zig/src/link/MachO.zig
Jakub Konka d8d92dafe8 zld: search for .a before .dylib by default
Change default behaviour to search for static archives before searching
for dynamic libraries if no flag such as `-search_paths_first` is
specified. Also, fix a bug with early break from outer loop (label
in the wrong place).
2021-05-27 15:33:48 +02:00

3510 lines
142 KiB
Zig

const MachO = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const fmt = std.fmt;
const fs = std.fs;
const log = std.log.scoped(.link);
const macho = std.macho;
const codegen = @import("../codegen.zig");
const aarch64 = @import("../codegen/aarch64.zig");
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const bind = @import("MachO/bind.zig");
const trace = @import("../tracy.zig").trace;
const build_options = @import("build_options");
const Module = @import("../Module.zig");
const Compilation = @import("../Compilation.zig");
const link = @import("../link.zig");
const File = link.File;
const Cache = @import("../Cache.zig");
const target_util = @import("../target.zig");
const DebugSymbols = @import("MachO/DebugSymbols.zig");
const Trie = @import("MachO/Trie.zig");
const CodeSignature = @import("MachO/CodeSignature.zig");
const Zld = @import("MachO/Zld.zig");
usingnamespace @import("MachO/commands.zig");
pub const base_tag: File.Tag = File.Tag.macho;
base: File,
/// Debug symbols bundle (or dSym).
d_sym: ?DebugSymbols = null,
/// Page size is dependent on the target cpu architecture.
/// For x86_64 that's 4KB, whereas for aarch64, that's 16KB.
page_size: u16,
/// Mach-O header
header: ?macho.mach_header_64 = null,
/// We commit 0x1000 = 4096 bytes of space to the header and
/// the table of load commands. This should be plenty for any
/// potential future extensions.
header_pad: u16 = 0x1000,
/// Table of all load commands
load_commands: std.ArrayListUnmanaged(LoadCommand) = .{},
/// __PAGEZERO segment
pagezero_segment_cmd_index: ?u16 = null,
/// __TEXT segment
text_segment_cmd_index: ?u16 = null,
/// __DATA_CONST segment
data_const_segment_cmd_index: ?u16 = null,
/// __DATA segment
data_segment_cmd_index: ?u16 = null,
/// __LINKEDIT segment
linkedit_segment_cmd_index: ?u16 = null,
/// Dyld info
dyld_info_cmd_index: ?u16 = null,
/// Symbol table
symtab_cmd_index: ?u16 = null,
/// Dynamic symbol table
dysymtab_cmd_index: ?u16 = null,
/// Path to dyld linker
dylinker_cmd_index: ?u16 = null,
/// Path to libSystem
libsystem_cmd_index: ?u16 = null,
/// Data-in-code section of __LINKEDIT segment
data_in_code_cmd_index: ?u16 = null,
/// Address to entry point function
function_starts_cmd_index: ?u16 = null,
/// Main/entry point
/// Specifies offset wrt __TEXT segment start address to the main entry point
/// of the binary.
main_cmd_index: ?u16 = null,
/// Minimum OS version
version_min_cmd_index: ?u16 = null,
/// Source version
source_version_cmd_index: ?u16 = null,
/// UUID load command
uuid_cmd_index: ?u16 = null,
/// Code signature
code_signature_cmd_index: ?u16 = null,
/// Index into __TEXT,__text section.
text_section_index: ?u16 = null,
/// Index into __TEXT,__stubs section.
stubs_section_index: ?u16 = null,
/// Index into __TEXT,__stub_helper section.
stub_helper_section_index: ?u16 = null,
/// Index into __DATA_CONST,__got section.
got_section_index: ?u16 = null,
/// Index into __DATA,__la_symbol_ptr section.
la_symbol_ptr_section_index: ?u16 = null,
/// Index into __DATA,__data section.
data_section_index: ?u16 = null,
/// The absolute address of the entry point.
entry_addr: ?u64 = null,
/// Table of all local symbols
/// Internally references string table for names (which are optional).
locals: std.ArrayListUnmanaged(macho.nlist_64) = .{},
/// Table of all global symbols
globals: std.ArrayListUnmanaged(macho.nlist_64) = .{},
/// Table of all extern nonlazy symbols, indexed by name.
nonlazy_imports: std.StringArrayHashMapUnmanaged(Import) = .{},
/// Table of all extern lazy symbols, indexed by name.
lazy_imports: std.StringArrayHashMapUnmanaged(Import) = .{},
locals_free_list: std.ArrayListUnmanaged(u32) = .{},
globals_free_list: std.ArrayListUnmanaged(u32) = .{},
offset_table_free_list: std.ArrayListUnmanaged(u32) = .{},
stub_helper_stubs_start_off: ?u64 = null,
/// Table of symbol names aka the string table.
string_table: std.ArrayListUnmanaged(u8) = .{},
string_table_directory: std.StringHashMapUnmanaged(u32) = .{},
/// Table of GOT entries.
offset_table: std.ArrayListUnmanaged(GOTEntry) = .{},
error_flags: File.ErrorFlags = File.ErrorFlags{},
offset_table_count_dirty: bool = false,
header_dirty: bool = false,
load_commands_dirty: bool = false,
rebase_info_dirty: bool = false,
binding_info_dirty: bool = false,
lazy_binding_info_dirty: bool = false,
export_info_dirty: bool = false,
string_table_dirty: bool = false,
string_table_needs_relocation: bool = false,
/// A list of text blocks that have surplus capacity. This list can have false
/// positives, as functions grow and shrink over time, only sometimes being added
/// or removed from the freelist.
///
/// A text block has surplus capacity when its overcapacity value is greater than
/// padToIdeal(minimum_text_block_size). That is, when it has so
/// much extra capacity, that we could fit a small new symbol in it, itself with
/// ideal_capacity or more.
///
/// Ideal capacity is defined by size + (size / ideal_factor).
///
/// Overcapacity is measured by actual_capacity - ideal_capacity. Note that
/// overcapacity can be negative. A simple way to have negative overcapacity is to
/// allocate a fresh text block, which will have ideal capacity, and then grow it
/// by 1 byte. It will then have -1 overcapacity.
text_block_free_list: std.ArrayListUnmanaged(*TextBlock) = .{},
/// Pointer to the last allocated text block
last_text_block: ?*TextBlock = null,
/// A list of all PIE fixups required for this run of the linker.
/// Warning, this is currently NOT thread-safe. See the TODO below.
/// TODO Move this list inside `updateDecl` where it should be allocated
/// prior to calling `generateSymbol`, and then immediately deallocated
/// rather than sitting in the global scope.
/// TODO We should also rewrite this using generic relocations common to all
/// backends.
pie_fixups: std.ArrayListUnmanaged(PIEFixup) = .{},
/// A list of all stub (extern decls) fixups required for this run of the linker.
/// Warning, this is currently NOT thread-safe. See the TODO below.
/// TODO Move this list inside `updateDecl` where it should be allocated
/// prior to calling `generateSymbol`, and then immediately deallocated
/// rather than sitting in the global scope.
stub_fixups: std.ArrayListUnmanaged(StubFixup) = .{},
pub const GOTEntry = struct {
/// GOT entry can either be a local pointer or an extern (nonlazy) import.
kind: enum {
Local,
Extern,
},
/// Id to the macho.nlist_64 from the respective table: either locals or nonlazy imports.
/// TODO I'm more and more inclined to just manage a single, max two symbol tables
/// rather than 4 as we currently do, but I'll follow up in the future PR.
symbol: u32,
/// Index of this entry in the GOT.
index: u32,
};
pub const Import = struct {
/// MachO symbol table entry.
symbol: macho.nlist_64,
/// Id of the dynamic library where the specified entries can be found.
dylib_ordinal: i64,
/// Index of this import within the import list.
index: u32,
};
pub const PIEFixup = struct {
/// Target VM address of this relocation.
target_addr: u64,
/// Offset within the byte stream.
offset: usize,
/// Size of the relocation.
size: usize,
};
pub const StubFixup = struct {
/// Id of extern (lazy) symbol.
symbol: u32,
/// Signals whether the symbol has already been declared before. If so,
/// then there is no need to rewrite the stub entry and related.
already_defined: bool,
/// Where in the byte stream we should perform the fixup.
start: usize,
/// The length of the byte stream. For x86_64, this will be
/// variable. For aarch64, it will be fixed at 4 bytes.
len: usize,
};
/// When allocating, the ideal_capacity is calculated by
/// actual_capacity + (actual_capacity / ideal_factor)
const ideal_factor = 2;
/// Default path to dyld
/// TODO instead of hardcoding it, we should probably look through some env vars and search paths
/// instead but this will do for now.
const DEFAULT_DYLD_PATH: [*:0]const u8 = "/usr/lib/dyld";
/// Default lib search path
/// TODO instead of hardcoding it, we should probably look through some env vars and search paths
/// instead but this will do for now.
const DEFAULT_LIB_SEARCH_PATH: []const u8 = "/usr/lib";
const LIB_SYSTEM_NAME: [*:0]const u8 = "System";
/// TODO we should search for libSystem and fail if it doesn't exist, instead of hardcoding it
const LIB_SYSTEM_PATH: [*:0]const u8 = DEFAULT_LIB_SEARCH_PATH ++ "/libSystem.B.dylib";
/// In order for a slice of bytes to be considered eligible to keep metadata pointing at
/// it as a possible place to put new symbols, it must have enough room for this many bytes
/// (plus extra for reserved capacity).
const minimum_text_block_size = 64;
const min_text_capacity = padToIdeal(minimum_text_block_size);
pub const TextBlock = struct {
/// Each decl always gets a local symbol with the fully qualified name.
/// The vaddr and size are found here directly.
/// The file offset is found by computing the vaddr offset from the section vaddr
/// the symbol references, and adding that to the file offset of the section.
/// If this field is 0, it means the codegen size = 0 and there is no symbol or
/// offset table entry.
local_sym_index: u32,
/// Index into offset table
/// This field is undefined for symbols with size = 0.
offset_table_index: u32,
/// Size of this text block
/// Unlike in Elf, we need to store the size of this symbol as part of
/// the TextBlock since macho.nlist_64 lacks this information.
size: u64,
/// Points to the previous and next neighbours
prev: ?*TextBlock,
next: ?*TextBlock,
/// Previous/next linked list pointers.
/// This is the linked list node for this Decl's corresponding .debug_info tag.
dbg_info_prev: ?*TextBlock,
dbg_info_next: ?*TextBlock,
/// Offset into .debug_info pointing to the tag for this Decl.
dbg_info_off: u32,
/// Size of the .debug_info tag for this Decl, not including padding.
dbg_info_len: u32,
pub const empty = TextBlock{
.local_sym_index = 0,
.offset_table_index = undefined,
.size = 0,
.prev = null,
.next = null,
.dbg_info_prev = null,
.dbg_info_next = null,
.dbg_info_off = undefined,
.dbg_info_len = undefined,
};
/// Returns how much room there is to grow in virtual address space.
/// File offset relocation happens transparently, so it is not included in
/// this calculation.
fn capacity(self: TextBlock, macho_file: MachO) u64 {
const self_sym = macho_file.locals.items[self.local_sym_index];
if (self.next) |next| {
const next_sym = macho_file.locals.items[next.local_sym_index];
return next_sym.n_value - self_sym.n_value;
} else {
// We are the last block.
// The capacity is limited only by virtual address space.
return std.math.maxInt(u64) - self_sym.n_value;
}
}
fn freeListEligible(self: TextBlock, macho_file: MachO) bool {
// No need to keep a free list node for the last block.
const next = self.next orelse return false;
const self_sym = macho_file.locals.items[self.local_sym_index];
const next_sym = macho_file.locals.items[next.local_sym_index];
const cap = next_sym.n_value - self_sym.n_value;
const ideal_cap = padToIdeal(self.size);
if (cap <= ideal_cap) return false;
const surplus = cap - ideal_cap;
return surplus >= min_text_capacity;
}
};
pub const Export = struct {
sym_index: ?u32 = null,
};
pub const SrcFn = struct {
/// Offset from the beginning of the Debug Line Program header that contains this function.
off: u32,
/// Size of the line number program component belonging to this function, not
/// including padding.
len: u32,
/// Points to the previous and next neighbors, based on the offset from .debug_line.
/// This can be used to find, for example, the capacity of this `SrcFn`.
prev: ?*SrcFn,
next: ?*SrcFn,
pub const empty: SrcFn = .{
.off = 0,
.len = 0,
.prev = null,
.next = null,
};
};
pub fn openPath(allocator: *Allocator, sub_path: []const u8, options: link.Options) !*MachO {
assert(options.object_format == .macho);
if (options.use_llvm) return error.LLVM_BackendIsTODO_ForMachO; // TODO
if (options.use_lld) return error.LLD_LinkingIsTODO_ForMachO; // TODO
const file = try options.emit.?.directory.handle.createFile(sub_path, .{
.truncate = false,
.read = true,
.mode = link.determineMode(options),
});
errdefer file.close();
const self = try createEmpty(allocator, options);
errdefer {
self.base.file = null;
self.base.destroy();
}
self.base.file = file;
if (!options.strip and options.module != null) {
// Create dSYM bundle.
const dir = options.module.?.zig_cache_artifact_directory;
log.debug("creating {s}.dSYM bundle in {s}", .{ sub_path, dir.path });
const d_sym_path = try fmt.allocPrint(
allocator,
"{s}.dSYM" ++ fs.path.sep_str ++ "Contents" ++ fs.path.sep_str ++ "Resources" ++ fs.path.sep_str ++ "DWARF",
.{sub_path},
);
defer allocator.free(d_sym_path);
var d_sym_bundle = try dir.handle.makeOpenPath(d_sym_path, .{});
defer d_sym_bundle.close();
const d_sym_file = try d_sym_bundle.createFile(sub_path, .{
.truncate = false,
.read = true,
});
self.d_sym = .{
.base = self,
.file = d_sym_file,
};
}
// Index 0 is always a null symbol.
try self.locals.append(allocator, .{
.n_strx = 0,
.n_type = 0,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
});
switch (options.output_mode) {
.Exe => {},
.Obj => {},
.Lib => return error.TODOImplementWritingLibFiles,
}
try self.populateMissingMetadata();
try self.writeLocalSymbol(0);
if (self.d_sym) |*ds| {
try ds.populateMissingMetadata(allocator);
try ds.writeLocalSymbol(0);
}
return self;
}
pub fn createEmpty(gpa: *Allocator, options: link.Options) !*MachO {
const self = try gpa.create(MachO);
self.* = .{
.base = .{
.tag = .macho,
.options = options,
.allocator = gpa,
.file = null,
},
.page_size = if (options.target.cpu.arch == .aarch64) 0x4000 else 0x1000,
};
return self;
}
pub fn flush(self: *MachO, comp: *Compilation) !void {
if (build_options.have_llvm and self.base.options.use_lld) {
return self.linkWithLLD(comp);
} else {
switch (self.base.options.effectiveOutputMode()) {
.Exe, .Obj => {},
.Lib => return error.TODOImplementWritingLibFiles,
}
return self.flushModule(comp);
}
}
pub fn flushModule(self: *MachO, comp: *Compilation) !void {
const tracy = trace(@src());
defer tracy.end();
const output_mode = self.base.options.output_mode;
const target = self.base.options.target;
switch (output_mode) {
.Exe => {
if (self.entry_addr) |addr| {
// Update LC_MAIN with entry offset.
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const main_cmd = &self.load_commands.items[self.main_cmd_index.?].Main;
main_cmd.entryoff = addr - text_segment.inner.vmaddr;
main_cmd.stacksize = self.base.options.stack_size_override orelse 0;
self.load_commands_dirty = true;
}
try self.writeRebaseInfoTable();
try self.writeBindingInfoTable();
try self.writeLazyBindingInfoTable();
try self.writeExportTrie();
try self.writeAllGlobalAndUndefSymbols();
try self.writeIndirectSymbolTable();
try self.writeStringTable();
try self.updateLinkeditSegmentSizes();
if (self.d_sym) |*ds| {
// Flush debug symbols bundle.
try ds.flushModule(self.base.allocator, self.base.options);
}
if (target.cpu.arch == .aarch64) {
// Preallocate space for the code signature.
// We need to do this at this stage so that we have the load commands with proper values
// written out to the file.
// The most important here is to have the correct vm and filesize of the __LINKEDIT segment
// where the code signature goes into.
try self.writeCodeSignaturePadding();
}
},
.Obj => {},
.Lib => return error.TODOImplementWritingLibFiles,
}
try self.writeLoadCommands();
try self.writeHeader();
if (self.entry_addr == null and self.base.options.output_mode == .Exe) {
log.debug("flushing. no_entry_point_found = true", .{});
self.error_flags.no_entry_point_found = true;
} else {
log.debug("flushing. no_entry_point_found = false", .{});
self.error_flags.no_entry_point_found = false;
}
assert(!self.offset_table_count_dirty);
assert(!self.header_dirty);
assert(!self.load_commands_dirty);
assert(!self.rebase_info_dirty);
assert(!self.binding_info_dirty);
assert(!self.lazy_binding_info_dirty);
assert(!self.export_info_dirty);
assert(!self.string_table_dirty);
assert(!self.string_table_needs_relocation);
if (target.cpu.arch == .aarch64) {
switch (output_mode) {
.Exe, .Lib => try self.writeCodeSignature(), // code signing always comes last
else => {},
}
}
}
fn linkWithLLD(self: *MachO, comp: *Compilation) !void {
const tracy = trace(@src());
defer tracy.end();
var arena_allocator = std.heap.ArenaAllocator.init(self.base.allocator);
defer arena_allocator.deinit();
const arena = &arena_allocator.allocator;
const directory = self.base.options.emit.?.directory; // Just an alias to make it shorter to type.
// If there is no Zig code to compile, then we should skip flushing the output file because it
// will not be part of the linker line anyway.
const module_obj_path: ?[]const u8 = if (self.base.options.module) |module| blk: {
const use_stage1 = build_options.is_stage1 and self.base.options.use_llvm;
if (use_stage1) {
const obj_basename = try std.zig.binNameAlloc(arena, .{
.root_name = self.base.options.root_name,
.target = self.base.options.target,
.output_mode = .Obj,
});
const o_directory = self.base.options.module.?.zig_cache_artifact_directory;
const full_obj_path = try o_directory.join(arena, &[_][]const u8{obj_basename});
break :blk full_obj_path;
}
try self.flushModule(comp);
const obj_basename = self.base.intermediary_basename.?;
const full_obj_path = try directory.join(arena, &[_][]const u8{obj_basename});
break :blk full_obj_path;
} else null;
const is_lib = self.base.options.output_mode == .Lib;
const is_dyn_lib = self.base.options.link_mode == .Dynamic and is_lib;
const is_exe_or_dyn_lib = is_dyn_lib or self.base.options.output_mode == .Exe;
const target = self.base.options.target;
const stack_size = self.base.options.stack_size_override orelse 0;
const allow_shlib_undefined = self.base.options.allow_shlib_undefined orelse !self.base.options.is_native_os;
const id_symlink_basename = "lld.id";
var man: Cache.Manifest = undefined;
defer if (!self.base.options.disable_lld_caching) man.deinit();
var digest: [Cache.hex_digest_len]u8 = undefined;
if (!self.base.options.disable_lld_caching) {
man = comp.cache_parent.obtain();
// We are about to obtain this lock, so here we give other processes a chance first.
self.base.releaseLock();
try man.addOptionalFile(self.base.options.linker_script);
try man.addOptionalFile(self.base.options.version_script);
try man.addListOfFiles(self.base.options.objects);
for (comp.c_object_table.items()) |entry| {
_ = try man.addFile(entry.key.status.success.object_path, null);
}
try man.addOptionalFile(module_obj_path);
// We can skip hashing libc and libc++ components that we are in charge of building from Zig
// installation sources because they are always a product of the compiler version + target information.
man.hash.add(stack_size);
man.hash.add(self.base.options.rdynamic);
man.hash.addListOfBytes(self.base.options.extra_lld_args);
man.hash.addListOfBytes(self.base.options.lib_dirs);
man.hash.addListOfBytes(self.base.options.framework_dirs);
man.hash.addListOfBytes(self.base.options.frameworks);
man.hash.addListOfBytes(self.base.options.rpath_list);
man.hash.add(self.base.options.skip_linker_dependencies);
man.hash.add(self.base.options.z_nodelete);
man.hash.add(self.base.options.z_defs);
if (is_dyn_lib) {
man.hash.addOptional(self.base.options.version);
}
man.hash.addStringSet(self.base.options.system_libs);
man.hash.add(allow_shlib_undefined);
man.hash.add(self.base.options.bind_global_refs_locally);
man.hash.add(self.base.options.system_linker_hack);
man.hash.addOptionalBytes(self.base.options.syslibroot);
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
_ = try man.hit();
digest = man.final();
var prev_digest_buf: [digest.len]u8 = undefined;
const prev_digest: []u8 = Cache.readSmallFile(
directory.handle,
id_symlink_basename,
&prev_digest_buf,
) catch |err| blk: {
log.debug("MachO LLD new_digest={s} error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) });
// Handle this as a cache miss.
break :blk prev_digest_buf[0..0];
};
if (mem.eql(u8, prev_digest, &digest)) {
log.debug("MachO LLD digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)});
// Hot diggity dog! The output binary is already there.
self.base.lock = man.toOwnedLock();
return;
}
log.debug("MachO LLD prev_digest={s} new_digest={s}", .{ std.fmt.fmtSliceHexLower(prev_digest), std.fmt.fmtSliceHexLower(&digest) });
// We are about to change the output file to be different, so we invalidate the build hash now.
directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
};
}
const full_out_path = try directory.join(arena, &[_][]const u8{self.base.options.emit.?.sub_path});
if (self.base.options.output_mode == .Obj) {
// LLD's MachO driver does not support the equvialent of `-r` so we do a simple file copy
// here. TODO: think carefully about how we can avoid this redundant operation when doing
// build-obj. See also the corresponding TODO in linkAsArchive.
const the_object_path = blk: {
if (self.base.options.objects.len != 0)
break :blk self.base.options.objects[0];
if (comp.c_object_table.count() != 0)
break :blk comp.c_object_table.items()[0].key.status.success.object_path;
if (module_obj_path) |p|
break :blk p;
// TODO I think this is unreachable. Audit this situation when solving the above TODO
// regarding eliding redundant object -> object transformations.
return error.NoObjectsToLink;
};
// This can happen when using --enable-cache and using the stage1 backend. In this case
// we can skip the file copy.
if (!mem.eql(u8, the_object_path, full_out_path)) {
try fs.cwd().copyFile(the_object_path, fs.cwd(), full_out_path, .{});
}
} else outer: {
const use_zld = blk: {
if (self.base.options.is_native_os and self.base.options.system_linker_hack) {
// If the user forces the use of ld64, make sure we are running native!
break :blk false;
}
if (self.base.options.target.cpu.arch == .aarch64) {
// On aarch64, always use zld.
break :blk true;
}
if (self.base.options.output_mode == .Lib or
self.base.options.linker_script != null)
{
// Fallback to LLD in this handful of cases on x86_64 only.
break :blk false;
}
break :blk true;
};
if (use_zld) {
var zld = Zld.init(self.base.allocator);
defer {
zld.closeFiles();
zld.deinit();
}
zld.arch = target.cpu.arch;
zld.stack_size = stack_size;
// Positional arguments to the linker such as object files and static archives.
var positionals = std.ArrayList([]const u8).init(arena);
try positionals.appendSlice(self.base.options.objects);
for (comp.c_object_table.items()) |entry| {
try positionals.append(entry.key.status.success.object_path);
}
if (module_obj_path) |p| {
try positionals.append(p);
}
try positionals.append(comp.compiler_rt_static_lib.?.full_object_path);
// libc++ dep
if (self.base.options.link_libcpp) {
try positionals.append(comp.libcxxabi_static_lib.?.full_object_path);
try positionals.append(comp.libcxx_static_lib.?.full_object_path);
}
// Shared and static libraries passed via `-l` flag.
var libs = std.ArrayList([]const u8).init(arena);
var search_lib_names = std.ArrayList([]const u8).init(arena);
const system_libs = self.base.options.system_libs.items();
for (system_libs) |entry| {
const link_lib = entry.key;
// By this time, we depend on these libs being dynamically linked libraries and not static libraries
// (the check for that needs to be earlier), but they could be full paths to .dylib files, in which
// case we want to avoid prepending "-l".
if (Compilation.classifyFileExt(link_lib) == .shared_library) {
try positionals.append(link_lib);
continue;
}
try search_lib_names.append(link_lib);
}
var search_lib_dirs = std.ArrayList([]const u8).init(arena);
for (self.base.options.lib_dirs) |path| {
if (fs.path.isAbsolute(path)) {
var candidates = std.ArrayList([]const u8).init(arena);
if (self.base.options.syslibroot) |syslibroot| {
const full_path = try fs.path.join(arena, &[_][]const u8{ syslibroot, path });
try candidates.append(full_path);
}
try candidates.append(path);
var found = false;
for (candidates.items) |candidate| {
// Verify that search path actually exists
var tmp = fs.cwd().openDir(candidate, .{}) catch |err| switch (err) {
error.FileNotFound => continue,
else => |e| return e,
};
defer tmp.close();
try search_lib_dirs.append(candidate);
found = true;
break;
}
if (!found) {
log.warn("directory not found for '-L{s}'", .{path});
}
} else {
// Verify that search path actually exists
var tmp = fs.cwd().openDir(path, .{}) catch |err| switch (err) {
error.FileNotFound => {
log.warn("directory not found for '-L{s}'", .{path});
continue;
},
else => |e| return e,
};
defer tmp.close();
try search_lib_dirs.append(path);
}
}
// Search for static libraries first, then dynamic libraries.
// TODO Respect flags such as -search_paths_first to the linker.
// TODO text-based API, or .tbd files.
const exts = &[_][]const u8{ "a", "dylib" };
for (search_lib_names.items) |l_name| {
var found = false;
ext: for (exts) |ext| {
const l_name_ext = try std.fmt.allocPrint(arena, "lib{s}.{s}", .{ l_name, ext });
for (search_lib_dirs.items) |lib_dir| {
const full_path = try fs.path.join(arena, &[_][]const u8{ lib_dir, l_name_ext });
// Check if the lib file exists.
const tmp = fs.cwd().openFile(full_path, .{}) catch |err| switch (err) {
error.FileNotFound => continue,
else => |e| return e,
};
defer tmp.close();
try libs.append(full_path);
found = true;
break :ext;
}
}
if (!found) {
log.warn("library not found for '-l{s}'", .{l_name});
log.warn("Library search paths:", .{});
for (search_lib_dirs.items) |lib_dir| {
log.warn(" {s}", .{lib_dir});
}
}
}
// rpaths
var rpath_table = std.StringArrayHashMap(void).init(arena);
for (self.base.options.rpath_list) |rpath| {
if (rpath_table.contains(rpath)) continue;
try rpath_table.putNoClobber(rpath, {});
}
var rpaths = std.ArrayList([]const u8).init(arena);
try rpaths.ensureCapacity(rpath_table.count());
for (rpath_table.items()) |entry| {
rpaths.appendAssumeCapacity(entry.key);
}
if (self.base.options.verbose_link) {
var argv = std.ArrayList([]const u8).init(arena);
try argv.append("zig");
try argv.append("ld");
if (self.base.options.syslibroot) |syslibroot| {
try argv.append("-syslibroot");
try argv.append(syslibroot);
}
for (rpaths.items) |rpath| {
try argv.append("-rpath");
try argv.append(rpath);
}
try argv.appendSlice(positionals.items);
try argv.append("-o");
try argv.append(full_out_path);
for (search_lib_names.items) |l_name| {
try argv.append(try std.fmt.allocPrint(arena, "-l{s}", .{l_name}));
}
for (self.base.options.lib_dirs) |lib_dir| {
try argv.append(try std.fmt.allocPrint(arena, "-L{s}", .{lib_dir}));
}
Compilation.dump_argv(argv.items);
}
try zld.link(positionals.items, full_out_path, .{
.libs = libs.items,
.rpaths = rpaths.items,
});
break :outer;
}
// Create an LLD command line and invoke it.
var argv = std.ArrayList([]const u8).init(self.base.allocator);
defer argv.deinit();
// TODO https://github.com/ziglang/zig/issues/6971
// Note that there is no need to check if running natively since we do that already
// when setting `system_linker_hack` in Compilation struct.
if (self.base.options.system_linker_hack) {
try argv.append("ld");
} else {
// We will invoke ourselves as a child process to gain access to LLD.
// This is necessary because LLD does not behave properly as a library -
// it calls exit() and does not reset all global data between invocations.
try argv.appendSlice(&[_][]const u8{ comp.self_exe_path.?, "ld64.lld" });
try argv.append("-error-limit");
try argv.append("0");
}
if (self.base.options.lto) {
switch (self.base.options.optimize_mode) {
.Debug => {},
.ReleaseSmall => try argv.append("-O2"),
.ReleaseFast, .ReleaseSafe => try argv.append("-O3"),
}
}
try argv.append("-demangle");
if (self.base.options.rdynamic and !self.base.options.system_linker_hack) {
try argv.append("--export-dynamic");
}
try argv.appendSlice(self.base.options.extra_lld_args);
if (self.base.options.z_nodelete) {
try argv.append("-z");
try argv.append("nodelete");
}
if (self.base.options.z_defs) {
try argv.append("-z");
try argv.append("defs");
}
if (is_exe_or_dyn_lib) {
try argv.append("-dynamic");
}
if (is_dyn_lib) {
try argv.append("-dylib");
if (self.base.options.version) |ver| {
const compat_vers = try std.fmt.allocPrint(arena, "{d}.0.0", .{ver.major});
try argv.append("-compatibility_version");
try argv.append(compat_vers);
const cur_vers = try std.fmt.allocPrint(arena, "{d}.{d}.{d}", .{ ver.major, ver.minor, ver.patch });
try argv.append("-current_version");
try argv.append(cur_vers);
}
const dylib_install_name = try std.fmt.allocPrint(arena, "@rpath/{s}", .{self.base.options.emit.?.sub_path});
try argv.append("-install_name");
try argv.append(dylib_install_name);
}
try argv.append("-arch");
try argv.append(darwinArchString(target.cpu.arch));
switch (target.os.tag) {
.macos => {
try argv.append("-macosx_version_min");
},
.ios, .tvos, .watchos => switch (target.cpu.arch) {
.i386, .x86_64 => {
try argv.append("-ios_simulator_version_min");
},
else => {
try argv.append("-iphoneos_version_min");
},
},
else => unreachable,
}
const ver = target.os.version_range.semver.min;
const version_string = try std.fmt.allocPrint(arena, "{d}.{d}.{d}", .{ ver.major, ver.minor, ver.patch });
try argv.append(version_string);
try argv.append("-sdk_version");
try argv.append(version_string);
if (target_util.requiresPIE(target) and self.base.options.output_mode == .Exe) {
try argv.append("-pie");
}
try argv.append("-o");
try argv.append(full_out_path);
// rpaths
var rpath_table = std.StringHashMap(void).init(self.base.allocator);
defer rpath_table.deinit();
for (self.base.options.rpath_list) |rpath| {
if ((try rpath_table.fetchPut(rpath, {})) == null) {
try argv.append("-rpath");
try argv.append(rpath);
}
}
if (is_dyn_lib) {
if ((try rpath_table.fetchPut(full_out_path, {})) == null) {
try argv.append("-rpath");
try argv.append(full_out_path);
}
}
if (self.base.options.syslibroot) |dir| {
try argv.append("-syslibroot");
try argv.append(dir);
}
for (self.base.options.lib_dirs) |lib_dir| {
try argv.append("-L");
try argv.append(lib_dir);
}
// Positional arguments to the linker such as object files.
try argv.appendSlice(self.base.options.objects);
for (comp.c_object_table.items()) |entry| {
try argv.append(entry.key.status.success.object_path);
}
if (module_obj_path) |p| {
try argv.append(p);
}
// compiler_rt on darwin is missing some stuff, so we still build it and rely on LinkOnce
if (is_exe_or_dyn_lib and !self.base.options.skip_linker_dependencies) {
try argv.append(comp.compiler_rt_static_lib.?.full_object_path);
}
// Shared libraries.
const system_libs = self.base.options.system_libs.items();
try argv.ensureCapacity(argv.items.len + system_libs.len);
for (system_libs) |entry| {
const link_lib = entry.key;
// By this time, we depend on these libs being dynamically linked libraries and not static libraries
// (the check for that needs to be earlier), but they could be full paths to .dylib files, in which
// case we want to avoid prepending "-l".
const ext = Compilation.classifyFileExt(link_lib);
const arg = if (ext == .shared_library) link_lib else try std.fmt.allocPrint(arena, "-l{s}", .{link_lib});
argv.appendAssumeCapacity(arg);
}
// libc++ dep
if (self.base.options.link_libcpp) {
try argv.append(comp.libcxxabi_static_lib.?.full_object_path);
try argv.append(comp.libcxx_static_lib.?.full_object_path);
}
// On Darwin, libSystem has libc in it, but also you have to use it
// to make syscalls because the syscall numbers are not documented
// and change between versions. So we always link against libSystem.
// LLD craps out if you do -lSystem cross compiling, so until that
// codebase gets some love from the new maintainers we're left with
// this dirty hack.
if (self.base.options.is_native_os) {
try argv.append("-lSystem");
}
for (self.base.options.framework_dirs) |framework_dir| {
try argv.append("-F");
try argv.append(framework_dir);
}
for (self.base.options.frameworks) |framework| {
try argv.append("-framework");
try argv.append(framework);
}
if (allow_shlib_undefined) {
try argv.append("-undefined");
try argv.append("dynamic_lookup");
}
if (self.base.options.bind_global_refs_locally) {
try argv.append("-Bsymbolic");
}
if (self.base.options.verbose_link) {
// Potentially skip over our own name so that the LLD linker name is the first argv item.
const adjusted_argv = if (self.base.options.system_linker_hack) argv.items else argv.items[1..];
Compilation.dump_argv(adjusted_argv);
}
// TODO https://github.com/ziglang/zig/issues/6971
// Note that there is no need to check if running natively since we do that already
// when setting `system_linker_hack` in Compilation struct.
if (self.base.options.system_linker_hack) {
const result = try std.ChildProcess.exec(.{ .allocator = self.base.allocator, .argv = argv.items });
defer {
self.base.allocator.free(result.stdout);
self.base.allocator.free(result.stderr);
}
if (result.stdout.len != 0) {
log.warn("unexpected LD stdout: {s}", .{result.stdout});
}
if (result.stderr.len != 0) {
log.warn("unexpected LD stderr: {s}", .{result.stderr});
}
if (result.term != .Exited or result.term.Exited != 0) {
// TODO parse this output and surface with the Compilation API rather than
// directly outputting to stderr here.
log.err("{s}", .{result.stderr});
return error.LDReportedFailure;
}
} else {
// Sadly, we must run LLD as a child process because it does not behave
// properly as a library.
const child = try std.ChildProcess.init(argv.items, arena);
defer child.deinit();
if (comp.clang_passthrough_mode) {
child.stdin_behavior = .Inherit;
child.stdout_behavior = .Inherit;
child.stderr_behavior = .Inherit;
const term = child.spawnAndWait() catch |err| {
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
return error.UnableToSpawnSelf;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
// TODO https://github.com/ziglang/zig/issues/6342
std.process.exit(1);
}
},
else => {
log.err("{s} terminated", .{argv.items[0]});
return error.LLDCrashed;
},
}
} else {
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Ignore;
child.stderr_behavior = .Pipe;
try child.spawn();
const stderr = try child.stderr.?.reader().readAllAlloc(arena, 10 * 1024 * 1024);
const term = child.wait() catch |err| {
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
return error.UnableToSpawnSelf;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
// TODO parse this output and surface with the Compilation API rather than
// directly outputting to stderr here.
std.debug.print("{s}", .{stderr});
return error.LLDReportedFailure;
}
},
else => {
log.err("{s} terminated with stderr:\n{s}", .{ argv.items[0], stderr });
return error.LLDCrashed;
},
}
if (stderr.len != 0) {
log.warn("unexpected LLD stderr:\n{s}", .{stderr});
}
}
}
}
if (!self.base.options.disable_lld_caching) {
// Update the file with the digest. If it fails we can continue; it only
// means that the next invocation will have an unnecessary cache miss.
Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| {
log.warn("failed to save linking hash digest file: {s}", .{@errorName(err)});
};
// Again failure here only means an unnecessary cache miss.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when linking: {s}", .{@errorName(err)});
};
// We hang on to this lock so that the output file path can be used without
// other processes clobbering it.
self.base.lock = man.toOwnedLock();
}
}
fn darwinArchString(arch: std.Target.Cpu.Arch) []const u8 {
return switch (arch) {
.aarch64, .aarch64_be, .aarch64_32 => "arm64",
.thumb, .arm => "arm",
.thumbeb, .armeb => "armeb",
.powerpc => "ppc",
.powerpc64 => "ppc64",
.powerpc64le => "ppc64le",
else => @tagName(arch),
};
}
pub fn deinit(self: *MachO) void {
if (self.d_sym) |*ds| {
ds.deinit(self.base.allocator);
}
for (self.lazy_imports.items()) |*entry| {
self.base.allocator.free(entry.key);
}
self.lazy_imports.deinit(self.base.allocator);
for (self.nonlazy_imports.items()) |*entry| {
self.base.allocator.free(entry.key);
}
self.nonlazy_imports.deinit(self.base.allocator);
self.pie_fixups.deinit(self.base.allocator);
self.stub_fixups.deinit(self.base.allocator);
self.text_block_free_list.deinit(self.base.allocator);
self.offset_table.deinit(self.base.allocator);
self.offset_table_free_list.deinit(self.base.allocator);
{
var it = self.string_table_directory.iterator();
while (it.next()) |entry| {
self.base.allocator.free(entry.key);
}
}
self.string_table_directory.deinit(self.base.allocator);
self.string_table.deinit(self.base.allocator);
self.globals.deinit(self.base.allocator);
self.globals_free_list.deinit(self.base.allocator);
self.locals.deinit(self.base.allocator);
self.locals_free_list.deinit(self.base.allocator);
for (self.load_commands.items) |*lc| {
lc.deinit(self.base.allocator);
}
self.load_commands.deinit(self.base.allocator);
}
fn freeTextBlock(self: *MachO, text_block: *TextBlock) void {
var already_have_free_list_node = false;
{
var i: usize = 0;
// TODO turn text_block_free_list into a hash map
while (i < self.text_block_free_list.items.len) {
if (self.text_block_free_list.items[i] == text_block) {
_ = self.text_block_free_list.swapRemove(i);
continue;
}
if (self.text_block_free_list.items[i] == text_block.prev) {
already_have_free_list_node = true;
}
i += 1;
}
}
// TODO process free list for dbg info just like we do above for vaddrs
if (self.last_text_block == text_block) {
// TODO shrink the __text section size here
self.last_text_block = text_block.prev;
}
if (self.d_sym) |*ds| {
if (ds.dbg_info_decl_first == text_block) {
ds.dbg_info_decl_first = text_block.dbg_info_next;
}
if (ds.dbg_info_decl_last == text_block) {
// TODO shrink the .debug_info section size here
ds.dbg_info_decl_last = text_block.dbg_info_prev;
}
}
if (text_block.prev) |prev| {
prev.next = text_block.next;
if (!already_have_free_list_node and prev.freeListEligible(self.*)) {
// The free list is heuristics, it doesn't have to be perfect, so we can ignore
// the OOM here.
self.text_block_free_list.append(self.base.allocator, prev) catch {};
}
} else {
text_block.prev = null;
}
if (text_block.next) |next| {
next.prev = text_block.prev;
} else {
text_block.next = null;
}
if (text_block.dbg_info_prev) |prev| {
prev.dbg_info_next = text_block.dbg_info_next;
// TODO the free list logic like we do for text blocks above
} else {
text_block.dbg_info_prev = null;
}
if (text_block.dbg_info_next) |next| {
next.dbg_info_prev = text_block.dbg_info_prev;
} else {
text_block.dbg_info_next = null;
}
}
fn shrinkTextBlock(self: *MachO, text_block: *TextBlock, new_block_size: u64) void {
// TODO check the new capacity, and if it crosses the size threshold into a big enough
// capacity, insert a free list node for it.
}
fn growTextBlock(self: *MachO, text_block: *TextBlock, new_block_size: u64, alignment: u64) !u64 {
const sym = self.locals.items[text_block.local_sym_index];
const align_ok = mem.alignBackwardGeneric(u64, sym.n_value, alignment) == sym.n_value;
const need_realloc = !align_ok or new_block_size > text_block.capacity(self.*);
if (!need_realloc) return sym.n_value;
return self.allocateTextBlock(text_block, new_block_size, alignment);
}
pub fn allocateDeclIndexes(self: *MachO, decl: *Module.Decl) !void {
if (decl.link.macho.local_sym_index != 0) return;
try self.locals.ensureCapacity(self.base.allocator, self.locals.items.len + 1);
try self.offset_table.ensureCapacity(self.base.allocator, self.offset_table.items.len + 1);
if (self.locals_free_list.popOrNull()) |i| {
log.debug("reusing symbol index {d} for {s}", .{ i, decl.name });
decl.link.macho.local_sym_index = i;
} else {
log.debug("allocating symbol index {d} for {s}", .{ self.locals.items.len, decl.name });
decl.link.macho.local_sym_index = @intCast(u32, self.locals.items.len);
_ = self.locals.addOneAssumeCapacity();
}
if (self.offset_table_free_list.popOrNull()) |i| {
log.debug("reusing offset table entry index {d} for {s}", .{ i, decl.name });
decl.link.macho.offset_table_index = i;
} else {
log.debug("allocating offset table entry index {d} for {s}", .{ self.offset_table.items.len, decl.name });
decl.link.macho.offset_table_index = @intCast(u32, self.offset_table.items.len);
_ = self.offset_table.addOneAssumeCapacity();
self.offset_table_count_dirty = true;
self.rebase_info_dirty = true;
}
self.locals.items[decl.link.macho.local_sym_index] = .{
.n_strx = 0,
.n_type = 0,
.n_sect = 0,
.n_desc = 0,
.n_value = 0,
};
self.offset_table.items[decl.link.macho.offset_table_index] = .{
.kind = .Local,
.symbol = decl.link.macho.local_sym_index,
.index = decl.link.macho.offset_table_index,
};
}
pub fn updateDecl(self: *MachO, module: *Module, decl: *Module.Decl) !void {
const tracy = trace(@src());
defer tracy.end();
if (decl.val.tag() == .extern_fn) {
return; // TODO Should we do more when front-end analyzed extern decl?
}
var code_buffer = std.ArrayList(u8).init(self.base.allocator);
defer code_buffer.deinit();
var debug_buffers = if (self.d_sym) |*ds| try ds.initDeclDebugBuffers(self.base.allocator, module, decl) else null;
defer {
if (debug_buffers) |*dbg| {
dbg.dbg_line_buffer.deinit();
dbg.dbg_info_buffer.deinit();
var it = dbg.dbg_info_type_relocs.iterator();
while (it.next()) |entry| {
entry.value.relocs.deinit(self.base.allocator);
}
dbg.dbg_info_type_relocs.deinit(self.base.allocator);
}
}
const res = if (debug_buffers) |*dbg|
try codegen.generateSymbol(&self.base, decl.srcLoc(), .{
.ty = decl.ty,
.val = decl.val,
}, &code_buffer, .{
.dwarf = .{
.dbg_line = &dbg.dbg_line_buffer,
.dbg_info = &dbg.dbg_info_buffer,
.dbg_info_type_relocs = &dbg.dbg_info_type_relocs,
},
})
else
try codegen.generateSymbol(&self.base, decl.srcLoc(), .{
.ty = decl.ty,
.val = decl.val,
}, &code_buffer, .none);
const code = switch (res) {
.externally_managed => |x| x,
.appended => code_buffer.items,
.fail => |em| {
// Clear any PIE fixups for this decl.
self.pie_fixups.shrinkRetainingCapacity(0);
// Clear any stub fixups for this decl.
self.stub_fixups.shrinkRetainingCapacity(0);
decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, decl, em);
return;
},
};
const required_alignment = decl.ty.abiAlignment(self.base.options.target);
assert(decl.link.macho.local_sym_index != 0); // Caller forgot to call allocateDeclIndexes()
const symbol = &self.locals.items[decl.link.macho.local_sym_index];
if (decl.link.macho.size != 0) {
const capacity = decl.link.macho.capacity(self.*);
const need_realloc = code.len > capacity or !mem.isAlignedGeneric(u64, symbol.n_value, required_alignment);
if (need_realloc) {
const vaddr = try self.growTextBlock(&decl.link.macho, code.len, required_alignment);
log.debug("growing {s} and moving from 0x{x} to 0x{x}", .{ decl.name, symbol.n_value, vaddr });
if (vaddr != symbol.n_value) {
log.debug(" (writing new offset table entry)", .{});
self.offset_table.items[decl.link.macho.offset_table_index] = .{
.kind = .Local,
.symbol = decl.link.macho.local_sym_index,
.index = decl.link.macho.offset_table_index,
};
try self.writeOffsetTableEntry(decl.link.macho.offset_table_index);
}
symbol.n_value = vaddr;
} else if (code.len < decl.link.macho.size) {
self.shrinkTextBlock(&decl.link.macho, code.len);
}
decl.link.macho.size = code.len;
const new_name = try std.fmt.allocPrint(self.base.allocator, "_{s}", .{mem.spanZ(decl.name)});
defer self.base.allocator.free(new_name);
symbol.n_strx = try self.updateString(symbol.n_strx, new_name);
symbol.n_type = macho.N_SECT;
symbol.n_sect = @intCast(u8, self.text_section_index.?) + 1;
symbol.n_desc = 0;
try self.writeLocalSymbol(decl.link.macho.local_sym_index);
if (self.d_sym) |*ds|
try ds.writeLocalSymbol(decl.link.macho.local_sym_index);
} else {
const decl_name = try std.fmt.allocPrint(self.base.allocator, "_{s}", .{mem.spanZ(decl.name)});
defer self.base.allocator.free(decl_name);
const name_str_index = try self.makeString(decl_name);
const addr = try self.allocateTextBlock(&decl.link.macho, code.len, required_alignment);
log.debug("allocated text block for {s} at 0x{x}", .{ decl_name, addr });
errdefer self.freeTextBlock(&decl.link.macho);
symbol.* = .{
.n_strx = name_str_index,
.n_type = macho.N_SECT,
.n_sect = @intCast(u8, self.text_section_index.?) + 1,
.n_desc = 0,
.n_value = addr,
};
self.offset_table.items[decl.link.macho.offset_table_index] = .{
.kind = .Local,
.symbol = decl.link.macho.local_sym_index,
.index = decl.link.macho.offset_table_index,
};
try self.writeLocalSymbol(decl.link.macho.local_sym_index);
if (self.d_sym) |*ds|
try ds.writeLocalSymbol(decl.link.macho.local_sym_index);
try self.writeOffsetTableEntry(decl.link.macho.offset_table_index);
}
// Calculate displacements to target addr (if any).
while (self.pie_fixups.popOrNull()) |fixup| {
assert(fixup.size == 4);
const this_addr = symbol.n_value + fixup.offset;
const target_addr = fixup.target_addr;
switch (self.base.options.target.cpu.arch) {
.x86_64 => {
const displacement = try math.cast(u32, target_addr - this_addr - 4);
mem.writeIntLittle(u32, code_buffer.items[fixup.offset..][0..4], displacement);
},
.aarch64 => {
// TODO optimize instruction based on jump length (use ldr(literal) + nop if possible).
{
const inst = code_buffer.items[fixup.offset..][0..4];
var parsed = mem.bytesAsValue(meta.TagPayload(
aarch64.Instruction,
aarch64.Instruction.pc_relative_address,
), inst);
const this_page = @intCast(i32, this_addr >> 12);
const target_page = @intCast(i32, target_addr >> 12);
const pages = @bitCast(u21, @intCast(i21, target_page - this_page));
parsed.immhi = @truncate(u19, pages >> 2);
parsed.immlo = @truncate(u2, pages);
}
{
const inst = code_buffer.items[fixup.offset + 4 ..][0..4];
var parsed = mem.bytesAsValue(meta.TagPayload(
aarch64.Instruction,
aarch64.Instruction.load_store_register,
), inst);
const narrowed = @truncate(u12, target_addr);
const offset = try math.divExact(u12, narrowed, 8);
parsed.offset = offset;
}
},
else => unreachable, // unsupported target architecture
}
}
// Resolve stubs (if any)
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const stubs = text_segment.sections.items[self.stubs_section_index.?];
for (self.stub_fixups.items) |fixup| {
const stub_addr = stubs.addr + fixup.symbol * stubs.reserved2;
const text_addr = symbol.n_value + fixup.start;
switch (self.base.options.target.cpu.arch) {
.x86_64 => {
assert(stub_addr >= text_addr + fixup.len);
const displacement = try math.cast(u32, stub_addr - text_addr - fixup.len);
var placeholder = code_buffer.items[fixup.start + fixup.len - @sizeOf(u32) ..][0..@sizeOf(u32)];
mem.writeIntSliceLittle(u32, placeholder, displacement);
},
.aarch64 => {
assert(stub_addr >= text_addr);
const displacement = try math.cast(i28, stub_addr - text_addr);
var placeholder = code_buffer.items[fixup.start..][0..fixup.len];
mem.writeIntSliceLittle(u32, placeholder, aarch64.Instruction.bl(displacement).toU32());
},
else => unreachable, // unsupported target architecture
}
if (!fixup.already_defined) {
try self.writeStub(fixup.symbol);
try self.writeStubInStubHelper(fixup.symbol);
try self.writeLazySymbolPointer(fixup.symbol);
self.rebase_info_dirty = true;
self.lazy_binding_info_dirty = true;
}
}
self.stub_fixups.shrinkRetainingCapacity(0);
const text_section = text_segment.sections.items[self.text_section_index.?];
const section_offset = symbol.n_value - text_section.addr;
const file_offset = text_section.offset + section_offset;
try self.base.file.?.pwriteAll(code, file_offset);
if (debug_buffers) |*db| {
try self.d_sym.?.commitDeclDebugInfo(
self.base.allocator,
module,
decl,
db,
self.base.options.target,
);
}
// Since we updated the vaddr and the size, each corresponding export symbol also needs to be updated.
const decl_exports = module.decl_exports.get(decl) orelse &[0]*Module.Export{};
try self.updateDeclExports(module, decl, decl_exports);
}
pub fn updateDeclLineNumber(self: *MachO, module: *Module, decl: *const Module.Decl) !void {
if (self.d_sym) |*ds| {
try ds.updateDeclLineNumber(module, decl);
}
}
pub fn updateDeclExports(
self: *MachO,
module: *Module,
decl: *Module.Decl,
exports: []const *Module.Export,
) !void {
const tracy = trace(@src());
defer tracy.end();
try self.globals.ensureCapacity(self.base.allocator, self.globals.items.len + exports.len);
if (decl.link.macho.local_sym_index == 0) return;
const decl_sym = &self.locals.items[decl.link.macho.local_sym_index];
for (exports) |exp| {
const exp_name = try std.fmt.allocPrint(self.base.allocator, "_{s}", .{exp.options.name});
defer self.base.allocator.free(exp_name);
if (exp.options.section) |section_name| {
if (!mem.eql(u8, section_name, "__text")) {
try module.failed_exports.ensureCapacity(module.gpa, module.failed_exports.items().len + 1);
module.failed_exports.putAssumeCapacityNoClobber(
exp,
try Module.ErrorMsg.create(self.base.allocator, decl.srcLoc(), "Unimplemented: ExportOptions.section", .{}),
);
continue;
}
}
var n_type: u8 = macho.N_SECT | macho.N_EXT;
var n_desc: u16 = 0;
switch (exp.options.linkage) {
.Internal => {
// Symbol should be hidden, or in MachO lingo, private extern.
// We should also mark the symbol as Weak: n_desc == N_WEAK_DEF.
// TODO work out when to add N_WEAK_REF.
n_type |= macho.N_PEXT;
n_desc |= macho.N_WEAK_DEF;
},
.Strong => {
// Check if the export is _main, and note if os.
// Otherwise, don't do anything since we already have all the flags
// set that we need for global (strong) linkage.
// n_type == N_SECT | N_EXT
if (mem.eql(u8, exp_name, "_main")) {
self.entry_addr = decl_sym.n_value;
}
},
.Weak => {
// Weak linkage is specified as part of n_desc field.
// Symbol's n_type is like for a symbol with strong linkage.
n_desc |= macho.N_WEAK_DEF;
},
.LinkOnce => {
try module.failed_exports.ensureCapacity(module.gpa, module.failed_exports.items().len + 1);
module.failed_exports.putAssumeCapacityNoClobber(
exp,
try Module.ErrorMsg.create(self.base.allocator, decl.srcLoc(), "Unimplemented: GlobalLinkage.LinkOnce", .{}),
);
continue;
},
}
if (exp.link.macho.sym_index) |i| {
const sym = &self.globals.items[i];
sym.* = .{
.n_strx = try self.updateString(sym.n_strx, exp_name),
.n_type = n_type,
.n_sect = @intCast(u8, self.text_section_index.?) + 1,
.n_desc = n_desc,
.n_value = decl_sym.n_value,
};
} else {
const name_str_index = try self.makeString(exp_name);
const i = if (self.globals_free_list.popOrNull()) |i| i else blk: {
_ = self.globals.addOneAssumeCapacity();
self.export_info_dirty = true;
break :blk self.globals.items.len - 1;
};
self.globals.items[i] = .{
.n_strx = name_str_index,
.n_type = n_type,
.n_sect = @intCast(u8, self.text_section_index.?) + 1,
.n_desc = n_desc,
.n_value = decl_sym.n_value,
};
exp.link.macho.sym_index = @intCast(u32, i);
}
}
}
pub fn deleteExport(self: *MachO, exp: Export) void {
const sym_index = exp.sym_index orelse return;
self.globals_free_list.append(self.base.allocator, sym_index) catch {};
self.globals.items[sym_index].n_type = 0;
}
pub fn freeDecl(self: *MachO, decl: *Module.Decl) void {
// Appending to free lists is allowed to fail because the free lists are heuristics based anyway.
self.freeTextBlock(&decl.link.macho);
if (decl.link.macho.local_sym_index != 0) {
self.locals_free_list.append(self.base.allocator, decl.link.macho.local_sym_index) catch {};
self.offset_table_free_list.append(self.base.allocator, decl.link.macho.offset_table_index) catch {};
self.locals.items[decl.link.macho.local_sym_index].n_type = 0;
decl.link.macho.local_sym_index = 0;
}
if (self.d_sym) |*ds| {
// TODO make this logic match freeTextBlock. Maybe abstract the logic
// out since the same thing is desired for both.
_ = ds.dbg_line_fn_free_list.remove(&decl.fn_link.macho);
if (decl.fn_link.macho.prev) |prev| {
ds.dbg_line_fn_free_list.put(self.base.allocator, prev, {}) catch {};
prev.next = decl.fn_link.macho.next;
if (decl.fn_link.macho.next) |next| {
next.prev = prev;
} else {
ds.dbg_line_fn_last = prev;
}
} else if (decl.fn_link.macho.next) |next| {
ds.dbg_line_fn_first = next;
next.prev = null;
}
if (ds.dbg_line_fn_first == &decl.fn_link.macho) {
ds.dbg_line_fn_first = decl.fn_link.macho.next;
}
if (ds.dbg_line_fn_last == &decl.fn_link.macho) {
ds.dbg_line_fn_last = decl.fn_link.macho.prev;
}
}
}
pub fn getDeclVAddr(self: *MachO, decl: *const Module.Decl) u64 {
assert(decl.link.macho.local_sym_index != 0);
return self.locals.items[decl.link.macho.local_sym_index].n_value;
}
pub fn populateMissingMetadata(self: *MachO) !void {
switch (self.base.options.output_mode) {
.Exe => {},
.Obj => return error.TODOImplementWritingObjFiles,
.Lib => return error.TODOImplementWritingLibFiles,
}
if (self.header == null) {
var header: macho.mach_header_64 = undefined;
header.magic = macho.MH_MAGIC_64;
const CpuInfo = struct {
cpu_type: macho.cpu_type_t,
cpu_subtype: macho.cpu_subtype_t,
};
const cpu_info: CpuInfo = switch (self.base.options.target.cpu.arch) {
.aarch64 => .{
.cpu_type = macho.CPU_TYPE_ARM64,
.cpu_subtype = macho.CPU_SUBTYPE_ARM_ALL,
},
.x86_64 => .{
.cpu_type = macho.CPU_TYPE_X86_64,
.cpu_subtype = macho.CPU_SUBTYPE_X86_64_ALL,
},
else => return error.UnsupportedMachOArchitecture,
};
header.cputype = cpu_info.cpu_type;
header.cpusubtype = cpu_info.cpu_subtype;
const filetype: u32 = switch (self.base.options.output_mode) {
.Exe => macho.MH_EXECUTE,
.Obj => macho.MH_OBJECT,
.Lib => switch (self.base.options.link_mode) {
.Static => return error.TODOStaticLibMachOType,
.Dynamic => macho.MH_DYLIB,
},
};
header.filetype = filetype;
// These will get populated at the end of flushing the results to file.
header.ncmds = 0;
header.sizeofcmds = 0;
switch (self.base.options.output_mode) {
.Exe => {
header.flags = macho.MH_NOUNDEFS | macho.MH_DYLDLINK | macho.MH_PIE;
},
else => {
header.flags = 0;
},
}
header.reserved = 0;
self.header = header;
self.header_dirty = true;
}
if (self.pagezero_segment_cmd_index == null) {
self.pagezero_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.Segment = SegmentCommand.empty(.{
.cmd = macho.LC_SEGMENT_64,
.cmdsize = @sizeOf(macho.segment_command_64),
.segname = makeStaticString("__PAGEZERO"),
.vmaddr = 0,
.vmsize = 0x100000000, // size always set to 4GB
.fileoff = 0,
.filesize = 0,
.maxprot = 0,
.initprot = 0,
.nsects = 0,
.flags = 0,
}),
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.text_segment_cmd_index == null) {
self.text_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
const maxprot = macho.VM_PROT_READ | macho.VM_PROT_WRITE | macho.VM_PROT_EXECUTE;
const initprot = macho.VM_PROT_READ | macho.VM_PROT_EXECUTE;
const program_code_size_hint = self.base.options.program_code_size_hint;
const offset_table_size_hint = @sizeOf(u64) * self.base.options.symbol_count_hint;
const ideal_size = self.header_pad + program_code_size_hint + 3 * offset_table_size_hint;
const needed_size = mem.alignForwardGeneric(u64, padToIdeal(ideal_size), self.page_size);
log.debug("found __TEXT segment free space 0x{x} to 0x{x}", .{ 0, needed_size });
try self.load_commands.append(self.base.allocator, .{
.Segment = SegmentCommand.empty(.{
.cmd = macho.LC_SEGMENT_64,
.cmdsize = @sizeOf(macho.segment_command_64),
.segname = makeStaticString("__TEXT"),
.vmaddr = 0x100000000, // always starts at 4GB
.vmsize = needed_size,
.fileoff = 0,
.filesize = needed_size,
.maxprot = maxprot,
.initprot = initprot,
.nsects = 0,
.flags = 0,
}),
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.text_section_index == null) {
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].Segment;
self.text_section_index = @intCast(u16, text_segment.sections.items.len);
const alignment: u2 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const flags = macho.S_REGULAR | macho.S_ATTR_PURE_INSTRUCTIONS | macho.S_ATTR_SOME_INSTRUCTIONS;
const needed_size = self.base.options.program_code_size_hint;
const off = text_segment.findFreeSpace(needed_size, @as(u16, 1) << alignment, self.header_pad);
log.debug("found __text section free space 0x{x} to 0x{x}", .{ off, off + needed_size });
try text_segment.addSection(self.base.allocator, .{
.sectname = makeStaticString("__text"),
.segname = makeStaticString("__TEXT"),
.addr = text_segment.inner.vmaddr + off,
.size = @intCast(u32, needed_size),
.offset = @intCast(u32, off),
.@"align" = alignment,
.reloff = 0,
.nreloc = 0,
.flags = flags,
.reserved1 = 0,
.reserved2 = 0,
.reserved3 = 0,
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.stubs_section_index == null) {
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].Segment;
self.stubs_section_index = @intCast(u16, text_segment.sections.items.len);
const alignment: u2 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const stub_size: u4 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 6,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable, // unhandled architecture type
};
const flags = macho.S_SYMBOL_STUBS | macho.S_ATTR_PURE_INSTRUCTIONS | macho.S_ATTR_SOME_INSTRUCTIONS;
const needed_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
const off = text_segment.findFreeSpace(needed_size, @alignOf(u64), self.header_pad);
assert(off + needed_size <= text_segment.inner.fileoff + text_segment.inner.filesize); // TODO Must expand __TEXT segment.
log.debug("found __stubs section free space 0x{x} to 0x{x}", .{ off, off + needed_size });
try text_segment.addSection(self.base.allocator, .{
.sectname = makeStaticString("__stubs"),
.segname = makeStaticString("__TEXT"),
.addr = text_segment.inner.vmaddr + off,
.size = needed_size,
.offset = @intCast(u32, off),
.@"align" = alignment,
.reloff = 0,
.nreloc = 0,
.flags = flags,
.reserved1 = 0,
.reserved2 = stub_size,
.reserved3 = 0,
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.stub_helper_section_index == null) {
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].Segment;
self.stub_helper_section_index = @intCast(u16, text_segment.sections.items.len);
const alignment: u2 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 0,
.aarch64 => 2,
else => unreachable, // unhandled architecture type
};
const flags = macho.S_REGULAR | macho.S_ATTR_PURE_INSTRUCTIONS | macho.S_ATTR_SOME_INSTRUCTIONS;
const needed_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
const off = text_segment.findFreeSpace(needed_size, @alignOf(u64), self.header_pad);
assert(off + needed_size <= text_segment.inner.fileoff + text_segment.inner.filesize); // TODO Must expand __TEXT segment.
log.debug("found __stub_helper section free space 0x{x} to 0x{x}", .{ off, off + needed_size });
try text_segment.addSection(self.base.allocator, .{
.sectname = makeStaticString("__stub_helper"),
.segname = makeStaticString("__TEXT"),
.addr = text_segment.inner.vmaddr + off,
.size = needed_size,
.offset = @intCast(u32, off),
.@"align" = alignment,
.reloff = 0,
.nreloc = 0,
.flags = flags,
.reserved1 = 0,
.reserved2 = 0,
.reserved3 = 0,
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.data_const_segment_cmd_index == null) {
self.data_const_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
const maxprot = macho.VM_PROT_READ | macho.VM_PROT_WRITE | macho.VM_PROT_EXECUTE;
const initprot = macho.VM_PROT_READ | macho.VM_PROT_WRITE;
const address_and_offset = self.nextSegmentAddressAndOffset();
const ideal_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
const needed_size = mem.alignForwardGeneric(u64, padToIdeal(ideal_size), self.page_size);
log.debug("found __DATA_CONST segment free space 0x{x} to 0x{x}", .{ address_and_offset.offset, address_and_offset.offset + needed_size });
try self.load_commands.append(self.base.allocator, .{
.Segment = SegmentCommand.empty(.{
.cmd = macho.LC_SEGMENT_64,
.cmdsize = @sizeOf(macho.segment_command_64),
.segname = makeStaticString("__DATA_CONST"),
.vmaddr = address_and_offset.address,
.vmsize = needed_size,
.fileoff = address_and_offset.offset,
.filesize = needed_size,
.maxprot = maxprot,
.initprot = initprot,
.nsects = 0,
.flags = 0,
}),
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.got_section_index == null) {
const dc_segment = &self.load_commands.items[self.data_const_segment_cmd_index.?].Segment;
self.got_section_index = @intCast(u16, dc_segment.sections.items.len);
const flags = macho.S_NON_LAZY_SYMBOL_POINTERS;
const needed_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
const off = dc_segment.findFreeSpace(needed_size, @alignOf(u64), null);
assert(off + needed_size <= dc_segment.inner.fileoff + dc_segment.inner.filesize); // TODO Must expand __DATA_CONST segment.
log.debug("found __got section free space 0x{x} to 0x{x}", .{ off, off + needed_size });
try dc_segment.addSection(self.base.allocator, .{
.sectname = makeStaticString("__got"),
.segname = makeStaticString("__DATA_CONST"),
.addr = dc_segment.inner.vmaddr + off - dc_segment.inner.fileoff,
.size = needed_size,
.offset = @intCast(u32, off),
.@"align" = 3, // 2^3 = @sizeOf(u64)
.reloff = 0,
.nreloc = 0,
.flags = flags,
.reserved1 = 0,
.reserved2 = 0,
.reserved3 = 0,
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.data_segment_cmd_index == null) {
self.data_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
const maxprot = macho.VM_PROT_READ | macho.VM_PROT_WRITE | macho.VM_PROT_EXECUTE;
const initprot = macho.VM_PROT_READ | macho.VM_PROT_WRITE;
const address_and_offset = self.nextSegmentAddressAndOffset();
const ideal_size = 2 * @sizeOf(u64) * self.base.options.symbol_count_hint;
const needed_size = mem.alignForwardGeneric(u64, padToIdeal(ideal_size), self.page_size);
log.debug("found __DATA segment free space 0x{x} to 0x{x}", .{ address_and_offset.offset, address_and_offset.offset + needed_size });
try self.load_commands.append(self.base.allocator, .{
.Segment = SegmentCommand.empty(.{
.cmd = macho.LC_SEGMENT_64,
.cmdsize = @sizeOf(macho.segment_command_64),
.segname = makeStaticString("__DATA"),
.vmaddr = address_and_offset.address,
.vmsize = needed_size,
.fileoff = address_and_offset.offset,
.filesize = needed_size,
.maxprot = maxprot,
.initprot = initprot,
.nsects = 0,
.flags = 0,
}),
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.la_symbol_ptr_section_index == null) {
const data_segment = &self.load_commands.items[self.data_segment_cmd_index.?].Segment;
self.la_symbol_ptr_section_index = @intCast(u16, data_segment.sections.items.len);
const flags = macho.S_LAZY_SYMBOL_POINTERS;
const needed_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
const off = data_segment.findFreeSpace(needed_size, @alignOf(u64), null);
assert(off + needed_size <= data_segment.inner.fileoff + data_segment.inner.filesize); // TODO Must expand __DATA segment.
log.debug("found __la_symbol_ptr section free space 0x{x} to 0x{x}", .{ off, off + needed_size });
try data_segment.addSection(self.base.allocator, .{
.sectname = makeStaticString("__la_symbol_ptr"),
.segname = makeStaticString("__DATA"),
.addr = data_segment.inner.vmaddr + off - data_segment.inner.fileoff,
.size = needed_size,
.offset = @intCast(u32, off),
.@"align" = 3, // 2^3 = @sizeOf(u64)
.reloff = 0,
.nreloc = 0,
.flags = flags,
.reserved1 = 0,
.reserved2 = 0,
.reserved3 = 0,
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.data_section_index == null) {
const data_segment = &self.load_commands.items[self.data_segment_cmd_index.?].Segment;
self.data_section_index = @intCast(u16, data_segment.sections.items.len);
const flags = macho.S_REGULAR;
const needed_size = @sizeOf(u64) * self.base.options.symbol_count_hint;
const off = data_segment.findFreeSpace(needed_size, @alignOf(u64), null);
assert(off + needed_size <= data_segment.inner.fileoff + data_segment.inner.filesize); // TODO Must expand __DATA segment.
log.debug("found __data section free space 0x{x} to 0x{x}", .{ off, off + needed_size });
try data_segment.addSection(self.base.allocator, .{
.sectname = makeStaticString("__data"),
.segname = makeStaticString("__DATA"),
.addr = data_segment.inner.vmaddr + off - data_segment.inner.fileoff,
.size = needed_size,
.offset = @intCast(u32, off),
.@"align" = 3, // 2^3 = @sizeOf(u64)
.reloff = 0,
.nreloc = 0,
.flags = flags,
.reserved1 = 0,
.reserved2 = 0,
.reserved3 = 0,
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.linkedit_segment_cmd_index == null) {
self.linkedit_segment_cmd_index = @intCast(u16, self.load_commands.items.len);
const maxprot = macho.VM_PROT_READ | macho.VM_PROT_WRITE | macho.VM_PROT_EXECUTE;
const initprot = macho.VM_PROT_READ;
const address_and_offset = self.nextSegmentAddressAndOffset();
log.debug("found __LINKEDIT segment free space at 0x{x}", .{address_and_offset.offset});
try self.load_commands.append(self.base.allocator, .{
.Segment = SegmentCommand.empty(.{
.cmd = macho.LC_SEGMENT_64,
.cmdsize = @sizeOf(macho.segment_command_64),
.segname = makeStaticString("__LINKEDIT"),
.vmaddr = address_and_offset.address,
.vmsize = 0,
.fileoff = address_and_offset.offset,
.filesize = 0,
.maxprot = maxprot,
.initprot = initprot,
.nsects = 0,
.flags = 0,
}),
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.dyld_info_cmd_index == null) {
self.dyld_info_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.DyldInfoOnly = .{
.cmd = macho.LC_DYLD_INFO_ONLY,
.cmdsize = @sizeOf(macho.dyld_info_command),
.rebase_off = 0,
.rebase_size = 0,
.bind_off = 0,
.bind_size = 0,
.weak_bind_off = 0,
.weak_bind_size = 0,
.lazy_bind_off = 0,
.lazy_bind_size = 0,
.export_off = 0,
.export_size = 0,
},
});
const dyld = &self.load_commands.items[self.dyld_info_cmd_index.?].DyldInfoOnly;
// Preallocate rebase, binding, lazy binding info, and export info.
const expected_size = 48; // TODO This is totally random.
const rebase_off = self.findFreeSpaceLinkedit(expected_size, 1, null);
log.debug("found rebase info free space 0x{x} to 0x{x}", .{ rebase_off, rebase_off + expected_size });
dyld.rebase_off = @intCast(u32, rebase_off);
dyld.rebase_size = expected_size;
const bind_off = self.findFreeSpaceLinkedit(expected_size, 1, null);
log.debug("found binding info free space 0x{x} to 0x{x}", .{ bind_off, bind_off + expected_size });
dyld.bind_off = @intCast(u32, bind_off);
dyld.bind_size = expected_size;
const lazy_bind_off = self.findFreeSpaceLinkedit(expected_size, 1, null);
log.debug("found lazy binding info free space 0x{x} to 0x{x}", .{ lazy_bind_off, lazy_bind_off + expected_size });
dyld.lazy_bind_off = @intCast(u32, lazy_bind_off);
dyld.lazy_bind_size = expected_size;
const export_off = self.findFreeSpaceLinkedit(expected_size, 1, null);
log.debug("found export info free space 0x{x} to 0x{x}", .{ export_off, export_off + expected_size });
dyld.export_off = @intCast(u32, export_off);
dyld.export_size = expected_size;
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.symtab_cmd_index == null) {
self.symtab_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.Symtab = .{
.cmd = macho.LC_SYMTAB,
.cmdsize = @sizeOf(macho.symtab_command),
.symoff = 0,
.nsyms = 0,
.stroff = 0,
.strsize = 0,
},
});
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].Symtab;
const symtab_size = self.base.options.symbol_count_hint * @sizeOf(macho.nlist_64);
const symtab_off = self.findFreeSpaceLinkedit(symtab_size, @sizeOf(macho.nlist_64), null);
log.debug("found symbol table free space 0x{x} to 0x{x}", .{ symtab_off, symtab_off + symtab_size });
symtab.symoff = @intCast(u32, symtab_off);
symtab.nsyms = @intCast(u32, self.base.options.symbol_count_hint);
try self.string_table.append(self.base.allocator, 0); // Need a null at position 0.
const strtab_size = self.string_table.items.len;
const strtab_off = self.findFreeSpaceLinkedit(strtab_size, 1, symtab_off);
log.debug("found string table free space 0x{x} to 0x{x}", .{ strtab_off, strtab_off + strtab_size });
symtab.stroff = @intCast(u32, strtab_off);
symtab.strsize = @intCast(u32, strtab_size);
self.header_dirty = true;
self.load_commands_dirty = true;
self.string_table_dirty = true;
}
if (self.dysymtab_cmd_index == null) {
self.dysymtab_cmd_index = @intCast(u16, self.load_commands.items.len);
// Preallocate space for indirect symbol table.
const indsymtab_size = self.base.options.symbol_count_hint * @sizeOf(u64); // Each entry is just a u64.
const indsymtab_off = self.findFreeSpaceLinkedit(indsymtab_size, @sizeOf(u64), null);
log.debug("found indirect symbol table free space 0x{x} to 0x{x}", .{ indsymtab_off, indsymtab_off + indsymtab_size });
try self.load_commands.append(self.base.allocator, .{
.Dysymtab = .{
.cmd = macho.LC_DYSYMTAB,
.cmdsize = @sizeOf(macho.dysymtab_command),
.ilocalsym = 0,
.nlocalsym = 0,
.iextdefsym = 0,
.nextdefsym = 0,
.iundefsym = 0,
.nundefsym = 0,
.tocoff = 0,
.ntoc = 0,
.modtaboff = 0,
.nmodtab = 0,
.extrefsymoff = 0,
.nextrefsyms = 0,
.indirectsymoff = @intCast(u32, indsymtab_off),
.nindirectsyms = @intCast(u32, self.base.options.symbol_count_hint),
.extreloff = 0,
.nextrel = 0,
.locreloff = 0,
.nlocrel = 0,
},
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.dylinker_cmd_index == null) {
self.dylinker_cmd_index = @intCast(u16, self.load_commands.items.len);
const cmdsize = @intCast(u32, mem.alignForwardGeneric(
u64,
@sizeOf(macho.dylinker_command) + mem.lenZ(DEFAULT_DYLD_PATH),
@sizeOf(u64),
));
var dylinker_cmd = emptyGenericCommandWithData(macho.dylinker_command{
.cmd = macho.LC_LOAD_DYLINKER,
.cmdsize = cmdsize,
.name = @sizeOf(macho.dylinker_command),
});
dylinker_cmd.data = try self.base.allocator.alloc(u8, cmdsize - dylinker_cmd.inner.name);
mem.set(u8, dylinker_cmd.data, 0);
mem.copy(u8, dylinker_cmd.data, mem.spanZ(DEFAULT_DYLD_PATH));
try self.load_commands.append(self.base.allocator, .{ .Dylinker = dylinker_cmd });
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.libsystem_cmd_index == null) {
self.libsystem_cmd_index = @intCast(u16, self.load_commands.items.len);
var dylib_cmd = try createLoadDylibCommand(self.base.allocator, mem.spanZ(LIB_SYSTEM_PATH), 2, 0, 0);
errdefer dylib_cmd.deinit(self.base.allocator);
try self.load_commands.append(self.base.allocator, .{ .Dylib = dylib_cmd });
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.main_cmd_index == null) {
self.main_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.Main = .{
.cmd = macho.LC_MAIN,
.cmdsize = @sizeOf(macho.entry_point_command),
.entryoff = 0x0,
.stacksize = 0,
},
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.version_min_cmd_index == null) {
self.version_min_cmd_index = @intCast(u16, self.load_commands.items.len);
const cmd: u32 = switch (self.base.options.target.os.tag) {
.macos => macho.LC_VERSION_MIN_MACOSX,
.ios => macho.LC_VERSION_MIN_IPHONEOS,
.tvos => macho.LC_VERSION_MIN_TVOS,
.watchos => macho.LC_VERSION_MIN_WATCHOS,
else => unreachable, // wrong OS
};
const ver = self.base.options.target.os.version_range.semver.min;
const version = ver.major << 16 | ver.minor << 8 | ver.patch;
try self.load_commands.append(self.base.allocator, .{
.VersionMin = .{
.cmd = cmd,
.cmdsize = @sizeOf(macho.version_min_command),
.version = version,
.sdk = version,
},
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.source_version_cmd_index == null) {
self.source_version_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.SourceVersion = .{
.cmd = macho.LC_SOURCE_VERSION,
.cmdsize = @sizeOf(macho.source_version_command),
.version = 0x0,
},
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.uuid_cmd_index == null) {
self.uuid_cmd_index = @intCast(u16, self.load_commands.items.len);
var uuid_cmd: macho.uuid_command = .{
.cmd = macho.LC_UUID,
.cmdsize = @sizeOf(macho.uuid_command),
.uuid = undefined,
};
std.crypto.random.bytes(&uuid_cmd.uuid);
try self.load_commands.append(self.base.allocator, .{ .Uuid = uuid_cmd });
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (self.code_signature_cmd_index == null) {
self.code_signature_cmd_index = @intCast(u16, self.load_commands.items.len);
try self.load_commands.append(self.base.allocator, .{
.LinkeditData = .{
.cmd = macho.LC_CODE_SIGNATURE,
.cmdsize = @sizeOf(macho.linkedit_data_command),
.dataoff = 0,
.datasize = 0,
},
});
self.header_dirty = true;
self.load_commands_dirty = true;
}
if (!self.nonlazy_imports.contains("dyld_stub_binder")) {
const index = @intCast(u32, self.nonlazy_imports.items().len);
const name = try self.base.allocator.dupe(u8, "dyld_stub_binder");
const offset = try self.makeString("dyld_stub_binder");
try self.nonlazy_imports.putNoClobber(self.base.allocator, name, .{
.symbol = .{
.n_strx = offset,
.n_type = std.macho.N_UNDF | std.macho.N_EXT,
.n_sect = 0,
.n_desc = std.macho.REFERENCE_FLAG_UNDEFINED_NON_LAZY | std.macho.N_SYMBOL_RESOLVER,
.n_value = 0,
},
.dylib_ordinal = 1, // TODO this is currently hardcoded.
.index = index,
});
const off_index = @intCast(u32, self.offset_table.items.len);
try self.offset_table.append(self.base.allocator, .{
.kind = .Extern,
.symbol = index,
.index = off_index,
});
try self.writeOffsetTableEntry(off_index);
self.binding_info_dirty = true;
}
if (self.stub_helper_stubs_start_off == null) {
try self.writeStubHelperPreamble();
}
}
fn allocateTextBlock(self: *MachO, text_block: *TextBlock, new_block_size: u64, alignment: u64) !u64 {
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const text_section = &text_segment.sections.items[self.text_section_index.?];
const new_block_ideal_capacity = padToIdeal(new_block_size);
// We use these to indicate our intention to update metadata, placing the new block,
// and possibly removing a free list node.
// It would be simpler to do it inside the for loop below, but that would cause a
// problem if an error was returned later in the function. So this action
// is actually carried out at the end of the function, when errors are no longer possible.
var block_placement: ?*TextBlock = null;
var free_list_removal: ?usize = null;
// First we look for an appropriately sized free list node.
// The list is unordered. We'll just take the first thing that works.
const vaddr = blk: {
var i: usize = 0;
while (i < self.text_block_free_list.items.len) {
const big_block = self.text_block_free_list.items[i];
// We now have a pointer to a live text block that has too much capacity.
// Is it enough that we could fit this new text block?
const sym = self.locals.items[big_block.local_sym_index];
const capacity = big_block.capacity(self.*);
const ideal_capacity = padToIdeal(capacity);
const ideal_capacity_end_vaddr = sym.n_value + ideal_capacity;
const capacity_end_vaddr = sym.n_value + capacity;
const new_start_vaddr_unaligned = capacity_end_vaddr - new_block_ideal_capacity;
const new_start_vaddr = mem.alignBackwardGeneric(u64, new_start_vaddr_unaligned, alignment);
if (new_start_vaddr < ideal_capacity_end_vaddr) {
// Additional bookkeeping here to notice if this free list node
// should be deleted because the block that it points to has grown to take up
// more of the extra capacity.
if (!big_block.freeListEligible(self.*)) {
_ = self.text_block_free_list.swapRemove(i);
} else {
i += 1;
}
continue;
}
// At this point we know that we will place the new block here. But the
// remaining question is whether there is still yet enough capacity left
// over for there to still be a free list node.
const remaining_capacity = new_start_vaddr - ideal_capacity_end_vaddr;
const keep_free_list_node = remaining_capacity >= min_text_capacity;
// Set up the metadata to be updated, after errors are no longer possible.
block_placement = big_block;
if (!keep_free_list_node) {
free_list_removal = i;
}
break :blk new_start_vaddr;
} else if (self.last_text_block) |last| {
const last_symbol = self.locals.items[last.local_sym_index];
// TODO We should pad out the excess capacity with NOPs. For executables,
// no padding seems to be OK, but it will probably not be for objects.
const ideal_capacity = padToIdeal(last.size);
const ideal_capacity_end_vaddr = last_symbol.n_value + ideal_capacity;
const new_start_vaddr = mem.alignForwardGeneric(u64, ideal_capacity_end_vaddr, alignment);
block_placement = last;
break :blk new_start_vaddr;
} else {
break :blk text_section.addr;
}
};
const expand_text_section = block_placement == null or block_placement.?.next == null;
if (expand_text_section) {
const needed_size = (vaddr + new_block_size) - text_section.addr;
assert(needed_size <= text_segment.inner.filesize); // TODO must move the entire text section.
self.last_text_block = text_block;
text_section.size = needed_size;
self.load_commands_dirty = true; // TODO Make more granular.
if (self.d_sym) |*ds| {
const debug_text_seg = &ds.load_commands.items[ds.text_segment_cmd_index.?].Segment;
const debug_text_sect = &debug_text_seg.sections.items[ds.text_section_index.?];
debug_text_sect.size = needed_size;
ds.load_commands_dirty = true;
}
}
text_block.size = new_block_size;
if (text_block.prev) |prev| {
prev.next = text_block.next;
}
if (text_block.next) |next| {
next.prev = text_block.prev;
}
if (block_placement) |big_block| {
text_block.prev = big_block;
text_block.next = big_block.next;
big_block.next = text_block;
} else {
text_block.prev = null;
text_block.next = null;
}
if (free_list_removal) |i| {
_ = self.text_block_free_list.swapRemove(i);
}
return vaddr;
}
pub fn makeStaticString(comptime bytes: []const u8) [16]u8 {
var buf = [_]u8{0} ** 16;
if (bytes.len > buf.len) @compileError("string too long; max 16 bytes");
mem.copy(u8, &buf, bytes);
return buf;
}
fn makeString(self: *MachO, bytes: []const u8) !u32 {
if (self.string_table_directory.get(bytes)) |offset| {
log.debug("reusing '{s}' from string table at offset 0x{x}", .{ bytes, offset });
return offset;
}
try self.string_table.ensureCapacity(self.base.allocator, self.string_table.items.len + bytes.len + 1);
const offset = @intCast(u32, self.string_table.items.len);
log.debug("writing new string '{s}' into string table at offset 0x{x}", .{ bytes, offset });
self.string_table.appendSliceAssumeCapacity(bytes);
self.string_table.appendAssumeCapacity(0);
try self.string_table_directory.putNoClobber(
self.base.allocator,
try self.base.allocator.dupe(u8, bytes),
offset,
);
self.string_table_dirty = true;
if (self.d_sym) |*ds|
ds.string_table_dirty = true;
return offset;
}
fn getString(self: *MachO, str_off: u32) []const u8 {
assert(str_off < self.string_table.items.len);
return mem.spanZ(@ptrCast([*:0]const u8, self.string_table.items.ptr + str_off));
}
fn updateString(self: *MachO, old_str_off: u32, new_name: []const u8) !u32 {
const existing_name = self.getString(old_str_off);
if (mem.eql(u8, existing_name, new_name)) {
return old_str_off;
}
return self.makeString(new_name);
}
pub fn addExternSymbol(self: *MachO, name: []const u8) !u32 {
const index = @intCast(u32, self.lazy_imports.items().len);
const offset = try self.makeString(name);
const sym_name = try self.base.allocator.dupe(u8, name);
const dylib_ordinal = 1; // TODO this is now hardcoded, since we only support libSystem.
try self.lazy_imports.putNoClobber(self.base.allocator, sym_name, .{
.symbol = .{
.n_strx = offset,
.n_type = macho.N_UNDF | macho.N_EXT,
.n_sect = 0,
.n_desc = macho.REFERENCE_FLAG_UNDEFINED_NON_LAZY | macho.N_SYMBOL_RESOLVER,
.n_value = 0,
},
.dylib_ordinal = dylib_ordinal,
.index = index,
});
log.debug("adding new extern symbol '{s}' with dylib ordinal '{}'", .{ name, dylib_ordinal });
return index;
}
const NextSegmentAddressAndOffset = struct {
address: u64,
offset: u64,
};
fn nextSegmentAddressAndOffset(self: *MachO) NextSegmentAddressAndOffset {
var prev_segment_idx: ?usize = null; // We use optional here for safety.
for (self.load_commands.items) |cmd, i| {
if (cmd == .Segment) {
prev_segment_idx = i;
}
}
const prev_segment = self.load_commands.items[prev_segment_idx.?].Segment;
const address = prev_segment.inner.vmaddr + prev_segment.inner.vmsize;
const offset = prev_segment.inner.fileoff + prev_segment.inner.filesize;
return .{
.address = address,
.offset = offset,
};
}
fn allocatedSizeLinkedit(self: *MachO, start: u64) u64 {
assert(start > 0);
var min_pos: u64 = std.math.maxInt(u64);
// __LINKEDIT is a weird segment where sections get their own load commands so we
// special-case it.
if (self.dyld_info_cmd_index) |idx| {
const dyld_info = self.load_commands.items[idx].DyldInfoOnly;
if (dyld_info.rebase_off > start and dyld_info.rebase_off < min_pos) min_pos = dyld_info.rebase_off;
if (dyld_info.bind_off > start and dyld_info.bind_off < min_pos) min_pos = dyld_info.bind_off;
if (dyld_info.weak_bind_off > start and dyld_info.weak_bind_off < min_pos) min_pos = dyld_info.weak_bind_off;
if (dyld_info.lazy_bind_off > start and dyld_info.lazy_bind_off < min_pos) min_pos = dyld_info.lazy_bind_off;
if (dyld_info.export_off > start and dyld_info.export_off < min_pos) min_pos = dyld_info.export_off;
}
if (self.function_starts_cmd_index) |idx| {
const fstart = self.load_commands.items[idx].LinkeditData;
if (fstart.dataoff > start and fstart.dataoff < min_pos) min_pos = fstart.dataoff;
}
if (self.data_in_code_cmd_index) |idx| {
const dic = self.load_commands.items[idx].LinkeditData;
if (dic.dataoff > start and dic.dataoff < min_pos) min_pos = dic.dataoff;
}
if (self.dysymtab_cmd_index) |idx| {
const dysymtab = self.load_commands.items[idx].Dysymtab;
if (dysymtab.indirectsymoff > start and dysymtab.indirectsymoff < min_pos) min_pos = dysymtab.indirectsymoff;
// TODO Handle more dynamic symbol table sections.
}
if (self.symtab_cmd_index) |idx| {
const symtab = self.load_commands.items[idx].Symtab;
if (symtab.symoff > start and symtab.symoff < min_pos) min_pos = symtab.symoff;
if (symtab.stroff > start and symtab.stroff < min_pos) min_pos = symtab.stroff;
}
return min_pos - start;
}
fn checkForCollision(start: u64, end: u64, off: u64, size: u64) callconv(.Inline) ?u64 {
const increased_size = padToIdeal(size);
const test_end = off + increased_size;
if (end > off and start < test_end) {
return test_end;
}
return null;
}
fn detectAllocCollisionLinkedit(self: *MachO, start: u64, size: u64) ?u64 {
const end = start + padToIdeal(size);
// __LINKEDIT is a weird segment where sections get their own load commands so we
// special-case it.
if (self.dyld_info_cmd_index) |idx| outer: {
if (self.load_commands.items.len == idx) break :outer;
const dyld_info = self.load_commands.items[idx].DyldInfoOnly;
if (checkForCollision(start, end, dyld_info.rebase_off, dyld_info.rebase_size)) |pos| {
return pos;
}
// Binding info
if (checkForCollision(start, end, dyld_info.bind_off, dyld_info.bind_size)) |pos| {
return pos;
}
// Weak binding info
if (checkForCollision(start, end, dyld_info.weak_bind_off, dyld_info.weak_bind_size)) |pos| {
return pos;
}
// Lazy binding info
if (checkForCollision(start, end, dyld_info.lazy_bind_off, dyld_info.lazy_bind_size)) |pos| {
return pos;
}
// Export info
if (checkForCollision(start, end, dyld_info.export_off, dyld_info.export_size)) |pos| {
return pos;
}
}
if (self.function_starts_cmd_index) |idx| outer: {
if (self.load_commands.items.len == idx) break :outer;
const fstart = self.load_commands.items[idx].LinkeditData;
if (checkForCollision(start, end, fstart.dataoff, fstart.datasize)) |pos| {
return pos;
}
}
if (self.data_in_code_cmd_index) |idx| outer: {
if (self.load_commands.items.len == idx) break :outer;
const dic = self.load_commands.items[idx].LinkeditData;
if (checkForCollision(start, end, dic.dataoff, dic.datasize)) |pos| {
return pos;
}
}
if (self.dysymtab_cmd_index) |idx| outer: {
if (self.load_commands.items.len == idx) break :outer;
const dysymtab = self.load_commands.items[idx].Dysymtab;
// Indirect symbol table
const nindirectsize = dysymtab.nindirectsyms * @sizeOf(u32);
if (checkForCollision(start, end, dysymtab.indirectsymoff, nindirectsize)) |pos| {
return pos;
}
// TODO Handle more dynamic symbol table sections.
}
if (self.symtab_cmd_index) |idx| outer: {
if (self.load_commands.items.len == idx) break :outer;
const symtab = self.load_commands.items[idx].Symtab;
// Symbol table
const symsize = symtab.nsyms * @sizeOf(macho.nlist_64);
if (checkForCollision(start, end, symtab.symoff, symsize)) |pos| {
return pos;
}
// String table
if (checkForCollision(start, end, symtab.stroff, symtab.strsize)) |pos| {
return pos;
}
}
return null;
}
fn findFreeSpaceLinkedit(self: *MachO, object_size: u64, min_alignment: u16, start: ?u64) u64 {
const linkedit = self.load_commands.items[self.linkedit_segment_cmd_index.?].Segment;
var st: u64 = start orelse linkedit.inner.fileoff;
while (self.detectAllocCollisionLinkedit(st, object_size)) |item_end| {
st = mem.alignForwardGeneric(u64, item_end, min_alignment);
}
return st;
}
fn writeOffsetTableEntry(self: *MachO, index: usize) !void {
const seg = &self.load_commands.items[self.data_const_segment_cmd_index.?].Segment;
const sect = &seg.sections.items[self.got_section_index.?];
const off = sect.offset + @sizeOf(u64) * index;
if (self.offset_table_count_dirty) {
// TODO relocate.
self.offset_table_count_dirty = false;
}
const got_entry = self.offset_table.items[index];
const sym = blk: {
switch (got_entry.kind) {
.Local => {
break :blk self.locals.items[got_entry.symbol];
},
.Extern => {
break :blk self.nonlazy_imports.items()[got_entry.symbol].value.symbol;
},
}
};
const sym_name = self.getString(sym.n_strx);
log.debug("writing offset table entry [ 0x{x} => 0x{x} ({s}) ]", .{ off, sym.n_value, sym_name });
try self.base.file.?.pwriteAll(mem.asBytes(&sym.n_value), off);
}
fn writeLazySymbolPointer(self: *MachO, index: u32) !void {
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const stub_helper = text_segment.sections.items[self.stub_helper_section_index.?];
const data_segment = self.load_commands.items[self.data_segment_cmd_index.?].Segment;
const la_symbol_ptr = data_segment.sections.items[self.la_symbol_ptr_section_index.?];
const stub_size: u4 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 10,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable,
};
const stub_off = self.stub_helper_stubs_start_off.? + index * stub_size;
const end = stub_helper.addr + stub_off - stub_helper.offset;
var buf: [@sizeOf(u64)]u8 = undefined;
mem.writeIntLittle(u64, &buf, end);
const off = la_symbol_ptr.offset + index * @sizeOf(u64);
log.debug("writing lazy symbol pointer entry 0x{x} at 0x{x}", .{ end, off });
try self.base.file.?.pwriteAll(&buf, off);
}
fn writeStubHelperPreamble(self: *MachO) !void {
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const stub_helper = &text_segment.sections.items[self.stub_helper_section_index.?];
const data_const_segment = &self.load_commands.items[self.data_const_segment_cmd_index.?].Segment;
const got = &data_const_segment.sections.items[self.got_section_index.?];
const data_segment = &self.load_commands.items[self.data_segment_cmd_index.?].Segment;
const data = &data_segment.sections.items[self.data_section_index.?];
switch (self.base.options.target.cpu.arch) {
.x86_64 => {
const code_size = 15;
var code: [code_size]u8 = undefined;
// lea %r11, [rip + disp]
code[0] = 0x4c;
code[1] = 0x8d;
code[2] = 0x1d;
{
const target_addr = data.addr;
const displacement = try math.cast(u32, target_addr - stub_helper.addr - 7);
mem.writeIntLittle(u32, code[3..7], displacement);
}
// push %r11
code[7] = 0x41;
code[8] = 0x53;
// jmp [rip + disp]
code[9] = 0xff;
code[10] = 0x25;
{
const displacement = try math.cast(u32, got.addr - stub_helper.addr - code_size);
mem.writeIntLittle(u32, code[11..], displacement);
}
try self.base.file.?.pwriteAll(&code, stub_helper.offset);
self.stub_helper_stubs_start_off = stub_helper.offset + code_size;
},
.aarch64 => {
var code: [6 * @sizeOf(u32)]u8 = undefined;
data_blk_outer: {
const this_addr = stub_helper.addr;
const target_addr = data.addr;
data_blk: {
const displacement = math.cast(i21, target_addr - this_addr) catch |_| break :data_blk;
// adr x17, disp
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.adr(.x17, displacement).toU32());
// nop
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.nop().toU32());
break :data_blk_outer;
}
data_blk: {
const new_this_addr = this_addr + @sizeOf(u32);
const displacement = math.cast(i21, target_addr - new_this_addr) catch |_| break :data_blk;
// nop
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.nop().toU32());
// adr x17, disp
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.adr(.x17, displacement).toU32());
break :data_blk_outer;
}
// Jump is too big, replace adr with adrp and add.
const this_page = @intCast(i32, this_addr >> 12);
const target_page = @intCast(i32, target_addr >> 12);
const pages = @intCast(i21, target_page - this_page);
// adrp x17, pages
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.adrp(.x17, pages).toU32());
const narrowed = @truncate(u12, target_addr);
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.add(.x17, .x17, narrowed, false).toU32());
}
// stp x16, x17, [sp, #-16]!
mem.writeIntLittle(u32, code[8..12], aarch64.Instruction.stp(
.x16,
.x17,
aarch64.Register.sp,
aarch64.Instruction.LoadStorePairOffset.pre_index(-16),
).toU32());
binder_blk_outer: {
const this_addr = stub_helper.addr + 3 * @sizeOf(u32);
const target_addr = got.addr;
binder_blk: {
const displacement = math.divExact(u64, target_addr - this_addr, 4) catch |_| break :binder_blk;
const literal = math.cast(u18, displacement) catch |_| break :binder_blk;
// ldr x16, label
mem.writeIntLittle(u32, code[12..16], aarch64.Instruction.ldr(.x16, .{
.literal = literal,
}).toU32());
// nop
mem.writeIntLittle(u32, code[16..20], aarch64.Instruction.nop().toU32());
break :binder_blk_outer;
}
binder_blk: {
const new_this_addr = this_addr + @sizeOf(u32);
const displacement = math.divExact(u64, target_addr - new_this_addr, 4) catch |_| break :binder_blk;
const literal = math.cast(u18, displacement) catch |_| break :binder_blk;
// nop
mem.writeIntLittle(u32, code[12..16], aarch64.Instruction.nop().toU32());
// ldr x16, label
mem.writeIntLittle(u32, code[16..20], aarch64.Instruction.ldr(.x16, .{
.literal = literal,
}).toU32());
break :binder_blk_outer;
}
// Jump is too big, replace ldr with adrp and ldr(register).
const this_page = @intCast(i32, this_addr >> 12);
const target_page = @intCast(i32, target_addr >> 12);
const pages = @intCast(i21, target_page - this_page);
// adrp x16, pages
mem.writeIntLittle(u32, code[12..16], aarch64.Instruction.adrp(.x16, pages).toU32());
const narrowed = @truncate(u12, target_addr);
const offset = try math.divExact(u12, narrowed, 8);
// ldr x16, x16, offset
mem.writeIntLittle(u32, code[16..20], aarch64.Instruction.ldr(.x16, .{
.register = .{
.rn = .x16,
.offset = aarch64.Instruction.LoadStoreOffset.imm(offset),
},
}).toU32());
}
// br x16
mem.writeIntLittle(u32, code[20..24], aarch64.Instruction.br(.x16).toU32());
try self.base.file.?.pwriteAll(&code, stub_helper.offset);
self.stub_helper_stubs_start_off = stub_helper.offset + code.len;
},
else => unreachable,
}
}
fn writeStub(self: *MachO, index: u32) !void {
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const stubs = text_segment.sections.items[self.stubs_section_index.?];
const data_segment = self.load_commands.items[self.data_segment_cmd_index.?].Segment;
const la_symbol_ptr = data_segment.sections.items[self.la_symbol_ptr_section_index.?];
const stub_off = stubs.offset + index * stubs.reserved2;
const stub_addr = stubs.addr + index * stubs.reserved2;
const la_ptr_addr = la_symbol_ptr.addr + index * @sizeOf(u64);
log.debug("writing stub at 0x{x}", .{stub_off});
var code = try self.base.allocator.alloc(u8, stubs.reserved2);
defer self.base.allocator.free(code);
switch (self.base.options.target.cpu.arch) {
.x86_64 => {
assert(la_ptr_addr >= stub_addr + stubs.reserved2);
const displacement = try math.cast(u32, la_ptr_addr - stub_addr - stubs.reserved2);
// jmp
code[0] = 0xff;
code[1] = 0x25;
mem.writeIntLittle(u32, code[2..][0..4], displacement);
},
.aarch64 => {
assert(la_ptr_addr >= stub_addr);
outer: {
const this_addr = stub_addr;
const target_addr = la_ptr_addr;
inner: {
const displacement = math.divExact(u64, target_addr - this_addr, 4) catch |_| break :inner;
const literal = math.cast(u18, displacement) catch |_| break :inner;
// ldr x16, literal
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.ldr(.x16, .{
.literal = literal,
}).toU32());
// nop
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.nop().toU32());
break :outer;
}
inner: {
const new_this_addr = this_addr + @sizeOf(u32);
const displacement = math.divExact(u64, target_addr - new_this_addr, 4) catch |_| break :inner;
const literal = math.cast(u18, displacement) catch |_| break :inner;
// nop
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.nop().toU32());
// ldr x16, literal
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.ldr(.x16, .{
.literal = literal,
}).toU32());
break :outer;
}
// Use adrp followed by ldr(register).
const this_page = @intCast(i32, this_addr >> 12);
const target_page = @intCast(i32, target_addr >> 12);
const pages = @intCast(i21, target_page - this_page);
// adrp x16, pages
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.adrp(.x16, pages).toU32());
const narrowed = @truncate(u12, target_addr);
const offset = try math.divExact(u12, narrowed, 8);
// ldr x16, x16, offset
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.ldr(.x16, .{
.register = .{
.rn = .x16,
.offset = aarch64.Instruction.LoadStoreOffset.imm(offset),
},
}).toU32());
}
// br x16
mem.writeIntLittle(u32, code[8..12], aarch64.Instruction.br(.x16).toU32());
},
else => unreachable,
}
try self.base.file.?.pwriteAll(code, stub_off);
}
fn writeStubInStubHelper(self: *MachO, index: u32) !void {
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const stub_helper = text_segment.sections.items[self.stub_helper_section_index.?];
const stub_size: u4 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 10,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable,
};
const stub_off = self.stub_helper_stubs_start_off.? + index * stub_size;
var code = try self.base.allocator.alloc(u8, stub_size);
defer self.base.allocator.free(code);
switch (self.base.options.target.cpu.arch) {
.x86_64 => {
const displacement = try math.cast(
i32,
@intCast(i64, stub_helper.offset) - @intCast(i64, stub_off) - stub_size,
);
// pushq
code[0] = 0x68;
mem.writeIntLittle(u32, code[1..][0..4], 0x0); // Just a placeholder populated in `populateLazyBindOffsetsInStubHelper`.
// jmpq
code[5] = 0xe9;
mem.writeIntLittle(u32, code[6..][0..4], @bitCast(u32, displacement));
},
.aarch64 => {
const literal = blk: {
const div_res = try math.divExact(u64, stub_size - @sizeOf(u32), 4);
break :blk try math.cast(u18, div_res);
};
// ldr w16, literal
mem.writeIntLittle(u32, code[0..4], aarch64.Instruction.ldr(.w16, .{
.literal = literal,
}).toU32());
const displacement = try math.cast(i28, @intCast(i64, stub_helper.offset) - @intCast(i64, stub_off) - 4);
// b disp
mem.writeIntLittle(u32, code[4..8], aarch64.Instruction.b(displacement).toU32());
// Just a placeholder populated in `populateLazyBindOffsetsInStubHelper`.
mem.writeIntLittle(u32, code[8..12], 0x0);
},
else => unreachable,
}
try self.base.file.?.pwriteAll(code, stub_off);
}
fn relocateSymbolTable(self: *MachO) !void {
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].Symtab;
const nlocals = self.locals.items.len;
const nglobals = self.globals.items.len;
const nundefs = self.lazy_imports.items().len + self.nonlazy_imports.items().len;
const nsyms = nlocals + nglobals + nundefs;
if (symtab.nsyms < nsyms) {
const linkedit_segment = self.load_commands.items[self.linkedit_segment_cmd_index.?].Segment;
const needed_size = nsyms * @sizeOf(macho.nlist_64);
if (needed_size > self.allocatedSizeLinkedit(symtab.symoff)) {
// Move the entire symbol table to a new location
const new_symoff = self.findFreeSpaceLinkedit(needed_size, @alignOf(macho.nlist_64), null);
const existing_size = symtab.nsyms * @sizeOf(macho.nlist_64);
log.debug("relocating symbol table from 0x{x}-0x{x} to 0x{x}-0x{x}", .{
symtab.symoff,
symtab.symoff + existing_size,
new_symoff,
new_symoff + existing_size,
});
const amt = try self.base.file.?.copyRangeAll(symtab.symoff, self.base.file.?, new_symoff, existing_size);
if (amt != existing_size) return error.InputOutput;
symtab.symoff = @intCast(u32, new_symoff);
self.string_table_needs_relocation = true;
}
symtab.nsyms = @intCast(u32, nsyms);
self.load_commands_dirty = true;
}
}
fn writeLocalSymbol(self: *MachO, index: usize) !void {
const tracy = trace(@src());
defer tracy.end();
try self.relocateSymbolTable();
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].Symtab;
const off = symtab.symoff + @sizeOf(macho.nlist_64) * index;
log.debug("writing local symbol {} at 0x{x}", .{ index, off });
try self.base.file.?.pwriteAll(mem.asBytes(&self.locals.items[index]), off);
}
fn writeAllGlobalAndUndefSymbols(self: *MachO) !void {
const tracy = trace(@src());
defer tracy.end();
try self.relocateSymbolTable();
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].Symtab;
const nlocals = self.locals.items.len;
const nglobals = self.globals.items.len;
const nundefs = self.lazy_imports.items().len + self.nonlazy_imports.items().len;
var undefs = std.ArrayList(macho.nlist_64).init(self.base.allocator);
defer undefs.deinit();
try undefs.ensureCapacity(nundefs);
for (self.lazy_imports.items()) |entry| {
undefs.appendAssumeCapacity(entry.value.symbol);
}
for (self.nonlazy_imports.items()) |entry| {
undefs.appendAssumeCapacity(entry.value.symbol);
}
const locals_off = symtab.symoff;
const locals_size = nlocals * @sizeOf(macho.nlist_64);
const globals_off = locals_off + locals_size;
const globals_size = nglobals * @sizeOf(macho.nlist_64);
log.debug("writing global symbols from 0x{x} to 0x{x}", .{ globals_off, globals_size + globals_off });
try self.base.file.?.pwriteAll(mem.sliceAsBytes(self.globals.items), globals_off);
const undefs_off = globals_off + globals_size;
const undefs_size = nundefs * @sizeOf(macho.nlist_64);
log.debug("writing extern symbols from 0x{x} to 0x{x}", .{ undefs_off, undefs_size + undefs_off });
try self.base.file.?.pwriteAll(mem.sliceAsBytes(undefs.items), undefs_off);
// Update dynamic symbol table.
const dysymtab = &self.load_commands.items[self.dysymtab_cmd_index.?].Dysymtab;
dysymtab.nlocalsym = @intCast(u32, nlocals);
dysymtab.iextdefsym = @intCast(u32, nlocals);
dysymtab.nextdefsym = @intCast(u32, nglobals);
dysymtab.iundefsym = @intCast(u32, nlocals + nglobals);
dysymtab.nundefsym = @intCast(u32, nundefs);
self.load_commands_dirty = true;
}
fn writeIndirectSymbolTable(self: *MachO) !void {
// TODO figure out a way not to rewrite the table every time if
// no new undefs are not added.
const tracy = trace(@src());
defer tracy.end();
const text_segment = &self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const stubs = &text_segment.sections.items[self.stubs_section_index.?];
const data_const_seg = &self.load_commands.items[self.data_const_segment_cmd_index.?].Segment;
const got = &data_const_seg.sections.items[self.got_section_index.?];
const data_segment = &self.load_commands.items[self.data_segment_cmd_index.?].Segment;
const la_symbol_ptr = &data_segment.sections.items[self.la_symbol_ptr_section_index.?];
const dysymtab = &self.load_commands.items[self.dysymtab_cmd_index.?].Dysymtab;
const lazy = self.lazy_imports.items();
const got_entries = self.offset_table.items;
const allocated_size = self.allocatedSizeLinkedit(dysymtab.indirectsymoff);
const nindirectsyms = @intCast(u32, lazy.len * 2 + got_entries.len);
const needed_size = @intCast(u32, nindirectsyms * @sizeOf(u32));
if (needed_size > allocated_size) {
dysymtab.nindirectsyms = 0;
dysymtab.indirectsymoff = @intCast(u32, self.findFreeSpaceLinkedit(needed_size, @sizeOf(u32), null));
}
dysymtab.nindirectsyms = nindirectsyms;
log.debug("writing indirect symbol table from 0x{x} to 0x{x}", .{
dysymtab.indirectsymoff,
dysymtab.indirectsymoff + needed_size,
});
var buf = try self.base.allocator.alloc(u8, needed_size);
defer self.base.allocator.free(buf);
var stream = std.io.fixedBufferStream(buf);
var writer = stream.writer();
stubs.reserved1 = 0;
for (lazy) |_, i| {
const symtab_idx = @intCast(u32, dysymtab.iundefsym + i);
try writer.writeIntLittle(u32, symtab_idx);
}
const base_id = @intCast(u32, lazy.len);
got.reserved1 = base_id;
for (got_entries) |entry| {
switch (entry.kind) {
.Local => {
try writer.writeIntLittle(u32, macho.INDIRECT_SYMBOL_LOCAL);
},
.Extern => {
const symtab_idx = @intCast(u32, dysymtab.iundefsym + entry.index + base_id);
try writer.writeIntLittle(u32, symtab_idx);
},
}
}
la_symbol_ptr.reserved1 = got.reserved1 + @intCast(u32, got_entries.len);
for (lazy) |_, i| {
const symtab_idx = @intCast(u32, dysymtab.iundefsym + i);
try writer.writeIntLittle(u32, symtab_idx);
}
try self.base.file.?.pwriteAll(buf, dysymtab.indirectsymoff);
self.load_commands_dirty = true;
}
fn writeCodeSignaturePadding(self: *MachO) !void {
// TODO figure out how not to rewrite padding every single time.
const tracy = trace(@src());
defer tracy.end();
const linkedit_segment = &self.load_commands.items[self.linkedit_segment_cmd_index.?].Segment;
const code_sig_cmd = &self.load_commands.items[self.code_signature_cmd_index.?].LinkeditData;
const fileoff = linkedit_segment.inner.fileoff + linkedit_segment.inner.filesize;
const needed_size = CodeSignature.calcCodeSignaturePaddingSize(
self.base.options.emit.?.sub_path,
fileoff,
self.page_size,
);
code_sig_cmd.dataoff = @intCast(u32, fileoff);
code_sig_cmd.datasize = needed_size;
// Advance size of __LINKEDIT segment
linkedit_segment.inner.filesize += needed_size;
if (linkedit_segment.inner.vmsize < linkedit_segment.inner.filesize) {
linkedit_segment.inner.vmsize = mem.alignForwardGeneric(u64, linkedit_segment.inner.filesize, self.page_size);
}
log.debug("writing code signature padding from 0x{x} to 0x{x}", .{ fileoff, fileoff + needed_size });
// Pad out the space. We need to do this to calculate valid hashes for everything in the file
// except for code signature data.
try self.base.file.?.pwriteAll(&[_]u8{0}, fileoff + needed_size - 1);
self.load_commands_dirty = true;
}
fn writeCodeSignature(self: *MachO) !void {
const tracy = trace(@src());
defer tracy.end();
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
const code_sig_cmd = self.load_commands.items[self.code_signature_cmd_index.?].LinkeditData;
var code_sig = CodeSignature.init(self.base.allocator, self.page_size);
defer code_sig.deinit();
try code_sig.calcAdhocSignature(
self.base.file.?,
self.base.options.emit.?.sub_path,
text_segment.inner,
code_sig_cmd,
self.base.options.output_mode,
);
var buffer = try self.base.allocator.alloc(u8, code_sig.size());
defer self.base.allocator.free(buffer);
var stream = std.io.fixedBufferStream(buffer);
try code_sig.write(stream.writer());
log.debug("writing code signature from 0x{x} to 0x{x}", .{ code_sig_cmd.dataoff, code_sig_cmd.dataoff + buffer.len });
try self.base.file.?.pwriteAll(buffer, code_sig_cmd.dataoff);
}
fn writeExportTrie(self: *MachO) !void {
if (!self.export_info_dirty) return;
if (self.globals.items.len == 0) return;
const tracy = trace(@src());
defer tracy.end();
var trie = Trie.init(self.base.allocator);
defer trie.deinit();
const text_segment = self.load_commands.items[self.text_segment_cmd_index.?].Segment;
for (self.globals.items) |symbol| {
// TODO figure out if we should put all global symbols into the export trie
const name = self.getString(symbol.n_strx);
assert(symbol.n_value >= text_segment.inner.vmaddr);
try trie.put(.{
.name = name,
.vmaddr_offset = symbol.n_value - text_segment.inner.vmaddr,
.export_flags = macho.EXPORT_SYMBOL_FLAGS_KIND_REGULAR,
});
}
try trie.finalize();
var buffer = try self.base.allocator.alloc(u8, @intCast(usize, trie.size));
defer self.base.allocator.free(buffer);
var stream = std.io.fixedBufferStream(buffer);
const nwritten = try trie.write(stream.writer());
assert(nwritten == trie.size);
const linkedit_segment = self.load_commands.items[self.linkedit_segment_cmd_index.?].Segment;
const dyld_info = &self.load_commands.items[self.dyld_info_cmd_index.?].DyldInfoOnly;
const allocated_size = self.allocatedSizeLinkedit(dyld_info.export_off);
const needed_size = mem.alignForwardGeneric(u64, buffer.len, @alignOf(u64));
if (needed_size > allocated_size) {
dyld_info.export_off = 0;
dyld_info.export_off = @intCast(u32, self.findFreeSpaceLinkedit(needed_size, 1, null));
// TODO this might require relocating all following LC_DYLD_INFO_ONLY sections too.
}
dyld_info.export_size = @intCast(u32, needed_size);
log.debug("writing export info from 0x{x} to 0x{x}", .{ dyld_info.export_off, dyld_info.export_off + dyld_info.export_size });
try self.base.file.?.pwriteAll(buffer, dyld_info.export_off);
self.load_commands_dirty = true;
self.export_info_dirty = false;
}
fn writeRebaseInfoTable(self: *MachO) !void {
if (!self.rebase_info_dirty) return;
const tracy = trace(@src());
defer tracy.end();
var pointers = std.ArrayList(bind.Pointer).init(self.base.allocator);
defer pointers.deinit();
if (self.got_section_index) |idx| {
const seg = self.load_commands.items[self.data_const_segment_cmd_index.?].Segment;
const sect = seg.sections.items[idx];
const base_offset = sect.addr - seg.inner.vmaddr;
const segment_id = self.data_const_segment_cmd_index.?;
for (self.offset_table.items) |entry| {
if (entry.kind == .Extern) continue;
try pointers.append(.{
.offset = base_offset + entry.index * @sizeOf(u64),
.segment_id = segment_id,
});
}
}
if (self.la_symbol_ptr_section_index) |idx| {
try pointers.ensureCapacity(pointers.items.len + self.lazy_imports.items().len);
const seg = self.load_commands.items[self.data_segment_cmd_index.?].Segment;
const sect = seg.sections.items[idx];
const base_offset = sect.addr - seg.inner.vmaddr;
const segment_id = self.data_segment_cmd_index.?;
for (self.lazy_imports.items()) |entry| {
pointers.appendAssumeCapacity(.{
.offset = base_offset + entry.value.index * @sizeOf(u64),
.segment_id = segment_id,
});
}
}
std.sort.sort(bind.Pointer, pointers.items, {}, bind.pointerCmp);
const size = try bind.rebaseInfoSize(pointers.items);
var buffer = try self.base.allocator.alloc(u8, @intCast(usize, size));
defer self.base.allocator.free(buffer);
var stream = std.io.fixedBufferStream(buffer);
try bind.writeRebaseInfo(pointers.items, stream.writer());
const dyld_info = &self.load_commands.items[self.dyld_info_cmd_index.?].DyldInfoOnly;
const allocated_size = self.allocatedSizeLinkedit(dyld_info.rebase_off);
const needed_size = mem.alignForwardGeneric(u64, buffer.len, @alignOf(u64));
if (needed_size > allocated_size) {
dyld_info.rebase_off = 0;
dyld_info.rebase_off = @intCast(u32, self.findFreeSpaceLinkedit(needed_size, 1, null));
// TODO this might require relocating all following LC_DYLD_INFO_ONLY sections too.
}
dyld_info.rebase_size = @intCast(u32, needed_size);
log.debug("writing rebase info from 0x{x} to 0x{x}", .{ dyld_info.rebase_off, dyld_info.rebase_off + dyld_info.rebase_size });
try self.base.file.?.pwriteAll(buffer, dyld_info.rebase_off);
self.load_commands_dirty = true;
self.rebase_info_dirty = false;
}
fn writeBindingInfoTable(self: *MachO) !void {
if (!self.binding_info_dirty) return;
const tracy = trace(@src());
defer tracy.end();
var pointers = std.ArrayList(bind.Pointer).init(self.base.allocator);
defer pointers.deinit();
if (self.got_section_index) |idx| {
const seg = self.load_commands.items[self.data_const_segment_cmd_index.?].Segment;
const sect = seg.sections.items[idx];
const base_offset = sect.addr - seg.inner.vmaddr;
const segment_id = @intCast(u16, self.data_const_segment_cmd_index.?);
for (self.offset_table.items) |entry| {
if (entry.kind == .Local) continue;
const import = self.nonlazy_imports.items()[entry.symbol];
try pointers.append(.{
.offset = base_offset + entry.index * @sizeOf(u64),
.segment_id = segment_id,
.dylib_ordinal = import.value.dylib_ordinal,
.name = import.key,
});
}
}
const size = try bind.bindInfoSize(pointers.items);
var buffer = try self.base.allocator.alloc(u8, @intCast(usize, size));
defer self.base.allocator.free(buffer);
var stream = std.io.fixedBufferStream(buffer);
try bind.writeBindInfo(pointers.items, stream.writer());
const dyld_info = &self.load_commands.items[self.dyld_info_cmd_index.?].DyldInfoOnly;
const allocated_size = self.allocatedSizeLinkedit(dyld_info.bind_off);
const needed_size = mem.alignForwardGeneric(u64, buffer.len, @alignOf(u64));
if (needed_size > allocated_size) {
dyld_info.bind_off = 0;
dyld_info.bind_off = @intCast(u32, self.findFreeSpaceLinkedit(needed_size, 1, null));
// TODO this might require relocating all following LC_DYLD_INFO_ONLY sections too.
}
dyld_info.bind_size = @intCast(u32, needed_size);
log.debug("writing binding info from 0x{x} to 0x{x}", .{ dyld_info.bind_off, dyld_info.bind_off + dyld_info.bind_size });
try self.base.file.?.pwriteAll(buffer, dyld_info.bind_off);
self.load_commands_dirty = true;
self.binding_info_dirty = false;
}
fn writeLazyBindingInfoTable(self: *MachO) !void {
if (!self.lazy_binding_info_dirty) return;
const tracy = trace(@src());
defer tracy.end();
var pointers = std.ArrayList(bind.Pointer).init(self.base.allocator);
defer pointers.deinit();
if (self.la_symbol_ptr_section_index) |idx| {
try pointers.ensureCapacity(self.lazy_imports.items().len);
const seg = self.load_commands.items[self.data_segment_cmd_index.?].Segment;
const sect = seg.sections.items[idx];
const base_offset = sect.addr - seg.inner.vmaddr;
const segment_id = @intCast(u16, self.data_segment_cmd_index.?);
for (self.lazy_imports.items()) |entry| {
pointers.appendAssumeCapacity(.{
.offset = base_offset + entry.value.index * @sizeOf(u64),
.segment_id = segment_id,
.dylib_ordinal = entry.value.dylib_ordinal,
.name = entry.key,
});
}
}
const size = try bind.lazyBindInfoSize(pointers.items);
var buffer = try self.base.allocator.alloc(u8, @intCast(usize, size));
defer self.base.allocator.free(buffer);
var stream = std.io.fixedBufferStream(buffer);
try bind.writeLazyBindInfo(pointers.items, stream.writer());
const dyld_info = &self.load_commands.items[self.dyld_info_cmd_index.?].DyldInfoOnly;
const allocated_size = self.allocatedSizeLinkedit(dyld_info.lazy_bind_off);
const needed_size = mem.alignForwardGeneric(u64, buffer.len, @alignOf(u64));
if (needed_size > allocated_size) {
dyld_info.lazy_bind_off = 0;
dyld_info.lazy_bind_off = @intCast(u32, self.findFreeSpaceLinkedit(needed_size, 1, null));
// TODO this might require relocating all following LC_DYLD_INFO_ONLY sections too.
}
dyld_info.lazy_bind_size = @intCast(u32, needed_size);
log.debug("writing lazy binding info from 0x{x} to 0x{x}", .{ dyld_info.lazy_bind_off, dyld_info.lazy_bind_off + dyld_info.lazy_bind_size });
try self.base.file.?.pwriteAll(buffer, dyld_info.lazy_bind_off);
try self.populateLazyBindOffsetsInStubHelper(buffer);
self.load_commands_dirty = true;
self.lazy_binding_info_dirty = false;
}
fn populateLazyBindOffsetsInStubHelper(self: *MachO, buffer: []const u8) !void {
if (self.lazy_imports.items().len == 0) return;
var stream = std.io.fixedBufferStream(buffer);
var reader = stream.reader();
var offsets = std.ArrayList(u32).init(self.base.allocator);
try offsets.append(0);
defer offsets.deinit();
var valid_block = false;
while (true) {
const inst = reader.readByte() catch |err| switch (err) {
error.EndOfStream => break,
else => return err,
};
const imm: u8 = inst & macho.BIND_IMMEDIATE_MASK;
const opcode: u8 = inst & macho.BIND_OPCODE_MASK;
switch (opcode) {
macho.BIND_OPCODE_DO_BIND => {
valid_block = true;
},
macho.BIND_OPCODE_DONE => {
if (valid_block) {
const offset = try stream.getPos();
try offsets.append(@intCast(u32, offset));
}
valid_block = false;
},
macho.BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM => {
var next = try reader.readByte();
while (next != @as(u8, 0)) {
next = try reader.readByte();
}
},
macho.BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB => {
_ = try std.leb.readULEB128(u64, reader);
},
macho.BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB => {
_ = try std.leb.readULEB128(u64, reader);
},
macho.BIND_OPCODE_SET_ADDEND_SLEB => {
_ = try std.leb.readILEB128(i64, reader);
},
else => {},
}
}
assert(self.lazy_imports.items().len <= offsets.items.len);
const stub_size: u4 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 10,
.aarch64 => 3 * @sizeOf(u32),
else => unreachable,
};
const off: u4 = switch (self.base.options.target.cpu.arch) {
.x86_64 => 1,
.aarch64 => 2 * @sizeOf(u32),
else => unreachable,
};
var buf: [@sizeOf(u32)]u8 = undefined;
for (self.lazy_imports.items()) |_, i| {
const placeholder_off = self.stub_helper_stubs_start_off.? + i * stub_size + off;
mem.writeIntLittle(u32, &buf, offsets.items[i]);
try self.base.file.?.pwriteAll(&buf, placeholder_off);
}
}
fn writeStringTable(self: *MachO) !void {
if (!self.string_table_dirty) return;
const tracy = trace(@src());
defer tracy.end();
const symtab = &self.load_commands.items[self.symtab_cmd_index.?].Symtab;
const allocated_size = self.allocatedSizeLinkedit(symtab.stroff);
const needed_size = mem.alignForwardGeneric(u64, self.string_table.items.len, @alignOf(u64));
if (needed_size > allocated_size or self.string_table_needs_relocation) {
symtab.strsize = 0;
symtab.stroff = @intCast(u32, self.findFreeSpaceLinkedit(needed_size, 1, symtab.symoff));
self.string_table_needs_relocation = false;
}
symtab.strsize = @intCast(u32, needed_size);
log.debug("writing string table from 0x{x} to 0x{x}", .{ symtab.stroff, symtab.stroff + symtab.strsize });
try self.base.file.?.pwriteAll(self.string_table.items, symtab.stroff);
self.load_commands_dirty = true;
self.string_table_dirty = false;
}
fn updateLinkeditSegmentSizes(self: *MachO) !void {
if (!self.load_commands_dirty) return;
const tracy = trace(@src());
defer tracy.end();
// Now, we are in position to update __LINKEDIT segment sizes.
// TODO Add checkpointing so that we don't have to do this every single time.
const linkedit_segment = &self.load_commands.items[self.linkedit_segment_cmd_index.?].Segment;
var final_offset = linkedit_segment.inner.fileoff;
if (self.dyld_info_cmd_index) |idx| {
const dyld_info = self.load_commands.items[idx].DyldInfoOnly;
final_offset = std.math.max(final_offset, dyld_info.rebase_off + dyld_info.rebase_size);
final_offset = std.math.max(final_offset, dyld_info.bind_off + dyld_info.bind_size);
final_offset = std.math.max(final_offset, dyld_info.weak_bind_off + dyld_info.weak_bind_size);
final_offset = std.math.max(final_offset, dyld_info.lazy_bind_off + dyld_info.lazy_bind_size);
final_offset = std.math.max(final_offset, dyld_info.export_off + dyld_info.export_size);
}
if (self.function_starts_cmd_index) |idx| {
const fstart = self.load_commands.items[idx].LinkeditData;
final_offset = std.math.max(final_offset, fstart.dataoff + fstart.datasize);
}
if (self.data_in_code_cmd_index) |idx| {
const dic = self.load_commands.items[idx].LinkeditData;
final_offset = std.math.max(final_offset, dic.dataoff + dic.datasize);
}
if (self.dysymtab_cmd_index) |idx| {
const dysymtab = self.load_commands.items[idx].Dysymtab;
const nindirectsize = dysymtab.nindirectsyms * @sizeOf(u32);
final_offset = std.math.max(final_offset, dysymtab.indirectsymoff + nindirectsize);
// TODO Handle more dynamic symbol table sections.
}
if (self.symtab_cmd_index) |idx| {
const symtab = self.load_commands.items[idx].Symtab;
const symsize = symtab.nsyms * @sizeOf(macho.nlist_64);
final_offset = std.math.max(final_offset, symtab.symoff + symsize);
final_offset = std.math.max(final_offset, symtab.stroff + symtab.strsize);
}
const filesize = final_offset - linkedit_segment.inner.fileoff;
linkedit_segment.inner.filesize = filesize;
linkedit_segment.inner.vmsize = mem.alignForwardGeneric(u64, filesize, self.page_size);
try self.base.file.?.pwriteAll(&[_]u8{0}, final_offset);
self.load_commands_dirty = true;
}
/// Writes all load commands and section headers.
fn writeLoadCommands(self: *MachO) !void {
if (!self.load_commands_dirty) return;
var sizeofcmds: u32 = 0;
for (self.load_commands.items) |lc| {
sizeofcmds += lc.cmdsize();
}
var buffer = try self.base.allocator.alloc(u8, sizeofcmds);
defer self.base.allocator.free(buffer);
var writer = std.io.fixedBufferStream(buffer).writer();
for (self.load_commands.items) |lc| {
try lc.write(writer);
}
const off = @sizeOf(macho.mach_header_64);
log.debug("writing {} load commands from 0x{x} to 0x{x}", .{ self.load_commands.items.len, off, off + sizeofcmds });
try self.base.file.?.pwriteAll(buffer, off);
self.load_commands_dirty = false;
}
/// Writes Mach-O file header.
fn writeHeader(self: *MachO) !void {
if (!self.header_dirty) return;
self.header.?.ncmds = @intCast(u32, self.load_commands.items.len);
var sizeofcmds: u32 = 0;
for (self.load_commands.items) |cmd| {
sizeofcmds += cmd.cmdsize();
}
self.header.?.sizeofcmds = sizeofcmds;
log.debug("writing Mach-O header {}", .{self.header.?});
try self.base.file.?.pwriteAll(mem.asBytes(&self.header.?), 0);
self.header_dirty = false;
}
pub fn padToIdeal(actual_size: anytype) @TypeOf(actual_size) {
// TODO https://github.com/ziglang/zig/issues/1284
return std.math.add(@TypeOf(actual_size), actual_size, actual_size / ideal_factor) catch
std.math.maxInt(@TypeOf(actual_size));
}