zig/src/link/Wasm.zig
Andrew Kelley e501cf51a0 link.File.Wasm: unify the string tables
Before, the wasm struct had a string table, the ZigObject had a string
table, and each Object had a string table.

Now there is just the one. This makes for more efficient use of memory
and simplifies logic, particularly with regards to linker state
serialization.

This commit additionally adds significantly more integer type safety.
2024-10-31 22:01:10 -07:00

4773 lines
188 KiB
Zig

const Wasm = @This();
const std = @import("std");
const assert = std.debug.assert;
const build_options = @import("build_options");
const builtin = @import("builtin");
const codegen = @import("../codegen.zig");
const dev = @import("../dev.zig");
const fs = std.fs;
const leb = std.leb;
const link = @import("../link.zig");
const lldMain = @import("../main.zig").lldMain;
const log = std.log.scoped(.link);
const gc_log = std.log.scoped(.gc);
const mem = std.mem;
const trace = @import("../tracy.zig").trace;
const wasi_libc = @import("../wasi_libc.zig");
const Air = @import("../Air.zig");
const Allocator = std.mem.Allocator;
const Archive = @import("Wasm/Archive.zig");
const Cache = std.Build.Cache;
const Path = Cache.Path;
const CodeGen = @import("../arch/wasm/CodeGen.zig");
const Compilation = @import("../Compilation.zig");
const Dwarf = @import("Dwarf.zig");
const InternPool = @import("../InternPool.zig");
const Liveness = @import("../Liveness.zig");
const LlvmObject = @import("../codegen/llvm.zig").Object;
const Zcu = @import("../Zcu.zig");
const Object = @import("Wasm/Object.zig");
const Symbol = @import("Wasm/Symbol.zig");
const Type = @import("../Type.zig");
const Value = @import("../Value.zig");
const ZigObject = @import("Wasm/ZigObject.zig");
base: link.File,
/// Null-terminated strings, indexes have type String and string_table provides
/// lookup.
string_bytes: std.ArrayListUnmanaged(u8),
/// Omitted when serializing linker state.
string_table: String.Table,
/// Symbol name of the entry function to export
entry_name: OptionalString,
/// When true, will allow undefined symbols
import_symbols: bool,
/// Set of *global* symbol names to export to the host environment.
export_symbol_names: []const []const u8,
/// When defined, sets the start of the data section.
global_base: ?u64,
/// When defined, sets the initial memory size of the memory.
initial_memory: ?u64,
/// When defined, sets the maximum memory size of the memory.
max_memory: ?u64,
/// When true, will import the function table from the host environment.
import_table: bool,
/// When true, will export the function table to the host environment.
export_table: bool,
/// Output name of the file
name: []const u8,
/// If this is not null, an object file is created by LLVM and linked with LLD afterwards.
llvm_object: ?LlvmObject.Ptr = null,
zig_object: ?*ZigObject,
/// List of relocatable files to be linked into the final binary.
objects: std.ArrayListUnmanaged(Object) = .{},
/// When importing objects from the host environment, a name must be supplied.
/// LLVM uses "env" by default when none is given. This would be a good default for Zig
/// to support existing code.
/// TODO: Allow setting this through a flag?
host_name: String,
/// List of symbols generated by the linker.
synthetic_symbols: std.ArrayListUnmanaged(Symbol) = .empty,
/// Maps atoms to their segment index
atoms: std.AutoHashMapUnmanaged(Segment.Index, Atom.Index) = .empty,
/// List of all atoms.
managed_atoms: std.ArrayListUnmanaged(Atom) = .empty,
/// The count of imported functions. This number will be appended
/// to the function indexes as their index starts at the lowest non-extern function.
imported_functions_count: u32 = 0,
/// The count of imported wasm globals. This number will be appended
/// to the global indexes when sections are merged.
imported_globals_count: u32 = 0,
/// The count of imported tables. This number will be appended
/// to the table indexes when sections are merged.
imported_tables_count: u32 = 0,
/// Map of symbol locations, represented by its `Import`
imports: std.AutoHashMapUnmanaged(SymbolLoc, Import) = .empty,
/// Represents non-synthetic section entries.
/// Used for code, data and custom sections.
segments: std.ArrayListUnmanaged(Segment) = .empty,
/// Maps a data segment key (such as .rodata) to the index into `segments`.
data_segments: std.StringArrayHashMapUnmanaged(Segment.Index) = .empty,
/// A table of `NamedSegment` which provide meta data
/// about a data symbol such as its name where the key is
/// the segment index, which can be found from `data_segments`
segment_info: std.AutoArrayHashMapUnmanaged(Segment.Index, NamedSegment) = .empty,
// Output sections
/// Output type section
func_types: std.ArrayListUnmanaged(std.wasm.Type) = .empty,
/// Output function section where the key is the original
/// function index and the value is function.
/// This allows us to map multiple symbols to the same function.
functions: std.AutoArrayHashMapUnmanaged(
struct {
/// `none` in the case of synthetic sections.
file: OptionalObjectId,
index: u32,
},
struct {
func: std.wasm.Func,
sym_index: Symbol.Index,
},
) = .{},
/// Output global section
wasm_globals: std.ArrayListUnmanaged(std.wasm.Global) = .empty,
/// Memory section
memories: std.wasm.Memory = .{ .limits = .{
.min = 0,
.max = undefined,
.flags = 0,
} },
/// Output table section
tables: std.ArrayListUnmanaged(std.wasm.Table) = .empty,
/// Output export section
exports: std.ArrayListUnmanaged(Export) = .empty,
/// List of initialization functions. These must be called in order of priority
/// by the (synthetic) __wasm_call_ctors function.
init_funcs: std.ArrayListUnmanaged(InitFuncLoc) = .empty,
/// Index to a function defining the entry of the wasm file
entry: ?u32 = null,
/// Indirect function table, used to call function pointers
/// When this is non-zero, we must emit a table entry,
/// as well as an 'elements' section.
///
/// Note: Key is symbol location, value represents the index into the table
function_table: std.AutoHashMapUnmanaged(SymbolLoc, u32) = .empty,
/// All archive files that are lazy loaded.
/// e.g. when an undefined symbol references a symbol from the archive.
lazy_archives: std.ArrayListUnmanaged(LazyArchive) = .empty,
/// A map of global names to their symbol location
globals: std.AutoArrayHashMapUnmanaged(String, SymbolLoc) = .empty,
/// The list of GOT symbols and their location
got_symbols: std.ArrayListUnmanaged(SymbolLoc) = .empty,
/// Maps discarded symbols and their positions to the location of the symbol
/// it was resolved to
discarded: std.AutoHashMapUnmanaged(SymbolLoc, SymbolLoc) = .empty,
/// List of all symbol locations which have been resolved by the linker and will be emit
/// into the final binary.
resolved_symbols: std.AutoArrayHashMapUnmanaged(SymbolLoc, void) = .empty,
/// Symbols that remain undefined after symbol resolution.
undefs: std.AutoArrayHashMapUnmanaged(String, SymbolLoc) = .empty,
/// Maps a symbol's location to an atom. This can be used to find meta
/// data of a symbol, such as its size, or its offset to perform a relocation.
/// Undefined (and synthetic) symbols do not have an Atom and therefore cannot be mapped.
symbol_atom: std.AutoHashMapUnmanaged(SymbolLoc, Atom.Index) = .empty,
/// `--verbose-link` output.
/// Initialized on creation, appended to as inputs are added, printed during `flush`.
/// String data is allocated into Compilation arena.
dump_argv_list: std.ArrayListUnmanaged([]const u8),
/// Represents the index into `segments` where the 'code' section lives.
code_section_index: Segment.OptionalIndex = .none,
custom_sections: CustomSections,
preloaded_strings: PreloadedStrings,
/// Type reflection is used on the field names to autopopulate each field
/// during initialization.
const PreloadedStrings = struct {
__heap_base: String,
__heap_end: String,
__indirect_function_table: String,
__linear_memory: String,
__stack_pointer: String,
__tls_align: String,
__tls_base: String,
__tls_size: String,
__wasm_apply_global_tls_relocs: String,
__wasm_call_ctors: String,
__wasm_init_memory: String,
__wasm_init_memory_flag: String,
__wasm_init_tls: String,
__zig_err_name_table: String,
__zig_err_names: String,
__zig_errors_len: String,
_initialize: String,
_start: String,
memory: String,
};
/// Type reflection is used on the field names to autopopulate each inner `name` field.
const CustomSections = struct {
@".debug_info": CustomSection,
@".debug_pubtypes": CustomSection,
@".debug_abbrev": CustomSection,
@".debug_line": CustomSection,
@".debug_str": CustomSection,
@".debug_pubnames": CustomSection,
@".debug_loc": CustomSection,
@".debug_ranges": CustomSection,
};
const CustomSection = struct {
name: String,
index: Segment.OptionalIndex,
};
/// Index into string_bytes
pub const String = enum(u32) {
_,
const Table = std.HashMapUnmanaged(String, void, TableContext, std.hash_map.default_max_load_percentage);
const TableContext = struct {
bytes: []const u8,
pub fn eql(_: @This(), a: String, b: String) bool {
return a == b;
}
pub fn hash(ctx: @This(), key: String) u64 {
return std.hash_map.hashString(mem.sliceTo(ctx.bytes[@intFromEnum(key)..], 0));
}
};
const TableIndexAdapter = struct {
bytes: []const u8,
pub fn eql(ctx: @This(), a: []const u8, b: String) bool {
return mem.eql(u8, a, mem.sliceTo(ctx.bytes[@intFromEnum(b)..], 0));
}
pub fn hash(_: @This(), adapted_key: []const u8) u64 {
assert(mem.indexOfScalar(u8, adapted_key, 0) == null);
return std.hash_map.hashString(adapted_key);
}
};
pub fn toOptional(i: String) OptionalString {
const result: OptionalString = @enumFromInt(@intFromEnum(i));
assert(result != .none);
return result;
}
};
pub const OptionalString = enum(u32) {
none = std.math.maxInt(u32),
_,
pub fn unwrap(i: OptionalString) ?String {
if (i == .none) return null;
return @enumFromInt(@intFromEnum(i));
}
};
/// Index into objects array or the zig object.
pub const ObjectId = enum(u16) {
zig_object = std.math.maxInt(u16) - 1,
_,
pub fn toOptional(i: ObjectId) OptionalObjectId {
const result: OptionalObjectId = @enumFromInt(@intFromEnum(i));
assert(result != .none);
return result;
}
};
/// Optional index into objects array or the zig object.
pub const OptionalObjectId = enum(u16) {
zig_object = std.math.maxInt(u16) - 1,
none = std.math.maxInt(u16),
_,
pub fn unwrap(i: OptionalObjectId) ?ObjectId {
if (i == .none) return null;
return @enumFromInt(@intFromEnum(i));
}
};
const LazyArchive = struct {
path: Path,
file_contents: []const u8,
archive: Archive,
fn deinit(la: *LazyArchive, gpa: Allocator) void {
gpa.free(la.path.sub_path);
gpa.free(la.file_contents);
la.* = undefined;
}
};
pub const Segment = struct {
alignment: Alignment,
size: u32,
offset: u32,
flags: u32,
const Index = enum(u32) {
_,
pub fn toOptional(i: Index) OptionalIndex {
const result: OptionalIndex = @enumFromInt(@intFromEnum(i));
assert(result != .none);
return result;
}
};
const OptionalIndex = enum(u32) {
none = std.math.maxInt(u32),
_,
pub fn unwrap(i: OptionalIndex) ?Index {
if (i == .none) return null;
return @enumFromInt(@intFromEnum(i));
}
};
pub const Flag = enum(u32) {
WASM_DATA_SEGMENT_IS_PASSIVE = 0x01,
WASM_DATA_SEGMENT_HAS_MEMINDEX = 0x02,
};
pub fn isPassive(segment: Segment) bool {
return segment.flags & @intFromEnum(Flag.WASM_DATA_SEGMENT_IS_PASSIVE) != 0;
}
/// For a given segment, determines if it needs passive initialization
fn needsPassiveInitialization(segment: Segment, import_mem: bool, name: []const u8) bool {
if (import_mem and !std.mem.eql(u8, name, ".bss")) {
return true;
}
return segment.isPassive();
}
};
pub const SymbolLoc = struct {
/// The index of the symbol within the specified file
index: Symbol.Index,
/// The index of the object file where the symbol resides.
file: OptionalObjectId,
};
/// From a given location, returns the corresponding symbol in the wasm binary
pub fn symbolLocSymbol(wasm: *const Wasm, loc: SymbolLoc) *Symbol {
if (wasm.discarded.get(loc)) |new_loc| {
return symbolLocSymbol(wasm, new_loc);
}
return switch (loc.file) {
.none => &wasm.synthetic_symbols.items[@intFromEnum(loc.index)],
.zig_object => wasm.zig_object.?.symbol(loc.index),
_ => &wasm.objects.items[@intFromEnum(loc.file)].symtable[@intFromEnum(loc.index)],
};
}
/// From a given location, returns the name of the symbol.
pub fn symbolLocName(wasm: *const Wasm, loc: SymbolLoc) [:0]const u8 {
return wasm.stringSlice(wasm.symbolLocSymbol(loc).name);
}
/// From a given symbol location, returns the final location.
/// e.g. when a symbol was resolved and replaced by the symbol
/// in a different file, this will return said location.
/// If the symbol wasn't replaced by another, this will return
/// the given location itwasm.
pub fn symbolLocFinalLoc(wasm: *const Wasm, loc: SymbolLoc) SymbolLoc {
if (wasm.discarded.get(loc)) |new_loc| {
return symbolLocFinalLoc(wasm, new_loc);
}
return loc;
}
// Contains the location of the function symbol, as well as
/// the priority itself of the initialization function.
pub const InitFuncLoc = struct {
/// object file index in the list of objects.
/// Unlike `SymbolLoc` this cannot be `null` as we never define
/// our own ctors.
file: ObjectId,
/// Symbol index within the corresponding object file.
index: Symbol.Index,
/// The priority in which the constructor must be called.
priority: u32,
/// From a given `InitFuncLoc` returns the corresponding function symbol
fn getSymbol(loc: InitFuncLoc, wasm: *const Wasm) *Symbol {
return wasm.symbolLocSymbol(getSymbolLoc(loc));
}
/// Turns the given `InitFuncLoc` into a `SymbolLoc`
fn getSymbolLoc(loc: InitFuncLoc) SymbolLoc {
return .{
.file = loc.file.toOptional(),
.index = loc.index,
};
}
/// Returns true when `lhs` has a higher priority (e.i. value closer to 0) than `rhs`.
fn lessThan(ctx: void, lhs: InitFuncLoc, rhs: InitFuncLoc) bool {
_ = ctx;
return lhs.priority < rhs.priority;
}
};
pub fn open(
arena: Allocator,
comp: *Compilation,
emit: Path,
options: link.File.OpenOptions,
) !*Wasm {
// TODO: restore saved linker state, don't truncate the file, and
// participate in incremental compilation.
return createEmpty(arena, comp, emit, options);
}
pub fn createEmpty(
arena: Allocator,
comp: *Compilation,
emit: Path,
options: link.File.OpenOptions,
) !*Wasm {
const gpa = comp.gpa;
const target = comp.root_mod.resolved_target.result;
assert(target.ofmt == .wasm);
const use_lld = build_options.have_llvm and comp.config.use_lld;
const use_llvm = comp.config.use_llvm;
const output_mode = comp.config.output_mode;
const shared_memory = comp.config.shared_memory;
const wasi_exec_model = comp.config.wasi_exec_model;
// If using LLD to link, this code should produce an object file so that it
// can be passed to LLD.
// If using LLVM to generate the object file for the zig compilation unit,
// we need a place to put the object file so that it can be subsequently
// handled.
const zcu_object_sub_path = if (!use_lld and !use_llvm)
null
else
try std.fmt.allocPrint(arena, "{s}.o", .{emit.sub_path});
const wasm = try arena.create(Wasm);
wasm.* = .{
.base = .{
.tag = .wasm,
.comp = comp,
.emit = emit,
.zcu_object_sub_path = zcu_object_sub_path,
.gc_sections = options.gc_sections orelse (output_mode != .Obj),
.print_gc_sections = options.print_gc_sections,
.stack_size = options.stack_size orelse switch (target.os.tag) {
.freestanding => 1 * 1024 * 1024, // 1 MiB
else => 16 * 1024 * 1024, // 16 MiB
},
.allow_shlib_undefined = options.allow_shlib_undefined orelse false,
.file = null,
.disable_lld_caching = options.disable_lld_caching,
.build_id = options.build_id,
},
.name = undefined,
.string_table = .empty,
.string_bytes = .empty,
.import_table = options.import_table,
.export_table = options.export_table,
.import_symbols = options.import_symbols,
.export_symbol_names = options.export_symbol_names,
.global_base = options.global_base,
.initial_memory = options.initial_memory,
.max_memory = options.max_memory,
.entry_name = undefined,
.zig_object = null,
.dump_argv_list = .empty,
.host_name = undefined,
.custom_sections = undefined,
.preloaded_strings = undefined,
};
if (use_llvm and comp.config.have_zcu) {
wasm.llvm_object = try LlvmObject.create(arena, comp);
}
errdefer wasm.base.destroy();
wasm.host_name = try wasm.internString("env");
inline for (@typeInfo(CustomSections).@"struct".fields) |field| {
@field(wasm.custom_sections, field.name) = .{
.index = .none,
.name = try wasm.internString(field.name),
};
}
inline for (@typeInfo(PreloadedStrings).@"struct".fields) |field| {
@field(wasm.preloaded_strings, field.name) = try wasm.internString(field.name);
}
wasm.entry_name = switch (options.entry) {
.disabled => .none,
.default => if (output_mode != .Exe) .none else defaultEntrySymbolName(&wasm.preloaded_strings, wasi_exec_model).toOptional(),
.enabled => defaultEntrySymbolName(&wasm.preloaded_strings, wasi_exec_model).toOptional(),
.named => |name| (try wasm.internString(name)).toOptional(),
};
if (use_lld and (use_llvm or !comp.config.have_zcu)) {
// LLVM emits the object file (if any); LLD links it into the final product.
return wasm;
}
// What path should this Wasm linker code output to?
// If using LLD to link, this code should produce an object file so that it
// can be passed to LLD.
const sub_path = if (use_lld) zcu_object_sub_path.? else emit.sub_path;
wasm.base.file = try emit.root_dir.handle.createFile(sub_path, .{
.truncate = true,
.read = true,
.mode = if (fs.has_executable_bit)
if (target.os.tag == .wasi and output_mode == .Exe)
fs.File.default_mode | 0b001_000_000
else
fs.File.default_mode
else
0,
});
wasm.name = sub_path;
// create stack pointer symbol
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__stack_pointer, .global);
const symbol = wasm.symbolLocSymbol(loc);
// For object files we will import the stack pointer symbol
if (output_mode == .Obj) {
symbol.setUndefined(true);
symbol.index = @intCast(wasm.imported_globals_count);
wasm.imported_globals_count += 1;
try wasm.imports.putNoClobber(gpa, loc, .{
.module_name = wasm.host_name,
.name = symbol.name,
.kind = .{ .global = .{ .valtype = .i32, .mutable = true } },
});
} else {
symbol.index = @intCast(wasm.imported_globals_count + wasm.wasm_globals.items.len);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
const global = try wasm.wasm_globals.addOne(gpa);
global.* = .{
.global_type = .{
.valtype = .i32,
.mutable = true,
},
.init = .{ .i32_const = 0 },
};
}
}
// create indirect function pointer symbol
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__indirect_function_table, .table);
const symbol = wasm.symbolLocSymbol(loc);
const table: std.wasm.Table = .{
.limits = .{ .flags = 0, .min = 0, .max = undefined }, // will be overwritten during `mapFunctionTable`
.reftype = .funcref,
};
if (output_mode == .Obj or options.import_table) {
symbol.setUndefined(true);
symbol.index = @intCast(wasm.imported_tables_count);
wasm.imported_tables_count += 1;
try wasm.imports.put(gpa, loc, .{
.module_name = wasm.host_name,
.name = symbol.name,
.kind = .{ .table = table },
});
} else {
symbol.index = @as(u32, @intCast(wasm.imported_tables_count + wasm.tables.items.len));
try wasm.tables.append(gpa, table);
if (wasm.export_table) {
symbol.setFlag(.WASM_SYM_EXPORTED);
} else {
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
}
}
}
// create __wasm_call_ctors
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__wasm_call_ctors, .function);
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
// we do not know the function index until after we merged all sections.
// Therefore we set `symbol.index` and create its corresponding references
// at the end during `initializeCallCtorsFunction`.
}
// shared-memory symbols for TLS support
if (shared_memory) {
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__tls_base, .global);
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
symbol.index = @intCast(wasm.imported_globals_count + wasm.wasm_globals.items.len);
symbol.mark();
try wasm.wasm_globals.append(gpa, .{
.global_type = .{ .valtype = .i32, .mutable = true },
.init = .{ .i32_const = undefined },
});
}
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__tls_size, .global);
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
symbol.index = @intCast(wasm.imported_globals_count + wasm.wasm_globals.items.len);
symbol.mark();
try wasm.wasm_globals.append(gpa, .{
.global_type = .{ .valtype = .i32, .mutable = false },
.init = .{ .i32_const = undefined },
});
}
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__tls_align, .global);
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
symbol.index = @intCast(wasm.imported_globals_count + wasm.wasm_globals.items.len);
symbol.mark();
try wasm.wasm_globals.append(gpa, .{
.global_type = .{ .valtype = .i32, .mutable = false },
.init = .{ .i32_const = undefined },
});
}
{
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__wasm_init_tls, .function);
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
}
}
if (comp.zcu) |zcu| {
if (!use_llvm) {
const zig_object = try arena.create(ZigObject);
wasm.zig_object = zig_object;
zig_object.* = .{
.path = .{
.root_dir = std.Build.Cache.Directory.cwd(),
.sub_path = try std.fmt.allocPrint(gpa, "{s}.o", .{fs.path.stem(zcu.main_mod.root_src_path)}),
},
.stack_pointer_sym = .null,
};
try zig_object.init(wasm);
}
}
return wasm;
}
pub fn getTypeIndex(wasm: *const Wasm, func_type: std.wasm.Type) ?u32 {
var index: u32 = 0;
while (index < wasm.func_types.items.len) : (index += 1) {
if (wasm.func_types.items[index].eql(func_type)) return index;
}
return null;
}
/// Either creates a new import, or updates one if existing.
/// When `type_index` is non-null, we assume an external function.
/// In all other cases, a data-symbol will be created instead.
pub fn addOrUpdateImport(
wasm: *Wasm,
/// Name of the import
name: []const u8,
/// Symbol index that is external
symbol_index: Symbol.Index,
/// Optional library name (i.e. `extern "c" fn foo() void`
lib_name: ?[:0]const u8,
/// The index of the type that represents the function signature
/// when the extern is a function. When this is null, a data-symbol
/// is asserted instead.
type_index: ?u32,
) !void {
return wasm.zig_object.?.addOrUpdateImport(wasm, name, symbol_index, lib_name, type_index);
}
/// For a given name, creates a new global synthetic symbol.
/// Leaves index undefined and the default flags (0).
fn createSyntheticSymbol(wasm: *Wasm, name: String, tag: Symbol.Tag) !SymbolLoc {
return wasm.createSyntheticSymbolOffset(name, tag);
}
fn createSyntheticSymbolOffset(wasm: *Wasm, name_offset: String, tag: Symbol.Tag) !SymbolLoc {
const sym_index: Symbol.Index = @enumFromInt(wasm.synthetic_symbols.items.len);
const loc: SymbolLoc = .{ .index = sym_index, .file = .none };
const gpa = wasm.base.comp.gpa;
try wasm.synthetic_symbols.append(gpa, .{
.name = name_offset,
.flags = 0,
.tag = tag,
.index = undefined,
.virtual_address = undefined,
});
try wasm.resolved_symbols.putNoClobber(gpa, loc, {});
try wasm.globals.put(gpa, name_offset, loc);
return loc;
}
fn openParseObjectReportingFailure(wasm: *Wasm, path: Path) void {
const diags = &wasm.base.comp.link_diags;
const obj = link.openObject(path, false, false) catch |err| {
switch (diags.failParse(path, "failed to open object: {s}", .{@errorName(err)})) {
error.LinkFailure => return,
}
};
wasm.parseObject(obj) catch |err| {
switch (diags.failParse(path, "failed to parse object: {s}", .{@errorName(err)})) {
error.LinkFailure => return,
}
};
}
fn parseObject(wasm: *Wasm, obj: link.Input.Object) !void {
defer obj.file.close();
const gpa = wasm.base.comp.gpa;
try wasm.objects.ensureUnusedCapacity(gpa, 1);
const stat = try obj.file.stat();
const size = std.math.cast(usize, stat.size) orelse return error.FileTooBig;
const file_contents = try gpa.alloc(u8, size);
defer gpa.free(file_contents);
const n = try obj.file.preadAll(file_contents, 0);
if (n != file_contents.len) return error.UnexpectedEndOfFile;
wasm.objects.appendAssumeCapacity(try Object.create(wasm, file_contents, obj.path, null));
}
/// Creates a new empty `Atom` and returns its `Atom.Index`
pub fn createAtom(wasm: *Wasm, sym_index: Symbol.Index, object_index: OptionalObjectId) !Atom.Index {
const gpa = wasm.base.comp.gpa;
const index: Atom.Index = @enumFromInt(wasm.managed_atoms.items.len);
const atom = try wasm.managed_atoms.addOne(gpa);
atom.* = .{
.file = object_index,
.sym_index = sym_index,
};
try wasm.symbol_atom.putNoClobber(gpa, atom.symbolLoc(), index);
return index;
}
pub fn getAtom(wasm: *const Wasm, index: Atom.Index) Atom {
return wasm.managed_atoms.items[@intFromEnum(index)];
}
pub fn getAtomPtr(wasm: *Wasm, index: Atom.Index) *Atom {
return &wasm.managed_atoms.items[@intFromEnum(index)];
}
fn parseArchive(wasm: *Wasm, obj: link.Input.Object) !void {
const gpa = wasm.base.comp.gpa;
defer obj.file.close();
const stat = try obj.file.stat();
const size = std.math.cast(usize, stat.size) orelse return error.FileTooBig;
const file_contents = try gpa.alloc(u8, size);
var keep_file_contents = false;
defer if (!keep_file_contents) gpa.free(file_contents);
const n = try obj.file.preadAll(file_contents, 0);
if (n != file_contents.len) return error.UnexpectedEndOfFile;
var archive = try Archive.parse(gpa, file_contents);
if (!obj.must_link) {
errdefer archive.deinit(gpa);
try wasm.lazy_archives.append(gpa, .{
.path = .{
.root_dir = obj.path.root_dir,
.sub_path = try gpa.dupe(u8, obj.path.sub_path),
},
.file_contents = file_contents,
.archive = archive,
});
keep_file_contents = true;
return;
}
defer archive.deinit(gpa);
// In this case we must force link all embedded object files within the archive
// We loop over all symbols, and then group them by offset as the offset
// notates where the object file starts.
var offsets = std.AutoArrayHashMap(u32, void).init(gpa);
defer offsets.deinit();
for (archive.toc.values()) |symbol_offsets| {
for (symbol_offsets.items) |sym_offset| {
try offsets.put(sym_offset, {});
}
}
for (offsets.keys()) |file_offset| {
const object = try archive.parseObject(wasm, file_contents[file_offset..], obj.path);
try wasm.objects.append(gpa, object);
}
}
fn requiresTLSReloc(wasm: *const Wasm) bool {
for (wasm.got_symbols.items) |loc| {
if (wasm.symbolLocSymbol(loc).isTLS()) {
return true;
}
}
return false;
}
fn objectPath(wasm: *const Wasm, object_id: ObjectId) Path {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.path;
return obj.path;
}
fn objectSymbols(wasm: *const Wasm, object_id: ObjectId) []const Symbol {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.symbols.items;
return obj.symtable;
}
fn objectSymbol(wasm: *const Wasm, object_id: ObjectId, index: Symbol.Index) *Symbol {
const obj = wasm.objectById(object_id) orelse return &wasm.zig_object.?.symbols.items[@intFromEnum(index)];
return &obj.symtable[@intFromEnum(index)];
}
fn objectFunction(wasm: *const Wasm, object_id: ObjectId, sym_index: Symbol.Index) std.wasm.Func {
const obj = wasm.objectById(object_id) orelse {
const zo = wasm.zig_object.?;
const sym = zo.symbols.items[@intFromEnum(sym_index)];
return zo.functions.items[sym.index];
};
const sym = obj.symtable[@intFromEnum(sym_index)];
return obj.functions[sym.index - obj.imported_functions_count];
}
fn objectImportedFunctions(wasm: *const Wasm, object_id: ObjectId) u32 {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.imported_functions_count;
return obj.imported_functions_count;
}
fn objectGlobals(wasm: *const Wasm, object_id: ObjectId) []const std.wasm.Global {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.globals.items;
return obj.globals;
}
fn objectFuncTypes(wasm: *const Wasm, object_id: ObjectId) []const std.wasm.Type {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.func_types.items;
return obj.func_types;
}
fn objectSegmentInfo(wasm: *const Wasm, object_id: ObjectId) []const NamedSegment {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.segment_info.items;
return obj.segment_info;
}
/// For a given symbol index, find its corresponding import.
/// Asserts import exists.
fn objectImport(wasm: *const Wasm, object_id: ObjectId, symbol_index: Symbol.Index) Import {
const obj = wasm.objectById(object_id) orelse return wasm.zig_object.?.imports.get(symbol_index).?;
return obj.findImport(obj.symtable[@intFromEnum(symbol_index)]);
}
/// Returns the object element pointer, or null if it is the ZigObject.
fn objectById(wasm: *const Wasm, object_id: ObjectId) ?*Object {
if (object_id == .zig_object) return null;
return &wasm.objects.items[@intFromEnum(object_id)];
}
fn resolveSymbolsInObject(wasm: *Wasm, object_id: ObjectId) !void {
const gpa = wasm.base.comp.gpa;
const diags = &wasm.base.comp.link_diags;
const obj_path = objectPath(wasm, object_id);
log.debug("Resolving symbols in object: '{'}'", .{obj_path});
const symbols = objectSymbols(wasm, object_id);
for (symbols, 0..) |symbol, i| {
const sym_index: Symbol.Index = @enumFromInt(i);
const location: SymbolLoc = .{
.file = object_id.toOptional(),
.index = sym_index,
};
if (symbol.name == wasm.preloaded_strings.__indirect_function_table) continue;
if (symbol.isLocal()) {
if (symbol.isUndefined()) {
diags.addParseError(obj_path, "local symbol '{s}' references import", .{
wasm.stringSlice(symbol.name),
});
}
try wasm.resolved_symbols.putNoClobber(gpa, location, {});
continue;
}
const maybe_existing = try wasm.globals.getOrPut(gpa, symbol.name);
if (!maybe_existing.found_existing) {
maybe_existing.value_ptr.* = location;
try wasm.resolved_symbols.putNoClobber(gpa, location, {});
if (symbol.isUndefined()) {
try wasm.undefs.putNoClobber(gpa, symbol.name, location);
}
continue;
}
const existing_loc = maybe_existing.value_ptr.*;
const existing_sym: *Symbol = wasm.symbolLocSymbol(existing_loc);
const existing_file_path: Path = if (existing_loc.file.unwrap()) |id| objectPath(wasm, id) else .{
.root_dir = std.Build.Cache.Directory.cwd(),
.sub_path = wasm.name,
};
if (!existing_sym.isUndefined()) outer: {
if (!symbol.isUndefined()) inner: {
if (symbol.isWeak()) {
break :inner; // ignore the new symbol (discard it)
}
if (existing_sym.isWeak()) {
break :outer; // existing is weak, while new one isn't. Replace it.
}
// both are defined and weak, we have a symbol collision.
var err = try diags.addErrorWithNotes(2);
try err.addMsg("symbol '{s}' defined multiple times", .{wasm.stringSlice(symbol.name)});
try err.addNote("first definition in '{'}'", .{existing_file_path});
try err.addNote("next definition in '{'}'", .{obj_path});
}
try wasm.discarded.put(gpa, location, existing_loc);
continue; // Do not overwrite defined symbols with undefined symbols
}
if (symbol.tag != existing_sym.tag) {
var err = try diags.addErrorWithNotes(2);
try err.addMsg("symbol '{s}' mismatching types '{s}' and '{s}'", .{
wasm.stringSlice(symbol.name), @tagName(symbol.tag), @tagName(existing_sym.tag),
});
try err.addNote("first definition in '{'}'", .{existing_file_path});
try err.addNote("next definition in '{'}'", .{obj_path});
}
if (existing_sym.isUndefined() and symbol.isUndefined()) {
// only verify module/import name for function symbols
if (symbol.tag == .function) {
const existing_name = if (existing_loc.file.unwrap()) |existing_obj_id|
objectImport(wasm, existing_obj_id, existing_loc.index).module_name
else
wasm.imports.get(existing_loc).?.module_name;
const module_name = objectImport(wasm, object_id, sym_index).module_name;
if (existing_name != module_name) {
var err = try diags.addErrorWithNotes(2);
try err.addMsg("symbol '{s}' module name mismatch. Expected '{s}', but found '{s}'", .{
wasm.stringSlice(symbol.name),
wasm.stringSlice(existing_name),
wasm.stringSlice(module_name),
});
try err.addNote("first definition in '{'}'", .{existing_file_path});
try err.addNote("next definition in '{'}'", .{obj_path});
}
}
// both undefined so skip overwriting existing symbol and discard the new symbol
try wasm.discarded.put(gpa, location, existing_loc);
continue;
}
if (existing_sym.tag == .global) {
const existing_ty = wasm.getGlobalType(existing_loc);
const new_ty = wasm.getGlobalType(location);
if (existing_ty.mutable != new_ty.mutable or existing_ty.valtype != new_ty.valtype) {
var err = try diags.addErrorWithNotes(2);
try err.addMsg("symbol '{s}' mismatching global types", .{wasm.stringSlice(symbol.name)});
try err.addNote("first definition in '{'}'", .{existing_file_path});
try err.addNote("next definition in '{'}'", .{obj_path});
}
}
if (existing_sym.tag == .function) {
const existing_ty = wasm.getFunctionSignature(existing_loc);
const new_ty = wasm.getFunctionSignature(location);
if (!existing_ty.eql(new_ty)) {
var err = try diags.addErrorWithNotes(3);
try err.addMsg("symbol '{s}' mismatching function signatures.", .{wasm.stringSlice(symbol.name)});
try err.addNote("expected signature {}, but found signature {}", .{ existing_ty, new_ty });
try err.addNote("first definition in '{'}'", .{existing_file_path});
try err.addNote("next definition in '{'}'", .{obj_path});
}
}
// when both symbols are weak, we skip overwriting unless the existing
// symbol is weak and the new one isn't, in which case we *do* overwrite it.
if (existing_sym.isWeak() and symbol.isWeak()) blk: {
if (existing_sym.isUndefined() and !symbol.isUndefined()) break :blk;
try wasm.discarded.put(gpa, location, existing_loc);
continue;
}
// simply overwrite with the new symbol
log.debug("Overwriting symbol '{s}'", .{wasm.stringSlice(symbol.name)});
log.debug(" old definition in '{'}'", .{existing_file_path});
log.debug(" new definition in '{'}'", .{obj_path});
try wasm.discarded.putNoClobber(gpa, existing_loc, location);
maybe_existing.value_ptr.* = location;
try wasm.globals.put(gpa, symbol.name, location);
try wasm.resolved_symbols.put(gpa, location, {});
assert(wasm.resolved_symbols.swapRemove(existing_loc));
if (existing_sym.isUndefined()) {
_ = wasm.undefs.swapRemove(symbol.name);
}
}
}
fn resolveSymbolsInArchives(wasm: *Wasm) !void {
if (wasm.lazy_archives.items.len == 0) return;
const gpa = wasm.base.comp.gpa;
const diags = &wasm.base.comp.link_diags;
log.debug("Resolving symbols in lazy_archives", .{});
var index: u32 = 0;
undef_loop: while (index < wasm.undefs.count()) {
const sym_name_index = wasm.undefs.keys()[index];
for (wasm.lazy_archives.items) |lazy_archive| {
const sym_name = wasm.stringSlice(sym_name_index);
log.debug("Detected symbol '{s}' in archive '{'}', parsing objects..", .{
sym_name, lazy_archive.path,
});
const offset = lazy_archive.archive.toc.get(sym_name) orelse continue; // symbol does not exist in this archive
// Symbol is found in unparsed object file within current archive.
// Parse object and and resolve symbols again before we check remaining
// undefined symbols.
const file_contents = lazy_archive.file_contents[offset.items[0]..];
const object = lazy_archive.archive.parseObject(wasm, file_contents, lazy_archive.path) catch |err| {
// TODO this fails to include information to identify which object failed
return diags.failParse(lazy_archive.path, "failed to parse object in archive: {s}", .{@errorName(err)});
};
try wasm.objects.append(gpa, object);
try wasm.resolveSymbolsInObject(@enumFromInt(wasm.objects.items.len - 1));
// continue loop for any remaining undefined symbols that still exist
// after resolving last object file
continue :undef_loop;
}
index += 1;
}
}
/// Writes an unsigned 32-bit integer as a LEB128-encoded 'i32.const' value.
fn writeI32Const(writer: anytype, val: u32) !void {
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeIleb128(writer, @as(i32, @bitCast(val)));
}
fn setupInitMemoryFunction(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const gpa = comp.gpa;
const shared_memory = comp.config.shared_memory;
const import_memory = comp.config.import_memory;
// Passive segments are used to avoid memory being reinitialized on each
// thread's instantiation. These passive segments are initialized and
// dropped in __wasm_init_memory, which is registered as the start function
// We also initialize bss segments (using memory.fill) as part of this
// function.
if (!wasm.hasPassiveInitializationSegments()) {
return;
}
const sym_loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__wasm_init_memory, .function);
wasm.symbolLocSymbol(sym_loc).mark();
const flag_address: u32 = if (shared_memory) address: {
// when we have passive initialization segments and shared memory
// `setupMemory` will create this symbol and set its virtual address.
const loc = wasm.globals.get(wasm.preloaded_strings.__wasm_init_memory_flag).?;
break :address wasm.symbolLocSymbol(loc).virtual_address;
} else 0;
var function_body = std.ArrayList(u8).init(gpa);
defer function_body.deinit();
const writer = function_body.writer();
// we have 0 locals
try leb.writeUleb128(writer, @as(u32, 0));
if (shared_memory) {
// destination blocks
// based on values we jump to corresponding label
try writer.writeByte(std.wasm.opcode(.block)); // $drop
try writer.writeByte(std.wasm.block_empty); // block type
try writer.writeByte(std.wasm.opcode(.block)); // $wait
try writer.writeByte(std.wasm.block_empty); // block type
try writer.writeByte(std.wasm.opcode(.block)); // $init
try writer.writeByte(std.wasm.block_empty); // block type
// atomically check
try writeI32Const(writer, flag_address);
try writeI32Const(writer, 0);
try writeI32Const(writer, 1);
try writer.writeByte(std.wasm.opcode(.atomics_prefix));
try leb.writeUleb128(writer, std.wasm.atomicsOpcode(.i32_atomic_rmw_cmpxchg));
try leb.writeUleb128(writer, @as(u32, 2)); // alignment
try leb.writeUleb128(writer, @as(u32, 0)); // offset
// based on the value from the atomic check, jump to the label.
try writer.writeByte(std.wasm.opcode(.br_table));
try leb.writeUleb128(writer, @as(u32, 2)); // length of the table (we have 3 blocks but because of the mandatory default the length is 2).
try leb.writeUleb128(writer, @as(u32, 0)); // $init
try leb.writeUleb128(writer, @as(u32, 1)); // $wait
try leb.writeUleb128(writer, @as(u32, 2)); // $drop
try writer.writeByte(std.wasm.opcode(.end));
}
for (wasm.data_segments.keys(), wasm.data_segments.values(), 0..) |key, value, segment_index_usize| {
const segment_index: u32 = @intCast(segment_index_usize);
const segment = wasm.segmentPtr(value);
if (segment.needsPassiveInitialization(import_memory, key)) {
// For passive BSS segments we can simple issue a memory.fill(0).
// For non-BSS segments we do a memory.init. Both these
// instructions take as their first argument the destination
// address.
try writeI32Const(writer, segment.offset);
if (shared_memory and std.mem.eql(u8, key, ".tdata")) {
// When we initialize the TLS segment we also set the `__tls_base`
// global. This allows the runtime to use this static copy of the
// TLS data for the first/main thread.
try writeI32Const(writer, segment.offset);
try writer.writeByte(std.wasm.opcode(.global_set));
const loc = wasm.globals.get(wasm.preloaded_strings.__tls_base).?;
try leb.writeUleb128(writer, wasm.symbolLocSymbol(loc).index);
}
try writeI32Const(writer, 0);
try writeI32Const(writer, segment.size);
try writer.writeByte(std.wasm.opcode(.misc_prefix));
if (std.mem.eql(u8, key, ".bss")) {
// fill bss segment with zeroes
try leb.writeUleb128(writer, std.wasm.miscOpcode(.memory_fill));
} else {
// initialize the segment
try leb.writeUleb128(writer, std.wasm.miscOpcode(.memory_init));
try leb.writeUleb128(writer, segment_index);
}
try writer.writeByte(0); // memory index immediate
}
}
if (shared_memory) {
// we set the init memory flag to value '2'
try writeI32Const(writer, flag_address);
try writeI32Const(writer, 2);
try writer.writeByte(std.wasm.opcode(.atomics_prefix));
try leb.writeUleb128(writer, std.wasm.atomicsOpcode(.i32_atomic_store));
try leb.writeUleb128(writer, @as(u32, 2)); // alignment
try leb.writeUleb128(writer, @as(u32, 0)); // offset
// notify any waiters for segment initialization completion
try writeI32Const(writer, flag_address);
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeIleb128(writer, @as(i32, -1)); // number of waiters
try writer.writeByte(std.wasm.opcode(.atomics_prefix));
try leb.writeUleb128(writer, std.wasm.atomicsOpcode(.memory_atomic_notify));
try leb.writeUleb128(writer, @as(u32, 2)); // alignment
try leb.writeUleb128(writer, @as(u32, 0)); // offset
try writer.writeByte(std.wasm.opcode(.drop));
// branch and drop segments
try writer.writeByte(std.wasm.opcode(.br));
try leb.writeUleb128(writer, @as(u32, 1));
// wait for thread to initialize memory segments
try writer.writeByte(std.wasm.opcode(.end)); // end $wait
try writeI32Const(writer, flag_address);
try writeI32Const(writer, 1); // expected flag value
try writer.writeByte(std.wasm.opcode(.i64_const));
try leb.writeIleb128(writer, @as(i64, -1)); // timeout
try writer.writeByte(std.wasm.opcode(.atomics_prefix));
try leb.writeUleb128(writer, std.wasm.atomicsOpcode(.memory_atomic_wait32));
try leb.writeUleb128(writer, @as(u32, 2)); // alignment
try leb.writeUleb128(writer, @as(u32, 0)); // offset
try writer.writeByte(std.wasm.opcode(.drop));
try writer.writeByte(std.wasm.opcode(.end)); // end $drop
}
for (wasm.data_segments.keys(), wasm.data_segments.values(), 0..) |name, value, segment_index_usize| {
const segment_index: u32 = @intCast(segment_index_usize);
const segment = wasm.segmentPtr(value);
if (segment.needsPassiveInitialization(import_memory, name) and
!std.mem.eql(u8, name, ".bss"))
{
// The TLS region should not be dropped since its is needed
// during the initialization of each thread (__wasm_init_tls).
if (shared_memory and std.mem.eql(u8, name, ".tdata")) {
continue;
}
try writer.writeByte(std.wasm.opcode(.misc_prefix));
try leb.writeUleb128(writer, std.wasm.miscOpcode(.data_drop));
try leb.writeUleb128(writer, segment_index);
}
}
// End of the function body
try writer.writeByte(std.wasm.opcode(.end));
try wasm.createSyntheticFunction(
wasm.preloaded_strings.__wasm_init_memory,
std.wasm.Type{ .params = &.{}, .returns = &.{} },
&function_body,
);
}
/// Constructs a synthetic function that performs runtime relocations for
/// TLS symbols. This function is called by `__wasm_init_tls`.
fn setupTLSRelocationsFunction(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const gpa = comp.gpa;
const shared_memory = comp.config.shared_memory;
// When we have TLS GOT entries and shared memory is enabled,
// we must perform runtime relocations or else we don't create the function.
if (!shared_memory or !wasm.requiresTLSReloc()) {
return;
}
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__wasm_apply_global_tls_relocs, .function);
wasm.symbolLocSymbol(loc).mark();
var function_body = std.ArrayList(u8).init(gpa);
defer function_body.deinit();
const writer = function_body.writer();
// locals (we have none)
try writer.writeByte(0);
for (wasm.got_symbols.items, 0..) |got_loc, got_index| {
const sym: *Symbol = wasm.symbolLocSymbol(got_loc);
if (!sym.isTLS()) continue; // only relocate TLS symbols
if (sym.tag == .data and sym.isDefined()) {
// get __tls_base
try writer.writeByte(std.wasm.opcode(.global_get));
try leb.writeUleb128(writer, wasm.symbolLocSymbol(wasm.globals.get(wasm.preloaded_strings.__tls_base).?).index);
// add the virtual address of the symbol
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeUleb128(writer, sym.virtual_address);
} else if (sym.tag == .function) {
@panic("TODO: relocate GOT entry of function");
} else continue;
try writer.writeByte(std.wasm.opcode(.i32_add));
try writer.writeByte(std.wasm.opcode(.global_set));
try leb.writeUleb128(writer, wasm.imported_globals_count + @as(u32, @intCast(wasm.wasm_globals.items.len + got_index)));
}
try writer.writeByte(std.wasm.opcode(.end));
try wasm.createSyntheticFunction(
wasm.preloaded_strings.__wasm_apply_global_tls_relocs,
std.wasm.Type{ .params = &.{}, .returns = &.{} },
&function_body,
);
}
fn validateFeatures(
wasm: *const Wasm,
to_emit: *[@typeInfo(Feature.Tag).@"enum".fields.len]bool,
emit_features_count: *u32,
) !void {
const comp = wasm.base.comp;
const diags = &wasm.base.comp.link_diags;
const target = comp.root_mod.resolved_target.result;
const shared_memory = comp.config.shared_memory;
const cpu_features = target.cpu.features;
const infer = cpu_features.isEmpty(); // when the user did not define any features, we infer them from linked objects.
const known_features_count = @typeInfo(Feature.Tag).@"enum".fields.len;
var allowed = [_]bool{false} ** known_features_count;
var used = [_]u17{0} ** known_features_count;
var disallowed = [_]u17{0} ** known_features_count;
var required = [_]u17{0} ** known_features_count;
// when false, we fail linking. We only verify this after a loop to catch all invalid features.
var valid_feature_set = true;
// will be set to true when there's any TLS segment found in any of the object files
var has_tls = false;
// When the user has given an explicit list of features to enable,
// we extract them and insert each into the 'allowed' list.
if (!infer) {
inline for (@typeInfo(std.Target.wasm.Feature).@"enum".fields) |feature_field| {
if (cpu_features.isEnabled(feature_field.value)) {
allowed[feature_field.value] = true;
emit_features_count.* += 1;
}
}
}
// extract all the used, disallowed and required features from each
// linked object file so we can test them.
for (wasm.objects.items, 0..) |*object, file_index| {
for (object.features) |feature| {
const value = (@as(u16, @intCast(file_index)) << 1) | 1;
switch (feature.prefix) {
.used => {
used[@intFromEnum(feature.tag)] = value;
},
.disallowed => {
disallowed[@intFromEnum(feature.tag)] = value;
},
.required => {
required[@intFromEnum(feature.tag)] = value;
used[@intFromEnum(feature.tag)] = value;
},
}
}
for (object.segment_info) |segment| {
if (segment.isTLS()) {
has_tls = true;
}
}
}
// when we infer the features, we allow each feature found in the 'used' set
// and insert it into the 'allowed' set. When features are not inferred,
// we validate that a used feature is allowed.
for (used, 0..) |used_set, used_index| {
const is_enabled = @as(u1, @truncate(used_set)) != 0;
if (infer) {
allowed[used_index] = is_enabled;
emit_features_count.* += @intFromBool(is_enabled);
} else if (is_enabled and !allowed[used_index]) {
diags.addParseError(
wasm.objects.items[used_set >> 1].path,
"feature '{}' not allowed, but used by linked object",
.{@as(Feature.Tag, @enumFromInt(used_index))},
);
valid_feature_set = false;
}
}
if (!valid_feature_set) {
return error.FlushFailure;
}
if (shared_memory) {
const disallowed_feature = disallowed[@intFromEnum(Feature.Tag.shared_mem)];
if (@as(u1, @truncate(disallowed_feature)) != 0) {
diags.addParseError(
wasm.objects.items[disallowed_feature >> 1].path,
"shared-memory is disallowed because it wasn't compiled with 'atomics' and 'bulk-memory' features enabled",
.{},
);
valid_feature_set = false;
}
for ([_]Feature.Tag{ .atomics, .bulk_memory }) |feature| {
if (!allowed[@intFromEnum(feature)]) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("feature '{}' is not used but is required for shared-memory", .{feature});
}
}
}
if (has_tls) {
for ([_]Feature.Tag{ .atomics, .bulk_memory }) |feature| {
if (!allowed[@intFromEnum(feature)]) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("feature '{}' is not used but is required for thread-local storage", .{feature});
}
}
}
// For each linked object, validate the required and disallowed features
for (wasm.objects.items) |*object| {
var object_used_features = [_]bool{false} ** known_features_count;
for (object.features) |feature| {
if (feature.prefix == .disallowed) continue; // already defined in 'disallowed' set.
// from here a feature is always used
const disallowed_feature = disallowed[@intFromEnum(feature.tag)];
if (@as(u1, @truncate(disallowed_feature)) != 0) {
var err = try diags.addErrorWithNotes(2);
try err.addMsg("feature '{}' is disallowed, but used by linked object", .{feature.tag});
try err.addNote("disallowed by '{'}'", .{wasm.objects.items[disallowed_feature >> 1].path});
try err.addNote("used in '{'}'", .{object.path});
valid_feature_set = false;
}
object_used_features[@intFromEnum(feature.tag)] = true;
}
// validate the linked object file has each required feature
for (required, 0..) |required_feature, feature_index| {
const is_required = @as(u1, @truncate(required_feature)) != 0;
if (is_required and !object_used_features[feature_index]) {
var err = try diags.addErrorWithNotes(2);
try err.addMsg("feature '{}' is required but not used in linked object", .{@as(Feature.Tag, @enumFromInt(feature_index))});
try err.addNote("required by '{'}'", .{wasm.objects.items[required_feature >> 1].path});
try err.addNote("missing in '{'}'", .{object.path});
valid_feature_set = false;
}
}
}
if (!valid_feature_set) {
return error.FlushFailure;
}
to_emit.* = allowed;
}
/// Creates synthetic linker-symbols, but only if they are being referenced from
/// any object file. For instance, the `__heap_base` symbol will only be created,
/// if one or multiple undefined references exist. When none exist, the symbol will
/// not be created, ensuring we don't unnecessarily emit unreferenced symbols.
fn resolveLazySymbols(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const gpa = comp.gpa;
const shared_memory = comp.config.shared_memory;
if (wasm.getExistingString("__heap_base")) |name_offset| {
if (wasm.undefs.fetchSwapRemove(name_offset)) |kv| {
const loc = try wasm.createSyntheticSymbolOffset(name_offset, .data);
try wasm.discarded.putNoClobber(gpa, kv.value, loc);
_ = wasm.resolved_symbols.swapRemove(loc); // we don't want to emit this symbol, only use it for relocations.
}
}
if (wasm.getExistingString("__heap_end")) |name_offset| {
if (wasm.undefs.fetchSwapRemove(name_offset)) |kv| {
const loc = try wasm.createSyntheticSymbolOffset(name_offset, .data);
try wasm.discarded.putNoClobber(gpa, kv.value, loc);
_ = wasm.resolved_symbols.swapRemove(loc);
}
}
if (!shared_memory) {
if (wasm.getExistingString("__tls_base")) |name_offset| {
if (wasm.undefs.fetchSwapRemove(name_offset)) |kv| {
const loc = try wasm.createSyntheticSymbolOffset(name_offset, .global);
try wasm.discarded.putNoClobber(gpa, kv.value, loc);
_ = wasm.resolved_symbols.swapRemove(kv.value);
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
symbol.index = @intCast(wasm.imported_globals_count + wasm.wasm_globals.items.len);
try wasm.wasm_globals.append(gpa, .{
.global_type = .{ .valtype = .i32, .mutable = true },
.init = .{ .i32_const = undefined },
});
}
}
}
}
pub fn findGlobalSymbol(wasm: *const Wasm, name: []const u8) ?SymbolLoc {
const name_index = wasm.getExistingString(name) orelse return null;
return wasm.globals.get(name_index);
}
fn checkUndefinedSymbols(wasm: *const Wasm) !void {
const comp = wasm.base.comp;
const diags = &wasm.base.comp.link_diags;
if (comp.config.output_mode == .Obj) return;
if (wasm.import_symbols) return;
var found_undefined_symbols = false;
for (wasm.undefs.values()) |undef| {
const symbol = wasm.symbolLocSymbol(undef);
if (symbol.tag == .data) {
found_undefined_symbols = true;
const symbol_name = wasm.symbolLocName(undef);
switch (undef.file) {
.zig_object => {
// TODO: instead of saying the zig compilation unit, attach an actual source location
// to this diagnostic
diags.addError("unresolved symbol in Zig compilation unit: {s}", .{symbol_name});
},
.none => {
diags.addError("internal linker bug: unresolved synthetic symbol: {s}", .{symbol_name});
},
_ => {
const path = wasm.objects.items[@intFromEnum(undef.file)].path;
diags.addParseError(path, "unresolved symbol: {s}", .{symbol_name});
},
}
}
}
if (found_undefined_symbols) {
return error.LinkFailure;
}
}
pub fn deinit(wasm: *Wasm) void {
const gpa = wasm.base.comp.gpa;
if (wasm.llvm_object) |llvm_object| llvm_object.deinit();
for (wasm.func_types.items) |*func_type| {
func_type.deinit(gpa);
}
for (wasm.segment_info.values()) |segment_info| {
gpa.free(segment_info.name);
}
if (wasm.zig_object) |zig_obj| {
zig_obj.deinit(wasm);
}
for (wasm.objects.items) |*object| {
object.deinit(gpa);
}
for (wasm.lazy_archives.items) |*lazy_archive| lazy_archive.deinit(gpa);
wasm.lazy_archives.deinit(gpa);
if (wasm.globals.get(wasm.preloaded_strings.__wasm_init_tls)) |loc| {
const atom = wasm.symbol_atom.get(loc).?;
wasm.getAtomPtr(atom).deinit(gpa);
}
wasm.synthetic_symbols.deinit(gpa);
wasm.globals.deinit(gpa);
wasm.resolved_symbols.deinit(gpa);
wasm.undefs.deinit(gpa);
wasm.discarded.deinit(gpa);
wasm.symbol_atom.deinit(gpa);
wasm.atoms.deinit(gpa);
wasm.managed_atoms.deinit(gpa);
wasm.segments.deinit(gpa);
wasm.data_segments.deinit(gpa);
wasm.segment_info.deinit(gpa);
wasm.objects.deinit(gpa);
// free output sections
wasm.imports.deinit(gpa);
wasm.func_types.deinit(gpa);
wasm.functions.deinit(gpa);
wasm.wasm_globals.deinit(gpa);
wasm.function_table.deinit(gpa);
wasm.tables.deinit(gpa);
wasm.init_funcs.deinit(gpa);
wasm.exports.deinit(gpa);
wasm.string_bytes.deinit(gpa);
wasm.string_table.deinit(gpa);
wasm.dump_argv_list.deinit(gpa);
}
pub fn updateFunc(wasm: *Wasm, pt: Zcu.PerThread, func_index: InternPool.Index, air: Air, liveness: Liveness) !void {
if (build_options.skip_non_native and builtin.object_format != .wasm) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (wasm.llvm_object) |llvm_object| return llvm_object.updateFunc(pt, func_index, air, liveness);
try wasm.zig_object.?.updateFunc(wasm, pt, func_index, air, liveness);
}
// Generate code for the "Nav", storing it in memory to be later written to
// the file on flush().
pub fn updateNav(wasm: *Wasm, pt: Zcu.PerThread, nav: InternPool.Nav.Index) !void {
if (build_options.skip_non_native and builtin.object_format != .wasm) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (wasm.llvm_object) |llvm_object| return llvm_object.updateNav(pt, nav);
try wasm.zig_object.?.updateNav(wasm, pt, nav);
}
pub fn updateNavLineNumber(wasm: *Wasm, pt: Zcu.PerThread, nav: InternPool.Nav.Index) !void {
if (wasm.llvm_object) |_| return;
try wasm.zig_object.?.updateNavLineNumber(pt, nav);
}
/// From a given symbol location, returns its `wasm.GlobalType`.
/// Asserts the Symbol represents a global.
fn getGlobalType(wasm: *const Wasm, loc: SymbolLoc) std.wasm.GlobalType {
const symbol = wasm.symbolLocSymbol(loc);
assert(symbol.tag == .global);
const is_undefined = symbol.isUndefined();
switch (loc.file) {
.zig_object => {
const zo = wasm.zig_object.?;
return if (is_undefined)
zo.imports.get(loc.index).?.kind.global
else
zo.globals.items[symbol.index - zo.imported_globals_count].global_type;
},
.none => {
return if (is_undefined)
wasm.imports.get(loc).?.kind.global
else
wasm.wasm_globals.items[symbol.index].global_type;
},
_ => {
const obj = &wasm.objects.items[@intFromEnum(loc.file)];
return if (is_undefined)
obj.findImport(obj.symtable[@intFromEnum(loc.index)]).kind.global
else
obj.globals[symbol.index - obj.imported_globals_count].global_type;
},
}
}
/// From a given symbol location, returns its `wasm.Type`.
/// Asserts the Symbol represents a function.
fn getFunctionSignature(wasm: *const Wasm, loc: SymbolLoc) std.wasm.Type {
const symbol = wasm.symbolLocSymbol(loc);
assert(symbol.tag == .function);
const is_undefined = symbol.isUndefined();
switch (loc.file) {
.zig_object => {
const zo = wasm.zig_object.?;
if (is_undefined) {
const type_index = zo.imports.get(loc.index).?.kind.function;
return zo.func_types.items[type_index];
}
const sym = zo.symbols.items[@intFromEnum(loc.index)];
const type_index = zo.functions.items[sym.index].type_index;
return zo.func_types.items[type_index];
},
.none => {
if (is_undefined) {
const type_index = wasm.imports.get(loc).?.kind.function;
return wasm.func_types.items[type_index];
}
return wasm.func_types.items[
wasm.functions.get(.{
.file = .none,
.index = symbol.index,
}).?.func.type_index
];
},
_ => {
const obj = &wasm.objects.items[@intFromEnum(loc.file)];
if (is_undefined) {
const type_index = obj.findImport(obj.symtable[@intFromEnum(loc.index)]).kind.function;
return obj.func_types[type_index];
}
const sym = obj.symtable[@intFromEnum(loc.index)];
const type_index = obj.functions[sym.index - obj.imported_functions_count].type_index;
return obj.func_types[type_index];
},
}
}
/// Returns the symbol index from a symbol of which its flag is set global,
/// such as an exported or imported symbol.
/// If the symbol does not yet exist, creates a new one symbol instead
/// and then returns the index to it.
pub fn getGlobalSymbol(wasm: *Wasm, name: []const u8, lib_name: ?[]const u8) !Symbol.Index {
_ = lib_name;
const name_index = try wasm.internString(name);
return wasm.zig_object.?.getGlobalSymbol(wasm.base.comp.gpa, name_index);
}
/// For a given `Nav`, find the given symbol index's atom, and create a relocation for the type.
/// Returns the given pointer address
pub fn getNavVAddr(
wasm: *Wasm,
pt: Zcu.PerThread,
nav: InternPool.Nav.Index,
reloc_info: link.File.RelocInfo,
) !u64 {
return wasm.zig_object.?.getNavVAddr(wasm, pt, nav, reloc_info);
}
pub fn lowerUav(
wasm: *Wasm,
pt: Zcu.PerThread,
uav: InternPool.Index,
explicit_alignment: Alignment,
src_loc: Zcu.LazySrcLoc,
) !codegen.GenResult {
return wasm.zig_object.?.lowerUav(wasm, pt, uav, explicit_alignment, src_loc);
}
pub fn getUavVAddr(wasm: *Wasm, uav: InternPool.Index, reloc_info: link.File.RelocInfo) !u64 {
return wasm.zig_object.?.getUavVAddr(wasm, uav, reloc_info);
}
pub fn deleteExport(
wasm: *Wasm,
exported: Zcu.Exported,
name: InternPool.NullTerminatedString,
) void {
if (wasm.llvm_object) |_| return;
return wasm.zig_object.?.deleteExport(wasm, exported, name);
}
pub fn updateExports(
wasm: *Wasm,
pt: Zcu.PerThread,
exported: Zcu.Exported,
export_indices: []const u32,
) !void {
if (build_options.skip_non_native and builtin.object_format != .wasm) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (wasm.llvm_object) |llvm_object| return llvm_object.updateExports(pt, exported, export_indices);
return wasm.zig_object.?.updateExports(wasm, pt, exported, export_indices);
}
pub fn freeDecl(wasm: *Wasm, decl_index: InternPool.DeclIndex) void {
if (wasm.llvm_object) |llvm_object| return llvm_object.freeDecl(decl_index);
return wasm.zig_object.?.freeDecl(wasm, decl_index);
}
/// Assigns indexes to all indirect functions.
/// Starts at offset 1, where the value `0` represents an unresolved function pointer
/// or null-pointer
fn mapFunctionTable(wasm: *Wasm) void {
var it = wasm.function_table.iterator();
var index: u32 = 1;
while (it.next()) |entry| {
const symbol = wasm.symbolLocSymbol(entry.key_ptr.*);
if (symbol.isAlive()) {
entry.value_ptr.* = index;
index += 1;
} else {
wasm.function_table.removeByPtr(entry.key_ptr);
}
}
if (wasm.import_table or wasm.base.comp.config.output_mode == .Obj) {
const sym_loc = wasm.globals.get(wasm.preloaded_strings.__indirect_function_table).?;
const import = wasm.imports.getPtr(sym_loc).?;
import.kind.table.limits.min = index - 1; // we start at index 1.
} else if (index > 1) {
log.debug("Appending indirect function table", .{});
const sym_loc = wasm.globals.get(wasm.preloaded_strings.__indirect_function_table).?;
const symbol = wasm.symbolLocSymbol(sym_loc);
const table = &wasm.tables.items[symbol.index - wasm.imported_tables_count];
table.limits = .{ .min = index, .max = index, .flags = 0x1 };
}
}
/// From a given index, append the given `Atom` at the back of the linked list.
/// Simply inserts it into the map of atoms when it doesn't exist yet.
pub fn appendAtomAtIndex(wasm: *Wasm, index: Segment.Index, atom_index: Atom.Index) !void {
const gpa = wasm.base.comp.gpa;
const atom = wasm.getAtomPtr(atom_index);
if (wasm.atoms.getPtr(index)) |last_index_ptr| {
atom.prev = last_index_ptr.*;
last_index_ptr.* = atom_index;
} else {
try wasm.atoms.putNoClobber(gpa, index, atom_index);
}
}
fn allocateAtoms(wasm: *Wasm) !void {
// first sort the data segments
try sortDataSegments(wasm);
var it = wasm.atoms.iterator();
while (it.next()) |entry| {
const segment = wasm.segmentPtr(entry.key_ptr.*);
var atom_index = entry.value_ptr.*;
if (entry.key_ptr.toOptional() == wasm.code_section_index) {
// Code section is allocated upon writing as they are required to be ordered
// to synchronise with the function section.
continue;
}
var offset: u32 = 0;
while (true) {
const atom = wasm.getAtomPtr(atom_index);
const symbol_loc = atom.symbolLoc();
// Ensure we get the original symbol, so we verify the correct symbol on whether
// it is dead or not and ensure an atom is removed when dead.
// This is required as we may have parsed aliases into atoms.
const sym = switch (symbol_loc.file) {
.zig_object => wasm.zig_object.?.symbols.items[@intFromEnum(symbol_loc.index)],
.none => wasm.synthetic_symbols.items[@intFromEnum(symbol_loc.index)],
_ => wasm.objects.items[@intFromEnum(symbol_loc.file)].symtable[@intFromEnum(symbol_loc.index)],
};
// Dead symbols must be unlinked from the linked-list to prevent them
// from being emit into the binary.
if (sym.isDead()) {
if (entry.value_ptr.* == atom_index and atom.prev != .null) {
// When the atom is dead and is also the first atom retrieved from wasm.atoms(index) we update
// the entry to point it to the previous atom to ensure we do not start with a dead symbol that
// was removed and therefore do not emit any code at all.
entry.value_ptr.* = atom.prev;
}
if (atom.prev == .null) break;
atom_index = atom.prev;
atom.prev = .null;
continue;
}
offset = @intCast(atom.alignment.forward(offset));
atom.offset = offset;
log.debug("Atom '{s}' allocated from 0x{x:0>8} to 0x{x:0>8} size={d}", .{
wasm.symbolLocName(symbol_loc),
offset,
offset + atom.size,
atom.size,
});
offset += atom.size;
if (atom.prev == .null) break;
atom_index = atom.prev;
}
segment.size = @intCast(segment.alignment.forward(offset));
}
}
/// For each data symbol, sets the virtual address.
fn allocateVirtualAddresses(wasm: *Wasm) void {
for (wasm.resolved_symbols.keys()) |loc| {
const symbol = wasm.symbolLocSymbol(loc);
if (symbol.tag != .data or symbol.isDead()) {
// Only data symbols have virtual addresses.
// Dead symbols do not get allocated, so we don't need to set their virtual address either.
continue;
}
const atom_index = wasm.symbol_atom.get(loc) orelse {
// synthetic symbol that does not contain an atom
continue;
};
const atom = wasm.getAtom(atom_index);
const merge_segment = wasm.base.comp.config.output_mode != .Obj;
const segment_info = switch (atom.file) {
.zig_object => wasm.zig_object.?.segment_info.items,
.none => wasm.segment_info.values(),
_ => wasm.objects.items[@intFromEnum(atom.file)].segment_info,
};
const segment_name = segment_info[symbol.index].outputName(merge_segment);
const segment_index = wasm.data_segments.get(segment_name).?;
const segment = wasm.segmentPtr(segment_index);
// TLS symbols have their virtual address set relative to their own TLS segment,
// rather than the entire Data section.
if (symbol.hasFlag(.WASM_SYM_TLS)) {
symbol.virtual_address = atom.offset;
} else {
symbol.virtual_address = atom.offset + segment.offset;
}
}
}
fn sortDataSegments(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
var new_mapping: std.StringArrayHashMapUnmanaged(Segment.Index) = .empty;
try new_mapping.ensureUnusedCapacity(gpa, wasm.data_segments.count());
errdefer new_mapping.deinit(gpa);
const keys = try gpa.dupe([]const u8, wasm.data_segments.keys());
defer gpa.free(keys);
const SortContext = struct {
fn sort(_: void, lhs: []const u8, rhs: []const u8) bool {
return order(lhs) < order(rhs);
}
fn order(name: []const u8) u8 {
if (mem.startsWith(u8, name, ".rodata")) return 0;
if (mem.startsWith(u8, name, ".data")) return 1;
if (mem.startsWith(u8, name, ".text")) return 2;
return 3;
}
};
mem.sort([]const u8, keys, {}, SortContext.sort);
for (keys) |key| {
const segment_index = wasm.data_segments.get(key).?;
new_mapping.putAssumeCapacity(key, segment_index);
}
wasm.data_segments.deinit(gpa);
wasm.data_segments = new_mapping;
}
/// Obtains all initfuncs from each object file, verifies its function signature,
/// and then appends it to our final `init_funcs` list.
/// After all functions have been inserted, the functions will be ordered based
/// on their priority.
/// NOTE: This function must be called before we merged any other section.
/// This is because all init funcs in the object files contain references to the
/// original functions and their types. We need to know the type to verify it doesn't
/// contain any parameters.
fn setupInitFunctions(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
const diags = &wasm.base.comp.link_diags;
// There's no constructors for Zig so we can simply search through linked object files only.
for (wasm.objects.items, 0..) |*object, object_index| {
try wasm.init_funcs.ensureUnusedCapacity(gpa, object.init_funcs.len);
for (object.init_funcs) |init_func| {
const symbol = object.symtable[init_func.symbol_index];
const ty: std.wasm.Type = if (symbol.isUndefined()) ty: {
const imp: Import = object.findImport(symbol);
break :ty object.func_types[imp.kind.function];
} else ty: {
const func_index = symbol.index - object.imported_functions_count;
const func = object.functions[func_index];
break :ty object.func_types[func.type_index];
};
if (ty.params.len != 0) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("constructor functions cannot take arguments: '{s}'", .{wasm.stringSlice(symbol.name)});
}
log.debug("appended init func '{s}'\n", .{wasm.stringSlice(symbol.name)});
wasm.init_funcs.appendAssumeCapacity(.{
.index = @enumFromInt(init_func.symbol_index),
.file = @enumFromInt(object_index),
.priority = init_func.priority,
});
try wasm.mark(.{
.index = @enumFromInt(init_func.symbol_index),
.file = @enumFromInt(object_index),
});
}
}
// sort the initfunctions based on their priority
mem.sort(InitFuncLoc, wasm.init_funcs.items, {}, InitFuncLoc.lessThan);
if (wasm.init_funcs.items.len > 0) {
const loc = wasm.globals.get(wasm.preloaded_strings.__wasm_call_ctors).?;
try wasm.mark(loc);
}
}
/// Creates a function body for the `__wasm_call_ctors` symbol.
/// Loops over all constructors found in `init_funcs` and calls them
/// respectively based on their priority which was sorted by `setupInitFunctions`.
/// NOTE: This function must be called after we merged all sections to ensure the
/// references to the function stored in the symbol have been finalized so we end
/// up calling the resolved function.
fn initializeCallCtorsFunction(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
// No code to emit, so also no ctors to call
if (wasm.code_section_index == .none) {
// Make sure to remove it from the resolved symbols so we do not emit
// it within any section. TODO: Remove this once we implement garbage collection.
const loc = wasm.globals.get(wasm.preloaded_strings.__wasm_call_ctors).?;
assert(wasm.resolved_symbols.swapRemove(loc));
return;
}
var function_body = std.ArrayList(u8).init(gpa);
defer function_body.deinit();
const writer = function_body.writer();
// Create the function body
{
// Write locals count (we have none)
try leb.writeUleb128(writer, @as(u32, 0));
// call constructors
for (wasm.init_funcs.items) |init_func_loc| {
const symbol = init_func_loc.getSymbol(wasm);
const func = wasm.functions.values()[symbol.index - wasm.imported_functions_count].func;
const ty = wasm.func_types.items[func.type_index];
// Call function by its function index
try writer.writeByte(std.wasm.opcode(.call));
try leb.writeUleb128(writer, symbol.index);
// drop all returned values from the stack as __wasm_call_ctors has no return value
for (ty.returns) |_| {
try writer.writeByte(std.wasm.opcode(.drop));
}
}
// End function body
try writer.writeByte(std.wasm.opcode(.end));
}
try wasm.createSyntheticFunction(
wasm.preloaded_strings.__wasm_call_ctors,
std.wasm.Type{ .params = &.{}, .returns = &.{} },
&function_body,
);
}
fn createSyntheticFunction(
wasm: *Wasm,
symbol_name: String,
func_ty: std.wasm.Type,
function_body: *std.ArrayList(u8),
) !void {
const gpa = wasm.base.comp.gpa;
const loc = wasm.globals.get(symbol_name).?;
const symbol = wasm.symbolLocSymbol(loc);
if (symbol.isDead()) {
return;
}
const ty_index = try wasm.putOrGetFuncType(func_ty);
// create function with above type
const func_index = wasm.imported_functions_count + @as(u32, @intCast(wasm.functions.count()));
try wasm.functions.putNoClobber(
gpa,
.{ .file = .none, .index = func_index },
.{ .func = .{ .type_index = ty_index }, .sym_index = loc.index },
);
symbol.index = func_index;
// create the atom that will be output into the final binary
const atom_index = try wasm.createAtom(loc.index, .none);
const atom = wasm.getAtomPtr(atom_index);
atom.size = @intCast(function_body.items.len);
atom.code = function_body.moveToUnmanaged();
try wasm.appendAtomAtIndex(wasm.code_section_index.unwrap().?, atom_index);
}
/// Unlike `createSyntheticFunction` this function is to be called by
/// the codegeneration backend. This will not allocate the created Atom yet.
/// Returns the index of the symbol.
pub fn createFunction(
wasm: *Wasm,
symbol_name: []const u8,
func_ty: std.wasm.Type,
function_body: *std.ArrayList(u8),
relocations: *std.ArrayList(Relocation),
) !Symbol.Index {
return wasm.zig_object.?.createFunction(wasm, symbol_name, func_ty, function_body, relocations);
}
/// If required, sets the function index in the `start` section.
fn setupStartSection(wasm: *Wasm) !void {
if (wasm.globals.get(wasm.preloaded_strings.__wasm_init_memory)) |loc| {
wasm.entry = wasm.symbolLocSymbol(loc).index;
}
}
fn initializeTLSFunction(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const gpa = comp.gpa;
const shared_memory = comp.config.shared_memory;
if (!shared_memory) return;
// ensure function is marked as we must emit it
wasm.symbolLocSymbol(wasm.globals.get(wasm.preloaded_strings.__wasm_init_tls).?).mark();
var function_body = std.ArrayList(u8).init(gpa);
defer function_body.deinit();
const writer = function_body.writer();
// locals
try writer.writeByte(0);
// If there's a TLS segment, initialize it during runtime using the bulk-memory feature
if (wasm.data_segments.getIndex(".tdata")) |data_index| {
const segment_index = wasm.data_segments.entries.items(.value)[data_index];
const segment = wasm.segmentPtr(segment_index);
const param_local: u32 = 0;
try writer.writeByte(std.wasm.opcode(.local_get));
try leb.writeUleb128(writer, param_local);
const tls_base_loc = wasm.globals.get(wasm.preloaded_strings.__tls_base).?;
try writer.writeByte(std.wasm.opcode(.global_set));
try leb.writeUleb128(writer, wasm.symbolLocSymbol(tls_base_loc).index);
// load stack values for the bulk-memory operation
{
try writer.writeByte(std.wasm.opcode(.local_get));
try leb.writeUleb128(writer, param_local);
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeUleb128(writer, @as(u32, 0)); //segment offset
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeUleb128(writer, @as(u32, segment.size)); //segment offset
}
// perform the bulk-memory operation to initialize the data segment
try writer.writeByte(std.wasm.opcode(.misc_prefix));
try leb.writeUleb128(writer, std.wasm.miscOpcode(.memory_init));
// segment immediate
try leb.writeUleb128(writer, @as(u32, @intCast(data_index)));
// memory index immediate (always 0)
try leb.writeUleb128(writer, @as(u32, 0));
}
// If we have to perform any TLS relocations, call the corresponding function
// which performs all runtime TLS relocations. This is a synthetic function,
// generated by the linker.
if (wasm.globals.get(wasm.preloaded_strings.__wasm_apply_global_tls_relocs)) |loc| {
try writer.writeByte(std.wasm.opcode(.call));
try leb.writeUleb128(writer, wasm.symbolLocSymbol(loc).index);
wasm.symbolLocSymbol(loc).mark();
}
try writer.writeByte(std.wasm.opcode(.end));
try wasm.createSyntheticFunction(
wasm.preloaded_strings.__wasm_init_tls,
std.wasm.Type{ .params = &.{.i32}, .returns = &.{} },
&function_body,
);
}
fn setupImports(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
log.debug("Merging imports", .{});
for (wasm.resolved_symbols.keys()) |symbol_loc| {
const object_id = symbol_loc.file.unwrap() orelse {
// Synthetic symbols will already exist in the `import` section
continue;
};
const symbol = wasm.symbolLocSymbol(symbol_loc);
if (symbol.isDead()) continue;
if (!symbol.requiresImport()) continue;
if (symbol.name == wasm.preloaded_strings.__indirect_function_table) continue;
log.debug("Symbol '{s}' will be imported from the host", .{wasm.stringSlice(symbol.name)});
const import = objectImport(wasm, object_id, symbol_loc.index);
// We copy the import to a new import to ensure the names contain references
// to the internal string table, rather than of the object file.
const new_imp: Import = .{
.module_name = import.module_name,
.name = import.name,
.kind = import.kind,
};
// TODO: De-duplicate imports when they contain the same names and type
try wasm.imports.putNoClobber(gpa, symbol_loc, new_imp);
}
// Assign all indexes of the imports to their representing symbols
var function_index: u32 = 0;
var global_index: u32 = 0;
var table_index: u32 = 0;
var it = wasm.imports.iterator();
while (it.next()) |entry| {
const symbol = wasm.symbolLocSymbol(entry.key_ptr.*);
const import: Import = entry.value_ptr.*;
switch (import.kind) {
.function => {
symbol.index = function_index;
function_index += 1;
},
.global => {
symbol.index = global_index;
global_index += 1;
},
.table => {
symbol.index = table_index;
table_index += 1;
},
else => unreachable,
}
}
wasm.imported_functions_count = function_index;
wasm.imported_globals_count = global_index;
wasm.imported_tables_count = table_index;
log.debug("Merged ({d}) functions, ({d}) globals, and ({d}) tables into import section", .{
function_index,
global_index,
table_index,
});
}
/// Takes the global, function and table section from each linked object file
/// and merges it into a single section for each.
fn mergeSections(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
var removed_duplicates = std.ArrayList(SymbolLoc).init(gpa);
defer removed_duplicates.deinit();
for (wasm.resolved_symbols.keys()) |sym_loc| {
const object_id = sym_loc.file.unwrap() orelse {
// Synthetic symbols already live in the corresponding sections.
continue;
};
const symbol = objectSymbol(wasm, object_id, sym_loc.index);
if (symbol.isDead() or symbol.isUndefined()) {
// Skip undefined symbols as they go in the `import` section
continue;
}
switch (symbol.tag) {
.function => {
const gop = try wasm.functions.getOrPut(
gpa,
.{ .file = sym_loc.file, .index = symbol.index },
);
if (gop.found_existing) {
// We found an alias to the same function, discard this symbol in favor of
// the original symbol and point the discard function to it. This ensures
// we only emit a single function, instead of duplicates.
// we favor keeping the global over a local.
const original_loc: SymbolLoc = .{ .file = gop.key_ptr.file, .index = gop.value_ptr.sym_index };
const original_sym = wasm.symbolLocSymbol(original_loc);
if (original_sym.isLocal() and symbol.isGlobal()) {
original_sym.unmark();
try wasm.discarded.put(gpa, original_loc, sym_loc);
try removed_duplicates.append(original_loc);
} else {
symbol.unmark();
try wasm.discarded.putNoClobber(gpa, sym_loc, original_loc);
try removed_duplicates.append(sym_loc);
continue;
}
}
gop.value_ptr.* = .{
.func = objectFunction(wasm, object_id, sym_loc.index),
.sym_index = sym_loc.index,
};
symbol.index = @as(u32, @intCast(gop.index)) + wasm.imported_functions_count;
},
.global => {
const index = symbol.index - objectImportedFunctions(wasm, object_id);
const original_global = objectGlobals(wasm, object_id)[index];
symbol.index = @as(u32, @intCast(wasm.wasm_globals.items.len)) + wasm.imported_globals_count;
try wasm.wasm_globals.append(gpa, original_global);
},
.table => {
const index = symbol.index - objectImportedFunctions(wasm, object_id);
// assert it's a regular relocatable object file as `ZigObject` will never
// contain a table.
const original_table = wasm.objectById(object_id).?.tables[index];
symbol.index = @as(u32, @intCast(wasm.tables.items.len)) + wasm.imported_tables_count;
try wasm.tables.append(gpa, original_table);
},
.dead, .undefined => unreachable,
else => {},
}
}
// For any removed duplicates, remove them from the resolved symbols list
for (removed_duplicates.items) |sym_loc| {
assert(wasm.resolved_symbols.swapRemove(sym_loc));
gc_log.debug("Removed duplicate for function '{s}'", .{wasm.symbolLocName(sym_loc)});
}
log.debug("Merged ({d}) functions", .{wasm.functions.count()});
log.debug("Merged ({d}) globals", .{wasm.wasm_globals.items.len});
log.debug("Merged ({d}) tables", .{wasm.tables.items.len});
}
/// Merges function types of all object files into the final
/// 'types' section, while assigning the type index to the representing
/// section (import, export, function).
fn mergeTypes(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
// A map to track which functions have already had their
// type inserted. If we do this for the same function multiple times,
// it will be overwritten with the incorrect type.
var dirty = std.AutoHashMap(u32, void).init(gpa);
try dirty.ensureUnusedCapacity(@as(u32, @intCast(wasm.functions.count())));
defer dirty.deinit();
for (wasm.resolved_symbols.keys()) |sym_loc| {
const object_id = sym_loc.file.unwrap() orelse {
// zig code-generated symbols are already present in final type section
continue;
};
const symbol = objectSymbol(wasm, object_id, sym_loc.index);
if (symbol.tag != .function or symbol.isDead()) {
// Only functions have types. Only retrieve the type of referenced functions.
continue;
}
if (symbol.isUndefined()) {
log.debug("Adding type from extern function '{s}'", .{wasm.symbolLocName(sym_loc)});
const import: *Import = wasm.imports.getPtr(sym_loc) orelse continue;
const original_type = objectFuncTypes(wasm, object_id)[import.kind.function];
import.kind.function = try wasm.putOrGetFuncType(original_type);
} else if (!dirty.contains(symbol.index)) {
log.debug("Adding type from function '{s}'", .{wasm.symbolLocName(sym_loc)});
const func = &wasm.functions.values()[symbol.index - wasm.imported_functions_count].func;
func.type_index = try wasm.putOrGetFuncType(objectFuncTypes(wasm, object_id)[func.type_index]);
dirty.putAssumeCapacityNoClobber(symbol.index, {});
}
}
log.debug("Completed merging and deduplicating types. Total count: ({d})", .{wasm.func_types.items.len});
}
fn checkExportNames(wasm: *Wasm) !void {
const force_exp_names = wasm.export_symbol_names;
const diags = &wasm.base.comp.link_diags;
if (force_exp_names.len > 0) {
var failed_exports = false;
for (force_exp_names) |exp_name| {
const exp_name_interned = try wasm.internString(exp_name);
const loc = wasm.globals.get(exp_name_interned) orelse {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("could not export '{s}', symbol not found", .{exp_name});
failed_exports = true;
continue;
};
const symbol = wasm.symbolLocSymbol(loc);
symbol.setFlag(.WASM_SYM_EXPORTED);
}
if (failed_exports) {
return error.FlushFailure;
}
}
}
fn setupExports(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const gpa = comp.gpa;
if (comp.config.output_mode == .Obj) return;
log.debug("Building exports from symbols", .{});
for (wasm.resolved_symbols.keys()) |sym_loc| {
const symbol = wasm.symbolLocSymbol(sym_loc);
if (!symbol.isExported(comp.config.rdynamic)) continue;
const exp: Export = if (symbol.tag == .data) exp: {
const global_index = @as(u32, @intCast(wasm.imported_globals_count + wasm.wasm_globals.items.len));
try wasm.wasm_globals.append(gpa, .{
.global_type = .{ .valtype = .i32, .mutable = false },
.init = .{ .i32_const = @as(i32, @intCast(symbol.virtual_address)) },
});
break :exp .{
.name = symbol.name,
.kind = .global,
.index = global_index,
};
} else .{
.name = symbol.name,
.kind = symbol.tag.externalType(),
.index = symbol.index,
};
log.debug("Exporting symbol '{s}' as '{s}' at index: ({d})", .{
wasm.stringSlice(symbol.name),
wasm.stringSlice(exp.name),
exp.index,
});
try wasm.exports.append(gpa, exp);
}
log.debug("Completed building exports. Total count: ({d})", .{wasm.exports.items.len});
}
fn setupStart(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const diags = &wasm.base.comp.link_diags;
// do not export entry point if user set none or no default was set.
const entry_name = wasm.entry_name.unwrap() orelse return;
const symbol_loc = wasm.globals.get(entry_name) orelse {
var err = try diags.addErrorWithNotes(1);
try err.addMsg("entry symbol '{s}' missing", .{wasm.stringSlice(entry_name)});
try err.addNote("'-fno-entry' suppresses this error", .{});
return error.LinkFailure;
};
const symbol = wasm.symbolLocSymbol(symbol_loc);
if (symbol.tag != .function)
return diags.fail("entry symbol '{s}' is not a function", .{wasm.stringSlice(entry_name)});
// Ensure the symbol is exported so host environment can access it
if (comp.config.output_mode != .Obj) {
symbol.setFlag(.WASM_SYM_EXPORTED);
}
}
/// Sets up the memory section of the wasm module, as well as the stack.
fn setupMemory(wasm: *Wasm) !void {
const comp = wasm.base.comp;
const diags = &wasm.base.comp.link_diags;
const shared_memory = comp.config.shared_memory;
log.debug("Setting up memory layout", .{});
const page_size = std.wasm.page_size; // 64kb
const stack_alignment: Alignment = .@"16"; // wasm's stack alignment as specified by tool-convention
const heap_alignment: Alignment = .@"16"; // wasm's heap alignment as specified by tool-convention
// Always place the stack at the start by default
// unless the user specified the global-base flag
var place_stack_first = true;
var memory_ptr: u64 = if (wasm.global_base) |base| blk: {
place_stack_first = false;
break :blk base;
} else 0;
const is_obj = comp.config.output_mode == .Obj;
const stack_ptr = if (wasm.globals.get(wasm.preloaded_strings.__stack_pointer)) |loc| index: {
const sym = wasm.symbolLocSymbol(loc);
break :index sym.index - wasm.imported_globals_count;
} else null;
if (place_stack_first and !is_obj) {
memory_ptr = stack_alignment.forward(memory_ptr);
memory_ptr += wasm.base.stack_size;
// We always put the stack pointer global at index 0
if (stack_ptr) |index| {
wasm.wasm_globals.items[index].init.i32_const = @as(i32, @bitCast(@as(u32, @intCast(memory_ptr))));
}
}
var offset: u32 = @as(u32, @intCast(memory_ptr));
var data_seg_it = wasm.data_segments.iterator();
while (data_seg_it.next()) |entry| {
const segment = wasm.segmentPtr(entry.value_ptr.*);
memory_ptr = segment.alignment.forward(memory_ptr);
// set TLS-related symbols
if (mem.eql(u8, entry.key_ptr.*, ".tdata")) {
if (wasm.globals.get(wasm.preloaded_strings.__tls_size)) |loc| {
const sym = wasm.symbolLocSymbol(loc);
wasm.wasm_globals.items[sym.index - wasm.imported_globals_count].init.i32_const = @intCast(segment.size);
}
if (wasm.globals.get(wasm.preloaded_strings.__tls_align)) |loc| {
const sym = wasm.symbolLocSymbol(loc);
wasm.wasm_globals.items[sym.index - wasm.imported_globals_count].init.i32_const = @intCast(segment.alignment.toByteUnits().?);
}
if (wasm.globals.get(wasm.preloaded_strings.__tls_base)) |loc| {
const sym = wasm.symbolLocSymbol(loc);
wasm.wasm_globals.items[sym.index - wasm.imported_globals_count].init.i32_const = if (shared_memory)
@as(i32, 0)
else
@as(i32, @intCast(memory_ptr));
}
}
memory_ptr += segment.size;
segment.offset = offset;
offset += segment.size;
}
// create the memory init flag which is used by the init memory function
if (shared_memory and wasm.hasPassiveInitializationSegments()) {
// align to pointer size
memory_ptr = mem.alignForward(u64, memory_ptr, 4);
const loc = try wasm.createSyntheticSymbol(wasm.preloaded_strings.__wasm_init_memory_flag, .data);
const sym = wasm.symbolLocSymbol(loc);
sym.mark();
sym.virtual_address = @as(u32, @intCast(memory_ptr));
memory_ptr += 4;
}
if (!place_stack_first and !is_obj) {
memory_ptr = stack_alignment.forward(memory_ptr);
memory_ptr += wasm.base.stack_size;
if (stack_ptr) |index| {
wasm.wasm_globals.items[index].init.i32_const = @as(i32, @bitCast(@as(u32, @intCast(memory_ptr))));
}
}
// One of the linked object files has a reference to the __heap_base symbol.
// We must set its virtual address so it can be used in relocations.
if (wasm.globals.get(wasm.preloaded_strings.__heap_base)) |loc| {
const symbol = wasm.symbolLocSymbol(loc);
symbol.virtual_address = @intCast(heap_alignment.forward(memory_ptr));
}
// Setup the max amount of pages
// For now we only support wasm32 by setting the maximum allowed memory size 2^32-1
const max_memory_allowed: u64 = (1 << 32) - 1;
if (wasm.initial_memory) |initial_memory| {
if (!std.mem.isAlignedGeneric(u64, initial_memory, page_size)) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("Initial memory must be {d}-byte aligned", .{page_size});
}
if (memory_ptr > initial_memory) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("Initial memory too small, must be at least {d} bytes", .{memory_ptr});
}
if (initial_memory > max_memory_allowed) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("Initial memory exceeds maximum memory {d}", .{max_memory_allowed});
}
memory_ptr = initial_memory;
}
memory_ptr = mem.alignForward(u64, memory_ptr, std.wasm.page_size);
// In case we do not import memory, but define it ourselves,
// set the minimum amount of pages on the memory section.
wasm.memories.limits.min = @as(u32, @intCast(memory_ptr / page_size));
log.debug("Total memory pages: {d}", .{wasm.memories.limits.min});
if (wasm.globals.get(wasm.preloaded_strings.__heap_end)) |loc| {
const symbol = wasm.symbolLocSymbol(loc);
symbol.virtual_address = @as(u32, @intCast(memory_ptr));
}
if (wasm.max_memory) |max_memory| {
if (!std.mem.isAlignedGeneric(u64, max_memory, page_size)) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("Maximum memory must be {d}-byte aligned", .{page_size});
}
if (memory_ptr > max_memory) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("Maximum memory too small, must be at least {d} bytes", .{memory_ptr});
}
if (max_memory > max_memory_allowed) {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("Maximum memory exceeds maximum amount {d}", .{max_memory_allowed});
}
wasm.memories.limits.max = @as(u32, @intCast(max_memory / page_size));
wasm.memories.limits.setFlag(.WASM_LIMITS_FLAG_HAS_MAX);
if (shared_memory) {
wasm.memories.limits.setFlag(.WASM_LIMITS_FLAG_IS_SHARED);
}
log.debug("Maximum memory pages: {?d}", .{wasm.memories.limits.max});
}
}
/// From a given object's index and the index of the segment, returns the corresponding
/// index of the segment within the final data section. When the segment does not yet
/// exist, a new one will be initialized and appended. The new index will be returned in that case.
pub fn getMatchingSegment(wasm: *Wasm, object_id: ObjectId, symbol_index: Symbol.Index) !Segment.Index {
const comp = wasm.base.comp;
const gpa = comp.gpa;
const diags = &wasm.base.comp.link_diags;
const symbol = objectSymbols(wasm, object_id)[@intFromEnum(symbol_index)];
const index: Segment.Index = @enumFromInt(wasm.segments.items.len);
const shared_memory = comp.config.shared_memory;
switch (symbol.tag) {
.data => {
const segment_info = objectSegmentInfo(wasm, object_id)[symbol.index];
const merge_segment = comp.config.output_mode != .Obj;
const result = try wasm.data_segments.getOrPut(gpa, segment_info.outputName(merge_segment));
if (!result.found_existing) {
result.value_ptr.* = index;
var flags: u32 = 0;
if (shared_memory) {
flags |= @intFromEnum(Segment.Flag.WASM_DATA_SEGMENT_IS_PASSIVE);
}
try wasm.segments.append(gpa, .{
.alignment = .@"1",
.size = 0,
.offset = 0,
.flags = flags,
});
try wasm.segment_info.putNoClobber(gpa, index, .{
.name = try gpa.dupe(u8, segment_info.name),
.alignment = segment_info.alignment,
.flags = segment_info.flags,
});
return index;
} else return result.value_ptr.*;
},
.function => return wasm.code_section_index.unwrap() orelse blk: {
wasm.code_section_index = index.toOptional();
try wasm.appendDummySegment();
break :blk index;
},
.section => {
const section_name = wasm.objectSymbol(object_id, symbol_index).name;
inline for (@typeInfo(CustomSections).@"struct".fields) |field| {
if (@field(wasm.custom_sections, field.name).name == section_name) {
const field_ptr = &@field(wasm.custom_sections, field.name).index;
return field_ptr.unwrap() orelse {
field_ptr.* = index.toOptional();
try wasm.appendDummySegment();
return index;
};
}
} else {
return diags.failParse(objectPath(wasm, object_id), "unknown section: {s}", .{
wasm.stringSlice(section_name),
});
}
},
else => unreachable,
}
}
/// Appends a new segment with default field values
fn appendDummySegment(wasm: *Wasm) !void {
const gpa = wasm.base.comp.gpa;
try wasm.segments.append(gpa, .{
.alignment = .@"1",
.size = 0,
.offset = 0,
.flags = 0,
});
}
pub fn loadInput(wasm: *Wasm, input: link.Input) !void {
const comp = wasm.base.comp;
const gpa = comp.gpa;
if (comp.verbose_link) {
comp.mutex.lock(); // protect comp.arena
defer comp.mutex.unlock();
const argv = &wasm.dump_argv_list;
switch (input) {
.res => unreachable,
.dso_exact => unreachable,
.dso => unreachable,
.object, .archive => |obj| try argv.append(gpa, try obj.path.toString(comp.arena)),
}
}
switch (input) {
.res => unreachable,
.dso_exact => unreachable,
.dso => unreachable,
.object => |obj| try parseObject(wasm, obj),
.archive => |obj| try parseArchive(wasm, obj),
}
}
pub fn flush(wasm: *Wasm, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) link.File.FlushError!void {
const comp = wasm.base.comp;
const use_lld = build_options.have_llvm and comp.config.use_lld;
if (use_lld) {
return wasm.linkWithLLD(arena, tid, prog_node);
}
return wasm.flushModule(arena, tid, prog_node);
}
pub fn flushModule(wasm: *Wasm, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) link.File.FlushError!void {
const tracy = trace(@src());
defer tracy.end();
const comp = wasm.base.comp;
const diags = &comp.link_diags;
if (wasm.llvm_object) |llvm_object| {
try wasm.base.emitLlvmObject(arena, llvm_object, prog_node);
const use_lld = build_options.have_llvm and comp.config.use_lld;
if (use_lld) return;
}
if (comp.verbose_link) Compilation.dump_argv(wasm.dump_argv_list.items);
const sub_prog_node = prog_node.start("Wasm Flush", 0);
defer sub_prog_node.end();
const module_obj_path: ?Path = if (wasm.base.zcu_object_sub_path) |path| .{
.root_dir = wasm.base.emit.root_dir,
.sub_path = if (fs.path.dirname(wasm.base.emit.sub_path)) |dirname|
try fs.path.join(arena, &.{ dirname, path })
else
path,
} else null;
if (wasm.zig_object) |zig_object| try zig_object.flushModule(wasm, tid);
if (module_obj_path) |path| openParseObjectReportingFailure(wasm, path);
if (wasm.zig_object != null) {
try wasm.resolveSymbolsInObject(.zig_object);
}
if (diags.hasErrors()) return error.FlushFailure;
for (0..wasm.objects.items.len) |object_index| {
try wasm.resolveSymbolsInObject(@enumFromInt(object_index));
}
if (diags.hasErrors()) return error.FlushFailure;
var emit_features_count: u32 = 0;
var enabled_features: [@typeInfo(Feature.Tag).@"enum".fields.len]bool = undefined;
try wasm.validateFeatures(&enabled_features, &emit_features_count);
try wasm.resolveSymbolsInArchives();
if (diags.hasErrors()) return error.FlushFailure;
try wasm.resolveLazySymbols();
try wasm.checkUndefinedSymbols();
try wasm.checkExportNames();
try wasm.setupInitFunctions();
if (diags.hasErrors()) return error.FlushFailure;
try wasm.setupStart();
try wasm.markReferences();
try wasm.setupImports();
try wasm.mergeSections();
try wasm.mergeTypes();
try wasm.allocateAtoms();
try wasm.setupMemory();
if (diags.hasErrors()) return error.FlushFailure;
wasm.allocateVirtualAddresses();
wasm.mapFunctionTable();
try wasm.initializeCallCtorsFunction();
try wasm.setupInitMemoryFunction();
try wasm.setupTLSRelocationsFunction();
try wasm.initializeTLSFunction();
try wasm.setupStartSection();
try wasm.setupExports();
try wasm.writeToFile(enabled_features, emit_features_count, arena);
if (diags.hasErrors()) return error.FlushFailure;
}
/// Writes the WebAssembly in-memory module to the file
fn writeToFile(
wasm: *Wasm,
enabled_features: [@typeInfo(Feature.Tag).@"enum".fields.len]bool,
feature_count: u32,
arena: Allocator,
) !void {
const comp = wasm.base.comp;
const diags = &comp.link_diags;
const gpa = comp.gpa;
const use_llvm = comp.config.use_llvm;
const use_lld = build_options.have_llvm and comp.config.use_lld;
const shared_memory = comp.config.shared_memory;
const import_memory = comp.config.import_memory;
const export_memory = comp.config.export_memory;
// Size of each section header
const header_size = 5 + 1;
// The amount of sections that will be written
var section_count: u32 = 0;
// Index of the code section. Used to tell relocation table where the section lives.
var code_section_index: ?u32 = null;
// Index of the data section. Used to tell relocation table where the section lives.
var data_section_index: ?u32 = null;
const is_obj = comp.config.output_mode == .Obj or (!use_llvm and use_lld);
var binary_bytes = std.ArrayList(u8).init(gpa);
defer binary_bytes.deinit();
const binary_writer = binary_bytes.writer();
// We write the magic bytes at the end so they will only be written
// if everything succeeded as expected. So populate with 0's for now.
try binary_writer.writeAll(&[_]u8{0} ** 8);
// (Re)set file pointer to 0
try wasm.base.file.?.setEndPos(0);
try wasm.base.file.?.seekTo(0);
// Type section
if (wasm.func_types.items.len != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
log.debug("Writing type section. Count: ({d})", .{wasm.func_types.items.len});
for (wasm.func_types.items) |func_type| {
try leb.writeUleb128(binary_writer, std.wasm.function_type);
try leb.writeUleb128(binary_writer, @as(u32, @intCast(func_type.params.len)));
for (func_type.params) |param_ty| {
try leb.writeUleb128(binary_writer, std.wasm.valtype(param_ty));
}
try leb.writeUleb128(binary_writer, @as(u32, @intCast(func_type.returns.len)));
for (func_type.returns) |ret_ty| {
try leb.writeUleb128(binary_writer, std.wasm.valtype(ret_ty));
}
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.type,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.func_types.items.len),
);
section_count += 1;
}
// Import section
if (wasm.imports.count() != 0 or import_memory) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
var it = wasm.imports.iterator();
while (it.next()) |entry| {
assert(wasm.symbolLocSymbol(entry.key_ptr.*).isUndefined());
const import = entry.value_ptr.*;
try wasm.emitImport(binary_writer, import);
}
if (import_memory) {
const mem_imp: Import = .{
.module_name = wasm.host_name,
.name = if (is_obj) wasm.preloaded_strings.__linear_memory else wasm.preloaded_strings.memory,
.kind = .{ .memory = wasm.memories.limits },
};
try wasm.emitImport(binary_writer, mem_imp);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.import,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.imports.count() + @intFromBool(import_memory)),
);
section_count += 1;
}
// Function section
if (wasm.functions.count() != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.functions.values()) |function| {
try leb.writeUleb128(binary_writer, function.func.type_index);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.function,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.functions.count()),
);
section_count += 1;
}
// Table section
if (wasm.tables.items.len > 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.tables.items) |table| {
try leb.writeUleb128(binary_writer, std.wasm.reftype(table.reftype));
try emitLimits(binary_writer, table.limits);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.table,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.tables.items.len),
);
section_count += 1;
}
// Memory section
if (!import_memory) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
try emitLimits(binary_writer, wasm.memories.limits);
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.memory,
@intCast(binary_bytes.items.len - header_offset - header_size),
1, // wasm currently only supports 1 linear memory segment
);
section_count += 1;
}
// Global section (used to emit stack pointer)
if (wasm.wasm_globals.items.len > 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.wasm_globals.items) |global| {
try binary_writer.writeByte(std.wasm.valtype(global.global_type.valtype));
try binary_writer.writeByte(@intFromBool(global.global_type.mutable));
try emitInit(binary_writer, global.init);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.global,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.wasm_globals.items.len),
);
section_count += 1;
}
// Export section
if (wasm.exports.items.len != 0 or export_memory) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.exports.items) |exp| {
const name = wasm.stringSlice(exp.name);
try leb.writeUleb128(binary_writer, @as(u32, @intCast(name.len)));
try binary_writer.writeAll(name);
try leb.writeUleb128(binary_writer, @intFromEnum(exp.kind));
try leb.writeUleb128(binary_writer, exp.index);
}
if (export_memory) {
try leb.writeUleb128(binary_writer, @as(u32, @intCast("memory".len)));
try binary_writer.writeAll("memory");
try binary_writer.writeByte(std.wasm.externalKind(.memory));
try leb.writeUleb128(binary_writer, @as(u32, 0));
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.@"export",
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.exports.items.len + @intFromBool(export_memory)),
);
section_count += 1;
}
if (wasm.entry) |entry_index| {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.start,
@intCast(binary_bytes.items.len - header_offset - header_size),
entry_index,
);
}
// element section (function table)
if (wasm.function_table.count() > 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
const table_loc = wasm.globals.get(wasm.preloaded_strings.__indirect_function_table).?;
const table_sym = wasm.symbolLocSymbol(table_loc);
const flags: u32 = if (table_sym.index == 0) 0x0 else 0x02; // passive with implicit 0-index table or set table index manually
try leb.writeUleb128(binary_writer, flags);
if (flags == 0x02) {
try leb.writeUleb128(binary_writer, table_sym.index);
}
try emitInit(binary_writer, .{ .i32_const = 1 }); // We start at index 1, so unresolved function pointers are invalid
if (flags == 0x02) {
try leb.writeUleb128(binary_writer, @as(u8, 0)); // represents funcref
}
try leb.writeUleb128(binary_writer, @as(u32, @intCast(wasm.function_table.count())));
var symbol_it = wasm.function_table.keyIterator();
while (symbol_it.next()) |symbol_loc_ptr| {
const sym = wasm.symbolLocSymbol(symbol_loc_ptr.*);
std.debug.assert(sym.isAlive());
std.debug.assert(sym.index < wasm.functions.count() + wasm.imported_functions_count);
try leb.writeUleb128(binary_writer, sym.index);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.element,
@intCast(binary_bytes.items.len - header_offset - header_size),
1,
);
section_count += 1;
}
// When the shared-memory option is enabled, we *must* emit the 'data count' section.
const data_segments_count = wasm.data_segments.count() - @intFromBool(wasm.data_segments.contains(".bss") and !import_memory);
if (data_segments_count != 0 and shared_memory) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.data_count,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(data_segments_count),
);
}
// Code section
if (wasm.code_section_index != .none) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
const start_offset = binary_bytes.items.len - 5; // minus 5 so start offset is 5 to include entry count
var func_it = wasm.functions.iterator();
while (func_it.next()) |entry| {
const sym_loc: SymbolLoc = .{ .index = entry.value_ptr.sym_index, .file = entry.key_ptr.file };
const atom_index = wasm.symbol_atom.get(sym_loc).?;
const atom = wasm.getAtomPtr(atom_index);
if (!is_obj) {
atom.resolveRelocs(wasm);
}
atom.offset = @intCast(binary_bytes.items.len - start_offset);
try leb.writeUleb128(binary_writer, atom.size);
try binary_writer.writeAll(atom.code.items);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.code,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(wasm.functions.count()),
);
code_section_index = section_count;
section_count += 1;
}
// Data section
if (data_segments_count != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
var it = wasm.data_segments.iterator();
var segment_count: u32 = 0;
while (it.next()) |entry| {
// do not output 'bss' section unless we import memory and therefore
// want to guarantee the data is zero initialized
if (!import_memory and std.mem.eql(u8, entry.key_ptr.*, ".bss")) continue;
const segment_index = entry.value_ptr.*;
const segment = wasm.segmentPtr(segment_index);
if (segment.size == 0) continue; // do not emit empty segments
segment_count += 1;
var atom_index = wasm.atoms.get(segment_index).?;
try leb.writeUleb128(binary_writer, segment.flags);
if (segment.flags & @intFromEnum(Wasm.Segment.Flag.WASM_DATA_SEGMENT_HAS_MEMINDEX) != 0) {
try leb.writeUleb128(binary_writer, @as(u32, 0)); // memory is always index 0 as we only have 1 memory entry
}
// when a segment is passive, it's initialized during runtime.
if (!segment.isPassive()) {
try emitInit(binary_writer, .{ .i32_const = @as(i32, @bitCast(segment.offset)) });
}
// offset into data section
try leb.writeUleb128(binary_writer, segment.size);
// fill in the offset table and the data segments
var current_offset: u32 = 0;
while (true) {
const atom = wasm.getAtomPtr(atom_index);
if (!is_obj) {
atom.resolveRelocs(wasm);
}
// Pad with zeroes to ensure all segments are aligned
if (current_offset != atom.offset) {
const diff = atom.offset - current_offset;
try binary_writer.writeByteNTimes(0, diff);
current_offset += diff;
}
assert(current_offset == atom.offset);
assert(atom.code.items.len == atom.size);
try binary_writer.writeAll(atom.code.items);
current_offset += atom.size;
if (atom.prev != .null) {
atom_index = atom.prev;
} else {
// also pad with zeroes when last atom to ensure
// segments are aligned.
if (current_offset != segment.size) {
try binary_writer.writeByteNTimes(0, segment.size - current_offset);
current_offset += segment.size - current_offset;
}
break;
}
}
assert(current_offset == segment.size);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.data,
@intCast(binary_bytes.items.len - header_offset - header_size),
@intCast(segment_count),
);
data_section_index = section_count;
section_count += 1;
}
if (is_obj) {
// relocations need to point to the index of a symbol in the final symbol table. To save memory,
// we never store all symbols in a single table, but store a location reference instead.
// This means that for a relocatable object file, we need to generate one and provide it to the relocation sections.
var symbol_table = std.AutoArrayHashMap(SymbolLoc, u32).init(arena);
try wasm.emitLinkSection(&binary_bytes, &symbol_table);
if (code_section_index) |code_index| {
try wasm.emitCodeRelocations(&binary_bytes, code_index, symbol_table);
}
if (data_section_index) |data_index| {
try wasm.emitDataRelocations(&binary_bytes, data_index, symbol_table);
}
} else if (comp.config.debug_format != .strip) {
try wasm.emitNameSection(&binary_bytes, arena);
}
if (comp.config.debug_format != .strip) {
// The build id must be computed on the main sections only,
// so we have to do it now, before the debug sections.
switch (wasm.base.build_id) {
.none => {},
.fast => {
var id: [16]u8 = undefined;
std.crypto.hash.sha3.TurboShake128(null).hash(binary_bytes.items, &id, .{});
var uuid: [36]u8 = undefined;
_ = try std.fmt.bufPrint(&uuid, "{s}-{s}-{s}-{s}-{s}", .{
std.fmt.fmtSliceHexLower(id[0..4]),
std.fmt.fmtSliceHexLower(id[4..6]),
std.fmt.fmtSliceHexLower(id[6..8]),
std.fmt.fmtSliceHexLower(id[8..10]),
std.fmt.fmtSliceHexLower(id[10..]),
});
try emitBuildIdSection(&binary_bytes, &uuid);
},
.hexstring => |hs| {
var buffer: [32 * 2]u8 = undefined;
const str = std.fmt.bufPrint(&buffer, "{s}", .{
std.fmt.fmtSliceHexLower(hs.toSlice()),
}) catch unreachable;
try emitBuildIdSection(&binary_bytes, str);
},
else => |mode| {
var err = try diags.addErrorWithNotes(0);
try err.addMsg("build-id '{s}' is not supported for WebAssembly", .{@tagName(mode)});
},
}
var debug_bytes = std.ArrayList(u8).init(gpa);
defer debug_bytes.deinit();
inline for (@typeInfo(CustomSections).@"struct".fields) |field| {
if (@field(wasm.custom_sections, field.name).index.unwrap()) |index| {
var atom = wasm.getAtomPtr(wasm.atoms.get(index).?);
while (true) {
atom.resolveRelocs(wasm);
try debug_bytes.appendSlice(atom.code.items);
if (atom.prev == .null) break;
atom = wasm.getAtomPtr(atom.prev);
}
try emitDebugSection(&binary_bytes, debug_bytes.items, field.name);
debug_bytes.clearRetainingCapacity();
}
}
try emitProducerSection(&binary_bytes);
if (feature_count > 0) {
try emitFeaturesSection(&binary_bytes, &enabled_features, feature_count);
}
}
// Only when writing all sections executed properly we write the magic
// bytes. This allows us to easily detect what went wrong while generating
// the final binary.
{
const src = std.wasm.magic ++ std.wasm.version;
binary_bytes.items[0..src.len].* = src;
}
// finally, write the entire binary into the file.
var iovec = [_]std.posix.iovec_const{.{
.base = binary_bytes.items.ptr,
.len = binary_bytes.items.len,
}};
try wasm.base.file.?.writevAll(&iovec);
}
fn emitDebugSection(binary_bytes: *std.ArrayList(u8), data: []const u8, name: []const u8) !void {
if (data.len == 0) return;
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
try leb.writeUleb128(writer, @as(u32, @intCast(name.len)));
try writer.writeAll(name);
const start = binary_bytes.items.len - header_offset;
log.debug("Emit debug section: '{s}' start=0x{x:0>8} end=0x{x:0>8}", .{ name, start, start + data.len });
try writer.writeAll(data);
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@as(u32, @intCast(binary_bytes.items.len - header_offset - 6)),
);
}
fn emitProducerSection(binary_bytes: *std.ArrayList(u8)) !void {
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
const producers = "producers";
try leb.writeUleb128(writer, @as(u32, @intCast(producers.len)));
try writer.writeAll(producers);
try leb.writeUleb128(writer, @as(u32, 2)); // 2 fields: Language + processed-by
// used for the Zig version
var version_buf: [100]u8 = undefined;
const version = try std.fmt.bufPrint(&version_buf, "{}", .{build_options.semver});
// language field
{
const language = "language";
try leb.writeUleb128(writer, @as(u32, @intCast(language.len)));
try writer.writeAll(language);
// field_value_count (TODO: Parse object files for producer sections to detect their language)
try leb.writeUleb128(writer, @as(u32, 1));
// versioned name
{
try leb.writeUleb128(writer, @as(u32, 3)); // len of "Zig"
try writer.writeAll("Zig");
try leb.writeUleb128(writer, @as(u32, @intCast(version.len)));
try writer.writeAll(version);
}
}
// processed-by field
{
const processed_by = "processed-by";
try leb.writeUleb128(writer, @as(u32, @intCast(processed_by.len)));
try writer.writeAll(processed_by);
// field_value_count (TODO: Parse object files for producer sections to detect other used tools)
try leb.writeUleb128(writer, @as(u32, 1));
// versioned name
{
try leb.writeUleb128(writer, @as(u32, 3)); // len of "Zig"
try writer.writeAll("Zig");
try leb.writeUleb128(writer, @as(u32, @intCast(version.len)));
try writer.writeAll(version);
}
}
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@as(u32, @intCast(binary_bytes.items.len - header_offset - 6)),
);
}
fn emitBuildIdSection(binary_bytes: *std.ArrayList(u8), build_id: []const u8) !void {
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
const hdr_build_id = "build_id";
try leb.writeUleb128(writer, @as(u32, @intCast(hdr_build_id.len)));
try writer.writeAll(hdr_build_id);
try leb.writeUleb128(writer, @as(u32, 1));
try leb.writeUleb128(writer, @as(u32, @intCast(build_id.len)));
try writer.writeAll(build_id);
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@as(u32, @intCast(binary_bytes.items.len - header_offset - 6)),
);
}
fn emitFeaturesSection(binary_bytes: *std.ArrayList(u8), enabled_features: []const bool, features_count: u32) !void {
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
const target_features = "target_features";
try leb.writeUleb128(writer, @as(u32, @intCast(target_features.len)));
try writer.writeAll(target_features);
try leb.writeUleb128(writer, features_count);
for (enabled_features, 0..) |enabled, feature_index| {
if (enabled) {
const feature: Feature = .{ .prefix = .used, .tag = @as(Feature.Tag, @enumFromInt(feature_index)) };
try leb.writeUleb128(writer, @intFromEnum(feature.prefix));
var buf: [100]u8 = undefined;
const string = try std.fmt.bufPrint(&buf, "{}", .{feature.tag});
try leb.writeUleb128(writer, @as(u32, @intCast(string.len)));
try writer.writeAll(string);
}
}
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@as(u32, @intCast(binary_bytes.items.len - header_offset - 6)),
);
}
fn emitNameSection(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), arena: std.mem.Allocator) !void {
const comp = wasm.base.comp;
const import_memory = comp.config.import_memory;
const Name = struct {
index: u32,
name: []const u8,
fn lessThan(context: void, lhs: @This(), rhs: @This()) bool {
_ = context;
return lhs.index < rhs.index;
}
};
// we must de-duplicate symbols that point to the same function
var funcs = std.AutoArrayHashMap(u32, Name).init(arena);
try funcs.ensureUnusedCapacity(wasm.functions.count() + wasm.imported_functions_count);
var globals = try std.ArrayList(Name).initCapacity(arena, wasm.wasm_globals.items.len + wasm.imported_globals_count);
var segments = try std.ArrayList(Name).initCapacity(arena, wasm.data_segments.count());
for (wasm.resolved_symbols.keys()) |sym_loc| {
const symbol = wasm.symbolLocSymbol(sym_loc).*;
if (symbol.isDead()) {
continue;
}
const name = wasm.symbolLocName(sym_loc);
switch (symbol.tag) {
.function => {
const gop = funcs.getOrPutAssumeCapacity(symbol.index);
if (!gop.found_existing) {
gop.value_ptr.* = .{ .index = symbol.index, .name = name };
}
},
.global => globals.appendAssumeCapacity(.{ .index = symbol.index, .name = name }),
else => {},
}
}
// data segments are already 'ordered'
var data_segment_index: u32 = 0;
for (wasm.data_segments.keys()) |key| {
// bss section is not emitted when this condition holds true, so we also
// do not output a name for it.
if (!import_memory and std.mem.eql(u8, key, ".bss")) continue;
segments.appendAssumeCapacity(.{ .index = data_segment_index, .name = key });
data_segment_index += 1;
}
mem.sort(Name, funcs.values(), {}, Name.lessThan);
mem.sort(Name, globals.items, {}, Name.lessThan);
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
try leb.writeUleb128(writer, @as(u32, @intCast("name".len)));
try writer.writeAll("name");
try wasm.emitNameSubsection(.function, funcs.values(), writer);
try wasm.emitNameSubsection(.global, globals.items, writer);
try wasm.emitNameSubsection(.data_segment, segments.items, writer);
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@as(u32, @intCast(binary_bytes.items.len - header_offset - 6)),
);
}
fn emitNameSubsection(wasm: *Wasm, section_id: std.wasm.NameSubsection, names: anytype, writer: anytype) !void {
const gpa = wasm.base.comp.gpa;
// We must emit subsection size, so first write to a temporary list
var section_list = std.ArrayList(u8).init(gpa);
defer section_list.deinit();
const sub_writer = section_list.writer();
try leb.writeUleb128(sub_writer, @as(u32, @intCast(names.len)));
for (names) |name| {
log.debug("Emit symbol '{s}' type({s})", .{ name.name, @tagName(section_id) });
try leb.writeUleb128(sub_writer, name.index);
try leb.writeUleb128(sub_writer, @as(u32, @intCast(name.name.len)));
try sub_writer.writeAll(name.name);
}
// From now, write to the actual writer
try leb.writeUleb128(writer, @intFromEnum(section_id));
try leb.writeUleb128(writer, @as(u32, @intCast(section_list.items.len)));
try writer.writeAll(section_list.items);
}
fn emitLimits(writer: anytype, limits: std.wasm.Limits) !void {
try writer.writeByte(limits.flags);
try leb.writeUleb128(writer, limits.min);
if (limits.hasFlag(.WASM_LIMITS_FLAG_HAS_MAX)) {
try leb.writeUleb128(writer, limits.max);
}
}
fn emitInit(writer: anytype, init_expr: std.wasm.InitExpression) !void {
switch (init_expr) {
.i32_const => |val| {
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeIleb128(writer, val);
},
.i64_const => |val| {
try writer.writeByte(std.wasm.opcode(.i64_const));
try leb.writeIleb128(writer, val);
},
.f32_const => |val| {
try writer.writeByte(std.wasm.opcode(.f32_const));
try writer.writeInt(u32, @bitCast(val), .little);
},
.f64_const => |val| {
try writer.writeByte(std.wasm.opcode(.f64_const));
try writer.writeInt(u64, @bitCast(val), .little);
},
.global_get => |val| {
try writer.writeByte(std.wasm.opcode(.global_get));
try leb.writeUleb128(writer, val);
},
}
try writer.writeByte(std.wasm.opcode(.end));
}
fn emitImport(wasm: *Wasm, writer: anytype, import: Import) !void {
const module_name = wasm.stringSlice(import.module_name);
try leb.writeUleb128(writer, @as(u32, @intCast(module_name.len)));
try writer.writeAll(module_name);
const name = wasm.stringSlice(import.name);
try leb.writeUleb128(writer, @as(u32, @intCast(name.len)));
try writer.writeAll(name);
try writer.writeByte(@intFromEnum(import.kind));
switch (import.kind) {
.function => |type_index| try leb.writeUleb128(writer, type_index),
.global => |global_type| {
try leb.writeUleb128(writer, std.wasm.valtype(global_type.valtype));
try writer.writeByte(@intFromBool(global_type.mutable));
},
.table => |table| {
try leb.writeUleb128(writer, std.wasm.reftype(table.reftype));
try emitLimits(writer, table.limits);
},
.memory => |limits| {
try emitLimits(writer, limits);
},
}
}
fn linkWithLLD(wasm: *Wasm, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) !void {
dev.check(.lld_linker);
const tracy = trace(@src());
defer tracy.end();
const comp = wasm.base.comp;
const shared_memory = comp.config.shared_memory;
const export_memory = comp.config.export_memory;
const import_memory = comp.config.import_memory;
const target = comp.root_mod.resolved_target.result;
const gpa = comp.gpa;
const directory = wasm.base.emit.root_dir; // Just an alias to make it shorter to type.
const full_out_path = try directory.join(arena, &[_][]const u8{wasm.base.emit.sub_path});
// If there is no Zig code to compile, then we should skip flushing the output file because it
// will not be part of the linker line anyway.
const module_obj_path: ?[]const u8 = if (comp.zcu != null) blk: {
try wasm.flushModule(arena, tid, prog_node);
if (fs.path.dirname(full_out_path)) |dirname| {
break :blk try fs.path.join(arena, &.{ dirname, wasm.base.zcu_object_sub_path.? });
} else {
break :blk wasm.base.zcu_object_sub_path.?;
}
} else null;
const sub_prog_node = prog_node.start("LLD Link", 0);
defer sub_prog_node.end();
const is_obj = comp.config.output_mode == .Obj;
const compiler_rt_path: ?Path = blk: {
if (comp.compiler_rt_lib) |lib| break :blk lib.full_object_path;
if (comp.compiler_rt_obj) |obj| break :blk obj.full_object_path;
break :blk null;
};
const id_symlink_basename = "lld.id";
var man: Cache.Manifest = undefined;
defer if (!wasm.base.disable_lld_caching) man.deinit();
var digest: [Cache.hex_digest_len]u8 = undefined;
if (!wasm.base.disable_lld_caching) {
man = comp.cache_parent.obtain();
// We are about to obtain this lock, so here we give other processes a chance first.
wasm.base.releaseLock();
comptime assert(Compilation.link_hash_implementation_version == 14);
try link.hashInputs(&man, comp.link_inputs);
for (comp.c_object_table.keys()) |key| {
_ = try man.addFilePath(key.status.success.object_path, null);
}
try man.addOptionalFile(module_obj_path);
try man.addOptionalFilePath(compiler_rt_path);
man.hash.addOptionalBytes(wasm.optionalStringSlice(wasm.entry_name));
man.hash.add(wasm.base.stack_size);
man.hash.add(wasm.base.build_id);
man.hash.add(import_memory);
man.hash.add(export_memory);
man.hash.add(wasm.import_table);
man.hash.add(wasm.export_table);
man.hash.addOptional(wasm.initial_memory);
man.hash.addOptional(wasm.max_memory);
man.hash.add(shared_memory);
man.hash.addOptional(wasm.global_base);
man.hash.addListOfBytes(wasm.export_symbol_names);
// strip does not need to go into the linker hash because it is part of the hash namespace
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
_ = try man.hit();
digest = man.final();
var prev_digest_buf: [digest.len]u8 = undefined;
const prev_digest: []u8 = Cache.readSmallFile(
directory.handle,
id_symlink_basename,
&prev_digest_buf,
) catch |err| blk: {
log.debug("WASM LLD new_digest={s} error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) });
// Handle this as a cache miss.
break :blk prev_digest_buf[0..0];
};
if (mem.eql(u8, prev_digest, &digest)) {
log.debug("WASM LLD digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)});
// Hot diggity dog! The output binary is already there.
wasm.base.lock = man.toOwnedLock();
return;
}
log.debug("WASM LLD prev_digest={s} new_digest={s}", .{ std.fmt.fmtSliceHexLower(prev_digest), std.fmt.fmtSliceHexLower(&digest) });
// We are about to change the output file to be different, so we invalidate the build hash now.
directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
};
}
if (is_obj) {
// LLD's WASM driver does not support the equivalent of `-r` so we do a simple file copy
// here. TODO: think carefully about how we can avoid this redundant operation when doing
// build-obj. See also the corresponding TODO in linkAsArchive.
const the_object_path = blk: {
if (link.firstObjectInput(comp.link_inputs)) |obj| break :blk obj.path;
if (comp.c_object_table.count() != 0)
break :blk comp.c_object_table.keys()[0].status.success.object_path;
if (module_obj_path) |p|
break :blk Path.initCwd(p);
// TODO I think this is unreachable. Audit this situation when solving the above TODO
// regarding eliding redundant object -> object transformations.
return error.NoObjectsToLink;
};
try fs.Dir.copyFile(
the_object_path.root_dir.handle,
the_object_path.sub_path,
directory.handle,
wasm.base.emit.sub_path,
.{},
);
} else {
// Create an LLD command line and invoke it.
var argv = std.ArrayList([]const u8).init(gpa);
defer argv.deinit();
// We will invoke ourselves as a child process to gain access to LLD.
// This is necessary because LLD does not behave properly as a library -
// it calls exit() and does not reset all global data between invocations.
const linker_command = "wasm-ld";
try argv.appendSlice(&[_][]const u8{ comp.self_exe_path.?, linker_command });
try argv.append("--error-limit=0");
if (comp.config.lto) {
switch (comp.root_mod.optimize_mode) {
.Debug => {},
.ReleaseSmall => try argv.append("-O2"),
.ReleaseFast, .ReleaseSafe => try argv.append("-O3"),
}
}
if (import_memory) {
try argv.append("--import-memory");
}
if (export_memory) {
try argv.append("--export-memory");
}
if (wasm.import_table) {
assert(!wasm.export_table);
try argv.append("--import-table");
}
if (wasm.export_table) {
assert(!wasm.import_table);
try argv.append("--export-table");
}
// For wasm-ld we only need to specify '--no-gc-sections' when the user explicitly
// specified it as garbage collection is enabled by default.
if (!wasm.base.gc_sections) {
try argv.append("--no-gc-sections");
}
if (comp.config.debug_format == .strip) {
try argv.append("-s");
}
if (wasm.initial_memory) |initial_memory| {
const arg = try std.fmt.allocPrint(arena, "--initial-memory={d}", .{initial_memory});
try argv.append(arg);
}
if (wasm.max_memory) |max_memory| {
const arg = try std.fmt.allocPrint(arena, "--max-memory={d}", .{max_memory});
try argv.append(arg);
}
if (shared_memory) {
try argv.append("--shared-memory");
}
if (wasm.global_base) |global_base| {
const arg = try std.fmt.allocPrint(arena, "--global-base={d}", .{global_base});
try argv.append(arg);
} else {
// We prepend it by default, so when a stack overflow happens the runtime will trap correctly,
// rather than silently overwrite all global declarations. See https://github.com/ziglang/zig/issues/4496
//
// The user can overwrite this behavior by setting the global-base
try argv.append("--stack-first");
}
// Users are allowed to specify which symbols they want to export to the wasm host.
for (wasm.export_symbol_names) |symbol_name| {
const arg = try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name});
try argv.append(arg);
}
if (comp.config.rdynamic) {
try argv.append("--export-dynamic");
}
if (wasm.optionalStringSlice(wasm.entry_name)) |entry_name| {
try argv.appendSlice(&.{ "--entry", entry_name });
} else {
try argv.append("--no-entry");
}
try argv.appendSlice(&.{
"-z",
try std.fmt.allocPrint(arena, "stack-size={d}", .{wasm.base.stack_size}),
});
if (wasm.import_symbols) {
try argv.append("--allow-undefined");
}
if (comp.config.output_mode == .Lib and comp.config.link_mode == .dynamic) {
try argv.append("--shared");
}
if (comp.config.pie) {
try argv.append("--pie");
}
// XXX - TODO: add when wasm-ld supports --build-id.
// if (wasm.base.build_id) {
// try argv.append("--build-id=tree");
// }
try argv.appendSlice(&.{ "-o", full_out_path });
if (target.cpu.arch == .wasm64) {
try argv.append("-mwasm64");
}
if (target.os.tag == .wasi) {
const is_exe_or_dyn_lib = comp.config.output_mode == .Exe or
(comp.config.output_mode == .Lib and comp.config.link_mode == .dynamic);
if (is_exe_or_dyn_lib) {
for (comp.wasi_emulated_libs) |crt_file| {
try argv.append(try comp.crtFileAsString(
arena,
wasi_libc.emulatedLibCRFileLibName(crt_file),
));
}
if (comp.config.link_libc) {
try argv.append(try comp.crtFileAsString(
arena,
wasi_libc.execModelCrtFileFullName(comp.config.wasi_exec_model),
));
try argv.append(try comp.crtFileAsString(arena, "libc.a"));
}
if (comp.config.link_libcpp) {
try argv.append(try comp.libcxx_static_lib.?.full_object_path.toString(arena));
try argv.append(try comp.libcxxabi_static_lib.?.full_object_path.toString(arena));
}
}
}
// Positional arguments to the linker such as object files.
var whole_archive = false;
for (comp.link_inputs) |link_input| switch (link_input) {
.object, .archive => |obj| {
if (obj.must_link and !whole_archive) {
try argv.append("-whole-archive");
whole_archive = true;
} else if (!obj.must_link and whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
try argv.append(try obj.path.toString(arena));
},
.dso => |dso| {
try argv.append(try dso.path.toString(arena));
},
.dso_exact => unreachable,
.res => unreachable,
};
if (whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
for (comp.c_object_table.keys()) |key| {
try argv.append(try key.status.success.object_path.toString(arena));
}
if (module_obj_path) |p| {
try argv.append(p);
}
if (comp.libc_static_lib) |crt_file| {
try argv.append(try crt_file.full_object_path.toString(arena));
}
if (compiler_rt_path) |p| {
try argv.append(try p.toString(arena));
}
if (comp.verbose_link) {
// Skip over our own name so that the LLD linker name is the first argv item.
Compilation.dump_argv(argv.items[1..]);
}
if (std.process.can_spawn) {
// If possible, we run LLD as a child process because it does not always
// behave properly as a library, unfortunately.
// https://github.com/ziglang/zig/issues/3825
var child = std.process.Child.init(argv.items, arena);
if (comp.clang_passthrough_mode) {
child.stdin_behavior = .Inherit;
child.stdout_behavior = .Inherit;
child.stderr_behavior = .Inherit;
const term = child.spawnAndWait() catch |err| {
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
return error.UnableToSpawnWasm;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
std.process.exit(code);
}
},
else => std.process.abort(),
}
} else {
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Ignore;
child.stderr_behavior = .Pipe;
try child.spawn();
const stderr = try child.stderr.?.reader().readAllAlloc(arena, std.math.maxInt(usize));
const term = child.wait() catch |err| {
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
return error.UnableToSpawnWasm;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
const diags = &comp.link_diags;
diags.lockAndParseLldStderr(linker_command, stderr);
return error.LLDReportedFailure;
}
},
else => {
log.err("{s} terminated with stderr:\n{s}", .{ argv.items[0], stderr });
return error.LLDCrashed;
},
}
if (stderr.len != 0) {
log.warn("unexpected LLD stderr:\n{s}", .{stderr});
}
}
} else {
const exit_code = try lldMain(arena, argv.items, false);
if (exit_code != 0) {
if (comp.clang_passthrough_mode) {
std.process.exit(exit_code);
} else {
return error.LLDReportedFailure;
}
}
}
// Give +x to the .wasm file if it is an executable and the OS is WASI.
// Some systems may be configured to execute such binaries directly. Even if that
// is not the case, it means we will get "exec format error" when trying to run
// it, and then can react to that in the same way as trying to run an ELF file
// from a foreign CPU architecture.
if (fs.has_executable_bit and target.os.tag == .wasi and
comp.config.output_mode == .Exe)
{
// TODO: what's our strategy for reporting linker errors from this function?
// report a nice error here with the file path if it fails instead of
// just returning the error code.
// chmod does not interact with umask, so we use a conservative -rwxr--r-- here.
std.posix.fchmodat(fs.cwd().fd, full_out_path, 0o744, 0) catch |err| switch (err) {
error.OperationNotSupported => unreachable, // Not a symlink.
else => |e| return e,
};
}
}
if (!wasm.base.disable_lld_caching) {
// Update the file with the digest. If it fails we can continue; it only
// means that the next invocation will have an unnecessary cache miss.
Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| {
log.warn("failed to save linking hash digest symlink: {s}", .{@errorName(err)});
};
// Again failure here only means an unnecessary cache miss.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when linking: {s}", .{@errorName(err)});
};
// We hang on to this lock so that the output file path can be used without
// other processes clobbering it.
wasm.base.lock = man.toOwnedLock();
}
}
fn reserveVecSectionHeader(bytes: *std.ArrayList(u8)) !u32 {
// section id + fixed leb contents size + fixed leb vector length
const header_size = 1 + 5 + 5;
const offset = @as(u32, @intCast(bytes.items.len));
try bytes.appendSlice(&[_]u8{0} ** header_size);
return offset;
}
fn reserveCustomSectionHeader(bytes: *std.ArrayList(u8)) !u32 {
// unlike regular section, we don't emit the count
const header_size = 1 + 5;
const offset = @as(u32, @intCast(bytes.items.len));
try bytes.appendSlice(&[_]u8{0} ** header_size);
return offset;
}
fn writeVecSectionHeader(buffer: []u8, offset: u32, section: std.wasm.Section, size: u32, items: u32) !void {
var buf: [1 + 5 + 5]u8 = undefined;
buf[0] = @intFromEnum(section);
leb.writeUnsignedFixed(5, buf[1..6], size);
leb.writeUnsignedFixed(5, buf[6..], items);
buffer[offset..][0..buf.len].* = buf;
}
fn writeCustomSectionHeader(buffer: []u8, offset: u32, size: u32) !void {
var buf: [1 + 5]u8 = undefined;
buf[0] = 0; // 0 = 'custom' section
leb.writeUnsignedFixed(5, buf[1..6], size);
buffer[offset..][0..buf.len].* = buf;
}
fn emitLinkSection(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), symbol_table: *std.AutoArrayHashMap(SymbolLoc, u32)) !void {
const offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
// emit "linking" custom section name
const section_name = "linking";
try leb.writeUleb128(writer, section_name.len);
try writer.writeAll(section_name);
// meta data version, which is currently '2'
try leb.writeUleb128(writer, @as(u32, 2));
// For each subsection type (found in Subsection) we can emit a section.
// Currently, we only support emitting segment info and the symbol table.
try wasm.emitSymbolTable(binary_bytes, symbol_table);
try wasm.emitSegmentInfo(binary_bytes);
const size: u32 = @intCast(binary_bytes.items.len - offset - 6);
try writeCustomSectionHeader(binary_bytes.items, offset, size);
}
fn emitSymbolTable(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), symbol_table: *std.AutoArrayHashMap(SymbolLoc, u32)) !void {
const writer = binary_bytes.writer();
try leb.writeUleb128(writer, @intFromEnum(SubsectionType.WASM_SYMBOL_TABLE));
const table_offset = binary_bytes.items.len;
var symbol_count: u32 = 0;
for (wasm.resolved_symbols.keys()) |sym_loc| {
const symbol = wasm.symbolLocSymbol(sym_loc).*;
if (symbol.tag == .dead) continue; // Do not emit dead symbols
try symbol_table.putNoClobber(sym_loc, symbol_count);
symbol_count += 1;
log.debug("Emit symbol: {}", .{symbol});
try leb.writeUleb128(writer, @intFromEnum(symbol.tag));
try leb.writeUleb128(writer, symbol.flags);
const sym_name = wasm.symbolLocName(sym_loc);
switch (symbol.tag) {
.data => {
try leb.writeUleb128(writer, @as(u32, @intCast(sym_name.len)));
try writer.writeAll(sym_name);
if (symbol.isDefined()) {
try leb.writeUleb128(writer, symbol.index);
const atom_index = wasm.symbol_atom.get(sym_loc).?;
const atom = wasm.getAtom(atom_index);
try leb.writeUleb128(writer, @as(u32, atom.offset));
try leb.writeUleb128(writer, @as(u32, atom.size));
}
},
.section => {
try leb.writeUleb128(writer, symbol.index);
},
else => {
try leb.writeUleb128(writer, symbol.index);
if (symbol.isDefined()) {
try leb.writeUleb128(writer, @as(u32, @intCast(sym_name.len)));
try writer.writeAll(sym_name);
}
},
}
}
var buf: [10]u8 = undefined;
leb.writeUnsignedFixed(5, buf[0..5], @intCast(binary_bytes.items.len - table_offset + 5));
leb.writeUnsignedFixed(5, buf[5..], symbol_count);
try binary_bytes.insertSlice(table_offset, &buf);
}
fn emitSegmentInfo(wasm: *Wasm, binary_bytes: *std.ArrayList(u8)) !void {
const writer = binary_bytes.writer();
try leb.writeUleb128(writer, @intFromEnum(SubsectionType.WASM_SEGMENT_INFO));
const segment_offset = binary_bytes.items.len;
try leb.writeUleb128(writer, @as(u32, @intCast(wasm.segment_info.count())));
for (wasm.segment_info.values()) |segment_info| {
log.debug("Emit segment: {s} align({d}) flags({b})", .{
segment_info.name,
segment_info.alignment,
segment_info.flags,
});
try leb.writeUleb128(writer, @as(u32, @intCast(segment_info.name.len)));
try writer.writeAll(segment_info.name);
try leb.writeUleb128(writer, segment_info.alignment.toLog2Units());
try leb.writeUleb128(writer, segment_info.flags);
}
var buf: [5]u8 = undefined;
leb.writeUnsignedFixed(5, &buf, @as(u32, @intCast(binary_bytes.items.len - segment_offset)));
try binary_bytes.insertSlice(segment_offset, &buf);
}
pub fn getUleb128Size(uint_value: anytype) u32 {
const T = @TypeOf(uint_value);
const U = if (@typeInfo(T).int.bits < 8) u8 else T;
var value = @as(U, @intCast(uint_value));
var size: u32 = 0;
while (value != 0) : (size += 1) {
value >>= 7;
}
return size;
}
/// For each relocatable section, emits a custom "relocation.<section_name>" section
fn emitCodeRelocations(
wasm: *Wasm,
binary_bytes: *std.ArrayList(u8),
section_index: u32,
symbol_table: std.AutoArrayHashMap(SymbolLoc, u32),
) !void {
const code_index = wasm.code_section_index.unwrap() orelse return;
const writer = binary_bytes.writer();
const header_offset = try reserveCustomSectionHeader(binary_bytes);
// write custom section information
const name = "reloc.CODE";
try leb.writeUleb128(writer, @as(u32, @intCast(name.len)));
try writer.writeAll(name);
try leb.writeUleb128(writer, section_index);
const reloc_start = binary_bytes.items.len;
var count: u32 = 0;
var atom: *Atom = wasm.getAtomPtr(wasm.atoms.get(code_index).?);
// for each atom, we calculate the uleb size and append that
var size_offset: u32 = 5; // account for code section size leb128
while (true) {
size_offset += getUleb128Size(atom.size);
for (atom.relocs.items) |relocation| {
count += 1;
const sym_loc: SymbolLoc = .{ .file = atom.file, .index = @enumFromInt(relocation.index) };
const symbol_index = symbol_table.get(sym_loc).?;
try leb.writeUleb128(writer, @intFromEnum(relocation.relocation_type));
const offset = atom.offset + relocation.offset + size_offset;
try leb.writeUleb128(writer, offset);
try leb.writeUleb128(writer, symbol_index);
if (relocation.relocation_type.addendIsPresent()) {
try leb.writeIleb128(writer, relocation.addend);
}
log.debug("Emit relocation: {}", .{relocation});
}
if (atom.prev == .null) break;
atom = wasm.getAtomPtr(atom.prev);
}
if (count == 0) return;
var buf: [5]u8 = undefined;
leb.writeUnsignedFixed(5, &buf, count);
try binary_bytes.insertSlice(reloc_start, &buf);
const size: u32 = @intCast(binary_bytes.items.len - header_offset - 6);
try writeCustomSectionHeader(binary_bytes.items, header_offset, size);
}
fn emitDataRelocations(
wasm: *Wasm,
binary_bytes: *std.ArrayList(u8),
section_index: u32,
symbol_table: std.AutoArrayHashMap(SymbolLoc, u32),
) !void {
if (wasm.data_segments.count() == 0) return;
const writer = binary_bytes.writer();
const header_offset = try reserveCustomSectionHeader(binary_bytes);
// write custom section information
const name = "reloc.DATA";
try leb.writeUleb128(writer, @as(u32, @intCast(name.len)));
try writer.writeAll(name);
try leb.writeUleb128(writer, section_index);
const reloc_start = binary_bytes.items.len;
var count: u32 = 0;
// for each atom, we calculate the uleb size and append that
var size_offset: u32 = 5; // account for code section size leb128
for (wasm.data_segments.values()) |segment_index| {
var atom: *Atom = wasm.getAtomPtr(wasm.atoms.get(segment_index).?);
while (true) {
size_offset += getUleb128Size(atom.size);
for (atom.relocs.items) |relocation| {
count += 1;
const sym_loc: SymbolLoc = .{ .file = atom.file, .index = @enumFromInt(relocation.index) };
const symbol_index = symbol_table.get(sym_loc).?;
try leb.writeUleb128(writer, @intFromEnum(relocation.relocation_type));
const offset = atom.offset + relocation.offset + size_offset;
try leb.writeUleb128(writer, offset);
try leb.writeUleb128(writer, symbol_index);
if (relocation.relocation_type.addendIsPresent()) {
try leb.writeIleb128(writer, relocation.addend);
}
log.debug("Emit relocation: {}", .{relocation});
}
if (atom.prev == .null) break;
atom = wasm.getAtomPtr(atom.prev);
}
}
if (count == 0) return;
var buf: [5]u8 = undefined;
leb.writeUnsignedFixed(5, &buf, count);
try binary_bytes.insertSlice(reloc_start, &buf);
const size = @as(u32, @intCast(binary_bytes.items.len - header_offset - 6));
try writeCustomSectionHeader(binary_bytes.items, header_offset, size);
}
fn hasPassiveInitializationSegments(wasm: *const Wasm) bool {
const comp = wasm.base.comp;
const import_memory = comp.config.import_memory;
var it = wasm.data_segments.iterator();
while (it.next()) |entry| {
const segment = wasm.segmentPtr(entry.value_ptr.*);
if (segment.needsPassiveInitialization(import_memory, entry.key_ptr.*)) {
return true;
}
}
return false;
}
/// Searches for a matching function signature. When no matching signature is found,
/// a new entry will be made. The value returned is the index of the type within `wasm.func_types`.
pub fn putOrGetFuncType(wasm: *Wasm, func_type: std.wasm.Type) !u32 {
if (wasm.getTypeIndex(func_type)) |index| {
return index;
}
// functype does not exist.
const gpa = wasm.base.comp.gpa;
const index: u32 = @intCast(wasm.func_types.items.len);
const params = try gpa.dupe(std.wasm.Valtype, func_type.params);
errdefer gpa.free(params);
const returns = try gpa.dupe(std.wasm.Valtype, func_type.returns);
errdefer gpa.free(returns);
try wasm.func_types.append(gpa, .{
.params = params,
.returns = returns,
});
return index;
}
/// For the given `nav`, stores the corresponding type representing the function signature.
/// Asserts declaration has an associated `Atom`.
/// Returns the index into the list of types.
pub fn storeNavType(wasm: *Wasm, nav: InternPool.Nav.Index, func_type: std.wasm.Type) !u32 {
return wasm.zig_object.?.storeDeclType(wasm.base.comp.gpa, nav, func_type);
}
/// Returns the symbol index of the error name table.
///
/// When the symbol does not yet exist, it will create a new one instead.
pub fn getErrorTableSymbol(wasm: *Wasm, pt: Zcu.PerThread) !u32 {
const sym_index = try wasm.zig_object.?.getErrorTableSymbol(wasm, pt);
return @intFromEnum(sym_index);
}
/// For a given `InternPool.DeclIndex` returns its corresponding `Atom.Index`.
/// When the index was not found, a new `Atom` will be created, and its index will be returned.
/// The newly created Atom is empty with default fields as specified by `Atom.empty`.
pub fn getOrCreateAtomForNav(wasm: *Wasm, pt: Zcu.PerThread, nav: InternPool.Nav.Index) !Atom.Index {
return wasm.zig_object.?.getOrCreateAtomForNav(wasm, pt, nav);
}
/// Verifies all resolved symbols and checks whether itself needs to be marked alive,
/// as well as any of its references.
fn markReferences(wasm: *Wasm) !void {
const tracy = trace(@src());
defer tracy.end();
const do_garbage_collect = wasm.base.gc_sections;
const comp = wasm.base.comp;
for (wasm.resolved_symbols.keys()) |sym_loc| {
const sym = wasm.symbolLocSymbol(sym_loc);
if (sym.isExported(comp.config.rdynamic) or sym.isNoStrip() or !do_garbage_collect) {
try wasm.mark(sym_loc);
continue;
}
// Debug sections may require to be parsed and marked when it contains
// relocations to alive symbols.
if (sym.tag == .section and comp.config.debug_format != .strip) {
const object_id = sym_loc.file.unwrap() orelse continue; // Incremental debug info is done independently
_ = try wasm.parseSymbolIntoAtom(object_id, sym_loc.index);
sym.mark();
}
}
}
/// Marks a symbol as 'alive' recursively so itself and any references it contains to
/// other symbols will not be omit from the binary.
fn mark(wasm: *Wasm, loc: SymbolLoc) !void {
const symbol = wasm.symbolLocSymbol(loc);
if (symbol.isAlive()) {
// Symbol is already marked alive, including its references.
// This means we can skip it so we don't end up marking the same symbols
// multiple times.
return;
}
symbol.mark();
gc_log.debug("Marked symbol '{s}'", .{wasm.symbolLocName(loc)});
if (symbol.isUndefined()) {
// undefined symbols do not have an associated `Atom` and therefore also
// do not contain relocations.
return;
}
const atom_index = if (loc.file.unwrap()) |object_id|
try wasm.parseSymbolIntoAtom(object_id, loc.index)
else
wasm.symbol_atom.get(loc) orelse return;
const atom = wasm.getAtom(atom_index);
for (atom.relocs.items) |reloc| {
const target_loc: SymbolLoc = .{ .index = @enumFromInt(reloc.index), .file = loc.file };
try wasm.mark(wasm.symbolLocFinalLoc(target_loc));
}
}
fn defaultEntrySymbolName(
preloaded_strings: *const PreloadedStrings,
wasi_exec_model: std.builtin.WasiExecModel,
) String {
return switch (wasi_exec_model) {
.reactor => preloaded_strings._initialize,
.command => preloaded_strings._start,
};
}
pub const Atom = struct {
/// Represents the index of the file this atom was generated from.
/// This is `none` when the atom was generated by a synthetic linker symbol.
file: OptionalObjectId,
/// symbol index of the symbol representing this atom
sym_index: Symbol.Index,
/// Size of the atom, used to calculate section sizes in the final binary
size: u32 = 0,
/// List of relocations belonging to this atom
relocs: std.ArrayListUnmanaged(Relocation) = .empty,
/// Contains the binary data of an atom, which can be non-relocated
code: std.ArrayListUnmanaged(u8) = .empty,
/// For code this is 1, for data this is set to the highest value of all segments
alignment: Wasm.Alignment = .@"1",
/// Offset into the section where the atom lives, this already accounts
/// for alignment.
offset: u32 = 0,
/// The original offset within the object file. This value is subtracted from
/// relocation offsets to determine where in the `data` to rewrite the value
original_offset: u32 = 0,
/// Previous atom in relation to this atom.
/// is null when this atom is the first in its order
prev: Atom.Index = .null,
/// Contains atoms local to a decl, all managed by this `Atom`.
/// When the parent atom is being freed, it will also do so for all local atoms.
locals: std.ArrayListUnmanaged(Atom.Index) = .empty,
/// Represents the index of an Atom where `null` is considered
/// an invalid atom.
pub const Index = enum(u32) {
null = std.math.maxInt(u32),
_,
};
/// Frees all resources owned by this `Atom`.
pub fn deinit(atom: *Atom, gpa: std.mem.Allocator) void {
atom.relocs.deinit(gpa);
atom.code.deinit(gpa);
atom.locals.deinit(gpa);
atom.* = undefined;
}
/// Sets the length of relocations and code to '0',
/// effectively resetting them and allowing them to be re-populated.
pub fn clear(atom: *Atom) void {
atom.relocs.clearRetainingCapacity();
atom.code.clearRetainingCapacity();
}
pub fn format(atom: Atom, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = fmt;
_ = options;
try writer.print("Atom{{ .sym_index = {d}, .alignment = {d}, .size = {d}, .offset = 0x{x:0>8} }}", .{
@intFromEnum(atom.sym_index),
atom.alignment,
atom.size,
atom.offset,
});
}
/// Returns the location of the symbol that represents this `Atom`
pub fn symbolLoc(atom: Atom) Wasm.SymbolLoc {
return .{
.file = atom.file,
.index = atom.sym_index,
};
}
/// Resolves the relocations within the atom, writing the new value
/// at the calculated offset.
pub fn resolveRelocs(atom: *Atom, wasm: *const Wasm) void {
if (atom.relocs.items.len == 0) return;
const symbol_name = wasm.symbolLocName(atom.symbolLoc());
log.debug("Resolving relocs in atom '{s}' count({d})", .{
symbol_name,
atom.relocs.items.len,
});
for (atom.relocs.items) |reloc| {
const value = atom.relocationValue(reloc, wasm);
log.debug("Relocating '{s}' referenced in '{s}' offset=0x{x:0>8} value={d}", .{
wasm.symbolLocName(.{
.file = atom.file,
.index = @enumFromInt(reloc.index),
}),
symbol_name,
reloc.offset,
value,
});
switch (reloc.relocation_type) {
.R_WASM_TABLE_INDEX_I32,
.R_WASM_FUNCTION_OFFSET_I32,
.R_WASM_GLOBAL_INDEX_I32,
.R_WASM_MEMORY_ADDR_I32,
.R_WASM_SECTION_OFFSET_I32,
=> std.mem.writeInt(u32, atom.code.items[reloc.offset - atom.original_offset ..][0..4], @as(u32, @truncate(value)), .little),
.R_WASM_TABLE_INDEX_I64,
.R_WASM_MEMORY_ADDR_I64,
=> std.mem.writeInt(u64, atom.code.items[reloc.offset - atom.original_offset ..][0..8], value, .little),
.R_WASM_GLOBAL_INDEX_LEB,
.R_WASM_EVENT_INDEX_LEB,
.R_WASM_FUNCTION_INDEX_LEB,
.R_WASM_MEMORY_ADDR_LEB,
.R_WASM_MEMORY_ADDR_SLEB,
.R_WASM_TABLE_INDEX_SLEB,
.R_WASM_TABLE_NUMBER_LEB,
.R_WASM_TYPE_INDEX_LEB,
.R_WASM_MEMORY_ADDR_TLS_SLEB,
=> leb.writeUnsignedFixed(5, atom.code.items[reloc.offset - atom.original_offset ..][0..5], @as(u32, @truncate(value))),
.R_WASM_MEMORY_ADDR_LEB64,
.R_WASM_MEMORY_ADDR_SLEB64,
.R_WASM_TABLE_INDEX_SLEB64,
.R_WASM_MEMORY_ADDR_TLS_SLEB64,
=> leb.writeUnsignedFixed(10, atom.code.items[reloc.offset - atom.original_offset ..][0..10], value),
}
}
}
/// From a given `relocation` will return the new value to be written.
/// All values will be represented as a `u64` as all values can fit within it.
/// The final value must be casted to the correct size.
fn relocationValue(atom: Atom, relocation: Relocation, wasm: *const Wasm) u64 {
const target_loc = wasm.symbolLocFinalLoc(.{
.file = atom.file,
.index = @enumFromInt(relocation.index),
});
const symbol = wasm.symbolLocSymbol(target_loc);
if (relocation.relocation_type != .R_WASM_TYPE_INDEX_LEB and
symbol.tag != .section and
symbol.isDead())
{
const val = atom.tombstone(wasm) orelse relocation.addend;
return @bitCast(val);
}
switch (relocation.relocation_type) {
.R_WASM_FUNCTION_INDEX_LEB => return symbol.index,
.R_WASM_TABLE_NUMBER_LEB => return symbol.index,
.R_WASM_TABLE_INDEX_I32,
.R_WASM_TABLE_INDEX_I64,
.R_WASM_TABLE_INDEX_SLEB,
.R_WASM_TABLE_INDEX_SLEB64,
=> return wasm.function_table.get(.{ .file = atom.file, .index = @enumFromInt(relocation.index) }) orelse 0,
.R_WASM_TYPE_INDEX_LEB => {
const object_id = atom.file.unwrap() orelse return relocation.index;
const original_type = objectFuncTypes(wasm, object_id)[relocation.index];
return wasm.getTypeIndex(original_type).?;
},
.R_WASM_GLOBAL_INDEX_I32,
.R_WASM_GLOBAL_INDEX_LEB,
=> return symbol.index,
.R_WASM_MEMORY_ADDR_I32,
.R_WASM_MEMORY_ADDR_I64,
.R_WASM_MEMORY_ADDR_LEB,
.R_WASM_MEMORY_ADDR_LEB64,
.R_WASM_MEMORY_ADDR_SLEB,
.R_WASM_MEMORY_ADDR_SLEB64,
=> {
std.debug.assert(symbol.tag == .data);
if (symbol.isUndefined()) {
return 0;
}
const va: i33 = @intCast(symbol.virtual_address);
return @intCast(va + relocation.addend);
},
.R_WASM_EVENT_INDEX_LEB => return symbol.index,
.R_WASM_SECTION_OFFSET_I32 => {
const target_atom_index = wasm.symbol_atom.get(target_loc).?;
const target_atom = wasm.getAtom(target_atom_index);
const rel_value: i33 = @intCast(target_atom.offset);
return @intCast(rel_value + relocation.addend);
},
.R_WASM_FUNCTION_OFFSET_I32 => {
if (symbol.isUndefined()) {
const val = atom.tombstone(wasm) orelse relocation.addend;
return @bitCast(val);
}
const target_atom_index = wasm.symbol_atom.get(target_loc).?;
const target_atom = wasm.getAtom(target_atom_index);
const rel_value: i33 = @intCast(target_atom.offset);
return @intCast(rel_value + relocation.addend);
},
.R_WASM_MEMORY_ADDR_TLS_SLEB,
.R_WASM_MEMORY_ADDR_TLS_SLEB64,
=> {
const va: i33 = @intCast(symbol.virtual_address);
return @intCast(va + relocation.addend);
},
}
}
// For a given `Atom` returns whether it has a tombstone value or not.
/// This defines whether we want a specific value when a section is dead.
fn tombstone(atom: Atom, wasm: *const Wasm) ?i64 {
const atom_name = wasm.symbolLocSymbol(atom.symbolLoc()).name;
if (atom_name == wasm.custom_sections.@".debug_ranges".name or
atom_name == wasm.custom_sections.@".debug_loc".name)
{
return -2;
} else if (std.mem.startsWith(u8, wasm.stringSlice(atom_name), ".debug_")) {
return -1;
} else {
return null;
}
}
};
pub const Relocation = struct {
/// Represents the type of the `Relocation`
relocation_type: RelocationType,
/// Offset of the value to rewrite relative to the relevant section's contents.
/// When `offset` is zero, its position is immediately after the id and size of the section.
offset: u32,
/// The index of the symbol used.
/// When the type is `R_WASM_TYPE_INDEX_LEB`, it represents the index of the type.
index: u32,
/// Addend to add to the address.
/// This field is only non-zero for `R_WASM_MEMORY_ADDR_*`, `R_WASM_FUNCTION_OFFSET_I32` and `R_WASM_SECTION_OFFSET_I32`.
addend: i32 = 0,
/// All possible relocation types currently existing.
/// This enum is exhaustive as the spec is WIP and new types
/// can be added which means that a generated binary will be invalid,
/// so instead we will show an error in such cases.
pub const RelocationType = enum(u8) {
R_WASM_FUNCTION_INDEX_LEB = 0,
R_WASM_TABLE_INDEX_SLEB = 1,
R_WASM_TABLE_INDEX_I32 = 2,
R_WASM_MEMORY_ADDR_LEB = 3,
R_WASM_MEMORY_ADDR_SLEB = 4,
R_WASM_MEMORY_ADDR_I32 = 5,
R_WASM_TYPE_INDEX_LEB = 6,
R_WASM_GLOBAL_INDEX_LEB = 7,
R_WASM_FUNCTION_OFFSET_I32 = 8,
R_WASM_SECTION_OFFSET_I32 = 9,
R_WASM_EVENT_INDEX_LEB = 10,
R_WASM_GLOBAL_INDEX_I32 = 13,
R_WASM_MEMORY_ADDR_LEB64 = 14,
R_WASM_MEMORY_ADDR_SLEB64 = 15,
R_WASM_MEMORY_ADDR_I64 = 16,
R_WASM_TABLE_INDEX_SLEB64 = 18,
R_WASM_TABLE_INDEX_I64 = 19,
R_WASM_TABLE_NUMBER_LEB = 20,
R_WASM_MEMORY_ADDR_TLS_SLEB = 21,
R_WASM_MEMORY_ADDR_TLS_SLEB64 = 25,
/// Returns true for relocation types where the `addend` field is present.
pub fn addendIsPresent(self: RelocationType) bool {
return switch (self) {
.R_WASM_MEMORY_ADDR_LEB,
.R_WASM_MEMORY_ADDR_SLEB,
.R_WASM_MEMORY_ADDR_I32,
.R_WASM_MEMORY_ADDR_LEB64,
.R_WASM_MEMORY_ADDR_SLEB64,
.R_WASM_MEMORY_ADDR_I64,
.R_WASM_MEMORY_ADDR_TLS_SLEB,
.R_WASM_MEMORY_ADDR_TLS_SLEB64,
.R_WASM_FUNCTION_OFFSET_I32,
.R_WASM_SECTION_OFFSET_I32,
=> true,
else => false,
};
}
};
/// Verifies the relocation type of a given `Relocation` and returns
/// true when the relocation references a function call or address to a function.
pub fn isFunction(self: Relocation) bool {
return switch (self.relocation_type) {
.R_WASM_FUNCTION_INDEX_LEB,
.R_WASM_TABLE_INDEX_SLEB,
=> true,
else => false,
};
}
pub fn format(self: Relocation, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = fmt;
_ = options;
try writer.print("{s} offset=0x{x:0>6} symbol={d}", .{
@tagName(self.relocation_type),
self.offset,
self.index,
});
}
};
/// Unlike the `Import` object defined by the wasm spec, and existing
/// in the std.wasm namespace, this construct saves the 'module name' and 'name'
/// of the import using offsets into a string table, rather than the slices itself.
/// This saves us (potentially) 24 bytes per import on 64bit machines.
pub const Import = struct {
module_name: String,
name: String,
kind: std.wasm.Import.Kind,
};
/// Unlike the `Export` object defined by the wasm spec, and existing
/// in the std.wasm namespace, this construct saves the 'name'
/// of the export using offsets into a string table, rather than the slice itself.
/// This saves us (potentially) 12 bytes per export on 64bit machines.
pub const Export = struct {
name: String,
index: u32,
kind: std.wasm.ExternalKind,
};
pub const SubsectionType = enum(u8) {
WASM_SEGMENT_INFO = 5,
WASM_INIT_FUNCS = 6,
WASM_COMDAT_INFO = 7,
WASM_SYMBOL_TABLE = 8,
};
pub const Alignment = @import("../InternPool.zig").Alignment;
pub const NamedSegment = struct {
/// Segment's name, encoded as UTF-8 bytes.
name: []const u8,
/// The required alignment of the segment, encoded as a power of 2
alignment: Alignment,
/// Bitfield containing flags for a segment
flags: u32,
pub fn isTLS(segment: NamedSegment) bool {
return segment.flags & @intFromEnum(Flags.WASM_SEG_FLAG_TLS) != 0;
}
/// Returns the name as how it will be output into the final object
/// file or binary. When `merge_segments` is true, this will return the
/// short name. i.e. ".rodata". When false, it returns the entire name instead.
pub fn outputName(segment: NamedSegment, merge_segments: bool) []const u8 {
if (segment.isTLS()) {
return ".tdata";
} else if (!merge_segments) {
return segment.name;
} else if (std.mem.startsWith(u8, segment.name, ".rodata.")) {
return ".rodata";
} else if (std.mem.startsWith(u8, segment.name, ".text.")) {
return ".text";
} else if (std.mem.startsWith(u8, segment.name, ".data.")) {
return ".data";
} else if (std.mem.startsWith(u8, segment.name, ".bss.")) {
return ".bss";
}
return segment.name;
}
pub const Flags = enum(u32) {
WASM_SEG_FLAG_STRINGS = 0x1,
WASM_SEG_FLAG_TLS = 0x2,
};
};
pub const InitFunc = struct {
/// Priority of the init function
priority: u32,
/// The symbol index of init function (not the function index).
symbol_index: u32,
};
pub const Comdat = struct {
name: []const u8,
/// Must be zero, no flags are currently defined by the tool-convention.
flags: u32,
symbols: []const ComdatSym,
};
pub const ComdatSym = struct {
kind: @This().Type,
/// Index of the data segment/function/global/event/table within a WASM module.
/// The object must not be an import.
index: u32,
pub const Type = enum(u8) {
WASM_COMDAT_DATA = 0,
WASM_COMDAT_FUNCTION = 1,
WASM_COMDAT_GLOBAL = 2,
WASM_COMDAT_EVENT = 3,
WASM_COMDAT_TABLE = 4,
WASM_COMDAT_SECTION = 5,
};
};
pub const Feature = struct {
/// Provides information about the usage of the feature.
/// - '0x2b' (+): Object uses this feature, and the link fails if feature is not in the allowed set.
/// - '0x2d' (-): Object does not use this feature, and the link fails if this feature is in the allowed set.
/// - '0x3d' (=): Object uses this feature, and the link fails if this feature is not in the allowed set,
/// or if any object does not use this feature.
prefix: Prefix,
/// Type of the feature, must be unique in the sequence of features.
tag: Tag,
/// Unlike `std.Target.wasm.Feature` this also contains linker-features such as shared-mem
pub const Tag = enum {
atomics,
bulk_memory,
exception_handling,
extended_const,
half_precision,
multimemory,
multivalue,
mutable_globals,
nontrapping_fptoint,
reference_types,
relaxed_simd,
sign_ext,
simd128,
tail_call,
shared_mem,
/// From a given cpu feature, returns its linker feature
pub fn fromCpuFeature(feature: std.Target.wasm.Feature) Tag {
return @as(Tag, @enumFromInt(@intFromEnum(feature)));
}
pub fn format(tag: Tag, comptime fmt: []const u8, opt: std.fmt.FormatOptions, writer: anytype) !void {
_ = fmt;
_ = opt;
try writer.writeAll(switch (tag) {
.atomics => "atomics",
.bulk_memory => "bulk-memory",
.exception_handling => "exception-handling",
.extended_const => "extended-const",
.half_precision => "half-precision",
.multimemory => "multimemory",
.multivalue => "multivalue",
.mutable_globals => "mutable-globals",
.nontrapping_fptoint => "nontrapping-fptoint",
.reference_types => "reference-types",
.relaxed_simd => "relaxed-simd",
.sign_ext => "sign-ext",
.simd128 => "simd128",
.tail_call => "tail-call",
.shared_mem => "shared-mem",
});
}
};
pub const Prefix = enum(u8) {
used = '+',
disallowed = '-',
required = '=',
};
pub fn format(feature: Feature, comptime fmt: []const u8, opt: std.fmt.FormatOptions, writer: anytype) !void {
_ = opt;
_ = fmt;
try writer.print("{c} {}", .{ feature.prefix, feature.tag });
}
};
pub const known_features = std.StaticStringMap(Feature.Tag).initComptime(.{
.{ "atomics", .atomics },
.{ "bulk-memory", .bulk_memory },
.{ "exception-handling", .exception_handling },
.{ "extended-const", .extended_const },
.{ "half-precision", .half_precision },
.{ "multimemory", .multimemory },
.{ "multivalue", .multivalue },
.{ "mutable-globals", .mutable_globals },
.{ "nontrapping-fptoint", .nontrapping_fptoint },
.{ "reference-types", .reference_types },
.{ "relaxed-simd", .relaxed_simd },
.{ "sign-ext", .sign_ext },
.{ "simd128", .simd128 },
.{ "tail-call", .tail_call },
.{ "shared-mem", .shared_mem },
});
/// Parses an object file into atoms, for code and data sections
fn parseSymbolIntoAtom(wasm: *Wasm, object_id: ObjectId, symbol_index: Symbol.Index) !Atom.Index {
const object = wasm.objectById(object_id) orelse
return wasm.zig_object.?.parseSymbolIntoAtom(wasm, symbol_index);
const comp = wasm.base.comp;
const gpa = comp.gpa;
const symbol = &object.symtable[@intFromEnum(symbol_index)];
const relocatable_data: Object.RelocatableData = switch (symbol.tag) {
.function => object.relocatable_data.get(.code).?[symbol.index - object.imported_functions_count],
.data => object.relocatable_data.get(.data).?[symbol.index],
.section => blk: {
const data = object.relocatable_data.get(.custom).?;
for (data) |dat| {
if (dat.section_index == symbol.index) {
break :blk dat;
}
}
unreachable;
},
else => unreachable,
};
const final_index = try wasm.getMatchingSegment(object_id, symbol_index);
const atom_index = try wasm.createAtom(symbol_index, object_id.toOptional());
try wasm.appendAtomAtIndex(final_index, atom_index);
const atom = wasm.getAtomPtr(atom_index);
atom.size = relocatable_data.size;
atom.alignment = relocatable_data.getAlignment(object);
atom.code = std.ArrayListUnmanaged(u8).fromOwnedSlice(relocatable_data.data[0..relocatable_data.size]);
atom.original_offset = relocatable_data.offset;
const segment = wasm.segmentPtr(final_index);
if (relocatable_data.type == .data) { //code section and custom sections are 1-byte aligned
segment.alignment = segment.alignment.max(atom.alignment);
}
if (object.relocations.get(relocatable_data.section_index)) |relocations| {
const start = searchRelocStart(relocations, relocatable_data.offset);
const len = searchRelocEnd(relocations[start..], relocatable_data.offset + atom.size);
atom.relocs = std.ArrayListUnmanaged(Wasm.Relocation).fromOwnedSlice(relocations[start..][0..len]);
for (atom.relocs.items) |reloc| {
switch (reloc.relocation_type) {
.R_WASM_TABLE_INDEX_I32,
.R_WASM_TABLE_INDEX_I64,
.R_WASM_TABLE_INDEX_SLEB,
.R_WASM_TABLE_INDEX_SLEB64,
=> {
try wasm.function_table.put(gpa, .{
.file = object_id.toOptional(),
.index = @enumFromInt(reloc.index),
}, 0);
},
.R_WASM_GLOBAL_INDEX_I32,
.R_WASM_GLOBAL_INDEX_LEB,
=> {
const sym = object.symtable[reloc.index];
if (sym.tag != .global) {
try wasm.got_symbols.append(gpa, .{
.file = object_id.toOptional(),
.index = @enumFromInt(reloc.index),
});
}
},
else => {},
}
}
}
return atom_index;
}
fn searchRelocStart(relocs: []const Wasm.Relocation, address: u32) usize {
var min: usize = 0;
var max: usize = relocs.len;
while (min < max) {
const index = (min + max) / 2;
const curr = relocs[index];
if (curr.offset < address) {
min = index + 1;
} else {
max = index;
}
}
return min;
}
fn searchRelocEnd(relocs: []const Wasm.Relocation, address: u32) usize {
for (relocs, 0..relocs.len) |reloc, index| {
if (reloc.offset > address) {
return index;
}
}
return relocs.len;
}
pub fn internString(wasm: *Wasm, bytes: []const u8) error{OutOfMemory}!String {
const gpa = wasm.base.comp.gpa;
const gop = try wasm.string_table.getOrPutContextAdapted(
gpa,
@as([]const u8, bytes),
@as(String.TableIndexAdapter, .{ .bytes = wasm.string_bytes.items }),
@as(String.TableContext, .{ .bytes = wasm.string_bytes.items }),
);
if (gop.found_existing) return gop.key_ptr.*;
try wasm.string_bytes.ensureUnusedCapacity(gpa, bytes.len + 1);
const new_off: String = @enumFromInt(wasm.string_bytes.items.len);
wasm.string_bytes.appendSliceAssumeCapacity(bytes);
wasm.string_bytes.appendAssumeCapacity(0);
gop.key_ptr.* = new_off;
return new_off;
}
pub fn getExistingString(wasm: *const Wasm, bytes: []const u8) ?String {
return wasm.string_table.getKeyAdapted(bytes, @as(String.TableIndexAdapter, .{
.bytes = wasm.string_bytes.items,
}));
}
pub fn stringSlice(wasm: *const Wasm, index: String) [:0]const u8 {
const slice = wasm.string_bytes.items[@intFromEnum(index)..];
return slice[0..mem.indexOfScalar(u8, slice, 0).? :0];
}
pub fn optionalStringSlice(wasm: *const Wasm, index: OptionalString) ?[:0]const u8 {
return stringSlice(wasm, index.unwrap() orelse return null);
}
pub fn castToString(wasm: *const Wasm, index: u32) String {
assert(index == 0 or wasm.string_bytes.items[index - 1] == 0);
return @enumFromInt(index);
}
fn segmentPtr(wasm: *const Wasm, index: Segment.Index) *Segment {
return &wasm.segments.items[@intFromEnum(index)];
}