mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
These are great permutations, and there's nothing wrong with them from a practical security perspective. However, both were competing in the NIST lightweight crypto competition. Gimli didn't pass the 3rd selection round, and is not much used in the wild besides Zig and libhydrogen. It will never be standardized and is unlikely to get more traction in the future. Xoodyak, that Xoodoo is the permutation of, was a finalist. It has a lot of advantages and *might* be standardized without NIST. But this is too early to tell, and too risky to commit to it in a standard library. For lightweight crypto, Ascon is the one that we know NIST will standardize and that we can safely rely on from a usage perspective. Switch to a traditional ChaCha-based CSPRNG, with an Ascon-based one as an option for constrained systems. Add a RNG benchmark by the way. Gimli and Xoodoo served us well. Their code will be maintained, but outside the standard library.
574 lines
19 KiB
Zig
574 lines
19 KiB
Zig
// zig run -O ReleaseFast --zig-lib-dir ../.. benchmark.zig
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const mem = std.mem;
|
|
const time = std.time;
|
|
const Timer = time.Timer;
|
|
const crypto = std.crypto;
|
|
|
|
const KiB = 1024;
|
|
const MiB = 1024 * KiB;
|
|
|
|
var prng = std.rand.DefaultPrng.init(0);
|
|
const random = prng.random();
|
|
|
|
const Crypto = struct {
|
|
ty: type,
|
|
name: []const u8,
|
|
};
|
|
|
|
const hashes = [_]Crypto{
|
|
Crypto{ .ty = crypto.hash.Md5, .name = "md5" },
|
|
Crypto{ .ty = crypto.hash.Sha1, .name = "sha1" },
|
|
Crypto{ .ty = crypto.hash.sha2.Sha256, .name = "sha256" },
|
|
Crypto{ .ty = crypto.hash.sha2.Sha512, .name = "sha512" },
|
|
Crypto{ .ty = crypto.hash.sha3.Sha3_256, .name = "sha3-256" },
|
|
Crypto{ .ty = crypto.hash.sha3.Sha3_512, .name = "sha3-512" },
|
|
Crypto{ .ty = crypto.hash.sha3.Shake128, .name = "shake-128" },
|
|
Crypto{ .ty = crypto.hash.sha3.Shake256, .name = "shake-256" },
|
|
Crypto{ .ty = crypto.hash.sha3.TurboShake128(null), .name = "turboshake-128" },
|
|
Crypto{ .ty = crypto.hash.sha3.TurboShake256(null), .name = "turboshake-256" },
|
|
Crypto{ .ty = crypto.hash.blake2.Blake2s256, .name = "blake2s" },
|
|
Crypto{ .ty = crypto.hash.blake2.Blake2b512, .name = "blake2b" },
|
|
Crypto{ .ty = crypto.hash.Blake3, .name = "blake3" },
|
|
};
|
|
|
|
pub fn benchmarkHash(comptime Hash: anytype, comptime bytes: comptime_int) !u64 {
|
|
var h = Hash.init(.{});
|
|
|
|
var block: [Hash.digest_length]u8 = undefined;
|
|
random.bytes(block[0..]);
|
|
|
|
var offset: usize = 0;
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
while (offset < bytes) : (offset += block.len) {
|
|
h.update(block[0..]);
|
|
}
|
|
mem.doNotOptimizeAway(&h);
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, bytes / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const macs = [_]Crypto{
|
|
Crypto{ .ty = crypto.onetimeauth.Ghash, .name = "ghash" },
|
|
Crypto{ .ty = crypto.onetimeauth.Polyval, .name = "polyval" },
|
|
Crypto{ .ty = crypto.onetimeauth.Poly1305, .name = "poly1305" },
|
|
Crypto{ .ty = crypto.auth.hmac.HmacMd5, .name = "hmac-md5" },
|
|
Crypto{ .ty = crypto.auth.hmac.HmacSha1, .name = "hmac-sha1" },
|
|
Crypto{ .ty = crypto.auth.hmac.sha2.HmacSha256, .name = "hmac-sha256" },
|
|
Crypto{ .ty = crypto.auth.hmac.sha2.HmacSha512, .name = "hmac-sha512" },
|
|
Crypto{ .ty = crypto.auth.siphash.SipHash64(2, 4), .name = "siphash-2-4" },
|
|
Crypto{ .ty = crypto.auth.siphash.SipHash64(1, 3), .name = "siphash-1-3" },
|
|
Crypto{ .ty = crypto.auth.siphash.SipHash128(2, 4), .name = "siphash128-2-4" },
|
|
Crypto{ .ty = crypto.auth.siphash.SipHash128(1, 3), .name = "siphash128-1-3" },
|
|
Crypto{ .ty = crypto.auth.aegis.Aegis128LMac, .name = "aegis-128l mac" },
|
|
Crypto{ .ty = crypto.auth.aegis.Aegis256Mac, .name = "aegis-256 mac" },
|
|
Crypto{ .ty = crypto.auth.cmac.CmacAes128, .name = "aes-cmac" },
|
|
};
|
|
|
|
pub fn benchmarkMac(comptime Mac: anytype, comptime bytes: comptime_int) !u64 {
|
|
var in: [512 * KiB]u8 = undefined;
|
|
random.bytes(in[0..]);
|
|
|
|
const key_length = if (Mac.key_length == 0) 32 else Mac.key_length;
|
|
var key: [key_length]u8 = undefined;
|
|
random.bytes(key[0..]);
|
|
|
|
var mac: [Mac.mac_length]u8 = undefined;
|
|
var offset: usize = 0;
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
while (offset < bytes) : (offset += in.len) {
|
|
Mac.create(mac[0..], in[0..], key[0..]);
|
|
mem.doNotOptimizeAway(&mac);
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, bytes / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const exchanges = [_]Crypto{Crypto{ .ty = crypto.dh.X25519, .name = "x25519" }};
|
|
|
|
pub fn benchmarkKeyExchange(comptime DhKeyExchange: anytype, comptime exchange_count: comptime_int) !u64 {
|
|
std.debug.assert(DhKeyExchange.shared_length >= DhKeyExchange.secret_length);
|
|
|
|
var secret: [DhKeyExchange.shared_length]u8 = undefined;
|
|
random.bytes(secret[0..]);
|
|
|
|
var public: [DhKeyExchange.shared_length]u8 = undefined;
|
|
random.bytes(public[0..]);
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < exchange_count) : (i += 1) {
|
|
const out = try DhKeyExchange.scalarmult(secret, public);
|
|
mem.copy(u8, secret[0..16], out[0..16]);
|
|
mem.copy(u8, public[0..16], out[16..32]);
|
|
mem.doNotOptimizeAway(&out);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, exchange_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const signatures = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
|
|
|
|
pub fn benchmarkSignature(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
|
|
const msg = [_]u8{0} ** 64;
|
|
const key_pair = try Signature.KeyPair.create(null);
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < signatures_count) : (i += 1) {
|
|
const sig = try key_pair.sign(&msg, null);
|
|
mem.doNotOptimizeAway(&sig);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, signatures_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
|
|
|
|
pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
|
|
const msg = [_]u8{0} ** 64;
|
|
const key_pair = try Signature.KeyPair.create(null);
|
|
const sig = try key_pair.sign(&msg, null);
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < signatures_count) : (i += 1) {
|
|
try sig.verify(&msg, key_pair.public_key);
|
|
mem.doNotOptimizeAway(&sig);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, signatures_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const batch_signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .name = "ed25519" }};
|
|
|
|
pub fn benchmarkBatchSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
|
|
const msg = [_]u8{0} ** 64;
|
|
const key_pair = try Signature.KeyPair.create(null);
|
|
const sig = try key_pair.sign(&msg, null);
|
|
|
|
var batch: [64]Signature.BatchElement = undefined;
|
|
for (&batch) |*element| {
|
|
element.* = Signature.BatchElement{ .sig = sig, .msg = &msg, .public_key = key_pair.public_key };
|
|
}
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < signatures_count) : (i += 1) {
|
|
try Signature.verifyBatch(batch.len, batch);
|
|
mem.doNotOptimizeAway(&sig);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = batch.len * @floatToInt(u64, signatures_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const kems = [_]Crypto{
|
|
Crypto{ .ty = crypto.kem.kyber_d00.Kyber512, .name = "kyber512d00" },
|
|
Crypto{ .ty = crypto.kem.kyber_d00.Kyber768, .name = "kyber768d00" },
|
|
Crypto{ .ty = crypto.kem.kyber_d00.Kyber1024, .name = "kyber1024d00" },
|
|
};
|
|
|
|
pub fn benchmarkKem(comptime Kem: anytype, comptime kems_count: comptime_int) !u64 {
|
|
const key_pair = try Kem.KeyPair.create(null);
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < kems_count) : (i += 1) {
|
|
const e = key_pair.public_key.encaps(null);
|
|
mem.doNotOptimizeAway(&e);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, kems_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
pub fn benchmarkKemDecaps(comptime Kem: anytype, comptime kems_count: comptime_int) !u64 {
|
|
const key_pair = try Kem.KeyPair.create(null);
|
|
|
|
const e = key_pair.public_key.encaps(null);
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < kems_count) : (i += 1) {
|
|
const ss2 = try key_pair.secret_key.decaps(&e.ciphertext);
|
|
mem.doNotOptimizeAway(&ss2);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, kems_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
pub fn benchmarkKemKeyGen(comptime Kem: anytype, comptime kems_count: comptime_int) !u64 {
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < kems_count) : (i += 1) {
|
|
const key_pair = try Kem.KeyPair.create(null);
|
|
mem.doNotOptimizeAway(&key_pair);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, kems_count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const aeads = [_]Crypto{
|
|
Crypto{ .ty = crypto.aead.chacha_poly.ChaCha20Poly1305, .name = "chacha20Poly1305" },
|
|
Crypto{ .ty = crypto.aead.chacha_poly.XChaCha20Poly1305, .name = "xchacha20Poly1305" },
|
|
Crypto{ .ty = crypto.aead.chacha_poly.XChaCha8Poly1305, .name = "xchacha8Poly1305" },
|
|
Crypto{ .ty = crypto.aead.salsa_poly.XSalsa20Poly1305, .name = "xsalsa20Poly1305" },
|
|
Crypto{ .ty = crypto.aead.aegis.Aegis128L, .name = "aegis-128l" },
|
|
Crypto{ .ty = crypto.aead.aegis.Aegis256, .name = "aegis-256" },
|
|
Crypto{ .ty = crypto.aead.aes_gcm.Aes128Gcm, .name = "aes128-gcm" },
|
|
Crypto{ .ty = crypto.aead.aes_gcm.Aes256Gcm, .name = "aes256-gcm" },
|
|
Crypto{ .ty = crypto.aead.aes_ocb.Aes128Ocb, .name = "aes128-ocb" },
|
|
Crypto{ .ty = crypto.aead.aes_ocb.Aes256Ocb, .name = "aes256-ocb" },
|
|
Crypto{ .ty = crypto.aead.isap.IsapA128A, .name = "isapa128a" },
|
|
};
|
|
|
|
pub fn benchmarkAead(comptime Aead: anytype, comptime bytes: comptime_int) !u64 {
|
|
var in: [512 * KiB]u8 = undefined;
|
|
random.bytes(in[0..]);
|
|
|
|
var tag: [Aead.tag_length]u8 = undefined;
|
|
|
|
var key: [Aead.key_length]u8 = undefined;
|
|
random.bytes(key[0..]);
|
|
|
|
var nonce: [Aead.nonce_length]u8 = undefined;
|
|
random.bytes(nonce[0..]);
|
|
|
|
var offset: usize = 0;
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
while (offset < bytes) : (offset += in.len) {
|
|
Aead.encrypt(in[0..], tag[0..], in[0..], &[_]u8{}, nonce, key);
|
|
try Aead.decrypt(in[0..], in[0..], tag, &[_]u8{}, nonce, key);
|
|
}
|
|
mem.doNotOptimizeAway(&in);
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, 2 * bytes / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const aes = [_]Crypto{
|
|
Crypto{ .ty = crypto.core.aes.Aes128, .name = "aes128-single" },
|
|
Crypto{ .ty = crypto.core.aes.Aes256, .name = "aes256-single" },
|
|
};
|
|
|
|
pub fn benchmarkAes(comptime Aes: anytype, comptime count: comptime_int) !u64 {
|
|
var key: [Aes.key_bits / 8]u8 = undefined;
|
|
random.bytes(key[0..]);
|
|
const ctx = Aes.initEnc(key);
|
|
|
|
var in = [_]u8{0} ** 16;
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < count) : (i += 1) {
|
|
ctx.encrypt(&in, &in);
|
|
}
|
|
}
|
|
mem.doNotOptimizeAway(&in);
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const aes8 = [_]Crypto{
|
|
Crypto{ .ty = crypto.core.aes.Aes128, .name = "aes128-8" },
|
|
Crypto{ .ty = crypto.core.aes.Aes256, .name = "aes256-8" },
|
|
};
|
|
|
|
pub fn benchmarkAes8(comptime Aes: anytype, comptime count: comptime_int) !u64 {
|
|
var key: [Aes.key_bits / 8]u8 = undefined;
|
|
random.bytes(key[0..]);
|
|
const ctx = Aes.initEnc(key);
|
|
|
|
var in = [_]u8{0} ** (8 * 16);
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < count) : (i += 1) {
|
|
ctx.encryptWide(8, &in, &in);
|
|
}
|
|
}
|
|
mem.doNotOptimizeAway(&in);
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = @floatToInt(u64, 8 * count / elapsed_s);
|
|
|
|
return throughput;
|
|
}
|
|
|
|
const CryptoPwhash = struct {
|
|
ty: type,
|
|
params: *const anyopaque,
|
|
name: []const u8,
|
|
};
|
|
const bcrypt_params = crypto.pwhash.bcrypt.Params{ .rounds_log = 8 };
|
|
const pwhashes = [_]CryptoPwhash{
|
|
.{
|
|
.ty = crypto.pwhash.bcrypt,
|
|
.params = &bcrypt_params,
|
|
.name = "bcrypt",
|
|
},
|
|
.{
|
|
.ty = crypto.pwhash.scrypt,
|
|
.params = &crypto.pwhash.scrypt.Params.interactive,
|
|
.name = "scrypt",
|
|
},
|
|
.{
|
|
.ty = crypto.pwhash.argon2,
|
|
.params = &crypto.pwhash.argon2.Params.interactive_2id,
|
|
.name = "argon2",
|
|
},
|
|
};
|
|
|
|
fn benchmarkPwhash(
|
|
allocator: mem.Allocator,
|
|
comptime ty: anytype,
|
|
comptime params: *const anyopaque,
|
|
comptime count: comptime_int,
|
|
) !f64 {
|
|
const password = "testpass" ** 2;
|
|
const opts = .{
|
|
.allocator = allocator,
|
|
.params = @ptrCast(*const ty.Params, @alignCast(std.meta.alignment(ty.Params), params)).*,
|
|
.encoding = .phc,
|
|
};
|
|
var buf: [256]u8 = undefined;
|
|
|
|
var timer = try Timer.start();
|
|
const start = timer.lap();
|
|
{
|
|
var i: usize = 0;
|
|
while (i < count) : (i += 1) {
|
|
_ = try ty.strHash(password, opts, &buf);
|
|
mem.doNotOptimizeAway(&buf);
|
|
}
|
|
}
|
|
const end = timer.read();
|
|
|
|
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
|
|
const throughput = elapsed_s / count;
|
|
|
|
return throughput;
|
|
}
|
|
|
|
fn usage() void {
|
|
std.debug.print(
|
|
\\throughput_test [options]
|
|
\\
|
|
\\Options:
|
|
\\ --filter [test-name]
|
|
\\ --seed [int]
|
|
\\ --help
|
|
\\
|
|
, .{});
|
|
}
|
|
|
|
fn mode(comptime x: comptime_int) comptime_int {
|
|
return if (builtin.mode == .Debug) x / 64 else x;
|
|
}
|
|
|
|
pub fn main() !void {
|
|
const stdout = std.io.getStdOut().writer();
|
|
|
|
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
|
|
defer arena.deinit();
|
|
const arena_allocator = arena.allocator();
|
|
const args = try std.process.argsAlloc(arena_allocator);
|
|
|
|
var filter: ?[]u8 = "";
|
|
|
|
var i: usize = 1;
|
|
while (i < args.len) : (i += 1) {
|
|
if (std.mem.eql(u8, args[i], "--mode")) {
|
|
try stdout.print("{}\n", .{builtin.mode});
|
|
return;
|
|
} else if (std.mem.eql(u8, args[i], "--seed")) {
|
|
i += 1;
|
|
if (i == args.len) {
|
|
usage();
|
|
std.os.exit(1);
|
|
}
|
|
|
|
const seed = try std.fmt.parseUnsigned(u32, args[i], 10);
|
|
prng.seed(seed);
|
|
} else if (std.mem.eql(u8, args[i], "--filter")) {
|
|
i += 1;
|
|
if (i == args.len) {
|
|
usage();
|
|
std.os.exit(1);
|
|
}
|
|
|
|
filter = args[i];
|
|
} else if (std.mem.eql(u8, args[i], "--help")) {
|
|
usage();
|
|
return;
|
|
} else {
|
|
usage();
|
|
std.os.exit(1);
|
|
}
|
|
}
|
|
|
|
inline for (hashes) |H| {
|
|
if (filter == null or std.mem.indexOf(u8, H.name, filter.?) != null) {
|
|
const throughput = try benchmarkHash(H.ty, mode(128 * MiB));
|
|
try stdout.print("{s:>17}: {:10} MiB/s\n", .{ H.name, throughput / (1 * MiB) });
|
|
}
|
|
}
|
|
|
|
inline for (macs) |M| {
|
|
if (filter == null or std.mem.indexOf(u8, M.name, filter.?) != null) {
|
|
const throughput = try benchmarkMac(M.ty, mode(128 * MiB));
|
|
try stdout.print("{s:>17}: {:10} MiB/s\n", .{ M.name, throughput / (1 * MiB) });
|
|
}
|
|
}
|
|
|
|
inline for (exchanges) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkKeyExchange(E.ty, mode(1000));
|
|
try stdout.print("{s:>17}: {:10} exchanges/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (signatures) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkSignature(E.ty, mode(1000));
|
|
try stdout.print("{s:>17}: {:10} signatures/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (signature_verifications) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkSignatureVerification(E.ty, mode(1000));
|
|
try stdout.print("{s:>17}: {:10} verifications/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (batch_signature_verifications) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkBatchSignatureVerification(E.ty, mode(1000));
|
|
try stdout.print("{s:>17}: {:10} verifications/s (batch)\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (aeads) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkAead(E.ty, mode(128 * MiB));
|
|
try stdout.print("{s:>17}: {:10} MiB/s\n", .{ E.name, throughput / (1 * MiB) });
|
|
}
|
|
}
|
|
|
|
inline for (aes) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkAes(E.ty, mode(100000000));
|
|
try stdout.print("{s:>17}: {:10} ops/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (aes8) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkAes8(E.ty, mode(10000000));
|
|
try stdout.print("{s:>17}: {:10} ops/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (pwhashes) |H| {
|
|
if (filter == null or std.mem.indexOf(u8, H.name, filter.?) != null) {
|
|
const throughput = try benchmarkPwhash(arena_allocator, H.ty, H.params, mode(64));
|
|
try stdout.print("{s:>17}: {d:10.3} s/ops\n", .{ H.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (kems) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkKem(E.ty, mode(1000));
|
|
try stdout.print("{s:>17}: {:10} encaps/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (kems) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkKemDecaps(E.ty, mode(25000));
|
|
try stdout.print("{s:>17}: {:10} decaps/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
|
|
inline for (kems) |E| {
|
|
if (filter == null or std.mem.indexOf(u8, E.name, filter.?) != null) {
|
|
const throughput = try benchmarkKemKeyGen(E.ty, mode(25000));
|
|
try stdout.print("{s:>17}: {:10} keygen/s\n", .{ E.name, throughput });
|
|
}
|
|
}
|
|
}
|