mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 22:33:08 +00:00
169 lines
5.4 KiB
Zig
169 lines
5.4 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/sinf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/sin.c
|
|
//
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
const kernel = @import("__trig.zig");
|
|
const __rem_pio2 = @import("__rem_pio2.zig").__rem_pio2;
|
|
const __rem_pio2f = @import("__rem_pio2f.zig").__rem_pio2f;
|
|
|
|
/// Returns the sine of the radian value x.
|
|
///
|
|
/// Special Cases:
|
|
/// - sin(+-0) = +-0
|
|
/// - sin(+-inf) = nan
|
|
/// - sin(nan) = nan
|
|
pub fn sin(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => sin32(x),
|
|
f64 => sin64(x),
|
|
else => @compileError("sin not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn sin32(x: f32) f32 {
|
|
// Small multiples of pi/2 rounded to double precision.
|
|
const s1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
|
|
const s2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
|
|
const s3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
|
|
const s4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
|
|
|
|
var ix = @bitCast(u32, x);
|
|
const sign = ix >> 31 != 0;
|
|
ix &= 0x7fffffff;
|
|
|
|
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
|
|
if (ix < 0x39800000) { // |x| < 2**-12
|
|
// raise inexact if x!=0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00800000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return kernel.__sindf(x);
|
|
}
|
|
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
|
|
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
|
|
if (sign) {
|
|
return -kernel.__cosdf(x + s1pio2);
|
|
} else {
|
|
return kernel.__cosdf(x - s1pio2);
|
|
}
|
|
}
|
|
return kernel.__sindf(if (sign) -(x + s2pio2) else -(x - s2pio2));
|
|
}
|
|
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
|
|
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
|
|
if (sign) {
|
|
return kernel.__cosdf(x + s3pio2);
|
|
} else {
|
|
return -kernel.__cosdf(x - s3pio2);
|
|
}
|
|
}
|
|
return kernel.__sindf(if (sign) x + s4pio2 else x - s4pio2);
|
|
}
|
|
|
|
// sin(Inf or NaN) is NaN
|
|
if (ix >= 0x7f800000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: f64 = undefined;
|
|
const n = __rem_pio2f(x, &y);
|
|
return switch (n & 3) {
|
|
0 => kernel.__sindf(y),
|
|
1 => kernel.__cosdf(y),
|
|
2 => kernel.__sindf(-y),
|
|
else => -kernel.__cosdf(y),
|
|
};
|
|
}
|
|
|
|
fn sin64(x: f64) f64 {
|
|
var ix = @bitCast(u64, x) >> 32;
|
|
ix &= 0x7fffffff;
|
|
|
|
// |x| ~< pi/4
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e500000) { // |x| < 2**-26
|
|
// raise inexact if x != 0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return kernel.__sin(x, 0.0, 0);
|
|
}
|
|
|
|
// sin(Inf or NaN) is NaN
|
|
if (ix >= 0x7ff00000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: [2]f64 = undefined;
|
|
const n = __rem_pio2(x, &y);
|
|
return switch (n & 3) {
|
|
0 => kernel.__sin(y[0], y[1], 1),
|
|
1 => kernel.__cos(y[0], y[1]),
|
|
2 => -kernel.__sin(y[0], y[1], 1),
|
|
else => -kernel.__cos(y[0], y[1]),
|
|
};
|
|
}
|
|
|
|
test "math.sin" {
|
|
try expect(sin(@as(f32, 0.0)) == sin32(0.0));
|
|
try expect(sin(@as(f64, 0.0)) == sin64(0.0));
|
|
try expect(comptime (math.sin(@as(f64, 2))) == math.sin(@as(f64, 2)));
|
|
}
|
|
|
|
test "math.sin32" {
|
|
const epsilon = 0.00001;
|
|
|
|
try expect(math.approxEqAbs(f32, sin32(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, sin32(0.2), 0.198669, epsilon));
|
|
try expect(math.approxEqAbs(f32, sin32(0.8923), 0.778517, epsilon));
|
|
try expect(math.approxEqAbs(f32, sin32(1.5), 0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f32, sin32(-1.5), -0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f32, sin32(37.45), -0.246544, epsilon));
|
|
try expect(math.approxEqAbs(f32, sin32(89.123), 0.916166, epsilon));
|
|
}
|
|
|
|
test "math.sin64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, sin64(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin64(0.2), 0.198669, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin64(0.8923), 0.778517, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin64(1.5), 0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin64(-1.5), -0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin64(37.45), -0.246543, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin64(89.123), 0.916166, epsilon));
|
|
}
|
|
|
|
test "math.sin32.special" {
|
|
try expect(sin32(0.0) == 0.0);
|
|
try expect(sin32(-0.0) == -0.0);
|
|
try expect(math.isNan(sin32(math.inf(f32))));
|
|
try expect(math.isNan(sin32(-math.inf(f32))));
|
|
try expect(math.isNan(sin32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.sin64.special" {
|
|
try expect(sin64(0.0) == 0.0);
|
|
try expect(sin64(-0.0) == -0.0);
|
|
try expect(math.isNan(sin64(math.inf(f64))));
|
|
try expect(math.isNan(sin64(-math.inf(f64))));
|
|
try expect(math.isNan(sin64(math.nan(f64))));
|
|
}
|
|
|
|
test "math.sin32 #9901" {
|
|
const float = @bitCast(f32, @as(u32, 0b11100011111111110000000000000000));
|
|
_ = std.math.sin(float);
|
|
}
|
|
|
|
test "math.sin64 #9901" {
|
|
const float = @bitCast(f64, @as(u64, 0b1111111101000001000000001111110111111111100000000000000000000001));
|
|
_ = std.math.sin(float);
|
|
}
|