zig/lib/std/fmt/parse_float/convert_slow.zig

120 lines
4.5 KiB
Zig

const std = @import("std");
const math = std.math;
const common = @import("common.zig");
const BiasedFp = common.BiasedFp;
const Decimal = @import("decimal.zig").Decimal;
const mantissaType = common.mantissaType;
const max_shift = 60;
const num_powers = 19;
const powers = [_]u8{ 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59 };
pub fn getShift(n: usize) usize {
return if (n < num_powers) powers[n] else max_shift;
}
/// Parse the significant digits and biased, binary exponent of a float.
///
/// This is a fallback algorithm that uses a big-integer representation
/// of the float, and therefore is considerably slower than faster
/// approximations. However, it will always determine how to round
/// the significant digits to the nearest machine float, allowing
/// use to handle near half-way cases.
///
/// Near half-way cases are halfway between two consecutive machine floats.
/// For example, the float `16777217.0` has a bitwise representation of
/// `100000000000000000000000 1`. Rounding to a single-precision float,
/// the trailing `1` is truncated. Using round-nearest, tie-even, any
/// value above `16777217.0` must be rounded up to `16777218.0`, while
/// any value before or equal to `16777217.0` must be rounded down
/// to `16777216.0`. These near-halfway conversions therefore may require
/// a large number of digits to unambiguously determine how to round.
///
/// The algorithms described here are based on "Processing Long Numbers Quickly",
/// available here: <https://arxiv.org/pdf/2101.11408.pdf#section.11>.
///
/// Note that this function needs a lot of stack space and is marked
/// cold to hint against inlining into the caller.
pub fn convertSlow(comptime T: type, s: []const u8) BiasedFp(T) {
@branchHint(.cold);
const MantissaT = mantissaType(T);
const min_exponent = -(1 << (math.floatExponentBits(T) - 1)) + 1;
const infinite_power = (1 << math.floatExponentBits(T)) - 1;
const fractional_bits = math.floatFractionalBits(T);
var d = Decimal(T).parse(s); // no need to recheck underscores
if (d.num_digits == 0 or d.decimal_point < Decimal(T).min_exponent) {
return BiasedFp(T).zero();
} else if (d.decimal_point >= Decimal(T).max_exponent) {
return BiasedFp(T).inf(T);
}
var exp2: i32 = 0;
// Shift right toward (1/2 .. 1]
while (d.decimal_point > 0) {
const n = @as(usize, @intCast(d.decimal_point));
const shift = getShift(n);
d.rightShift(shift);
if (d.decimal_point < -Decimal(T).decimal_point_range) {
return BiasedFp(T).zero();
}
exp2 += @as(i32, @intCast(shift));
}
// Shift left toward (1/2 .. 1]
while (d.decimal_point <= 0) {
const shift = blk: {
if (d.decimal_point == 0) {
break :blk switch (d.digits[0]) {
5...9 => break,
0, 1 => @as(usize, 2),
else => 1,
};
} else {
const n = @as(usize, @intCast(-d.decimal_point));
break :blk getShift(n);
}
};
d.leftShift(shift);
if (d.decimal_point > Decimal(T).decimal_point_range) {
return BiasedFp(T).inf(T);
}
exp2 -= @as(i32, @intCast(shift));
}
// We are now in the range [1/2 .. 1] but the binary format uses [1 .. 2]
exp2 -= 1;
while (min_exponent + 1 > exp2) {
var n = @as(usize, @intCast((min_exponent + 1) - exp2));
if (n > max_shift) {
n = max_shift;
}
d.rightShift(n);
exp2 += @as(i32, @intCast(n));
}
if (exp2 - min_exponent >= infinite_power) {
return BiasedFp(T).inf(T);
}
// Shift the decimal to the hidden bit, and then round the value
// to get the high mantissa+1 bits.
d.leftShift(fractional_bits + 1);
var mantissa = d.round();
if (mantissa >= (@as(MantissaT, 1) << (fractional_bits + 1))) {
// Rounding up overflowed to the carry bit, need to
// shift back to the hidden bit.
d.rightShift(1);
exp2 += 1;
mantissa = d.round();
if ((exp2 - min_exponent) >= infinite_power) {
return BiasedFp(T).inf(T);
}
}
var power2 = exp2 - min_exponent;
if (mantissa < (@as(MantissaT, 1) << fractional_bits)) {
power2 -= 1;
}
// Zero out all the bits above the mantissa bits.
mantissa &= (@as(MantissaT, 1) << math.floatMantissaBits(T)) - 1;
return .{ .f = mantissa, .e = power2 };
}