zig/lib/std/Thread/Pool.zig
2025-10-29 06:20:47 -07:00

368 lines
11 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const assert = std.debug.assert;
const WaitGroup = @import("WaitGroup.zig");
const Pool = @This();
mutex: std.Thread.Mutex = .{},
cond: std.Thread.Condition = .{},
run_queue: std.SinglyLinkedList = .{},
is_running: bool = true,
/// Must be a thread-safe allocator.
allocator: std.mem.Allocator,
threads: if (builtin.single_threaded) [0]std.Thread else []std.Thread,
ids: if (builtin.single_threaded) struct {
inline fn deinit(_: @This(), _: std.mem.Allocator) void {}
fn getIndex(_: @This(), _: std.Thread.Id) usize {
return 0;
}
} else std.AutoArrayHashMapUnmanaged(std.Thread.Id, void),
pub const Runnable = struct {
runFn: RunProto,
node: std.SinglyLinkedList.Node = .{},
};
pub const RunProto = *const fn (*Runnable, id: ?usize) void;
pub const Options = struct {
allocator: std.mem.Allocator,
n_jobs: ?usize = null,
track_ids: bool = false,
stack_size: usize = std.Thread.SpawnConfig.default_stack_size,
};
pub fn init(pool: *Pool, options: Options) !void {
const allocator = options.allocator;
pool.* = .{
.allocator = allocator,
.threads = if (builtin.single_threaded) .{} else &.{},
.ids = .{},
};
if (builtin.single_threaded) {
return;
}
const thread_count = options.n_jobs orelse @max(1, std.Thread.getCpuCount() catch 1);
if (options.track_ids) {
try pool.ids.ensureTotalCapacity(allocator, 1 + thread_count);
pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
}
// kill and join any threads we spawned and free memory on error.
pool.threads = try allocator.alloc(std.Thread, thread_count);
var spawned: usize = 0;
errdefer pool.join(spawned);
for (pool.threads) |*thread| {
thread.* = try std.Thread.spawn(.{
.stack_size = options.stack_size,
.allocator = allocator,
}, worker, .{pool});
spawned += 1;
}
}
pub fn deinit(pool: *Pool) void {
pool.join(pool.threads.len); // kill and join all threads.
pool.ids.deinit(pool.allocator);
pool.* = undefined;
}
fn join(pool: *Pool, spawned: usize) void {
if (builtin.single_threaded) {
return;
}
{
pool.mutex.lock();
defer pool.mutex.unlock();
// ensure future worker threads exit the dequeue loop
pool.is_running = false;
}
// wake up any sleeping threads (this can be done outside the mutex)
// then wait for all the threads we know are spawned to complete.
pool.cond.broadcast();
for (pool.threads[0..spawned]) |thread| {
thread.join();
}
pool.allocator.free(pool.threads);
}
/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
/// `WaitGroup.finish` after it returns.
///
/// In the case that queuing the function call fails to allocate memory, or the
/// target is single-threaded, the function is called directly.
pub fn spawnWg(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
wait_group.start();
if (builtin.single_threaded) {
@call(.auto, func, args);
wait_group.finish();
return;
}
const Args = @TypeOf(args);
const Closure = struct {
arguments: Args,
pool: *Pool,
runnable: Runnable = .{ .runFn = runFn },
wait_group: *WaitGroup,
fn runFn(runnable: *Runnable, _: ?usize) void {
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
@call(.auto, func, closure.arguments);
closure.wait_group.finish();
closure.pool.allocator.destroy(closure);
}
};
{
pool.mutex.lock();
const closure = pool.allocator.create(Closure) catch {
pool.mutex.unlock();
@call(.auto, func, args);
wait_group.finish();
return;
};
closure.* = .{
.arguments = args,
.pool = pool,
.wait_group = wait_group,
};
pool.run_queue.prepend(&closure.runnable.node);
pool.mutex.unlock();
}
// Notify waiting threads outside the lock to try and keep the critical section small.
pool.cond.signal();
}
/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
/// `WaitGroup.finish` after it returns.
///
/// The first argument passed to `func` is a dense `usize` thread id, the rest
/// of the arguments are passed from `args`. Requires the pool to have been
/// initialized with `.track_ids = true`.
///
/// In the case that queuing the function call fails to allocate memory, or the
/// target is single-threaded, the function is called directly.
pub fn spawnWgId(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
wait_group.start();
if (builtin.single_threaded) {
@call(.auto, func, .{0} ++ args);
wait_group.finish();
return;
}
const Args = @TypeOf(args);
const Closure = struct {
arguments: Args,
pool: *Pool,
runnable: Runnable = .{ .runFn = runFn },
wait_group: *WaitGroup,
fn runFn(runnable: *Runnable, id: ?usize) void {
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
@call(.auto, func, .{id.?} ++ closure.arguments);
closure.wait_group.finish();
closure.pool.allocator.destroy(closure);
}
};
{
pool.mutex.lock();
const closure = pool.allocator.create(Closure) catch {
const id: ?usize = pool.ids.getIndex(std.Thread.getCurrentId());
pool.mutex.unlock();
@call(.auto, func, .{id.?} ++ args);
wait_group.finish();
return;
};
closure.* = .{
.arguments = args,
.pool = pool,
.wait_group = wait_group,
};
pool.run_queue.prepend(&closure.runnable.node);
pool.mutex.unlock();
}
// Notify waiting threads outside the lock to try and keep the critical section small.
pool.cond.signal();
}
pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) !void {
if (builtin.single_threaded) {
@call(.auto, func, args);
return;
}
const Args = @TypeOf(args);
const Closure = struct {
arguments: Args,
pool: *Pool,
runnable: Runnable = .{ .runFn = runFn },
fn runFn(runnable: *Runnable, _: ?usize) void {
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
@call(.auto, func, closure.arguments);
closure.pool.allocator.destroy(closure);
}
};
{
pool.mutex.lock();
defer pool.mutex.unlock();
const closure = try pool.allocator.create(Closure);
closure.* = .{
.arguments = args,
.pool = pool,
};
pool.run_queue.prepend(&closure.runnable.node);
}
// Notify waiting threads outside the lock to try and keep the critical section small.
pool.cond.signal();
}
test spawn {
const TestFn = struct {
fn checkRun(completed: *bool) void {
completed.* = true;
}
};
var completed: bool = false;
{
var pool: Pool = undefined;
try pool.init(.{
.allocator = std.testing.allocator,
});
defer pool.deinit();
try pool.spawn(TestFn.checkRun, .{&completed});
}
try std.testing.expectEqual(true, completed);
}
fn worker(pool: *Pool) void {
pool.mutex.lock();
defer pool.mutex.unlock();
const id: ?usize = if (pool.ids.count() > 0) @intCast(pool.ids.count()) else null;
if (id) |_| pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
while (true) {
while (pool.run_queue.popFirst()) |run_node| {
// Temporarily unlock the mutex in order to execute the run_node
pool.mutex.unlock();
defer pool.mutex.lock();
const runnable: *Runnable = @fieldParentPtr("node", run_node);
runnable.runFn(runnable, id);
}
// Stop executing instead of waiting if the thread pool is no longer running.
if (pool.is_running) {
pool.cond.wait(&pool.mutex);
} else {
break;
}
}
}
pub fn waitAndWork(pool: *Pool, wait_group: *WaitGroup) void {
var id: ?usize = null;
while (!wait_group.isDone()) {
pool.mutex.lock();
if (pool.run_queue.popFirst()) |run_node| {
id = id orelse pool.ids.getIndex(std.Thread.getCurrentId());
pool.mutex.unlock();
const runnable: *Runnable = @fieldParentPtr("node", run_node);
runnable.runFn(runnable, id);
continue;
}
pool.mutex.unlock();
wait_group.wait();
return;
}
}
pub fn getIdCount(pool: *Pool) usize {
return @intCast(1 + pool.threads.len);
}
const AsyncClosure = struct {
func: *const fn (context: ?*anyopaque, result: *anyopaque) void,
context: ?*anyopaque,
run_node: std.Thread.Pool.RunQueue.Node = .{ .data = .{ .runFn = runFn } },
reset_event: std.Thread.ResetEvent,
fn runFn(runnable: *std.Thread.Pool.Runnable, _: ?usize) void {
const run_node: *std.Thread.Pool.RunQueue.Node = @fieldParentPtr("data", runnable);
const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node));
closure.func(closure.context, closure.resultPointer());
closure.reset_event.set();
}
fn resultPointer(closure: *@This()) [*]u8 {
const base: [*]u8 = @ptrCast(closure);
return base + @sizeOf(@This());
}
};
pub fn @"async"(
userdata: ?*anyopaque,
eager_result: []u8,
context: ?*anyopaque,
start: *const fn (context: ?*anyopaque, result: *anyopaque) void,
) ?*std.Io.AnyFuture {
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
pool.mutex.lock();
const gpa = pool.allocator;
const n = @sizeOf(AsyncClosure) + eager_result.len;
const closure: *AsyncClosure = @alignCast(@ptrCast(gpa.alignedAlloc(u8, @alignOf(AsyncClosure), n) catch {
pool.mutex.unlock();
start(context, eager_result.ptr);
return null;
}));
closure.* = .{
.func = start,
.context = context,
.reset_event = .{},
};
pool.run_queue.prepend(&closure.run_node);
pool.mutex.unlock();
pool.cond.signal();
return @ptrCast(closure);
}
pub fn @"await"(userdata: ?*anyopaque, any_future: *std.Io.AnyFuture, result: []u8) void {
const thread_pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
const closure: *AsyncClosure = @ptrCast(@alignCast(any_future));
closure.reset_event.wait();
const base: [*]align(@alignOf(AsyncClosure)) u8 = @ptrCast(closure);
@memcpy(result, (base + @sizeOf(AsyncClosure))[0..result.len]);
thread_pool.allocator.free(base[0 .. @sizeOf(AsyncClosure) + result.len]);
}