreachable,
}) {
if (dst_bits > 128) return self.fail("TODO implement airIntFromFloat from {} to {}", .{
src_ty.fmt(mod), dst_ty.fmt(mod),
});
var callee_buf: ["__fixuns?f?i".len]u8 = undefined;
break :result try self.genCall(.{ .lib = .{
.return_type = dst_ty.toIntern(),
.param_types = &.{src_ty.toIntern()},
.callee = std.fmt.bufPrint(&callee_buf, "__fix{s}{c}f{c}i", .{
switch (dst_signedness) {
.signed => "",
.unsigned => "uns",
},
floatCompilerRtAbiName(src_bits),
intCompilerRtAbiName(dst_bits),
}) catch unreachable,
} }, &.{src_ty}, &.{.{ .air_ref = ty_op.operand }});
}
const src_mcv = try self.resolveInst(ty_op.operand);
const src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(src_ty, src_mcv);
const src_lock = self.register_manager.lockRegAssumeUnused(src_reg);
defer self.register_manager.unlockReg(src_lock);
const dst_reg = try self.register_manager.allocReg(inst, self.regClassForType(dst_ty));
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
try self.asmRegisterRegister(
switch (src_bits) {
32 => if (self.hasFeature(.avx)) .{ .v_, .cvttss2si } else .{ ._, .cvttss2si },
64 => if (self.hasFeature(.avx)) .{ .v_, .cvttsd2si } else .{ ._, .cvttsd2si },
else => unreachable,
},
registerAlias(dst_reg, dst_size),
src_reg.to128(),
);
if (dst_bits < dst_size * 8) try self.truncateRegister(dst_ty, dst_reg);
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airCmpxchg(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Cmpxchg, ty_pl.payload).data;
const ptr_ty = self.typeOf(extra.ptr);
const val_ty = self.typeOf(extra.expected_value);
const val_abi_size: u32 = @intCast(val_ty.abiSize(mod));
try self.spillRegisters(&.{ .rax, .rdx, .rbx, .rcx });
const regs_lock = self.register_manager.lockRegsAssumeUnused(4, .{ .rax, .rdx, .rbx, .rcx });
defer for (regs_lock) |lock| self.register_manager.unlockReg(lock);
const exp_mcv = try self.resolveInst(extra.expected_value);
if (val_abi_size > 8) {
const exp_addr_mcv: MCValue = switch (exp_mcv) {
.memory, .indirect, .load_frame => exp_mcv.address(),
else => .{ .register = try self.copyToTmpRegister(Type.usize, exp_mcv.address()) },
};
const exp_addr_lock =
if (exp_addr_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (exp_addr_lock) |lock| self.register_manager.unlockReg(lock);
try self.genSetReg(.rax, Type.usize, exp_addr_mcv.deref(), .{});
try self.genSetReg(.rdx, Type.usize, exp_addr_mcv.offset(8).deref(), .{});
} else try self.genSetReg(.rax, val_ty, exp_mcv, .{});
const new_mcv = try self.resolveInst(extra.new_value);
const new_reg = if (val_abi_size > 8) new: {
const new_addr_mcv: MCValue = switch (new_mcv) {
.memory, .indirect, .load_frame => new_mcv.address(),
else => .{ .register = try self.copyToTmpRegister(Type.usize, new_mcv.address()) },
};
const new_addr_lock =
if (new_addr_mcv.getReg()) |reg| self.register_manager.lockReg(reg) else null;
defer if (new_addr_lock) |lock| self.register_manager.unlockReg(lock);
try self.genSetReg(.rbx, Type.usize, new_addr_mcv.deref(), .{});
try self.genSetReg(.rcx, Type.usize, new_addr_mcv.offset(8).deref(), .{});
break :new null;
} else try self.copyToTmpRegister(val_ty, new_mcv);
const new_lock = if (new_reg) |reg| self.register_manager.lockRegAssumeUnused(reg) else null;
defer if (new_lock) |lock| self.register_manager.unlockReg(lock);
const ptr_mcv = try self.resolveInst(extra.ptr);
const mem_size = Memory.Size.fromSize(val_abi_size);
const ptr_mem: Memory = switch (ptr_mcv) {
.immediate, .register, .register_offset, .lea_frame => try ptr_mcv.deref().mem(self, mem_size),
else => .{
.base = .{ .reg = try self.copyToTmpRegister(ptr_ty, ptr_mcv) },
.mod = .{ .rm = .{ .size = mem_size } },
},
};
switch (ptr_mem.mod) {
.rm => {},
.off => return self.fail("TODO airCmpxchg with {s}", .{@tagName(ptr_mcv)}),
}
const ptr_lock = switch (ptr_mem.base) {
.none, .frame, .reloc => null,
.reg => |reg| self.register_manager.lockReg(reg),
};
defer if (ptr_lock) |lock| self.register_manager.unlockReg(lock);
try self.spillEflagsIfOccupied();
if (val_abi_size <= 8) try self.asmMemoryRegister(
.{ .@"lock _", .cmpxchg },
ptr_mem,
registerAlias(new_reg.?, val_abi_size),
) else try self.asmMemory(.{ .@"lock _16b", .cmpxchg }, ptr_mem);
const result: MCValue = result: {
if (self.liveness.isUnused(inst)) break :result .unreach;
if (val_abi_size <= 8) {
self.eflags_inst = inst;
break :result .{ .register_overflow = .{ .reg = .rax, .eflags = .ne } };
}
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genCopy(Type.usize, dst_mcv, .{ .register = .rax }, .{});
try self.genCopy(Type.usize, dst_mcv.address().offset(8).deref(), .{ .register = .rdx }, .{});
try self.genCopy(Type.bool, dst_mcv.address().offset(16).deref(), .{ .eflags = .ne }, .{});
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ extra.ptr, extra.expected_value, extra.new_value });
}
fn atomicOp(
self: *Self,
ptr_mcv: MCValue,
val_mcv: MCValue,
ptr_ty: Type,
val_ty: Type,
unused: bool,
rmw_op: ?std.builtin.AtomicRmwOp,
order: std.builtin.AtomicOrder,
) InnerError!MCValue {
const mod = self.bin_file.comp.module.?;
const ptr_lock = switch (ptr_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (ptr_lock) |lock| self.register_manager.unlockReg(lock);
const val_lock = switch (val_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (val_lock) |lock| self.register_manager.unlockReg(lock);
const val_abi_size: u32 = @intCast(val_ty.abiSize(mod));
const mem_size = Memory.Size.fromSize(val_abi_size);
const ptr_mem: Memory = switch (ptr_mcv) {
.immediate, .register, .register_offset, .lea_frame => try ptr_mcv.deref().mem(self, mem_size),
else => .{
.base = .{ .reg = try self.copyToTmpRegister(ptr_ty, ptr_mcv) },
.mod = .{ .rm = .{ .size = mem_size } },
},
};
switch (ptr_mem.mod) {
.rm => {},
.off => return self.fail("TODO airCmpxchg with {s}", .{@tagName(ptr_mcv)}),
}
const mem_lock = switch (ptr_mem.base) {
.none, .frame, .reloc => null,
.reg => |reg| self.register_manager.lockReg(reg),
};
defer if (mem_lock) |lock| self.register_manager.unlockReg(lock);
const use_sse = rmw_op orelse .Xchg != .Xchg and val_ty.isRuntimeFloat();
const strat: enum { lock, loop, libcall } = if (use_sse) .loop else switch (rmw_op orelse .Xchg) {
.Xchg,
.Add,
.Sub,
=> if (val_abi_size <= 8) .lock else if (val_abi_size <= 16) .loop else .libcall,
.And,
.Or,
.Xor,
=> if (val_abi_size <= 8 and unused) .lock else if (val_abi_size <= 16) .loop else .libcall,
.Nand,
.Max,
.Min,
=> if (val_abi_size <= 16) .loop else .libcall,
};
switch (strat) {
.lock => {
const tag: Mir.Inst.Tag = if (rmw_op) |op| switch (op) {
.Xchg => if (unused) .mov else .xchg,
.Add => if (unused) .add else .xadd,
.Sub => if (unused) .sub else .xadd,
.And => .@"and",
.Or => .@"or",
.Xor => .xor,
else => unreachable,
} else switch (order) {
.Unordered, .Monotonic, .Release, .AcqRel => .mov,
.Acquire => unreachable,
.SeqCst => .xchg,
};
const dst_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const dst_mcv = MCValue{ .register = dst_reg };
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
try self.genSetReg(dst_reg, val_ty, val_mcv, .{});
if (rmw_op == std.builtin.AtomicRmwOp.Sub and tag == .xadd) {
try self.genUnOpMir(.{ ._, .neg }, val_ty, dst_mcv);
}
try self.asmMemoryRegister(
switch (tag) {
.mov, .xchg => .{ ._, tag },
.xadd, .add, .sub, .@"and", .@"or", .xor => .{ .@"lock _", tag },
else => unreachable,
},
ptr_mem,
registerAlias(dst_reg, val_abi_size),
);
return if (unused) .unreach else dst_mcv;
},
.loop => _ = if (val_abi_size <= 8) {
const sse_reg: Register = if (use_sse)
try self.register_manager.allocReg(null, abi.RegisterClass.sse)
else
undefined;
const sse_lock =
if (use_sse) self.register_manager.lockRegAssumeUnused(sse_reg) else undefined;
defer if (use_sse) self.register_manager.unlockReg(sse_lock);
const tmp_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.asmRegisterMemory(.{ ._, .mov }, registerAlias(.rax, val_abi_size), ptr_mem);
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
if (!use_sse and rmw_op orelse .Xchg != .Xchg) {
try self.genSetReg(tmp_reg, val_ty, .{ .register = .rax }, .{});
}
if (rmw_op) |op| if (use_sse) {
const mir_tag = @as(?Mir.Inst.FixedTag, switch (op) {
.Add => switch (val_ty.floatBits(self.target.*)) {
32 => if (self.hasFeature(.avx)) .{ .v_ss, .add } else .{ ._ss, .add },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .add } else .{ ._sd, .add },
else => null,
},
.Sub => switch (val_ty.floatBits(self.target.*)) {
32 => if (self.hasFeature(.avx)) .{ .v_ss, .sub } else .{ ._ss, .sub },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .sub } else .{ ._sd, .sub },
else => null,
},
.Min => switch (val_ty.floatBits(self.target.*)) {
32 => if (self.hasFeature(.avx)) .{ .v_ss, .min } else .{ ._ss, .min },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .min } else .{ ._sd, .min },
else => null,
},
.Max => switch (val_ty.floatBits(self.target.*)) {
32 => if (self.hasFeature(.avx)) .{ .v_ss, .max } else .{ ._ss, .max },
64 => if (self.hasFeature(.avx)) .{ .v_sd, .max } else .{ ._sd, .max },
else => null,
},
else => unreachable,
}) orelse return self.fail("TODO implement atomicOp of {s} for {}", .{
@tagName(op), val_ty.fmt(mod),
});
try self.genSetReg(sse_reg, val_ty, .{ .register = .rax }, .{});
switch (mir_tag[0]) {
.v_ss, .v_sd => if (val_mcv.isMemory()) try self.asmRegisterRegisterMemory(
mir_tag,
sse_reg.to128(),
sse_reg.to128(),
try val_mcv.mem(self, self.memSize(val_ty)),
) else try self.asmRegisterRegisterRegister(
mir_tag,
sse_reg.to128(),
sse_reg.to128(),
(if (val_mcv.isRegister())
val_mcv.getReg().?
else
try self.copyToTmpRegister(val_ty, val_mcv)).to128(),
),
._ss, ._sd => if (val_mcv.isMemory()) try self.asmRegisterMemory(
mir_tag,
sse_reg.to128(),
try val_mcv.mem(self, self.memSize(val_ty)),
) else try self.asmRegisterRegister(
mir_tag,
sse_reg.to128(),
(if (val_mcv.isRegister())
val_mcv.getReg().?
else
try self.copyToTmpRegister(val_ty, val_mcv)).to128(),
),
else => unreachable,
}
try self.genSetReg(tmp_reg, val_ty, .{ .register = sse_reg }, .{});
} else switch (op) {
.Xchg => try self.genSetReg(tmp_reg, val_ty, val_mcv, .{}),
.Add => try self.genBinOpMir(.{ ._, .add }, val_ty, tmp_mcv, val_mcv),
.Sub => try self.genBinOpMir(.{ ._, .sub }, val_ty, tmp_mcv, val_mcv),
.And => try self.genBinOpMir(.{ ._, .@"and" }, val_ty, tmp_mcv, val_mcv),
.Nand => {
try self.genBinOpMir(.{ ._, .@"and" }, val_ty, tmp_mcv, val_mcv);
try self.genUnOpMir(.{ ._, .not }, val_ty, tmp_mcv);
},
.Or => try self.genBinOpMir(.{ ._, .@"or" }, val_ty, tmp_mcv, val_mcv),
.Xor => try self.genBinOpMir(.{ ._, .xor }, val_ty, tmp_mcv, val_mcv),
.Min, .Max => {
const cc: Condition = switch (if (val_ty.isAbiInt(mod))
val_ty.intInfo(mod).signedness
else
.unsigned) {
.unsigned => switch (op) {
.Min => .a,
.Max => .b,
else => unreachable,
},
.signed => switch (op) {
.Min => .g,
.Max => .l,
else => unreachable,
},
};
const cmov_abi_size = @max(val_abi_size, 2);
switch (val_mcv) {
.register => |val_reg| {
try self.genBinOpMir(.{ ._, .cmp }, val_ty, tmp_mcv, val_mcv);
try self.asmCmovccRegisterRegister(
cc,
registerAlias(tmp_reg, cmov_abi_size),
registerAlias(val_reg, cmov_abi_size),
);
},
.memory, .indirect, .load_frame => {
try self.genBinOpMir(.{ ._, .cmp }, val_ty, tmp_mcv, val_mcv);
try self.asmCmovccRegisterMemory(
cc,
registerAlias(tmp_reg, cmov_abi_size),
try val_mcv.mem(self, Memory.Size.fromSize(cmov_abi_size)),
);
},
else => {
const mat_reg = try self.copyToTmpRegister(val_ty, val_mcv);
const mat_lock = self.register_manager.lockRegAssumeUnused(mat_reg);
defer self.register_manager.unlockReg(mat_lock);
try self.genBinOpMir(
.{ ._, .cmp },
val_ty,
tmp_mcv,
.{ .register = mat_reg },
);
try self.asmCmovccRegisterRegister(
cc,
registerAlias(tmp_reg, cmov_abi_size),
registerAlias(mat_reg, cmov_abi_size),
);
},
}
},
};
try self.asmMemoryRegister(
.{ .@"lock _", .cmpxchg },
ptr_mem,
registerAlias(tmp_reg, val_abi_size),
);
_ = try self.asmJccReloc(.ne, loop);
return if (unused) .unreach else .{ .register = .rax };
} else {
try self.asmRegisterMemory(.{ ._, .mov }, .rax, .{
.base = ptr_mem.base,
.mod = .{ .rm = .{
.size = .qword,
.index = ptr_mem.mod.rm.index,
.scale = ptr_mem.mod.rm.scale,
.disp = ptr_mem.mod.rm.disp + 0,
} },
});
try self.asmRegisterMemory(.{ ._, .mov }, .rdx, .{
.base = ptr_mem.base,
.mod = .{ .rm = .{
.size = .qword,
.index = ptr_mem.mod.rm.index,
.scale = ptr_mem.mod.rm.scale,
.disp = ptr_mem.mod.rm.disp + 8,
} },
});
const loop: Mir.Inst.Index = @intCast(self.mir_instructions.len);
const val_mem_mcv: MCValue = switch (val_mcv) {
.memory, .indirect, .load_frame => val_mcv,
else => .{ .indirect = .{
.reg = try self.copyToTmpRegister(Type.usize, val_mcv.address()),
} },
};
const val_lo_mem = try val_mem_mcv.mem(self, .qword);
const val_hi_mem = try val_mem_mcv.address().offset(8).deref().mem(self, .qword);
if (rmw_op != std.builtin.AtomicRmwOp.Xchg) {
try self.asmRegisterRegister(.{ ._, .mov }, .rbx, .rax);
try self.asmRegisterRegister(.{ ._, .mov }, .rcx, .rdx);
}
if (rmw_op) |op| switch (op) {
.Xchg => {
try self.asmRegisterMemory(.{ ._, .mov }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .mov }, .rcx, val_hi_mem);
},
.Add => {
try self.asmRegisterMemory(.{ ._, .add }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .adc }, .rcx, val_hi_mem);
},
.Sub => {
try self.asmRegisterMemory(.{ ._, .sub }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .sbb }, .rcx, val_hi_mem);
},
.And => {
try self.asmRegisterMemory(.{ ._, .@"and" }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .@"and" }, .rcx, val_hi_mem);
},
.Nand => {
try self.asmRegisterMemory(.{ ._, .@"and" }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .@"and" }, .rcx, val_hi_mem);
try self.asmRegister(.{ ._, .not }, .rbx);
try self.asmRegister(.{ ._, .not }, .rcx);
},
.Or => {
try self.asmRegisterMemory(.{ ._, .@"or" }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .@"or" }, .rcx, val_hi_mem);
},
.Xor => {
try self.asmRegisterMemory(.{ ._, .xor }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .xor }, .rcx, val_hi_mem);
},
.Min, .Max => {
const cc: Condition = switch (if (val_ty.isAbiInt(mod))
val_ty.intInfo(mod).signedness
else
.unsigned) {
.unsigned => switch (op) {
.Min => .a,
.Max => .b,
else => unreachable,
},
.signed => switch (op) {
.Min => .g,
.Max => .l,
else => unreachable,
},
};
const tmp_reg = try self.copyToTmpRegister(Type.usize, .{ .register = .rcx });
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.asmRegisterMemory(.{ ._, .cmp }, .rbx, val_lo_mem);
try self.asmRegisterMemory(.{ ._, .sbb }, tmp_reg, val_hi_mem);
try self.asmCmovccRegisterMemory(cc, .rbx, val_lo_mem);
try self.asmCmovccRegisterMemory(cc, .rcx, val_hi_mem);
},
};
try self.asmMemory(.{ .@"lock _16b", .cmpxchg }, ptr_mem);
_ = try self.asmJccReloc(.ne, loop);
if (unused) return .unreach;
const dst_mcv = try self.allocTempRegOrMem(val_ty, false);
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_mcv.load_frame.off + 0,
} },
}, .rax);
try self.asmMemoryRegister(.{ ._, .mov }, .{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_mcv.load_frame.off + 8,
} },
}, .rdx);
return dst_mcv;
},
.libcall => return self.fail("TODO implement x86 atomic libcall", .{}),
}
}
fn airAtomicRmw(self: *Self, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.AtomicRmw, pl_op.payload).data;
try self.spillRegisters(&.{ .rax, .rdx, .rbx, .rcx });
const regs_lock = self.register_manager.lockRegsAssumeUnused(4, .{ .rax, .rdx, .rbx, .rcx });
defer for (regs_lock) |lock| self.register_manager.unlockReg(lock);
const unused = self.liveness.isUnused(inst);
const ptr_ty = self.typeOf(pl_op.operand);
const ptr_mcv = try self.resolveInst(pl_op.operand);
const val_ty = self.typeOf(extra.operand);
const val_mcv = try self.resolveInst(extra.operand);
const result =
try self.atomicOp(ptr_mcv, val_mcv, ptr_ty, val_ty, unused, extra.op(), extra.ordering());
return self.finishAir(inst, result, .{ pl_op.operand, extra.operand, .none });
}
fn airAtomicLoad(self: *Self, inst: Air.Inst.Index) !void {
const atomic_load = self.air.instructions.items(.data)[@intFromEnum(inst)].atomic_load;
const ptr_ty = self.typeOf(atomic_load.ptr);
const ptr_mcv = try self.resolveInst(atomic_load.ptr);
const ptr_lock = switch (ptr_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (ptr_lock) |lock| self.register_manager.unlockReg(lock);
const dst_mcv =
if (self.reuseOperand(inst, atomic_load.ptr, 0, ptr_mcv))
ptr_mcv
else
try self.allocRegOrMem(inst, true);
try self.load(dst_mcv, ptr_ty, ptr_mcv);
return self.finishAir(inst, dst_mcv, .{ atomic_load.ptr, .none, .none });
}
fn airAtomicStore(self: *Self, inst: Air.Inst.Index, order: std.builtin.AtomicOrder) !void {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const ptr_mcv = try self.resolveInst(bin_op.lhs);
const val_ty = self.typeOf(bin_op.rhs);
const val_mcv = try self.resolveInst(bin_op.rhs);
const result = try self.atomicOp(ptr_mcv, val_mcv, ptr_ty, val_ty, true, null, order);
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMemset(self: *Self, inst: Air.Inst.Index, safety: bool) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
result: {
if (!safety and (try self.resolveInst(bin_op.rhs)) == .undef) break :result;
try self.spillRegisters(&.{ .rax, .rdi, .rsi, .rcx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(4, .{ .rax, .rdi, .rsi, .rcx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const dst_ptr = try self.resolveInst(bin_op.lhs);
const dst_ptr_ty = self.typeOf(bin_op.lhs);
const dst_ptr_lock: ?RegisterLock = switch (dst_ptr) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (dst_ptr_lock) |lock| self.register_manager.unlockReg(lock);
const src_val = try self.resolveInst(bin_op.rhs);
const elem_ty = self.typeOf(bin_op.rhs);
const src_val_lock: ?RegisterLock = switch (src_val) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (src_val_lock) |lock| self.register_manager.unlockReg(lock);
const elem_abi_size: u31 = @intCast(elem_ty.abiSize(mod));
if (elem_abi_size == 1) {
const ptr: MCValue = switch (dst_ptr_ty.ptrSize(mod)) {
// TODO: this only handles slices stored in the stack
.Slice => dst_ptr,
.One => dst_ptr,
.C, .Many => unreachable,
};
const len: MCValue = switch (dst_ptr_ty.ptrSize(mod)) {
// TODO: this only handles slices stored in the stack
.Slice => dst_ptr.address().offset(8).deref(),
.One => .{ .immediate = dst_ptr_ty.childType(mod).arrayLen(mod) },
.C, .Many => unreachable,
};
const len_lock: ?RegisterLock = switch (len) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (len_lock) |lock| self.register_manager.unlockReg(lock);
try self.genInlineMemset(ptr, src_val, len, .{ .safety = safety });
break :result;
}
// Store the first element, and then rely on memcpy copying forwards.
// Length zero requires a runtime check - so we handle arrays specially
// here to elide it.
switch (dst_ptr_ty.ptrSize(mod)) {
.Slice => {
const slice_ptr_ty = dst_ptr_ty.slicePtrFieldType(mod);
// TODO: this only handles slices stored in the stack
const ptr = dst_ptr;
const len = dst_ptr.address().offset(8).deref();
// Used to store the number of elements for comparison.
// After comparison, updated to store number of bytes needed to copy.
const len_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const len_mcv: MCValue = .{ .register = len_reg };
const len_lock = self.register_manager.lockRegAssumeUnused(len_reg);
defer self.register_manager.unlockReg(len_lock);
try self.genSetReg(len_reg, Type.usize, len, .{});
try self.asmRegisterRegister(.{ ._, .@"test" }, len_reg, len_reg);
const skip_reloc = try self.asmJccReloc(.z, undefined);
try self.store(slice_ptr_ty, ptr, src_val, .{ .safety = safety });
const second_elem_ptr_reg =
try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const second_elem_ptr_mcv: MCValue = .{ .register = second_elem_ptr_reg };
const second_elem_ptr_lock =
self.register_manager.lockRegAssumeUnused(second_elem_ptr_reg);
defer self.register_manager.unlockReg(second_elem_ptr_lock);
try self.genSetReg(second_elem_ptr_reg, Type.usize, .{ .register_offset = .{
.reg = try self.copyToTmpRegister(Type.usize, ptr),
.off = elem_abi_size,
} }, .{});
try self.genBinOpMir(.{ ._, .sub }, Type.usize, len_mcv, .{ .immediate = 1 });
try self.asmRegisterRegisterImmediate(
.{ .i_, .mul },
len_reg,
len_reg,
Immediate.s(elem_abi_size),
);
try self.genInlineMemcpy(second_elem_ptr_mcv, ptr, len_mcv);
self.performReloc(skip_reloc);
},
.One => {
const elem_ptr_ty = try mod.singleMutPtrType(elem_ty);
const len = dst_ptr_ty.childType(mod).arrayLen(mod);
assert(len != 0); // prevented by Sema
try self.store(elem_ptr_ty, dst_ptr, src_val, .{ .safety = safety });
const second_elem_ptr_reg =
try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const second_elem_ptr_mcv: MCValue = .{ .register = second_elem_ptr_reg };
const second_elem_ptr_lock =
self.register_manager.lockRegAssumeUnused(second_elem_ptr_reg);
defer self.register_manager.unlockReg(second_elem_ptr_lock);
try self.genSetReg(second_elem_ptr_reg, Type.usize, .{ .register_offset = .{
.reg = try self.copyToTmpRegister(Type.usize, dst_ptr),
.off = elem_abi_size,
} }, .{});
const bytes_to_copy: MCValue = .{ .immediate = elem_abi_size * (len - 1) };
try self.genInlineMemcpy(second_elem_ptr_mcv, dst_ptr, bytes_to_copy);
},
.C, .Many => unreachable,
}
}
return self.finishAir(inst, .unreach, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMemcpy(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
try self.spillRegisters(&.{ .rdi, .rsi, .rcx });
const reg_locks = self.register_manager.lockRegsAssumeUnused(3, .{ .rdi, .rsi, .rcx });
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
const dst_ptr = try self.resolveInst(bin_op.lhs);
const dst_ptr_ty = self.typeOf(bin_op.lhs);
const dst_ptr_lock: ?RegisterLock = switch (dst_ptr) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (dst_ptr_lock) |lock| self.register_manager.unlockReg(lock);
const src_ptr = try self.resolveInst(bin_op.rhs);
const src_ptr_lock: ?RegisterLock = switch (src_ptr) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (src_ptr_lock) |lock| self.register_manager.unlockReg(lock);
const len: MCValue = switch (dst_ptr_ty.ptrSize(mod)) {
.Slice => len: {
const len_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const len_lock = self.register_manager.lockRegAssumeUnused(len_reg);
defer self.register_manager.unlockReg(len_lock);
try self.asmRegisterMemoryImmediate(
.{ .i_, .mul },
len_reg,
try dst_ptr.address().offset(8).deref().mem(self, .qword),
Immediate.s(@intCast(dst_ptr_ty.childType(mod).abiSize(mod))),
);
break :len .{ .register = len_reg };
},
.One => len: {
const array_ty = dst_ptr_ty.childType(mod);
break :len .{ .immediate = array_ty.arrayLen(mod) * array_ty.childType(mod).abiSize(mod) };
},
.C, .Many => unreachable,
};
const len_lock: ?RegisterLock = switch (len) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (len_lock) |lock| self.register_manager.unlockReg(lock);
// TODO: dst_ptr and src_ptr could be slices rather than raw pointers
try self.genInlineMemcpy(dst_ptr, src_ptr, len);
return self.finishAir(inst, .unreach, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airTagName(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const inst_ty = self.typeOfIndex(inst);
const enum_ty = self.typeOf(un_op);
const resolved_cc = abi.resolveCallingConvention(.Unspecified, self.target.*);
// We need a properly aligned and sized call frame to be able to call this function.
{
const needed_call_frame = FrameAlloc.init(.{
.size = inst_ty.abiSize(mod),
.alignment = inst_ty.abiAlignment(mod),
});
const frame_allocs_slice = self.frame_allocs.slice();
const stack_frame_size =
&frame_allocs_slice.items(.abi_size)[@intFromEnum(FrameIndex.call_frame)];
stack_frame_size.* = @max(stack_frame_size.*, needed_call_frame.abi_size);
const stack_frame_align =
&frame_allocs_slice.items(.abi_align)[@intFromEnum(FrameIndex.call_frame)];
stack_frame_align.* = stack_frame_align.max(needed_call_frame.abi_align);
}
try self.spillEflagsIfOccupied();
try self.spillCallerPreservedRegs(resolved_cc);
const param_regs = abi.getCAbiIntParamRegs(resolved_cc);
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.genSetReg(param_regs[0], Type.usize, dst_mcv.address(), .{});
const operand = try self.resolveInst(un_op);
try self.genSetReg(param_regs[1], enum_ty, operand, .{});
try self.genLazySymbolRef(
.call,
.rax,
link.File.LazySymbol.initDecl(.code, enum_ty.getOwnerDecl(mod), mod),
);
return self.finishAir(inst, dst_mcv, .{ un_op, .none, .none });
}
fn airErrorName(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const err_ty = self.typeOf(un_op);
const err_mcv = try self.resolveInst(un_op);
const err_reg = try self.copyToTmpRegister(err_ty, err_mcv);
const err_lock = self.register_manager.lockRegAssumeUnused(err_reg);
defer self.register_manager.unlockReg(err_lock);
const addr_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const addr_lock = self.register_manager.lockRegAssumeUnused(addr_reg);
defer self.register_manager.unlockReg(addr_lock);
try self.genLazySymbolRef(.lea, addr_reg, link.File.LazySymbol.initDecl(.const_data, null, mod));
const start_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const start_lock = self.register_manager.lockRegAssumeUnused(start_reg);
defer self.register_manager.unlockReg(start_lock);
const end_reg = try self.register_manager.allocReg(null, abi.RegisterClass.gp);
const end_lock = self.register_manager.lockRegAssumeUnused(end_reg);
defer self.register_manager.unlockReg(end_lock);
try self.truncateRegister(err_ty, err_reg.to32());
try self.asmRegisterMemory(
.{ ._, .mov },
start_reg.to32(),
.{
.base = .{ .reg = addr_reg.to64() },
.mod = .{ .rm = .{
.size = .dword,
.index = err_reg.to64(),
.scale = .@"4",
.disp = 4,
} },
},
);
try self.asmRegisterMemory(
.{ ._, .mov },
end_reg.to32(),
.{
.base = .{ .reg = addr_reg.to64() },
.mod = .{ .rm = .{
.size = .dword,
.index = err_reg.to64(),
.scale = .@"4",
.disp = 8,
} },
},
);
try self.asmRegisterRegister(.{ ._, .sub }, end_reg.to32(), start_reg.to32());
try self.asmRegisterMemory(
.{ ._, .lea },
start_reg.to64(),
.{
.base = .{ .reg = addr_reg.to64() },
.mod = .{ .rm = .{
.size = .dword,
.index = start_reg.to64(),
} },
},
);
try self.asmRegisterMemory(
.{ ._, .lea },
end_reg.to32(),
.{
.base = .{ .reg = end_reg.to64() },
.mod = .{ .rm = .{
.size = .byte,
.disp = -1,
} },
},
);
const dst_mcv = try self.allocRegOrMem(inst, false);
try self.asmMemoryRegister(
.{ ._, .mov },
.{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_mcv.load_frame.off,
} },
},
start_reg.to64(),
);
try self.asmMemoryRegister(
.{ ._, .mov },
.{
.base = .{ .frame = dst_mcv.load_frame.index },
.mod = .{ .rm = .{
.size = .qword,
.disp = dst_mcv.load_frame.off + 8,
} },
},
end_reg.to64(),
);
return self.finishAir(inst, dst_mcv, .{ un_op, .none, .none });
}
fn airSplat(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const vector_ty = self.typeOfIndex(inst);
const vector_len = vector_ty.vectorLen(mod);
const dst_rc = self.regClassForType(vector_ty);
const scalar_ty = self.typeOf(ty_op.operand);
const result: MCValue = result: {
switch (scalar_ty.zigTypeTag(mod)) {
else => {},
.Bool => {
const regs =
try self.register_manager.allocRegs(2, .{ inst, null }, abi.RegisterClass.gp);
const reg_locks = self.register_manager.lockRegsAssumeUnused(2, regs);
defer for (reg_locks) |lock| self.register_manager.unlockReg(lock);
try self.genSetReg(regs[1], vector_ty, .{ .immediate = 0 }, .{});
try self.genSetReg(
regs[1],
vector_ty,
.{ .immediate = @as(u64, math.maxInt(u64)) >> @intCast(64 - vector_len) },
.{},
);
const src_mcv = try self.resolveInst(ty_op.operand);
const abi_size = @max(math.divCeil(u32, vector_len, 8) catch unreachable, 4);
try self.asmCmovccRegisterRegister(
switch (src_mcv) {
.eflags => |cc| cc,
.register => |src_reg| cc: {
try self.asmRegisterImmediate(
.{ ._, .@"test" },
src_reg.to8(),
Immediate.u(1),
);
break :cc .nz;
},
else => cc: {
try self.asmMemoryImmediate(
.{ ._, .@"test" },
try src_mcv.mem(self, .byte),
Immediate.u(1),
);
break :cc .nz;
},
},
registerAlias(regs[0], abi_size),
registerAlias(regs[1], abi_size),
);
break :result .{ .register = regs[0] };
},
.Int => if (self.hasFeature(.avx2)) avx2: {
const mir_tag = @as(?Mir.Inst.FixedTag, switch (scalar_ty.intInfo(mod).bits) {
else => null,
1...8 => switch (vector_len) {
else => null,
1...32 => .{ .vp_b, .broadcast },
},
9...16 => switch (vector_len) {
else => null,
1...16 => .{ .vp_w, .broadcast },
},
17...32 => switch (vector_len) {
else => null,
1...8 => .{ .vp_d, .broadcast },
},
33...64 => switch (vector_len) {
else => null,
1...4 => .{ .vp_q, .broadcast },
},
65...128 => switch (vector_len) {
else => null,
1...2 => .{ .vp_i128, .broadcast },
},
}) orelse break :avx2;
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.sse);
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
const src_mcv = try self.resolveInst(ty_op.operand);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
mir_tag,
registerAlias(dst_reg, @intCast(vector_ty.abiSize(mod))),
try src_mcv.mem(self, self.memSize(scalar_ty)),
) else {
if (mir_tag[0] == .vp_i128) break :avx2;
try self.genSetReg(dst_reg, scalar_ty, src_mcv, .{});
try self.asmRegisterRegister(
mir_tag,
registerAlias(dst_reg, @intCast(vector_ty.abiSize(mod))),
registerAlias(dst_reg, @intCast(scalar_ty.abiSize(mod))),
);
}
break :result .{ .register = dst_reg };
} else {
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.sse);
const dst_lock = self.register_manager.lockRegAssumeUnused(dst_reg);
defer self.register_manager.unlockReg(dst_lock);
try self.genSetReg(dst_reg, scalar_ty, .{ .air_ref = ty_op.operand }, .{});
if (vector_len == 1) break :result .{ .register = dst_reg };
const dst_alias = registerAlias(dst_reg, @intCast(vector_ty.abiSize(mod)));
const scalar_bits = scalar_ty.intInfo(mod).bits;
if (switch (scalar_bits) {
1...8 => true,
9...128 => false,
else => unreachable,
}) if (self.hasFeature(.avx)) try self.asmRegisterRegisterRegister(
.{ .vp_, .unpcklbw },
dst_alias,
dst_alias,
dst_alias,
) else try self.asmRegisterRegister(
.{ .p_, .unpcklbw },
dst_alias,
dst_alias,
);
if (switch (scalar_bits) {
1...8 => vector_len > 2,
9...16 => true,
17...128 => false,
else => unreachable,
}) try self.asmRegisterRegisterImmediate(
.{ if (self.hasFeature(.avx)) .vp_w else .p_w, .shufl },
dst_alias,
dst_alias,
Immediate.u(0),
);
if (switch (scalar_bits) {
1...8 => vector_len > 4,
9...16 => vector_len > 2,
17...64 => true,
65...128 => false,
else => unreachable,
}) try self.asmRegisterRegisterImmediate(
.{ if (self.hasFeature(.avx)) .vp_d else .p_d, .shuf },
dst_alias,
dst_alias,
Immediate.u(if (scalar_bits <= 64) 0b00_00_00_00 else 0b01_00_01_00),
);
break :result .{ .register = dst_reg };
},
.Float => switch (scalar_ty.floatBits(self.target.*)) {
32 => switch (vector_len) {
1 => {
const src_mcv = try self.resolveInst(ty_op.operand);
if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result src_mcv;
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
try self.genSetReg(dst_reg, scalar_ty, src_mcv, .{});
break :result .{ .register = dst_reg };
},
2...4 => {
const src_mcv = try self.resolveInst(ty_op.operand);
if (self.hasFeature(.avx)) {
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_ss, .broadcast },
dst_reg.to128(),
try src_mcv.mem(self, .dword),
) else {
const src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(scalar_ty, src_mcv);
try self.asmRegisterRegisterRegisterImmediate(
.{ .v_ps, .shuf },
dst_reg.to128(),
src_reg.to128(),
src_reg.to128(),
Immediate.u(0),
);
}
break :result .{ .register = dst_reg };
} else {
const dst_mcv = if (src_mcv.isRegister() and
self.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try self.copyToRegisterWithInstTracking(inst, scalar_ty, src_mcv);
const dst_reg = dst_mcv.getReg().?;
try self.asmRegisterRegisterImmediate(
.{ ._ps, .shuf },
dst_reg.to128(),
dst_reg.to128(),
Immediate.u(0),
);
break :result dst_mcv;
}
},
5...8 => if (self.hasFeature(.avx)) {
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_ss, .broadcast },
dst_reg.to256(),
try src_mcv.mem(self, .dword),
) else {
const src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(scalar_ty, src_mcv);
if (self.hasFeature(.avx2)) try self.asmRegisterRegister(
.{ .v_ss, .broadcast },
dst_reg.to256(),
src_reg.to128(),
) else {
try self.asmRegisterRegisterRegisterImmediate(
.{ .v_ps, .shuf },
dst_reg.to128(),
src_reg.to128(),
src_reg.to128(),
Immediate.u(0),
);
try self.asmRegisterRegisterRegisterImmediate(
.{ .v_f128, .insert },
dst_reg.to256(),
dst_reg.to256(),
dst_reg.to128(),
Immediate.u(1),
);
}
}
break :result .{ .register = dst_reg };
},
else => {},
},
64 => switch (vector_len) {
1 => {
const src_mcv = try self.resolveInst(ty_op.operand);
if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result src_mcv;
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
try self.genSetReg(dst_reg, scalar_ty, src_mcv, .{});
break :result .{ .register = dst_reg };
},
2 => {
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
if (self.hasFeature(.sse3)) {
if (src_mcv.isMemory()) try self.asmRegisterMemory(
if (self.hasFeature(.avx)) .{ .v_, .movddup } else .{ ._, .movddup },
dst_reg.to128(),
try src_mcv.mem(self, .qword),
) else try self.asmRegisterRegister(
if (self.hasFeature(.avx)) .{ .v_, .movddup } else .{ ._, .movddup },
dst_reg.to128(),
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(scalar_ty, src_mcv)).to128(),
);
break :result .{ .register = dst_reg };
} else try self.asmRegisterRegister(
.{ ._ps, .movlh },
dst_reg.to128(),
(if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(scalar_ty, src_mcv)).to128(),
);
},
3...4 => if (self.hasFeature(.avx)) {
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_sd, .broadcast },
dst_reg.to256(),
try src_mcv.mem(self, .qword),
) else {
const src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(scalar_ty, src_mcv);
if (self.hasFeature(.avx2)) try self.asmRegisterRegister(
.{ .v_sd, .broadcast },
dst_reg.to256(),
src_reg.to128(),
) else {
try self.asmRegisterRegister(
.{ .v_, .movddup },
dst_reg.to128(),
src_reg.to128(),
);
try self.asmRegisterRegisterRegisterImmediate(
.{ .v_f128, .insert },
dst_reg.to256(),
dst_reg.to256(),
dst_reg.to128(),
Immediate.u(1),
);
}
}
break :result .{ .register = dst_reg };
},
else => {},
},
128 => switch (vector_len) {
1 => {
const src_mcv = try self.resolveInst(ty_op.operand);
if (self.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result src_mcv;
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
try self.genSetReg(dst_reg, scalar_ty, src_mcv, .{});
break :result .{ .register = dst_reg };
},
2 => if (self.hasFeature(.avx)) {
const src_mcv = try self.resolveInst(ty_op.operand);
const dst_reg = try self.register_manager.allocReg(inst, dst_rc);
if (src_mcv.isMemory()) try self.asmRegisterMemory(
.{ .v_f128, .broadcast },
dst_reg.to256(),
try src_mcv.mem(self, .xword),
) else {
const src_reg = if (src_mcv.isRegister())
src_mcv.getReg().?
else
try self.copyToTmpRegister(scalar_ty, src_mcv);
try self.asmRegisterRegisterRegisterImmediate(
.{ .v_f128, .insert },
dst_reg.to256(),
src_reg.to256(),
src_reg.to128(),
Immediate.u(1),
);
}
break :result .{ .register = dst_reg };
},
else => {},
},
16, 80 => {},
else => unreachable,
},
}
return self.fail("TODO implement airSplat for {}", .{vector_ty.fmt(mod)});
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSelect(self: *Self, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
_ = extra;
return self.fail("TODO implement airSelect for x86_64", .{});
//return self.finishAir(inst, result, .{ pl_op.operand, extra.lhs, extra.rhs });
}
fn airShuffle(self: *Self, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
_ = ty_pl;
return self.fail("TODO implement airShuffle for x86_64", .{});
//return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airReduce(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const reduce = self.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
const result: MCValue = result: {
const operand_ty = self.typeOf(reduce.operand);
if (operand_ty.isVector(mod) and operand_ty.childType(mod).toIntern() == .bool_type) {
try self.spillEflagsIfOccupied();
const operand_mcv = try self.resolveInst(reduce.operand);
const mask_len = (math.cast(u6, operand_ty.vectorLen(mod)) orelse
return self.fail("TODO implement airReduce for {}", .{operand_ty.fmt(mod)}));
const mask = (@as(u64, 1) << mask_len) - 1;
const abi_size: u32 = @intCast(operand_ty.abiSize(mod));
switch (reduce.operation) {
.Or => {
if (operand_mcv.isMemory()) try self.asmMemoryImmediate(
.{ ._, .@"test" },
try operand_mcv.mem(self, Memory.Size.fromSize(abi_size)),
Immediate.u(mask),
) else {
const operand_reg = registerAlias(if (operand_mcv.isRegister())
operand_mcv.getReg().?
else
try self.copyToTmpRegister(operand_ty, operand_mcv), abi_size);
if (mask_len < abi_size * 8) try self.asmRegisterImmediate(
.{ ._, .@"test" },
operand_reg,
Immediate.u(mask),
) else try self.asmRegisterRegister(
.{ ._, .@"test" },
operand_reg,
operand_reg,
);
}
break :result .{ .eflags = .nz };
},
.And => {
const tmp_reg = try self.copyToTmpRegister(operand_ty, operand_mcv);
const tmp_lock = self.register_manager.lockRegAssumeUnused(tmp_reg);
defer self.register_manager.unlockReg(tmp_lock);
try self.asmRegister(.{ ._, .not }, tmp_reg);
if (mask_len < abi_size * 8)
try self.asmRegisterImmediate(.{ ._, .@"test" }, tmp_reg, Immediate.u(mask))
else
try self.asmRegisterRegister(.{ ._, .@"test" }, tmp_reg, tmp_reg);
break :result .{ .eflags = .z };
},
else => return self.fail("TODO implement airReduce for {}", .{operand_ty.fmt(mod)}),
}
}
return self.fail("TODO implement airReduce for {}", .{operand_ty.fmt(mod)});
};
return self.finishAir(inst, result, .{ reduce.operand, .none, .none });
}
fn airAggregateInit(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const result_ty = self.typeOfIndex(inst);
const len: usize = @intCast(result_ty.arrayLen(mod));
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const elements: []const Air.Inst.Ref = @ptrCast(self.air.extra[ty_pl.payload..][0..len]);
const result: MCValue = result: {
switch (result_ty.zigTypeTag(mod)) {
.Struct => {
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(result_ty, mod));
if (result_ty.containerLayout(mod) == .Packed) {
const struct_type = mod.typeToStruct(result_ty).?;
try self.genInlineMemset(
.{ .lea_frame = .{ .index = frame_index } },
.{ .immediate = 0 },
.{ .immediate = result_ty.abiSize(mod) },
.{},
);
for (elements, 0..) |elem, elem_i_usize| {
const elem_i: u32 = @intCast(elem_i_usize);
if ((try result_ty.structFieldValueComptime(mod, elem_i)) != null) continue;
const elem_ty = result_ty.structFieldType(elem_i, mod);
const elem_bit_size: u32 = @intCast(elem_ty.bitSize(mod));
if (elem_bit_size > 64) {
return self.fail(
"TODO airAggregateInit implement packed structs with large fields",
.{},
);
}
const elem_abi_size: u32 = @intCast(elem_ty.abiSize(mod));
const elem_abi_bits = elem_abi_size * 8;
const elem_off = mod.structPackedFieldBitOffset(struct_type, elem_i);
const elem_byte_off: i32 = @intCast(elem_off / elem_abi_bits * elem_abi_size);
const elem_bit_off = elem_off % elem_abi_bits;
const elem_mcv = try self.resolveInst(elem);
const mat_elem_mcv = switch (elem_mcv) {
.load_tlv => |sym_index| MCValue{ .lea_tlv = sym_index },
else => elem_mcv,
};
const elem_lock = switch (mat_elem_mcv) {
.register => |reg| self.register_manager.lockReg(reg),
.immediate => |imm| lock: {
if (imm == 0) continue;
break :lock null;
},
else => null,
};
defer if (elem_lock) |lock| self.register_manager.unlockReg(lock);
const elem_extra_bits = self.regExtraBits(elem_ty);
{
const temp_reg = try self.copyToTmpRegister(elem_ty, mat_elem_mcv);
const temp_alias = registerAlias(temp_reg, elem_abi_size);
const temp_lock = self.register_manager.lockRegAssumeUnused(temp_reg);
defer self.register_manager.unlockReg(temp_lock);
if (elem_bit_off < elem_extra_bits) {
try self.truncateRegister(elem_ty, temp_alias);
}
if (elem_bit_off > 0) try self.genShiftBinOpMir(
.{ ._l, .sh },
elem_ty,
.{ .register = temp_alias },
Type.u8,
.{ .immediate = elem_bit_off },
);
try self.genBinOpMir(
.{ ._, .@"or" },
elem_ty,
.{ .load_frame = .{ .index = frame_index, .off = elem_byte_off } },
.{ .register = temp_alias },
);
}
if (elem_bit_off > elem_extra_bits) {
const temp_reg = try self.copyToTmpRegister(elem_ty, mat_elem_mcv);
const temp_alias = registerAlias(temp_reg, elem_abi_size);
const temp_lock = self.register_manager.lockRegAssumeUnused(temp_reg);
defer self.register_manager.unlockReg(temp_lock);
if (elem_extra_bits > 0) {
try self.truncateRegister(elem_ty, temp_alias);
}
try self.genShiftBinOpMir(
.{ ._r, .sh },
elem_ty,
.{ .register = temp_reg },
Type.u8,
.{ .immediate = elem_abi_bits - elem_bit_off },
);
try self.genBinOpMir(
.{ ._, .@"or" },
elem_ty,
.{ .load_frame = .{
.index = frame_index,
.off = elem_byte_off + @as(i32, @intCast(elem_abi_size)),
} },
.{ .register = temp_alias },
);
}
}
} else for (elements, 0..) |elem, elem_i| {
if ((try result_ty.structFieldValueComptime(mod, elem_i)) != null) continue;
const elem_ty = result_ty.structFieldType(elem_i, mod);
const elem_off: i32 = @intCast(result_ty.structFieldOffset(elem_i, mod));
const elem_mcv = try self.resolveInst(elem);
const mat_elem_mcv = switch (elem_mcv) {
.load_tlv => |sym_index| MCValue{ .lea_tlv = sym_index },
else => elem_mcv,
};
try self.genSetMem(.{ .frame = frame_index }, elem_off, elem_ty, mat_elem_mcv, .{});
}
break :result .{ .load_frame = .{ .index = frame_index } };
},
.Array, .Vector => {
const elem_ty = result_ty.childType(mod);
if (result_ty.isVector(mod) and elem_ty.bitSize(mod) == 1) {
const result_size: u32 = @intCast(result_ty.abiSize(mod));
const dst_reg = try self.register_manager.allocReg(inst, abi.RegisterClass.gp);
try self.asmRegisterRegister(
.{ ._, .xor },
registerAlias(dst_reg, @min(result_size, 4)),
registerAlias(dst_reg, @min(result_size, 4)),
);
for (elements, 0..) |elem, elem_i| {
const elem_reg = try self.copyToTmpRegister(elem_ty, .{ .air_ref = elem });
const elem_lock = self.register_manager.lockRegAssumeUnused(elem_reg);
defer self.register_manager.unlockReg(elem_lock);
try self.asmRegisterImmediate(
.{ ._, .@"and" },
registerAlias(elem_reg, @min(result_size, 4)),
Immediate.u(1),
);
if (elem_i > 0) try self.asmRegisterImmediate(
.{ ._l, .sh },
registerAlias(elem_reg, result_size),
Immediate.u(@intCast(elem_i)),
);
try self.asmRegisterRegister(
.{ ._, .@"or" },
registerAlias(dst_reg, result_size),
registerAlias(elem_reg, result_size),
);
}
break :result .{ .register = dst_reg };
} else {
const frame_index = try self.allocFrameIndex(FrameAlloc.initSpill(result_ty, mod));
const elem_size: u32 = @intCast(elem_ty.abiSize(mod));
for (elements, 0..) |elem, elem_i| {
const elem_mcv = try self.resolveInst(elem);
const mat_elem_mcv = switch (elem_mcv) {
.load_tlv => |sym_index| MCValue{ .lea_tlv = sym_index },
else => elem_mcv,
};
const elem_off: i32 = @intCast(elem_size * elem_i);
try self.genSetMem(
.{ .frame = frame_index },
elem_off,
elem_ty,
mat_elem_mcv,
.{},
);
}
if (result_ty.sentinel(mod)) |sentinel| try self.genSetMem(
.{ .frame = frame_index },
@intCast(elem_size * elements.len),
elem_ty,
try self.genTypedValue(.{ .ty = elem_ty, .val = sentinel }),
.{},
);
break :result .{ .load_frame = .{ .index = frame_index } };
}
},
else => unreachable,
}
};
if (elements.len <= Liveness.bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
@memcpy(buf[0..elements.len], elements);
return self.finishAir(inst, result, buf);
}
var bt = self.liveness.iterateBigTomb(inst);
for (elements) |elem| try self.feed(&bt, elem);
return self.finishAirResult(inst, result);
}
fn airUnionInit(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ip = &mod.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
const result: MCValue = result: {
const union_ty = self.typeOfIndex(inst);
const layout = union_ty.unionGetLayout(mod);
const src_ty = self.typeOf(extra.init);
const src_mcv = try self.resolveInst(extra.init);
if (layout.tag_size == 0) {
if (layout.abi_size <= src_ty.abiSize(mod) and
self.reuseOperand(inst, extra.init, 0, src_mcv)) break :result src_mcv;
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(src_ty, dst_mcv, src_mcv, .{});
break :result dst_mcv;
}
const dst_mcv = try self.allocRegOrMem(inst, false);
const union_obj = mod.typeToUnion(union_ty).?;
const field_name = union_obj.field_names.get(ip)[extra.field_index];
const tag_ty = Type.fromInterned(union_obj.enum_tag_ty);
const field_index = tag_ty.enumFieldIndex(field_name, mod).?;
const tag_val = try mod.enumValueFieldIndex(tag_ty, field_index);
const tag_int_val = try tag_val.intFromEnum(tag_ty, mod);
const tag_int = tag_int_val.toUnsignedInt(mod);
const tag_off: i32 = if (layout.tag_align.compare(.lt, layout.payload_align))
@intCast(layout.payload_size)
else
0;
try self.genCopy(
tag_ty,
dst_mcv.address().offset(tag_off).deref(),
.{ .immediate = tag_int },
.{},
);
const pl_off: i32 = if (layout.tag_align.compare(.lt, layout.payload_align))
0
else
@intCast(layout.tag_size);
try self.genCopy(src_ty, dst_mcv.address().offset(pl_off).deref(), src_mcv, .{});
break :result dst_mcv;
};
return self.finishAir(inst, result, .{ extra.init, .none, .none });
}
fn airPrefetch(self: *Self, inst: Air.Inst.Index) !void {
const prefetch = self.air.instructions.items(.data)[@intFromEnum(inst)].prefetch;
return self.finishAir(inst, .unreach, .{ prefetch.ptr, .none, .none });
}
fn airMulAdd(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const ty = self.typeOfIndex(inst);
const ops = [3]Air.Inst.Ref{ extra.lhs, extra.rhs, pl_op.operand };
const result = result: {
if (switch (ty.scalarType(mod).floatBits(self.target.*)) {
16, 80, 128 => true,
32, 64 => !self.hasFeature(.fma),
else => unreachable,
}) {
if (ty.zigTypeTag(mod) != .Float) return self.fail("TODO implement airMulAdd for {}", .{
ty.fmt(mod),
});
var callee_buf: ["__fma?".len]u8 = undefined;
break :result try self.genCall(.{ .lib = .{
.return_type = ty.toIntern(),
.param_types = &.{ ty.toIntern(), ty.toIntern(), ty.toIntern() },
.callee = std.fmt.bufPrint(&callee_buf, "{s}fma{s}", .{
floatLibcAbiPrefix(ty),
floatLibcAbiSuffix(ty),
}) catch unreachable,
} }, &.{ ty, ty, ty }, &.{
.{ .air_ref = extra.lhs }, .{ .air_ref = extra.rhs }, .{ .air_ref = pl_op.operand },
});
}
var mcvs: [3]MCValue = undefined;
var locks = [1]?RegisterManager.RegisterLock{null} ** 3;
defer for (locks) |reg_lock| if (reg_lock) |lock| self.register_manager.unlockReg(lock);
var order = [1]u2{0} ** 3;
var unused = std.StaticBitSet(3).initFull();
for (ops, &mcvs, &locks, 0..) |op, *mcv, *lock, op_i| {
const op_index: u2 = @intCast(op_i);
mcv.* = try self.resolveInst(op);
if (unused.isSet(0) and mcv.isRegister() and self.reuseOperand(inst, op, op_index, mcv.*)) {
order[op_index] = 1;
unused.unset(0);
} else if (unused.isSet(2) and mcv.isMemory()) {
order[op_index] = 3;
unused.unset(2);
}
switch (mcv.*) {
.register => |reg| lock.* = self.register_manager.lockReg(reg),
else => {},
}
}
for (&order, &mcvs, &locks) |*mop_index, *mcv, *lock| {
if (mop_index.* != 0) continue;
mop_index.* = 1 + @as(u2, @intCast(unused.toggleFirstSet().?));
if (mop_index.* > 1 and mcv.isRegister()) continue;
const reg = try self.copyToTmpRegister(ty, mcv.*);
mcv.* = .{ .register = reg };
if (lock.*) |old_lock| self.register_manager.unlockReg(old_lock);
lock.* = self.register_manager.lockRegAssumeUnused(reg);
}
const mir_tag = @as(?Mir.Inst.FixedTag, if (mem.eql(u2, &order, &.{ 1, 3, 2 }) or
mem.eql(u2, &order, &.{ 3, 1, 2 }))
switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
32 => .{ .v_ss, .fmadd132 },
64 => .{ .v_sd, .fmadd132 },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
32 => switch (ty.vectorLen(mod)) {
1 => .{ .v_ss, .fmadd132 },
2...8 => .{ .v_ps, .fmadd132 },
else => null,
},
64 => switch (ty.vectorLen(mod)) {
1 => .{ .v_sd, .fmadd132 },
2...4 => .{ .v_pd, .fmadd132 },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}
else if (mem.eql(u2, &order, &.{ 2, 1, 3 }) or mem.eql(u2, &order, &.{ 1, 2, 3 }))
switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
32 => .{ .v_ss, .fmadd213 },
64 => .{ .v_sd, .fmadd213 },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
32 => switch (ty.vectorLen(mod)) {
1 => .{ .v_ss, .fmadd213 },
2...8 => .{ .v_ps, .fmadd213 },
else => null,
},
64 => switch (ty.vectorLen(mod)) {
1 => .{ .v_sd, .fmadd213 },
2...4 => .{ .v_pd, .fmadd213 },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}
else if (mem.eql(u2, &order, &.{ 2, 3, 1 }) or mem.eql(u2, &order, &.{ 3, 2, 1 }))
switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(self.target.*)) {
32 => .{ .v_ss, .fmadd231 },
64 => .{ .v_sd, .fmadd231 },
16, 80, 128 => null,
else => unreachable,
},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.Float => switch (ty.childType(mod).floatBits(self.target.*)) {
32 => switch (ty.vectorLen(mod)) {
1 => .{ .v_ss, .fmadd231 },
2...8 => .{ .v_ps, .fmadd231 },
else => null,
},
64 => switch (ty.vectorLen(mod)) {
1 => .{ .v_sd, .fmadd231 },
2...4 => .{ .v_pd, .fmadd231 },
else => null,
},
16, 80, 128 => null,
else => unreachable,
},
else => unreachable,
},
else => unreachable,
}
else
unreachable) orelse return self.fail("TODO implement airMulAdd for {}", .{ty.fmt(mod)});
var mops: [3]MCValue = undefined;
for (order, mcvs) |mop_index, mcv| mops[mop_index - 1] = mcv;
const abi_size: u32 = @intCast(ty.abiSize(mod));
const mop1_reg = registerAlias(mops[0].getReg().?, abi_size);
const mop2_reg = registerAlias(mops[1].getReg().?, abi_size);
if (mops[2].isRegister()) try self.asmRegisterRegisterRegister(
mir_tag,
mop1_reg,
mop2_reg,
registerAlias(mops[2].getReg().?, abi_size),
) else try self.asmRegisterRegisterMemory(
mir_tag,
mop1_reg,
mop2_reg,
try mops[2].mem(self, Memory.Size.fromSize(abi_size)),
);
break :result mops[0];
};
return self.finishAir(inst, result, ops);
}
fn airVaStart(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const va_list_ty = self.air.instructions.items(.data)[@intFromEnum(inst)].ty;
const ptr_anyopaque_ty = try mod.singleMutPtrType(Type.anyopaque);
const result: MCValue = switch (abi.resolveCallingConvention(
self.fn_type.fnCallingConvention(mod),
self.target.*,
)) {
.SysV => result: {
const info = self.va_info.sysv;
const dst_fi = try self.allocFrameIndex(FrameAlloc.initSpill(va_list_ty, mod));
var field_off: u31 = 0;
// gp_offset: c_uint,
try self.genSetMem(
.{ .frame = dst_fi },
field_off,
Type.c_uint,
.{ .immediate = info.gp_count * 8 },
.{},
);
field_off += @intCast(Type.c_uint.abiSize(mod));
// fp_offset: c_uint,
try self.genSetMem(
.{ .frame = dst_fi },
field_off,
Type.c_uint,
.{ .immediate = abi.SysV.c_abi_int_param_regs.len * 8 + info.fp_count * 16 },
.{},
);
field_off += @intCast(Type.c_uint.abiSize(mod));
// overflow_arg_area: *anyopaque,
try self.genSetMem(
.{ .frame = dst_fi },
field_off,
ptr_anyopaque_ty,
.{ .lea_frame = info.overflow_arg_area },
.{},
);
field_off += @intCast(ptr_anyopaque_ty.abiSize(mod));
// reg_save_area: *anyopaque,
try self.genSetMem(
.{ .frame = dst_fi },
field_off,
ptr_anyopaque_ty,
.{ .lea_frame = info.reg_save_area },
.{},
);
field_off += @intCast(ptr_anyopaque_ty.abiSize(mod));
break :result .{ .load_frame = .{ .index = dst_fi } };
},
.Win64 => return self.fail("TODO implement c_va_start for Win64", .{}),
else => unreachable,
};
return self.finishAir(inst, result, .{ .none, .none, .none });
}
fn airVaArg(self: *Self, inst: Air.Inst.Index) !void {
const mod = self.bin_file.comp.module.?;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = self.typeOfIndex(inst);
const promote_ty = self.promoteVarArg(ty);
const ptr_anyopaque_ty = try mod.singleMutPtrType(Type.anyopaque);
const unused = self.liveness.isUnused(inst);
const result: MCValue = switch (abi.resolveCallingConvention(
self.fn_type.fnCallingConvention(mod),
self.target.*,
)) {
.SysV => result: {
try self.spillEflagsIfOccupied();
const tmp_regs =
try self.register_manager.allocRegs(2, .{null} ** 2, abi.RegisterClass.gp);
const offset_reg = tmp_regs[0].to32();
const addr_reg = tmp_regs[1].to64();
const tmp_locks = self.register_manager.lockRegsAssumeUnused(2, tmp_regs);
defer for (tmp_locks) |lock| self.register_manager.unlockReg(lock);
const promote_mcv = try self.allocTempRegOrMem(promote_ty, true);
const promote_lock = switch (promote_mcv) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (promote_lock) |lock| self.register_manager.unlockReg(lock);
const ptr_arg_list_reg =
try self.copyToTmpRegister(self.typeOf(ty_op.operand), .{ .air_ref = ty_op.operand });
const ptr_arg_list_lock = self.register_manager.lockRegAssumeUnused(ptr_arg_list_reg);
defer self.register_manager.unlockReg(ptr_arg_list_lock);
const gp_offset: MCValue = .{ .indirect = .{ .reg = ptr_arg_list_reg, .off = 0 } };
const fp_offset: MCValue = .{ .indirect = .{ .reg = ptr_arg_list_reg, .off = 4 } };
const overflow_arg_area: MCValue = .{ .indirect = .{ .reg = ptr_arg_list_reg, .off = 8 } };
const reg_save_area: MCValue = .{ .indirect = .{ .reg = ptr_arg_list_reg, .off = 16 } };
const classes = mem.sliceTo(&abi.classifySystemV(promote_ty, mod, .arg), .none);
switch (classes[0]) {
.integer => {
assert(classes.len == 1);
try self.genSetReg(offset_reg, Type.c_uint, gp_offset, .{});
try self.asmRegisterImmediate(.{ ._, .cmp }, offset_reg, Immediate.u(
abi.SysV.c_abi_int_param_regs.len * 8,
));
const mem_reloc = try self.asmJccReloc(.ae, undefined);
try self.genSetReg(addr_reg, ptr_anyopaque_ty, reg_save_area, .{});
if (!unused) try self.asmRegisterMemory(.{ ._, .lea }, addr_reg, .{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{
.size = .qword,
.index = offset_reg.to64(),
} },
});
try self.asmRegisterMemory(.{ ._, .lea }, offset_reg, .{
.base = .{ .reg = offset_reg.to64() },
.mod = .{ .rm = .{
.size = .qword,
.disp = 8,
} },
});
try self.genCopy(Type.c_uint, gp_offset, .{ .register = offset_reg }, .{});
const done_reloc = try self.asmJmpReloc(undefined);
self.performReloc(mem_reloc);
try self.genSetReg(addr_reg, ptr_anyopaque_ty, overflow_arg_area, .{});
try self.asmRegisterMemory(.{ ._, .lea }, offset_reg.to64(), .{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{
.size = .qword,
.disp = @intCast(@max(promote_ty.abiSize(mod), 8)),
} },
});
try self.genCopy(
ptr_anyopaque_ty,
overflow_arg_area,
.{ .register = offset_reg.to64() },
.{},
);
self.performReloc(done_reloc);
if (!unused) try self.genCopy(promote_ty, promote_mcv, .{
.indirect = .{ .reg = addr_reg },
}, .{});
},
.sse => {
assert(classes.len == 1);
try self.genSetReg(offset_reg, Type.c_uint, fp_offset, .{});
try self.asmRegisterImmediate(.{ ._, .cmp }, offset_reg, Immediate.u(
abi.SysV.c_abi_int_param_regs.len * 8 + abi.SysV.c_abi_sse_param_regs.len * 16,
));
const mem_reloc = try self.asmJccReloc(.ae, undefined);
try self.genSetReg(addr_reg, ptr_anyopaque_ty, reg_save_area, .{});
if (!unused) try self.asmRegisterMemory(.{ ._, .lea }, addr_reg, .{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{
.size = .qword,
.index = offset_reg.to64(),
} },
});
try self.asmRegisterMemory(.{ ._, .lea }, offset_reg, .{
.base = .{ .reg = offset_reg.to64() },
.mod = .{ .rm = .{
.size = .qword,
.disp = 16,
} },
});
try self.genCopy(Type.c_uint, fp_offset, .{ .register = offset_reg }, .{});
const done_reloc = try self.asmJmpReloc(undefined);
self.performReloc(mem_reloc);
try self.genSetReg(addr_reg, ptr_anyopaque_ty, overflow_arg_area, .{});
try self.asmRegisterMemory(.{ ._, .lea }, offset_reg.to64(), .{
.base = .{ .reg = addr_reg },
.mod = .{ .rm = .{
.size = .qword,
.disp = @intCast(@max(promote_ty.abiSize(mod), 8)),
} },
});
try self.genCopy(
ptr_anyopaque_ty,
overflow_arg_area,
.{ .register = offset_reg.to64() },
.{},
);
self.performReloc(done_reloc);
if (!unused) try self.genCopy(promote_ty, promote_mcv, .{
.indirect = .{ .reg = addr_reg },
}, .{});
},
.memory => {
assert(classes.len == 1);
unreachable;
},
else => return self.fail("TODO implement c_va_arg for {} on SysV", .{
promote_ty.fmt(mod),
}),
}
if (unused) break :result .unreach;
if (ty.toIntern() == promote_ty.toIntern()) break :result promote_mcv;
if (!promote_ty.isRuntimeFloat()) {
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.genCopy(ty, dst_mcv, promote_mcv, .{});
break :result dst_mcv;
}
assert(ty.toIntern() == .f32_type and promote_ty.toIntern() == .f64_type);
const dst_mcv = if (promote_mcv.isRegister())
promote_mcv
else
try self.copyToRegisterWithInstTracking(inst, ty, promote_mcv);
const dst_reg = dst_mcv.getReg().?.to128();
const dst_lock = self.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| self.register_manager.unlockReg(lock);
if (self.hasFeature(.avx)) if (promote_mcv.isMemory()) try self.asmRegisterRegisterMemory(
.{ .v_ss, .cvtsd2 },
dst_reg,
dst_reg,
try promote_mcv.mem(self, .qword),
) else try self.asmRegisterRegisterRegister(
.{ .v_ss, .cvtsd2 },
dst_reg,
dst_reg,
(if (promote_mcv.isRegister())
promote_mcv.getReg().?
else
try self.copyToTmpRegister(promote_ty, promote_mcv)).to128(),
) else if (promote_mcv.isMemory()) try self.asmRegisterMemory(
.{ ._ss, .cvtsd2 },
dst_reg,
try promote_mcv.mem(self, .qword),
) else try self.asmRegisterRegister(
.{ ._ss, .cvtsd2 },
dst_reg,
(if (promote_mcv.isRegister())
promote_mcv.getReg().?
else
try self.copyToTmpRegister(promote_ty, promote_mcv)).to128(),
);
break :result promote_mcv;
},
.Win64 => return self.fail("TODO implement c_va_arg for Win64", .{}),
else => unreachable,
};
return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airVaCopy(self: *Self, inst: Air.Inst.Index) !void {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ptr_va_list_ty = self.typeOf(ty_op.operand);
const dst_mcv = try self.allocRegOrMem(inst, true);
try self.load(dst_mcv, ptr_va_list_ty, .{ .air_ref = ty_op.operand });
return self.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airVaEnd(self: *Self, inst: Air.Inst.Index) !void {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
return self.finishAir(inst, .unreach, .{ un_op, .none, .none });
}
fn resolveInst(self: *Self, ref: Air.Inst.Ref) InnerError!MCValue {
const mod = self.bin_file.comp.module.?;
const ty = self.typeOf(ref);
// If the type has no codegen bits, no need to store it.
if (!ty.hasRuntimeBitsIgnoreComptime(mod)) return .none;
const mcv = if (ref.toIndex()) |inst| mcv: {
break :mcv self.inst_tracking.getPtr(inst).?.short;
} else mcv: {
const ip_index = ref.toInterned().?;
const gop = try self.const_tracking.getOrPut(self.gpa, ip_index);
if (!gop.found_existing) gop.value_ptr.* = InstTracking.init(init: {
const const_mcv = try self.genTypedValue(.{ .ty = ty, .val = Value.fromInterned(ip_index) });
switch (const_mcv) {
.lea_tlv => |tlv_sym| switch (self.bin_file.tag) {
.elf, .macho => {
if (self.mod.pic) {
try self.spillRegisters(&.{ .rdi, .rax });
} else {
try self.spillRegisters(&.{.rax});
}
const frame_index = try self.allocFrameIndex(FrameAlloc.init(.{
.size = 8,
.alignment = .@"8",
}));
try self.genSetMem(
.{ .frame = frame_index },
0,
Type.usize,
.{ .lea_symbol = .{ .sym = tlv_sym } },
.{},
);
break :init .{ .load_frame = .{ .index = frame_index } };
},
else => break :init const_mcv,
},
else => break :init const_mcv,
}
});
break :mcv gop.value_ptr.short;
};
switch (mcv) {
.none, .unreach, .dead => unreachable,
else => return mcv,
}
}
fn getResolvedInstValue(self: *Self, inst: Air.Inst.Index) *InstTracking {
const tracking = self.inst_tracking.getPtr(inst).?;
return switch (tracking.short) {
.none, .unreach, .dead => unreachable,
else => tracking,
};
}
/// If the MCValue is an immediate, and it does not fit within this type,
/// we put it in a register.
/// A potential opportunity for future optimization here would be keeping track
/// of the fact that the instruction is available both as an immediate
/// and as a register.
fn limitImmediateType(self: *Self, operand: Air.Inst.Ref, comptime T: type) !MCValue {
const mcv = try self.resolveInst(operand);
const ti = @typeInfo(T).Int;
switch (mcv) {
.immediate => |imm| {
// This immediate is unsigned.
const U = std.meta.Int(.unsigned, ti.bits - @intFromBool(ti.signedness == .signed));
if (imm >= math.maxInt(U)) {
return MCValue{ .register = try self.copyToTmpRegister(Type.usize, mcv) };
}
},
else => {},
}
return mcv;
}
fn genTypedValue(self: *Self, arg_tv: TypedValue) InnerError!MCValue {
const mod = self.bin_file.comp.module.?;
return switch (try codegen.genTypedValue(self.bin_file, self.src_loc, arg_tv, self.owner.getDecl(mod))) {
.mcv => |mcv| switch (mcv) {
.none => .none,
.undef => .undef,
.immediate => |imm| .{ .immediate = imm },
.memory => |addr| .{ .memory = addr },
.load_symbol => |sym_index| .{ .load_symbol = .{ .sym = sym_index } },
.load_direct => |sym_index| .{ .load_direct = sym_index },
.load_got => |sym_index| .{ .lea_got = sym_index },
.load_tlv => |sym_index| .{ .lea_tlv = sym_index },
},
.fail => |msg| {
self.err_msg = msg;
return error.CodegenFail;
},
};
}
const CallMCValues = struct {
args: []MCValue,
return_value: InstTracking,
stack_byte_count: u31,
stack_align: Alignment,
gp_count: u32,
fp_count: u32,
fn deinit(self: *CallMCValues, func: *Self) void {
func.gpa.free(self.args);
self.* = undefined;
}
};
/// Caller must call `CallMCValues.deinit`.
fn resolveCallingConventionValues(
self: *Self,
fn_info: InternPool.Key.FuncType,
var_args: []const Type,
stack_frame_base: FrameIndex,
) !CallMCValues {
const mod = self.bin_file.comp.module.?;
const ip = &mod.intern_pool;
const cc = fn_info.cc;
const param_types = try self.gpa.alloc(Type, fn_info.param_types.len + var_args.len);
defer self.gpa.free(param_types);
for (param_types[0..fn_info.param_types.len], fn_info.param_types.get(ip)) |*dest, src| {
dest.* = Type.fromInterned(src);
}
for (param_types[fn_info.param_types.len..], var_args) |*param_ty, arg_ty|
param_ty.* = self.promoteVarArg(arg_ty);
var result: CallMCValues = .{
.args = try self.gpa.alloc(MCValue, param_types.len),
// These undefined values must be populated before returning from this function.
.return_value = undefined,
.stack_byte_count = 0,
.stack_align = undefined,
.gp_count = 0,
.fp_count = 0,
};
errdefer self.gpa.free(result.args);
const ret_ty = Type.fromInterned(fn_info.return_type);
const resolved_cc = abi.resolveCallingConvention(cc, self.target.*);
switch (cc) {
.Naked => {
assert(result.args.len == 0);
result.return_value = InstTracking.init(.unreach);
result.stack_align = .@"8";
},
.C, .SysV, .Win64 => {
var ret_int_reg_i: u32 = 0;
var ret_sse_reg_i: u32 = 0;
var param_int_reg_i: u32 = 0;
var param_sse_reg_i: u32 = 0;
result.stack_align = .@"16";
switch (resolved_cc) {
.SysV => {},
.Win64 => {
// Align the stack to 16bytes before allocating shadow stack space (if any).
result.stack_byte_count += @intCast(4 * Type.usize.abiSize(mod));
},
else => unreachable,
}
// Return values
if (ret_ty.zigTypeTag(mod) == .NoReturn) {
result.return_value = InstTracking.init(.unreach);
} else if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// TODO: is this even possible for C calling convention?
result.return_value = InstTracking.init(.none);
} else {
var ret_tracking: [2]InstTracking = undefined;
var ret_tracking_i: usize = 0;
const classes = switch (resolved_cc) {
.SysV => mem.sliceTo(&abi.classifySystemV(ret_ty, mod, .ret), .none),
.Win64 => &.{abi.classifyWindows(ret_ty, mod)},
else => unreachable,
};
for (classes) |class| switch (class) {
.integer => {
const ret_int_reg = registerAlias(
abi.getCAbiIntReturnRegs(resolved_cc)[ret_int_reg_i],
@intCast(@min(ret_ty.abiSize(mod), 8)),
);
ret_int_reg_i += 1;
ret_tracking[ret_tracking_i] = InstTracking.init(.{ .register = ret_int_reg });
ret_tracking_i += 1;
},
.sse, .float, .float_combine, .win_i128 => {
const ret_sse_reg = registerAlias(
abi.getCAbiSseReturnRegs(resolved_cc)[ret_sse_reg_i],
@intCast(ret_ty.abiSize(mod)),
);
ret_sse_reg_i += 1;
ret_tracking[ret_tracking_i] = InstTracking.init(.{ .register = ret_sse_reg });
ret_tracking_i += 1;
},
.sseup => assert(ret_tracking[ret_tracking_i - 1].short.register.class() == .sse),
.x87 => {
ret_tracking[ret_tracking_i] = InstTracking.init(.{ .register = .st0 });
ret_tracking_i += 1;
},
.x87up => assert(ret_tracking[ret_tracking_i - 1].short.register.class() == .x87),
.complex_x87 => {
ret_tracking[ret_tracking_i] =
InstTracking.init(.{ .register_pair = .{ .st0, .st1 } });
ret_tracking_i += 1;
},
.memory => {
const ret_int_reg = abi.getCAbiIntReturnRegs(resolved_cc)[ret_int_reg_i].to64();
ret_int_reg_i += 1;
const ret_indirect_reg = abi.getCAbiIntParamRegs(resolved_cc)[param_int_reg_i];
param_int_reg_i += 1;
ret_tracking[ret_tracking_i] = .{
.short = .{ .indirect = .{ .reg = ret_int_reg } },
.long = .{ .indirect = .{ .reg = ret_indirect_reg } },
};
ret_tracking_i += 1;
},
.none, .integer_per_element => unreachable,
};
result.return_value = switch (ret_tracking_i) {
else => unreachable,
1 => ret_tracking[0],
2 => InstTracking.init(.{ .register_pair = .{
ret_tracking[0].short.register, ret_tracking[1].short.register,
} }),
};
}
// Input params
for (param_types, result.args) |ty, *arg| {
assert(ty.hasRuntimeBitsIgnoreComptime(mod));
switch (resolved_cc) {
.SysV => {},
.Win64 => {
param_int_reg_i = @max(param_int_reg_i, param_sse_reg_i);
param_sse_reg_i = param_int_reg_i;
},
else => unreachable,
}
var arg_mcv: [2]MCValue = undefined;
var arg_mcv_i: usize = 0;
const classes = switch (resolved_cc) {
.SysV => mem.sliceTo(&abi.classifySystemV(ty, mod, .arg), .none),
.Win64 => &.{abi.classifyWindows(ty, mod)},
else => unreachable,
};
for (classes) |class| switch (class) {
.integer => {
const param_int_regs = abi.getCAbiIntParamRegs(resolved_cc);
if (param_int_reg_i >= param_int_regs.len) break;
const param_int_reg = registerAlias(
abi.getCAbiIntParamRegs(resolved_cc)[param_int_reg_i],
@intCast(@min(ty.abiSize(mod), 8)),
);
param_int_reg_i += 1;
arg_mcv[arg_mcv_i] = .{ .register = param_int_reg };
arg_mcv_i += 1;
},
.sse, .float, .float_combine => {
const param_sse_regs = abi.getCAbiSseParamRegs(resolved_cc);
if (param_sse_reg_i >= param_sse_regs.len) break;
const param_sse_reg = registerAlias(
abi.getCAbiSseParamRegs(resolved_cc)[param_sse_reg_i],
@intCast(ty.abiSize(mod)),
);
param_sse_reg_i += 1;
arg_mcv[arg_mcv_i] = .{ .register = param_sse_reg };
arg_mcv_i += 1;
},
.sseup => assert(arg_mcv[arg_mcv_i - 1].register.class() == .sse),
.x87, .x87up, .complex_x87, .memory, .win_i128 => switch (resolved_cc) {
.SysV => switch (class) {
.x87, .x87up, .complex_x87, .memory => break,
else => unreachable,
},
.Win64 => if (ty.abiSize(mod) > 8) {
const param_int_reg =
abi.getCAbiIntParamRegs(resolved_cc)[param_int_reg_i].to64();
param_int_reg_i += 1;
arg_mcv[arg_mcv_i] = .{ .indirect = .{ .reg = param_int_reg } };
arg_mcv_i += 1;
} else break,
else => unreachable,
},
.none => unreachable,
.integer_per_element => {
const param_int_regs_len: u32 =
@intCast(abi.getCAbiIntParamRegs(resolved_cc).len);
const remaining_param_int_regs: u3 =
@intCast(param_int_regs_len - param_int_reg_i);
param_int_reg_i = param_int_regs_len;
const frame_elem_align = 8;
const frame_elems_len = ty.vectorLen(mod) - remaining_param_int_regs;
const frame_elem_size = mem.alignForward(
u64,
ty.childType(mod).abiSize(mod),
frame_elem_align,
);
const frame_size: u31 = @intCast(frame_elems_len * frame_elem_size);
result.stack_byte_count =
mem.alignForward(u31, result.stack_byte_count, frame_elem_align);
arg_mcv[arg_mcv_i] = .{ .elementwise_regs_then_frame = .{
.regs = remaining_param_int_regs,
.frame_off = @intCast(result.stack_byte_count),
.frame_index = stack_frame_base,
} };
arg_mcv_i += 1;
result.stack_byte_count += frame_size;
},
} else {
arg.* = switch (arg_mcv_i) {
else => unreachable,
1 => arg_mcv[0],
2 => .{ .register_pair = .{ arg_mcv[0].register, arg_mcv[1].register } },
};
continue;
}
const param_size: u31 = @intCast(ty.abiSize(mod));
const param_align: u31 =
@intCast(@max(ty.abiAlignment(mod).toByteUnitsOptional().?, 8));
result.stack_byte_count =
mem.alignForward(u31, result.stack_byte_count, param_align);
arg.* = .{ .load_frame = .{
.index = stack_frame_base,
.off = result.stack_byte_count,
} };
result.stack_byte_count += param_size;
}
assert(param_int_reg_i <= 6);
result.gp_count = param_int_reg_i;
assert(param_sse_reg_i <= 16);
result.fp_count = param_sse_reg_i;
},
.Unspecified => {
result.stack_align = .@"16";
// Return values
if (ret_ty.zigTypeTag(mod) == .NoReturn) {
result.return_value = InstTracking.init(.unreach);
} else if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
result.return_value = InstTracking.init(.none);
} else {
const ret_reg = abi.getCAbiIntReturnRegs(resolved_cc)[0];
const ret_ty_size: u31 = @intCast(ret_ty.abiSize(mod));
if (ret_ty_size <= 8 and !ret_ty.isRuntimeFloat()) {
const aliased_reg = registerAlias(ret_reg, ret_ty_size);
result.return_value = .{ .short = .{ .register = aliased_reg }, .long = .none };
} else {
const ret_indirect_reg = abi.getCAbiIntParamRegs(resolved_cc)[0];
result.return_value = .{
.short = .{ .indirect = .{ .reg = ret_reg } },
.long = .{ .indirect = .{ .reg = ret_indirect_reg } },
};
}
}
// Input params
for (param_types, result.args) |ty, *arg| {
if (!ty.hasRuntimeBitsIgnoreComptime(mod)) {
arg.* = .none;
continue;
}
const param_size: u31 = @intCast(ty.abiSize(mod));
const param_align: u31 = @intCast(ty.abiAlignment(mod).toByteUnitsOptional().?);
result.stack_byte_count =
mem.alignForward(u31, result.stack_byte_count, param_align);
arg.* = .{ .load_frame = .{
.index = stack_frame_base,
.off = result.stack_byte_count,
} };
result.stack_byte_count += param_size;
}
},
else => return self.fail("TODO implement function parameters and return values for {} on x86_64", .{cc}),
}
result.stack_byte_count = @intCast(result.stack_align.forward(result.stack_byte_count));
return result;
}
fn fail(self: *Self, comptime format: []const u8, args: anytype) InnerError {
@setCold(true);
assert(self.err_msg == null);
const gpa = self.gpa;
self.err_msg = try ErrorMsg.create(gpa, self.src_loc, format, args);
return error.CodegenFail;
}
fn failSymbol(self: *Self, comptime format: []const u8, args: anytype) InnerError {
@setCold(true);
assert(self.err_msg == null);
const gpa = self.gpa;
self.err_msg = try ErrorMsg.create(gpa, self.src_loc, format, args);
return error.CodegenFail;
}
fn parseRegName(name: []const u8) ?Register {
if (@hasDecl(Register, "parseRegName")) {
return Register.parseRegName(name);
}
return std.meta.stringToEnum(Register, name);
}
/// Returns register wide enough to hold at least `size_bytes`.
fn registerAlias(reg: Register, size_bytes: u32) Register {
return switch (reg.class()) {
.general_purpose => if (size_bytes == 0)
unreachable // should be comptime-known
else if (size_bytes <= 1)
reg.to8()
else if (size_bytes <= 2)
reg.to16()
else if (size_bytes <= 4)
reg.to32()
else if (size_bytes <= 8)
reg.to64()
else
unreachable,
.segment => if (size_bytes <= 2)
reg
else
unreachable,
.x87 => if (size_bytes == 16)
reg
else
unreachable,
.mmx => if (size_bytes <= 8)
reg
else
unreachable,
.sse => if (size_bytes <= 16)
reg.to128()
else if (size_bytes <= 32)
reg.to256()
else
unreachable,
};
}
fn memSize(self: *Self, ty: Type) Memory.Size {
const mod = self.bin_file.comp.module.?;
return switch (ty.zigTypeTag(mod)) {
.Float => Memory.Size.fromBitSize(ty.floatBits(self.target.*)),
else => Memory.Size.fromSize(@intCast(ty.abiSize(mod))),
};
}
fn splitType(self: *Self, ty: Type) ![2]Type {
const mod = self.bin_file.comp.module.?;
const classes = mem.sliceTo(&abi.classifySystemV(ty, mod, .other), .none);
var parts: [2]Type = undefined;
if (classes.len == 2) for (&parts, classes, 0..) |*part, class, part_i| {
part.* = switch (class) {
.integer => switch (part_i) {
0 => Type.u64,
1 => part: {
const elem_size = ty.abiAlignment(mod).minStrict(.@"8").toByteUnitsOptional().?;
const elem_ty = try mod.intType(.unsigned, @intCast(elem_size * 8));
break :part switch (@divExact(ty.abiSize(mod) - 8, elem_size)) {
1 => elem_ty,
else => |len| try mod.arrayType(.{ .len = len, .child = elem_ty.toIntern() }),
};
},
else => unreachable,
},
.float => Type.f32,
.float_combine => try mod.vectorType(.{ .len = 2, .child = .f32_type }),
.sse => Type.f64,
else => break,
};
} else if (parts[0].abiSize(mod) + parts[1].abiSize(mod) == ty.abiSize(mod)) return parts;
return self.fail("TODO implement splitType for {}", .{ty.fmt(mod)});
}
/// Truncates the value in the register in place.
/// Clobbers any remaining bits.
fn truncateRegister(self: *Self, ty: Type, reg: Register) !void {
const mod = self.bin_file.comp.module.?;
const int_info = if (ty.isAbiInt(mod)) ty.intInfo(mod) else std.builtin.Type.Int{
.signedness = .unsigned,
.bits = @intCast(ty.bitSize(mod)),
};
const shift = math.cast(u6, 64 - int_info.bits % 64) orelse return;
try self.spillEflagsIfOccupied();
switch (int_info.signedness) {
.signed => {
try self.genShiftBinOpMir(
.{ ._l, .sa },
Type.isize,
.{ .register = reg },
Type.u8,
.{ .immediate = shift },
);
try self.genShiftBinOpMir(
.{ ._r, .sa },
Type.isize,
.{ .register = reg },
Type.u8,
.{ .immediate = shift },
);
},
.unsigned => {
const mask = ~@as(u64, 0) >> shift;
if (int_info.bits <= 32) {
try self.genBinOpMir(
.{ ._, .@"and" },
Type.u32,
.{ .register = reg },
.{ .immediate = mask },
);
} else {
const tmp_reg = try self.copyToTmpRegister(Type.usize, .{ .immediate = mask });
try self.genBinOpMir(
.{ ._, .@"and" },
Type.usize,
.{ .register = reg },
.{ .register = tmp_reg },
);
}
},
}
}
fn regBitSize(self: *Self, ty: Type) u64 {
const mod = self.bin_file.comp.module.?;
const abi_size = ty.abiSize(mod);
return switch (ty.zigTypeTag(mod)) {
else => switch (abi_size) {
1 => 8,
2 => 16,
3...4 => 32,
5...8 => 64,
else => unreachable,
},
.Float => switch (abi_size) {
1...16 => 128,
17...32 => 256,
else => unreachable,
},
};
}
fn regExtraBits(self: *Self, ty: Type) u64 {
const mod = self.bin_file.comp.module.?;
return self.regBitSize(ty) - ty.bitSize(mod);
}
fn hasFeature(self: *Self, feature: Target.x86.Feature) bool {
return Target.x86.featureSetHas(self.target.cpu.features, feature);
}
fn hasAnyFeatures(self: *Self, features: anytype) bool {
return Target.x86.featureSetHasAny(self.target.cpu.features, features);
}
fn hasAllFeatures(self: *Self, features: anytype) bool {
return Target.x86.featureSetHasAll(self.target.cpu.features, features);
}
fn typeOf(self: *Self, inst: Air.Inst.Ref) Type {
const mod = self.bin_file.comp.module.?;
return self.air.typeOf(inst, &mod.intern_pool);
}
fn typeOfIndex(self: *Self, inst: Air.Inst.Index) Type {
const mod = self.bin_file.comp.module.?;
return self.air.typeOfIndex(inst, &mod.intern_pool);
}
fn intCompilerRtAbiName(int_bits: u32) u8 {
return switch (int_bits) {
1...32 => 's',
33...64 => 'd',
65...128 => 't',
else => unreachable,
};
}
fn floatCompilerRtAbiName(float_bits: u32) u8 {
return switch (float_bits) {
16 => 'h',
32 => 's',
64 => 'd',
80 => 'x',
128 => 't',
else => unreachable,
};
}
fn floatCompilerRtAbiType(self: *Self, ty: Type, other_ty: Type) Type {
if (ty.toIntern() == .f16_type and
(other_ty.toIntern() == .f32_type or other_ty.toIntern() == .f64_type) and
self.target.isDarwin()) return Type.u16;
return ty;
}
fn floatLibcAbiPrefix(ty: Type) []const u8 {
return switch (ty.toIntern()) {
.f16_type, .f80_type => "__",
.f32_type, .f64_type, .f128_type, .c_longdouble_type => "",
else => unreachable,
};
}
fn floatLibcAbiSuffix(ty: Type) []const u8 {
return switch (ty.toIntern()) {
.f16_type => "h",
.f32_type => "f",
.f64_type => "",
.f80_type => "x",
.f128_type => "q",
.c_longdouble_type => "l",
else => unreachable,
};
}
fn promoteInt(self: *Self, ty: Type) Type {
const mod = self.bin_file.comp.module.?;
const int_info: InternPool.Key.IntType = switch (ty.toIntern()) {
.bool_type => .{ .signedness = .unsigned, .bits = 1 },
else => if (ty.isAbiInt(mod)) ty.intInfo(mod) else return ty,
};
for ([_]Type{
Type.c_int, Type.c_uint,
Type.c_long, Type.c_ulong,
Type.c_longlong, Type.c_ulonglong,
}) |promote_ty| {
const promote_info = promote_ty.intInfo(mod);
if (int_info.signedness == .signed and promote_info.signedness == .unsigned) continue;
if (int_info.bits + @intFromBool(int_info.signedness == .unsigned and
promote_info.signedness == .signed) <= promote_info.bits) return promote_ty;
}
return ty;
}
fn promoteVarArg(self: *Self, ty: Type) Type {
if (!ty.isRuntimeFloat()) return self.promoteInt(ty);
switch (ty.floatBits(self.target.*)) {
32, 64 => return Type.f64,
else => |float_bits| {
assert(float_bits == self.target.c_type_bit_size(.longdouble));
return Type.c_longdouble;
},
}
}