zig/lib/std/mem/Allocator.zig
Andrew Kelley 3c2a43fdcc Revert "std: check types of pointers passed to allocator functions"
This reverts commit abc9530a88d24350481d9264edcde300f293929a.

This patch implies that the idiomatic Zig way of handling anytype
parameter is to write a bunch of boilerplate instead of directly
accessing type information and relying on the compiler to be useful.

I don't want it to be this way.

It is the compiler's job to make useful error messages when the wrong
field of a type info result is accessed, and it is the zig programmer's
job to understand what it means when a compile error points at the field
access of `@typeInfo` (along with the relevant callsites).

One thing that might be useful would be having the compiler be aware of
module boundaries and highlighting the boundaries of them. The first
reference note after crossing a module boundary is likely the most
interesting one.
2023-02-12 05:59:28 -07:00

334 lines
13 KiB
Zig

//! The standard memory allocation interface.
const std = @import("../std.zig");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const Allocator = @This();
const builtin = @import("builtin");
pub const Error = error{OutOfMemory};
pub const Log2Align = math.Log2Int(usize);
// The type erased pointer to the allocator implementation
ptr: *anyopaque,
vtable: *const VTable,
pub const VTable = struct {
/// Attempt to allocate exactly `len` bytes aligned to `1 << ptr_align`.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
alloc: *const fn (ctx: *anyopaque, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8,
/// Attempt to expand or shrink memory in place. `buf.len` must equal the
/// length requested from the most recent successful call to `alloc` or
/// `resize`. `buf_align` must equal the same value that was passed as the
/// `ptr_align` parameter to the original `alloc` call.
///
/// A result of `true` indicates the resize was successful and the
/// allocation now has the same address but a size of `new_len`. `false`
/// indicates the resize could not be completed without moving the
/// allocation to a different address.
///
/// `new_len` must be greater than zero.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
resize: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, new_len: usize, ret_addr: usize) bool,
/// Free and invalidate a buffer.
///
/// `buf.len` must equal the most recent length returned by `alloc` or
/// given to a successful `resize` call.
///
/// `buf_align` must equal the same value that was passed as the
/// `ptr_align` parameter to the original `alloc` call.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
free: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, ret_addr: usize) void,
};
pub fn noResize(
self: *anyopaque,
buf: []u8,
log2_buf_align: u8,
new_len: usize,
ret_addr: usize,
) bool {
_ = self;
_ = buf;
_ = log2_buf_align;
_ = new_len;
_ = ret_addr;
return false;
}
pub fn noFree(
self: *anyopaque,
buf: []u8,
log2_buf_align: u8,
ret_addr: usize,
) void {
_ = self;
_ = buf;
_ = log2_buf_align;
_ = ret_addr;
}
/// This function is not intended to be called except from within the
/// implementation of an Allocator
pub inline fn rawAlloc(self: Allocator, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8 {
return self.vtable.alloc(self.ptr, len, ptr_align, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an Allocator
pub inline fn rawResize(self: Allocator, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize) bool {
return self.vtable.resize(self.ptr, buf, log2_buf_align, new_len, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an Allocator
pub inline fn rawFree(self: Allocator, buf: []u8, log2_buf_align: u8, ret_addr: usize) void {
return self.vtable.free(self.ptr, buf, log2_buf_align, ret_addr);
}
/// Returns a pointer to undefined memory.
/// Call `destroy` with the result to free the memory.
pub fn create(self: Allocator, comptime T: type) Error!*T {
if (@sizeOf(T) == 0) return @intToPtr(*T, math.maxInt(usize));
const slice = try self.allocAdvancedWithRetAddr(T, null, 1, @returnAddress());
return &slice[0];
}
/// `ptr` should be the return value of `create`, or otherwise
/// have the same address and alignment property.
pub fn destroy(self: Allocator, ptr: anytype) void {
const info = @typeInfo(@TypeOf(ptr)).Pointer;
const T = info.child;
if (@sizeOf(T) == 0) return;
const non_const_ptr = @intToPtr([*]u8, @ptrToInt(ptr));
self.rawFree(non_const_ptr[0..@sizeOf(T)], math.log2(info.alignment), @returnAddress());
}
/// Allocates an array of `n` items of type `T` and sets all the
/// items to `undefined`. Depending on the Allocator
/// implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn alloc(self: Allocator, comptime T: type, n: usize) Error![]T {
return self.allocAdvancedWithRetAddr(T, null, n, @returnAddress());
}
pub fn allocWithOptions(
self: Allocator,
comptime Elem: type,
n: usize,
/// null means naturally aligned
comptime optional_alignment: ?u29,
comptime optional_sentinel: ?Elem,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
return self.allocWithOptionsRetAddr(Elem, n, optional_alignment, optional_sentinel, @returnAddress());
}
pub fn allocWithOptionsRetAddr(
self: Allocator,
comptime Elem: type,
n: usize,
/// null means naturally aligned
comptime optional_alignment: ?u29,
comptime optional_sentinel: ?Elem,
return_address: usize,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
if (optional_sentinel) |sentinel| {
const ptr = try self.allocAdvancedWithRetAddr(Elem, optional_alignment, n + 1, return_address);
ptr[n] = sentinel;
return ptr[0..n :sentinel];
} else {
return self.allocAdvancedWithRetAddr(Elem, optional_alignment, n, return_address);
}
}
fn AllocWithOptionsPayload(comptime Elem: type, comptime alignment: ?u29, comptime sentinel: ?Elem) type {
if (sentinel) |s| {
return [:s]align(alignment orelse @alignOf(Elem)) Elem;
} else {
return []align(alignment orelse @alignOf(Elem)) Elem;
}
}
/// Allocates an array of `n + 1` items of type `T` and sets the first `n`
/// items to `undefined` and the last item to `sentinel`. Depending on the
/// Allocator implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn allocSentinel(
self: Allocator,
comptime Elem: type,
n: usize,
comptime sentinel: Elem,
) Error![:sentinel]Elem {
return self.allocWithOptionsRetAddr(Elem, n, null, sentinel, @returnAddress());
}
pub fn alignedAlloc(
self: Allocator,
comptime T: type,
/// null means naturally aligned
comptime alignment: ?u29,
n: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
return self.allocAdvancedWithRetAddr(T, alignment, n, @returnAddress());
}
pub fn allocAdvancedWithRetAddr(
self: Allocator,
comptime T: type,
/// null means naturally aligned
comptime alignment: ?u29,
n: usize,
return_address: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
const a = alignment orelse @alignOf(T);
// The Zig Allocator interface is not intended to solve alignments beyond
// the minimum OS page size. For these use cases, the caller must use OS
// APIs directly.
comptime assert(a <= mem.page_size);
if (n == 0) {
const ptr = comptime std.mem.alignBackward(math.maxInt(usize), a);
return @intToPtr([*]align(a) T, ptr)[0..0];
}
const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory;
const byte_ptr = self.rawAlloc(byte_count, log2a(a), return_address) orelse return Error.OutOfMemory;
// TODO: https://github.com/ziglang/zig/issues/4298
@memset(byte_ptr, undefined, byte_count);
const byte_slice = byte_ptr[0..byte_count];
return mem.bytesAsSlice(T, @alignCast(a, byte_slice));
}
/// Requests to modify the size of an allocation. It is guaranteed to not move
/// the pointer, however the allocator implementation may refuse the resize
/// request by returning `false`.
pub fn resize(self: Allocator, old_mem: anytype, new_n: usize) bool {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
const T = Slice.child;
if (new_n == 0) {
self.free(old_mem);
return true;
}
if (old_mem.len == 0) {
return false;
}
const old_byte_slice = mem.sliceAsBytes(old_mem);
// I would like to use saturating multiplication here, but LLVM cannot lower it
// on WebAssembly: https://github.com/ziglang/zig/issues/9660
//const new_byte_count = new_n *| @sizeOf(T);
const new_byte_count = math.mul(usize, @sizeOf(T), new_n) catch return false;
return self.rawResize(old_byte_slice, log2a(Slice.alignment), new_byte_count, @returnAddress());
}
/// This function requests a new byte size for an existing allocation, which
/// can be larger, smaller, or the same size as the old memory allocation.
/// If `new_n` is 0, this is the same as `free` and it always succeeds.
pub fn realloc(self: Allocator, old_mem: anytype, new_n: usize) t: {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
break :t Error![]align(Slice.alignment) Slice.child;
} {
return self.reallocAdvanced(old_mem, new_n, @returnAddress());
}
pub fn reallocAdvanced(
self: Allocator,
old_mem: anytype,
new_n: usize,
return_address: usize,
) t: {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
break :t Error![]align(Slice.alignment) Slice.child;
} {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
const T = Slice.child;
if (old_mem.len == 0) {
return self.allocAdvancedWithRetAddr(T, Slice.alignment, new_n, return_address);
}
if (new_n == 0) {
self.free(old_mem);
const ptr = comptime std.mem.alignBackward(math.maxInt(usize), Slice.alignment);
return @intToPtr([*]align(Slice.alignment) T, ptr)[0..0];
}
const old_byte_slice = mem.sliceAsBytes(old_mem);
const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory;
// Note: can't set shrunk memory to undefined as memory shouldn't be modified on realloc failure
if (mem.isAligned(@ptrToInt(old_byte_slice.ptr), Slice.alignment)) {
if (self.rawResize(old_byte_slice, log2a(Slice.alignment), byte_count, return_address)) {
return mem.bytesAsSlice(T, @alignCast(Slice.alignment, old_byte_slice.ptr[0..byte_count]));
}
}
const new_mem = self.rawAlloc(byte_count, log2a(Slice.alignment), return_address) orelse
return error.OutOfMemory;
@memcpy(new_mem, old_byte_slice.ptr, @min(byte_count, old_byte_slice.len));
// TODO https://github.com/ziglang/zig/issues/4298
@memset(old_byte_slice.ptr, undefined, old_byte_slice.len);
self.rawFree(old_byte_slice, log2a(Slice.alignment), return_address);
return mem.bytesAsSlice(T, @alignCast(Slice.alignment, new_mem[0..byte_count]));
}
/// Free an array allocated with `alloc`. To free a single item,
/// see `destroy`.
pub fn free(self: Allocator, memory: anytype) void {
const Slice = @typeInfo(@TypeOf(memory)).Pointer;
const bytes = mem.sliceAsBytes(memory);
const bytes_len = bytes.len + if (Slice.sentinel != null) @sizeOf(Slice.child) else 0;
if (bytes_len == 0) return;
const non_const_ptr = @intToPtr([*]u8, @ptrToInt(bytes.ptr));
// TODO: https://github.com/ziglang/zig/issues/4298
@memset(non_const_ptr, undefined, bytes_len);
self.rawFree(non_const_ptr[0..bytes_len], log2a(Slice.alignment), @returnAddress());
}
/// Copies `m` to newly allocated memory. Caller owns the memory.
pub fn dupe(allocator: Allocator, comptime T: type, m: []const T) ![]T {
const new_buf = try allocator.alloc(T, m.len);
mem.copy(T, new_buf, m);
return new_buf;
}
/// Copies `m` to newly allocated memory, with a null-terminated element. Caller owns the memory.
pub fn dupeZ(allocator: Allocator, comptime T: type, m: []const T) ![:0]T {
const new_buf = try allocator.alloc(T, m.len + 1);
mem.copy(T, new_buf, m);
new_buf[m.len] = 0;
return new_buf[0..m.len :0];
}
/// TODO replace callsites with `@log2` after this proposal is implemented:
/// https://github.com/ziglang/zig/issues/13642
inline fn log2a(x: anytype) switch (@typeInfo(@TypeOf(x))) {
.Int => math.Log2Int(@TypeOf(x)),
.ComptimeInt => comptime_int,
else => @compileError("int please"),
} {
switch (@typeInfo(@TypeOf(x))) {
.Int => return math.log2_int(@TypeOf(x), x),
.ComptimeInt => return math.log2(x),
else => @compileError("bad"),
}
}