zig/lib/std/os/uefi/tables/runtime_services.zig
Andrew Kelley 50eb7983cd remove most conditional compilation based on stage1
There are still a few occurrences of "stage1" in the standard library
and self-hosted compiler source, however, these instances need a bit
more careful inspection to ensure no breakage.
2022-12-06 20:38:54 -07:00

102 lines
4.6 KiB
Zig

const std = @import("std");
const uefi = std.os.uefi;
const Guid = uefi.Guid;
const TableHeader = uefi.tables.TableHeader;
const Time = uefi.Time;
const TimeCapabilities = uefi.TimeCapabilities;
const Status = uefi.Status;
const MemoryDescriptor = uefi.tables.MemoryDescriptor;
/// Runtime services are provided by the firmware before and after exitBootServices has been called.
///
/// As the runtime_services table may grow with new UEFI versions, it is important to check hdr.header_size.
///
/// Some functions may not be supported. Check the RuntimeServicesSupported variable using getVariable.
/// getVariable is one of the functions that may not be supported.
///
/// Some functions may not be called while other functions are running.
pub const RuntimeServices = extern struct {
hdr: TableHeader,
/// Returns the current time and date information, and the time-keeping capabilities of the hardware platform.
getTime: *const fn (time: *uefi.Time, capabilities: ?*TimeCapabilities) callconv(.C) Status,
/// Sets the current local time and date information
setTime: *const fn (time: *uefi.Time) callconv(.C) Status,
/// Returns the current wakeup alarm clock setting
getWakeupTime: *const fn (enabled: *bool, pending: *bool, time: *uefi.Time) callconv(.C) Status,
/// Sets the system wakeup alarm clock time
setWakeupTime: *const fn (enable: *bool, time: ?*uefi.Time) callconv(.C) Status,
/// Changes the runtime addressing mode of EFI firmware from physical to virtual.
setVirtualAddressMap: *const fn (mmap_size: usize, descriptor_size: usize, descriptor_version: u32, virtual_map: [*]MemoryDescriptor) callconv(.C) Status,
/// Determines the new virtual address that is to be used on subsequent memory accesses.
convertPointer: *const fn (debug_disposition: usize, address: **anyopaque) callconv(.C) Status,
/// Returns the value of a variable.
getVariable: *const fn (var_name: [*:0]const u16, vendor_guid: *align(8) const Guid, attributes: ?*u32, data_size: *usize, data: ?*anyopaque) callconv(.C) Status,
/// Enumerates the current variable names.
getNextVariableName: *const fn (var_name_size: *usize, var_name: [*:0]u16, vendor_guid: *align(8) Guid) callconv(.C) Status,
/// Sets the value of a variable.
setVariable: *const fn (var_name: [*:0]const u16, vendor_guid: *align(8) const Guid, attributes: u32, data_size: usize, data: *anyopaque) callconv(.C) Status,
/// Return the next high 32 bits of the platform's monotonic counter
getNextHighMonotonicCount: *const fn (high_count: *u32) callconv(.C) Status,
/// Resets the entire platform.
resetSystem: *const fn (reset_type: ResetType, reset_status: Status, data_size: usize, reset_data: ?*const anyopaque) callconv(.C) noreturn,
/// Passes capsules to the firmware with both virtual and physical mapping.
/// Depending on the intended consumption, the firmware may process the capsule immediately.
/// If the payload should persist across a system reset, the reset value returned from
/// `queryCapsuleCapabilities` must be passed into resetSystem and will cause the capsule
/// to be processed by the firmware as part of the reset process.
updateCapsule: *const fn (capsule_header_array: **CapsuleHeader, capsule_count: usize, scatter_gather_list: EfiPhysicalAddress) callconv(.C) Status,
/// Returns if the capsule can be supported via `updateCapsule`
queryCapsuleCapabilities: *const fn (capsule_header_array: **CapsuleHeader, capsule_count: usize, maximum_capsule_size: *usize, resetType: ResetType) callconv(.C) Status,
/// Returns information about the EFI variables
queryVariableInfo: *const fn (attributes: *u32, maximum_variable_storage_size: *u64, remaining_variable_storage_size: *u64, maximum_variable_size: *u64) callconv(.C) Status,
pub const signature: u64 = 0x56524553544e5552;
};
const EfiPhysicalAddress = u64;
pub const CapsuleHeader = extern struct {
capsuleGuid: Guid align(8),
headerSize: u32,
flags: u32,
capsuleImageSize: u32,
};
pub const UefiCapsuleBlockDescriptor = extern struct {
length: u64,
address: extern union {
dataBlock: EfiPhysicalAddress,
continuationPointer: EfiPhysicalAddress,
},
};
pub const ResetType = enum(u32) {
ResetCold,
ResetWarm,
ResetShutdown,
ResetPlatformSpecific,
};
pub const global_variable align(8) = Guid{
.time_low = 0x8be4df61,
.time_mid = 0x93ca,
.time_high_and_version = 0x11d2,
.clock_seq_high_and_reserved = 0xaa,
.clock_seq_low = 0x0d,
.node = [_]u8{ 0x00, 0xe0, 0x98, 0x03, 0x2b, 0x8c },
};