mirror of
https://github.com/ziglang/zig.git
synced 2025-12-27 00:23:22 +00:00
Lazily load object files by default, and only load the object file when an unresolved symbol has been found within an archive.
3117 lines
122 KiB
Zig
3117 lines
122 KiB
Zig
const Wasm = @This();
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const mem = std.mem;
|
|
const Allocator = std.mem.Allocator;
|
|
const assert = std.debug.assert;
|
|
const fs = std.fs;
|
|
const leb = std.leb;
|
|
const log = std.log.scoped(.link);
|
|
const wasm = std.wasm;
|
|
|
|
const Atom = @import("Wasm/Atom.zig");
|
|
const Dwarf = @import("Dwarf.zig");
|
|
const Module = @import("../Module.zig");
|
|
const Compilation = @import("../Compilation.zig");
|
|
const CodeGen = @import("../arch/wasm/CodeGen.zig");
|
|
const codegen = @import("../codegen.zig");
|
|
const link = @import("../link.zig");
|
|
const lldMain = @import("../main.zig").lldMain;
|
|
const trace = @import("../tracy.zig").trace;
|
|
const build_options = @import("build_options");
|
|
const wasi_libc = @import("../wasi_libc.zig");
|
|
const Cache = @import("../Cache.zig");
|
|
const Type = @import("../type.zig").Type;
|
|
const TypedValue = @import("../TypedValue.zig");
|
|
const LlvmObject = @import("../codegen/llvm.zig").Object;
|
|
const Air = @import("../Air.zig");
|
|
const Liveness = @import("../Liveness.zig");
|
|
const Symbol = @import("Wasm/Symbol.zig");
|
|
const Object = @import("Wasm/Object.zig");
|
|
const Archive = @import("Wasm/Archive.zig");
|
|
const types = @import("Wasm/types.zig");
|
|
|
|
pub const base_tag = link.File.Tag.wasm;
|
|
|
|
/// deprecated: Use `@import("Wasm/Atom.zig");`
|
|
pub const DeclBlock = Atom;
|
|
|
|
base: link.File,
|
|
/// Output name of the file
|
|
name: []const u8,
|
|
/// If this is not null, an object file is created by LLVM and linked with LLD afterwards.
|
|
llvm_object: ?*LlvmObject = null,
|
|
/// When importing objects from the host environment, a name must be supplied.
|
|
/// LLVM uses "env" by default when none is given. This would be a good default for Zig
|
|
/// to support existing code.
|
|
/// TODO: Allow setting this through a flag?
|
|
host_name: []const u8 = "env",
|
|
/// List of all `Decl` that are currently alive.
|
|
/// This is ment for bookkeeping so we can safely cleanup all codegen memory
|
|
/// when calling `deinit`
|
|
decls: std.AutoHashMapUnmanaged(Module.Decl.Index, void) = .{},
|
|
/// List of all symbols generated by Zig code.
|
|
symbols: std.ArrayListUnmanaged(Symbol) = .{},
|
|
/// List of symbol indexes which are free to be used.
|
|
symbols_free_list: std.ArrayListUnmanaged(u32) = .{},
|
|
/// Maps atoms to their segment index
|
|
atoms: std.AutoHashMapUnmanaged(u32, *Atom) = .{},
|
|
/// Atoms managed and created by the linker. This contains atoms
|
|
/// from object files, and not Atoms generated by a Decl.
|
|
managed_atoms: std.ArrayListUnmanaged(*Atom) = .{},
|
|
/// Represents the index into `segments` where the 'code' section
|
|
/// lives.
|
|
code_section_index: ?u32 = null,
|
|
/// The index of the segment representing the custom '.debug_info' section.
|
|
debug_info_index: ?u32 = null,
|
|
/// The index of the segment representing the custom '.debug_line' section.
|
|
debug_line_index: ?u32 = null,
|
|
/// The count of imported functions. This number will be appended
|
|
/// to the function indexes as their index starts at the lowest non-extern function.
|
|
imported_functions_count: u32 = 0,
|
|
/// The count of imported wasm globals. This number will be appended
|
|
/// to the global indexes when sections are merged.
|
|
imported_globals_count: u32 = 0,
|
|
/// The count of imported tables. This number will be appended
|
|
/// to the table indexes when sections are merged.
|
|
imported_tables_count: u32 = 0,
|
|
/// Map of symbol locations, represented by its `types.Import`
|
|
imports: std.AutoHashMapUnmanaged(SymbolLoc, types.Import) = .{},
|
|
/// Represents non-synthetic section entries.
|
|
/// Used for code, data and custom sections.
|
|
segments: std.ArrayListUnmanaged(Segment) = .{},
|
|
/// Maps a data segment key (such as .rodata) to the index into `segments`.
|
|
data_segments: std.StringArrayHashMapUnmanaged(u32) = .{},
|
|
/// A list of `types.Segment` which provide meta data
|
|
/// about a data symbol such as its name
|
|
segment_info: std.ArrayListUnmanaged(types.Segment) = .{},
|
|
/// Deduplicated string table for strings used by symbols, imports and exports.
|
|
string_table: StringTable = .{},
|
|
/// Debug information for wasm
|
|
dwarf: ?Dwarf = null,
|
|
|
|
// *debug information* //
|
|
/// Contains all bytes for the '.debug_info' section
|
|
debug_info: std.ArrayListUnmanaged(u8) = .{},
|
|
/// Contains all bytes for the '.debug_line' section
|
|
debug_line: std.ArrayListUnmanaged(u8) = .{},
|
|
/// Contains all bytes for the '.debug_abbrev' section
|
|
debug_abbrev: std.ArrayListUnmanaged(u8) = .{},
|
|
/// Contains all bytes for the '.debug_ranges' section
|
|
debug_aranges: std.ArrayListUnmanaged(u8) = .{},
|
|
|
|
// Output sections
|
|
/// Output type section
|
|
func_types: std.ArrayListUnmanaged(wasm.Type) = .{},
|
|
/// Output function section where the key is the original
|
|
/// function index and the value is function.
|
|
/// This allows us to map multiple symbols to the same function.
|
|
functions: std.AutoArrayHashMapUnmanaged(struct { file: ?u16, index: u32 }, wasm.Func) = .{},
|
|
/// Output global section
|
|
wasm_globals: std.ArrayListUnmanaged(wasm.Global) = .{},
|
|
/// Memory section
|
|
memories: wasm.Memory = .{ .limits = .{ .min = 0, .max = null } },
|
|
/// Output table section
|
|
tables: std.ArrayListUnmanaged(wasm.Table) = .{},
|
|
/// Output export section
|
|
exports: std.ArrayListUnmanaged(types.Export) = .{},
|
|
|
|
/// Indirect function table, used to call function pointers
|
|
/// When this is non-zero, we must emit a table entry,
|
|
/// as well as an 'elements' section.
|
|
///
|
|
/// Note: Key is symbol location, value represents the index into the table
|
|
function_table: std.AutoHashMapUnmanaged(SymbolLoc, u32) = .{},
|
|
|
|
/// All object files and their data which are linked into the final binary
|
|
objects: std.ArrayListUnmanaged(Object) = .{},
|
|
/// All archive files that are lazy loaded.
|
|
/// e.g. when an undefined symbol references a symbol from the archive.
|
|
archives: std.ArrayListUnmanaged(Archive) = .{},
|
|
|
|
/// A map of global names (read: offset into string table) to their symbol location
|
|
globals: std.AutoHashMapUnmanaged(u32, SymbolLoc) = .{},
|
|
/// Maps discarded symbols and their positions to the location of the symbol
|
|
/// it was resolved to
|
|
discarded: std.AutoHashMapUnmanaged(SymbolLoc, SymbolLoc) = .{},
|
|
/// List of all symbol locations which have been resolved by the linker and will be emit
|
|
/// into the final binary.
|
|
resolved_symbols: std.AutoArrayHashMapUnmanaged(SymbolLoc, void) = .{},
|
|
/// Symbols that remain undefined after symbol resolution.
|
|
undefs: std.StringArrayHashMapUnmanaged(SymbolLoc) = .{},
|
|
/// Maps a symbol's location to an atom. This can be used to find meta
|
|
/// data of a symbol, such as its size, or its offset to perform a relocation.
|
|
/// Undefined (and synthetic) symbols do not have an Atom and therefore cannot be mapped.
|
|
symbol_atom: std.AutoHashMapUnmanaged(SymbolLoc, *Atom) = .{},
|
|
/// Maps a symbol's location to its export name, which may differ from the decl's name
|
|
/// which does the exporting.
|
|
/// Note: The value represents the offset into the string table, rather than the actual string.
|
|
export_names: std.AutoHashMapUnmanaged(SymbolLoc, u32) = .{},
|
|
|
|
/// Represents the symbol index of the error name table
|
|
/// When this is `null`, no code references an error using runtime `@errorName`.
|
|
/// During initializion, a symbol with corresponding atom will be created that is
|
|
/// used to perform relocations to the pointer of this table.
|
|
/// The actual table is populated during `flush`.
|
|
error_table_symbol: ?u32 = null,
|
|
|
|
pub const Segment = struct {
|
|
alignment: u32,
|
|
size: u32,
|
|
offset: u32,
|
|
};
|
|
|
|
pub const FnData = struct {
|
|
/// Reference to the wasm type that represents this function.
|
|
type_index: u32,
|
|
/// Contains debug information related to this function.
|
|
/// For Wasm, the offset is relative to the code-section.
|
|
src_fn: Dwarf.SrcFn,
|
|
|
|
pub const empty: FnData = .{
|
|
.type_index = undefined,
|
|
.src_fn = Dwarf.SrcFn.empty,
|
|
};
|
|
};
|
|
|
|
pub const Export = struct {
|
|
sym_index: ?u32 = null,
|
|
};
|
|
|
|
pub const SymbolLoc = struct {
|
|
/// The index of the symbol within the specified file
|
|
index: u32,
|
|
/// The index of the object file where the symbol resides.
|
|
/// When this is `null` the symbol comes from a non-object file.
|
|
file: ?u16,
|
|
|
|
/// From a given location, returns the corresponding symbol in the wasm binary
|
|
pub fn getSymbol(self: SymbolLoc, wasm_bin: *const Wasm) *Symbol {
|
|
if (wasm_bin.discarded.get(self)) |new_loc| {
|
|
return new_loc.getSymbol(wasm_bin);
|
|
}
|
|
if (self.file) |object_index| {
|
|
const object = wasm_bin.objects.items[object_index];
|
|
return &object.symtable[self.index];
|
|
}
|
|
return &wasm_bin.symbols.items[self.index];
|
|
}
|
|
|
|
/// From a given location, returns the name of the symbol.
|
|
pub fn getName(self: SymbolLoc, wasm_bin: *const Wasm) []const u8 {
|
|
if (wasm_bin.discarded.get(self)) |new_loc| {
|
|
return new_loc.getName(wasm_bin);
|
|
}
|
|
if (self.file) |object_index| {
|
|
const object = wasm_bin.objects.items[object_index];
|
|
return object.string_table.get(object.symtable[self.index].name);
|
|
}
|
|
return wasm_bin.string_table.get(wasm_bin.symbols.items[self.index].name);
|
|
}
|
|
};
|
|
|
|
/// Generic string table that duplicates strings
|
|
/// and converts them into offsets instead.
|
|
pub const StringTable = struct {
|
|
/// Table that maps string offsets, which is used to de-duplicate strings.
|
|
/// Rather than having the offset map to the data, the `StringContext` holds all bytes of the string.
|
|
/// The strings are stored as a contigious array where each string is zero-terminated.
|
|
string_table: std.HashMapUnmanaged(
|
|
u32,
|
|
void,
|
|
std.hash_map.StringIndexContext,
|
|
std.hash_map.default_max_load_percentage,
|
|
) = .{},
|
|
/// Holds the actual data of the string table.
|
|
string_data: std.ArrayListUnmanaged(u8) = .{},
|
|
|
|
/// Accepts a string and searches for a corresponding string.
|
|
/// When found, de-duplicates the string and returns the existing offset instead.
|
|
/// When the string is not found in the `string_table`, a new entry will be inserted
|
|
/// and the new offset to its data will be returned.
|
|
pub fn put(self: *StringTable, allocator: Allocator, string: []const u8) !u32 {
|
|
const gop = try self.string_table.getOrPutContextAdapted(
|
|
allocator,
|
|
string,
|
|
std.hash_map.StringIndexAdapter{ .bytes = &self.string_data },
|
|
.{ .bytes = &self.string_data },
|
|
);
|
|
if (gop.found_existing) {
|
|
const off = gop.key_ptr.*;
|
|
log.debug("reusing string '{s}' at offset 0x{x}", .{ string, off });
|
|
return off;
|
|
}
|
|
|
|
try self.string_data.ensureUnusedCapacity(allocator, string.len + 1);
|
|
const offset = @intCast(u32, self.string_data.items.len);
|
|
|
|
log.debug("writing new string '{s}' at offset 0x{x}", .{ string, offset });
|
|
|
|
self.string_data.appendSliceAssumeCapacity(string);
|
|
self.string_data.appendAssumeCapacity(0);
|
|
|
|
gop.key_ptr.* = offset;
|
|
|
|
return offset;
|
|
}
|
|
|
|
/// From a given offset, returns its corresponding string value.
|
|
/// Asserts offset does not exceed bounds.
|
|
pub fn get(self: StringTable, off: u32) []const u8 {
|
|
assert(off < self.string_data.items.len);
|
|
return mem.sliceTo(@ptrCast([*:0]const u8, self.string_data.items.ptr + off), 0);
|
|
}
|
|
|
|
/// Returns the offset of a given string when it exists.
|
|
/// Will return null if the given string does not yet exist within the string table.
|
|
pub fn getOffset(self: *StringTable, string: []const u8) ?u32 {
|
|
return self.string_table.getKeyAdapted(
|
|
string,
|
|
std.hash_map.StringIndexAdapter{ .bytes = &self.string_data },
|
|
);
|
|
}
|
|
|
|
/// Frees all resources of the string table. Any references pointing
|
|
/// to the strings will be invalid.
|
|
pub fn deinit(self: *StringTable, allocator: Allocator) void {
|
|
self.string_data.deinit(allocator);
|
|
self.string_table.deinit(allocator);
|
|
self.* = undefined;
|
|
}
|
|
};
|
|
|
|
pub fn openPath(allocator: Allocator, sub_path: []const u8, options: link.Options) !*Wasm {
|
|
assert(options.object_format == .wasm);
|
|
|
|
if (build_options.have_llvm and options.use_llvm) {
|
|
return createEmpty(allocator, options);
|
|
}
|
|
|
|
const wasm_bin = try createEmpty(allocator, options);
|
|
errdefer wasm_bin.base.destroy();
|
|
|
|
// TODO: read the file and keep valid parts instead of truncating
|
|
const file = try options.emit.?.directory.handle.createFile(sub_path, .{ .truncate = true, .read = true });
|
|
wasm_bin.base.file = file;
|
|
wasm_bin.name = sub_path;
|
|
|
|
try file.writeAll(&(wasm.magic ++ wasm.version));
|
|
|
|
// As sym_index '0' is reserved, we use it for our stack pointer symbol
|
|
const sym_name = try wasm_bin.string_table.put(allocator, "__stack_pointer");
|
|
const symbol = try wasm_bin.symbols.addOne(allocator);
|
|
symbol.* = .{
|
|
.name = sym_name,
|
|
.tag = .global,
|
|
.flags = 0,
|
|
.index = 0,
|
|
};
|
|
const loc: SymbolLoc = .{ .file = null, .index = 0 };
|
|
try wasm_bin.resolved_symbols.putNoClobber(allocator, loc, {});
|
|
try wasm_bin.globals.putNoClobber(allocator, sym_name, loc);
|
|
|
|
// For object files we will import the stack pointer symbol
|
|
if (options.output_mode == .Obj) {
|
|
symbol.setUndefined(true);
|
|
try wasm_bin.imports.putNoClobber(
|
|
allocator,
|
|
.{ .file = null, .index = 0 },
|
|
.{
|
|
.module_name = try wasm_bin.string_table.put(allocator, wasm_bin.host_name),
|
|
.name = sym_name,
|
|
.kind = .{ .global = .{ .valtype = .i32, .mutable = true } },
|
|
},
|
|
);
|
|
} else {
|
|
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
|
|
const global = try wasm_bin.wasm_globals.addOne(allocator);
|
|
global.* = .{
|
|
.global_type = .{
|
|
.valtype = .i32,
|
|
.mutable = true,
|
|
},
|
|
.init = .{ .i32_const = 0 },
|
|
};
|
|
}
|
|
|
|
return wasm_bin;
|
|
}
|
|
|
|
pub fn createEmpty(gpa: Allocator, options: link.Options) !*Wasm {
|
|
const self = try gpa.create(Wasm);
|
|
errdefer gpa.destroy(self);
|
|
self.* = .{
|
|
.base = .{
|
|
.tag = .wasm,
|
|
.options = options,
|
|
.file = null,
|
|
.allocator = gpa,
|
|
},
|
|
.name = undefined,
|
|
};
|
|
|
|
if (!options.strip and options.module != null) {
|
|
self.dwarf = Dwarf.init(gpa, .wasm, options.target);
|
|
}
|
|
|
|
const use_llvm = build_options.have_llvm and options.use_llvm;
|
|
const use_stage1 = build_options.is_stage1 and options.use_stage1;
|
|
if (use_llvm and !use_stage1) {
|
|
self.llvm_object = try LlvmObject.create(gpa, options);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
fn parseInputFiles(self: *Wasm, files: []const []const u8) !void {
|
|
for (files) |path| {
|
|
if (try self.parseObjectFile(path)) continue;
|
|
if (try self.parseArchive(path, false)) continue; // load archives lazily
|
|
log.warn("Unexpected file format at path: '{s}'", .{path});
|
|
}
|
|
}
|
|
|
|
/// Parses the object file from given path. Returns true when the given file was an object
|
|
/// file and parsed successfully. Returns false when file is not an object file.
|
|
/// May return an error instead when parsing failed.
|
|
fn parseObjectFile(self: *Wasm, path: []const u8) !bool {
|
|
const file = try fs.cwd().openFile(path, .{});
|
|
errdefer file.close();
|
|
|
|
var object = Object.create(self.base.allocator, file, path) catch |err| switch (err) {
|
|
error.InvalidMagicByte, error.NotObjectFile => return false,
|
|
else => |e| return e,
|
|
};
|
|
errdefer object.deinit(self.base.allocator);
|
|
try self.objects.append(self.base.allocator, object);
|
|
return true;
|
|
}
|
|
|
|
/// Parses an archive file and will then parse each object file
|
|
/// that was found in the archive file.
|
|
/// Returns false when the file is not an archive file.
|
|
/// May return an error instead when parsing failed.
|
|
///
|
|
/// When `force_load` is `true`, it will for link all object files in the archive.
|
|
/// When false, it will only link with object files that contain symbols that
|
|
/// are referenced by other object files or Zig code.
|
|
fn parseArchive(self: *Wasm, path: []const u8, force_load: bool) !bool {
|
|
const file = try fs.cwd().openFile(path, .{});
|
|
errdefer file.close();
|
|
|
|
var archive: Archive = .{
|
|
.file = file,
|
|
.name = path,
|
|
};
|
|
archive.parse(self.base.allocator) catch |err| switch (err) {
|
|
error.EndOfStream, error.NotArchive => {
|
|
archive.deinit(self.base.allocator);
|
|
return false;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
|
|
if (!force_load) {
|
|
errdefer archive.deinit(self.base.allocator);
|
|
try self.archives.append(self.base.allocator, archive);
|
|
return true;
|
|
}
|
|
defer archive.deinit(self.base.allocator);
|
|
|
|
// In this case we must force link all embedded object files within the archive
|
|
// We loop over all symbols, and then group them by offset as the offset
|
|
// notates where the object file starts.
|
|
var offsets = std.AutoArrayHashMap(u32, void).init(self.base.allocator);
|
|
defer offsets.deinit();
|
|
for (archive.toc.values()) |symbol_offsets| {
|
|
for (symbol_offsets.items) |sym_offset| {
|
|
try offsets.put(sym_offset, {});
|
|
}
|
|
}
|
|
|
|
for (offsets.keys()) |file_offset| {
|
|
const object = try self.objects.addOne(self.base.allocator);
|
|
object.* = try archive.parseObject(self.base.allocator, file_offset);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
fn resolveSymbolsInObject(self: *Wasm, object_index: u16) !void {
|
|
const object: Object = self.objects.items[object_index];
|
|
log.debug("Resolving symbols in object: '{s}'", .{object.name});
|
|
|
|
for (object.symtable) |symbol, i| {
|
|
const sym_index = @intCast(u32, i);
|
|
const location: SymbolLoc = .{
|
|
.file = object_index,
|
|
.index = sym_index,
|
|
};
|
|
const sym_name = object.string_table.get(symbol.name);
|
|
if (mem.eql(u8, sym_name, "__indirect_function_table")) {
|
|
continue;
|
|
}
|
|
const sym_name_index = try self.string_table.put(self.base.allocator, sym_name);
|
|
|
|
if (symbol.isLocal()) {
|
|
if (symbol.isUndefined()) {
|
|
log.err("Local symbols are not allowed to reference imports", .{});
|
|
log.err(" symbol '{s}' defined in '{s}'", .{ sym_name, object.name });
|
|
return error.undefinedLocal;
|
|
}
|
|
try self.resolved_symbols.putNoClobber(self.base.allocator, location, {});
|
|
continue;
|
|
}
|
|
|
|
// TODO: Store undefined symbols so we can verify at the end if they've all been found
|
|
// if not, emit an error (unless --allow-undefined is enabled).
|
|
const maybe_existing = try self.globals.getOrPut(self.base.allocator, sym_name_index);
|
|
if (!maybe_existing.found_existing) {
|
|
maybe_existing.value_ptr.* = location;
|
|
try self.resolved_symbols.putNoClobber(self.base.allocator, location, {});
|
|
|
|
if (symbol.isUndefined()) {
|
|
try self.undefs.putNoClobber(self.base.allocator, sym_name, location);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const existing_loc = maybe_existing.value_ptr.*;
|
|
const existing_sym: *Symbol = existing_loc.getSymbol(self);
|
|
|
|
const existing_file_path = if (existing_loc.file) |file| blk: {
|
|
break :blk self.objects.items[file].name;
|
|
} else self.name;
|
|
|
|
if (!existing_sym.isUndefined()) {
|
|
if (!symbol.isUndefined()) {
|
|
log.err("symbol '{s}' defined multiple times", .{sym_name});
|
|
log.err(" first definition in '{s}'", .{existing_file_path});
|
|
log.err(" next definition in '{s}'", .{object.name});
|
|
return error.SymbolCollision;
|
|
}
|
|
|
|
continue; // Do not overwrite defined symbols with undefined symbols
|
|
}
|
|
|
|
if (symbol.tag != existing_sym.tag) {
|
|
log.err("symbol '{s}' mismatching type '{s}", .{ sym_name, @tagName(symbol.tag) });
|
|
log.err(" first definition in '{s}'", .{existing_file_path});
|
|
log.err(" next definition in '{s}'", .{object.name});
|
|
return error.SymbolMismatchingType;
|
|
}
|
|
|
|
// when both symbols are weak, we skip overwriting
|
|
if (existing_sym.isWeak() and symbol.isWeak()) {
|
|
continue;
|
|
}
|
|
|
|
// simply overwrite with the new symbol
|
|
log.debug("Overwriting symbol '{s}'", .{sym_name});
|
|
log.debug(" old definition in '{s}'", .{existing_file_path});
|
|
log.debug(" new definition in '{s}'", .{object.name});
|
|
try self.discarded.putNoClobber(self.base.allocator, maybe_existing.value_ptr.*, location);
|
|
maybe_existing.value_ptr.* = location;
|
|
try self.globals.put(self.base.allocator, sym_name_index, location);
|
|
try self.resolved_symbols.put(self.base.allocator, location, {});
|
|
assert(self.resolved_symbols.swapRemove(existing_loc));
|
|
if (existing_sym.isUndefined()) {
|
|
// ensure order remains intact in case we later
|
|
// resolve symbols again in a loop
|
|
assert(self.undefs.orderedRemove(sym_name));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolveSymbolsInArchives(self: *Wasm) !void {
|
|
if (self.archives.items.len == 0) return;
|
|
|
|
log.debug("Resolving symbols in archives", .{});
|
|
var index: u32 = 0;
|
|
undef_loop: while (index < self.undefs.count()) {
|
|
const undef_sym_loc = self.undefs.values()[index];
|
|
const sym_name = undef_sym_loc.getName(self);
|
|
|
|
for (self.archives.items) |archive| {
|
|
const offset = archive.toc.get(sym_name) orelse {
|
|
// symbol does not exist in this archive
|
|
continue;
|
|
};
|
|
|
|
// Symbol is found in unparsed object file within current archive.
|
|
// Parse object and and resolve symbols again before we check remaining
|
|
// undefined symbols.
|
|
const object_file_index = @intCast(u16, self.objects.items.len);
|
|
const object = try self.objects.addOne(self.base.allocator);
|
|
object.* = try archive.parseObject(self.base.allocator, offset.items[0]);
|
|
try self.resolveSymbolsInObject(object_file_index);
|
|
|
|
// continue loop for any remaining undefined symbols that still exist
|
|
// after resolving last object file
|
|
continue :undef_loop;
|
|
}
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
pub fn deinit(self: *Wasm) void {
|
|
const gpa = self.base.allocator;
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| llvm_object.destroy(gpa);
|
|
}
|
|
|
|
if (self.base.options.module) |mod| {
|
|
var decl_it = self.decls.keyIterator();
|
|
while (decl_it.next()) |decl_index_ptr| {
|
|
const decl = mod.declPtr(decl_index_ptr.*);
|
|
decl.link.wasm.deinit(gpa);
|
|
}
|
|
} else {
|
|
assert(self.decls.count() == 0);
|
|
}
|
|
|
|
for (self.func_types.items) |*func_type| {
|
|
func_type.deinit(gpa);
|
|
}
|
|
for (self.segment_info.items) |segment_info| {
|
|
gpa.free(segment_info.name);
|
|
}
|
|
for (self.objects.items) |*object| {
|
|
object.file.?.close();
|
|
object.deinit(gpa);
|
|
}
|
|
|
|
self.decls.deinit(gpa);
|
|
self.symbols.deinit(gpa);
|
|
self.symbols_free_list.deinit(gpa);
|
|
self.globals.deinit(gpa);
|
|
self.resolved_symbols.deinit(gpa);
|
|
self.discarded.deinit(gpa);
|
|
self.symbol_atom.deinit(gpa);
|
|
self.export_names.deinit(gpa);
|
|
self.atoms.deinit(gpa);
|
|
for (self.managed_atoms.items) |managed_atom| {
|
|
managed_atom.deinit(gpa);
|
|
gpa.destroy(managed_atom);
|
|
}
|
|
self.managed_atoms.deinit(gpa);
|
|
self.segments.deinit(gpa);
|
|
self.data_segments.deinit(gpa);
|
|
self.segment_info.deinit(gpa);
|
|
self.objects.deinit(gpa);
|
|
|
|
// free output sections
|
|
self.imports.deinit(gpa);
|
|
self.func_types.deinit(gpa);
|
|
self.functions.deinit(gpa);
|
|
self.wasm_globals.deinit(gpa);
|
|
self.function_table.deinit(gpa);
|
|
self.tables.deinit(gpa);
|
|
self.exports.deinit(gpa);
|
|
|
|
self.string_table.deinit(gpa);
|
|
|
|
if (self.dwarf) |*dwarf| {
|
|
dwarf.deinit();
|
|
}
|
|
|
|
self.debug_info.deinit(gpa);
|
|
self.debug_line.deinit(gpa);
|
|
self.debug_abbrev.deinit(gpa);
|
|
self.debug_aranges.deinit(gpa);
|
|
}
|
|
|
|
pub fn allocateDeclIndexes(self: *Wasm, decl_index: Module.Decl.Index) !void {
|
|
if (self.llvm_object) |_| return;
|
|
const decl = self.base.options.module.?.declPtr(decl_index);
|
|
if (decl.link.wasm.sym_index != 0) return;
|
|
|
|
try self.symbols.ensureUnusedCapacity(self.base.allocator, 1);
|
|
try self.decls.putNoClobber(self.base.allocator, decl_index, {});
|
|
|
|
const atom = &decl.link.wasm;
|
|
|
|
var symbol: Symbol = .{
|
|
.name = undefined, // will be set after updateDecl
|
|
.flags = @enumToInt(Symbol.Flag.WASM_SYM_BINDING_LOCAL),
|
|
.tag = undefined, // will be set after updateDecl
|
|
.index = undefined, // will be set after updateDecl
|
|
};
|
|
|
|
if (self.symbols_free_list.popOrNull()) |index| {
|
|
atom.sym_index = index;
|
|
self.symbols.items[index] = symbol;
|
|
} else {
|
|
atom.sym_index = @intCast(u32, self.symbols.items.len);
|
|
self.symbols.appendAssumeCapacity(symbol);
|
|
}
|
|
try self.symbol_atom.putNoClobber(self.base.allocator, atom.symbolLoc(), atom);
|
|
}
|
|
|
|
pub fn updateFunc(self: *Wasm, mod: *Module, func: *Module.Fn, air: Air, liveness: Liveness) !void {
|
|
if (build_options.skip_non_native and builtin.object_format != .wasm) {
|
|
@panic("Attempted to compile for object format that was disabled by build configuration");
|
|
}
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| return llvm_object.updateFunc(mod, func, air, liveness);
|
|
}
|
|
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const decl_index = func.owner_decl;
|
|
const decl = mod.declPtr(decl_index);
|
|
assert(decl.link.wasm.sym_index != 0); // Must call allocateDeclIndexes()
|
|
|
|
decl.link.wasm.clear();
|
|
|
|
var decl_state: ?Dwarf.DeclState = if (self.dwarf) |*dwarf| try dwarf.initDeclState(mod, decl) else null;
|
|
defer if (decl_state) |*ds| ds.deinit();
|
|
|
|
var code_writer = std.ArrayList(u8).init(self.base.allocator);
|
|
defer code_writer.deinit();
|
|
const result = try codegen.generateFunction(
|
|
&self.base,
|
|
decl.srcLoc(),
|
|
func,
|
|
air,
|
|
liveness,
|
|
&code_writer,
|
|
if (decl_state) |*ds| .{ .dwarf = ds } else .none,
|
|
);
|
|
|
|
const code = switch (result) {
|
|
.appended => code_writer.items,
|
|
.fail => |em| {
|
|
decl.analysis = .codegen_failure;
|
|
try mod.failed_decls.put(mod.gpa, decl_index, em);
|
|
return;
|
|
},
|
|
};
|
|
|
|
if (self.dwarf) |*dwarf| {
|
|
try dwarf.commitDeclState(
|
|
&self.base,
|
|
mod,
|
|
decl,
|
|
// Actual value will be written after relocation.
|
|
// For Wasm, this is the offset relative to the code section
|
|
// which isn't known until flush().
|
|
0,
|
|
code.len,
|
|
&decl_state.?,
|
|
);
|
|
}
|
|
return self.finishUpdateDecl(decl, code);
|
|
}
|
|
|
|
// Generate code for the Decl, storing it in memory to be later written to
|
|
// the file on flush().
|
|
pub fn updateDecl(self: *Wasm, mod: *Module, decl_index: Module.Decl.Index) !void {
|
|
if (build_options.skip_non_native and builtin.object_format != .wasm) {
|
|
@panic("Attempted to compile for object format that was disabled by build configuration");
|
|
}
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| return llvm_object.updateDecl(mod, decl_index);
|
|
}
|
|
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const decl = mod.declPtr(decl_index);
|
|
assert(decl.link.wasm.sym_index != 0); // Must call allocateDeclIndexes()
|
|
|
|
decl.link.wasm.clear();
|
|
|
|
if (decl.isExtern()) {
|
|
return;
|
|
}
|
|
|
|
if (decl.val.castTag(.function)) |_| {
|
|
return;
|
|
} else if (decl.val.castTag(.extern_fn)) |_| {
|
|
return;
|
|
}
|
|
const val = if (decl.val.castTag(.variable)) |payload| payload.data.init else decl.val;
|
|
|
|
var code_writer = std.ArrayList(u8).init(self.base.allocator);
|
|
defer code_writer.deinit();
|
|
|
|
const res = try codegen.generateSymbol(
|
|
&self.base,
|
|
decl.srcLoc(),
|
|
.{ .ty = decl.ty, .val = val },
|
|
&code_writer,
|
|
.none,
|
|
.{ .parent_atom_index = decl.link.wasm.sym_index },
|
|
);
|
|
|
|
const code = switch (res) {
|
|
.externally_managed => |x| x,
|
|
.appended => code_writer.items,
|
|
.fail => |em| {
|
|
decl.analysis = .codegen_failure;
|
|
try mod.failed_decls.put(mod.gpa, decl_index, em);
|
|
return;
|
|
},
|
|
};
|
|
|
|
return self.finishUpdateDecl(decl, code);
|
|
}
|
|
|
|
pub fn updateDeclLineNumber(self: *Wasm, mod: *Module, decl: *const Module.Decl) !void {
|
|
if (self.llvm_object) |_| return;
|
|
if (self.dwarf) |*dw| {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const decl_name = try decl.getFullyQualifiedName(mod);
|
|
defer self.base.allocator.free(decl_name);
|
|
|
|
log.debug("updateDeclLineNumber {s}{*}", .{ decl_name, decl });
|
|
try dw.updateDeclLineNumber(&self.base, decl);
|
|
}
|
|
}
|
|
|
|
fn finishUpdateDecl(self: *Wasm, decl: *Module.Decl, code: []const u8) !void {
|
|
if (code.len == 0) return;
|
|
const mod = self.base.options.module.?;
|
|
const atom: *Atom = &decl.link.wasm;
|
|
atom.size = @intCast(u32, code.len);
|
|
atom.alignment = decl.ty.abiAlignment(self.base.options.target);
|
|
const symbol = &self.symbols.items[atom.sym_index];
|
|
|
|
const full_name = try decl.getFullyQualifiedName(mod);
|
|
defer self.base.allocator.free(full_name);
|
|
symbol.name = try self.string_table.put(self.base.allocator, full_name);
|
|
try atom.code.appendSlice(self.base.allocator, code);
|
|
|
|
try self.resolved_symbols.put(self.base.allocator, atom.symbolLoc(), {});
|
|
}
|
|
|
|
/// Lowers a constant typed value to a local symbol and atom.
|
|
/// Returns the symbol index of the local
|
|
/// The given `decl` is the parent decl whom owns the constant.
|
|
pub fn lowerUnnamedConst(self: *Wasm, tv: TypedValue, decl_index: Module.Decl.Index) !u32 {
|
|
assert(tv.ty.zigTypeTag() != .Fn); // cannot create local symbols for functions
|
|
|
|
const mod = self.base.options.module.?;
|
|
const decl = mod.declPtr(decl_index);
|
|
|
|
// Create and initialize a new local symbol and atom
|
|
const local_index = decl.link.wasm.locals.items.len;
|
|
const fqdn = try decl.getFullyQualifiedName(mod);
|
|
defer self.base.allocator.free(fqdn);
|
|
const name = try std.fmt.allocPrintZ(self.base.allocator, "__unnamed_{s}_{d}", .{ fqdn, local_index });
|
|
defer self.base.allocator.free(name);
|
|
var symbol: Symbol = .{
|
|
.name = try self.string_table.put(self.base.allocator, name),
|
|
.flags = 0,
|
|
.tag = .data,
|
|
.index = undefined,
|
|
};
|
|
symbol.setFlag(.WASM_SYM_BINDING_LOCAL);
|
|
|
|
const atom = try decl.link.wasm.locals.addOne(self.base.allocator);
|
|
atom.* = Atom.empty;
|
|
atom.alignment = tv.ty.abiAlignment(self.base.options.target);
|
|
try self.symbols.ensureUnusedCapacity(self.base.allocator, 1);
|
|
|
|
if (self.symbols_free_list.popOrNull()) |index| {
|
|
atom.sym_index = index;
|
|
self.symbols.items[index] = symbol;
|
|
} else {
|
|
atom.sym_index = @intCast(u32, self.symbols.items.len);
|
|
self.symbols.appendAssumeCapacity(symbol);
|
|
}
|
|
try self.resolved_symbols.putNoClobber(self.base.allocator, atom.symbolLoc(), {});
|
|
try self.symbol_atom.putNoClobber(self.base.allocator, atom.symbolLoc(), atom);
|
|
|
|
var value_bytes = std.ArrayList(u8).init(self.base.allocator);
|
|
defer value_bytes.deinit();
|
|
|
|
const result = try codegen.generateSymbol(
|
|
&self.base,
|
|
decl.srcLoc(),
|
|
tv,
|
|
&value_bytes,
|
|
.none,
|
|
.{
|
|
.parent_atom_index = atom.sym_index,
|
|
.addend = null,
|
|
},
|
|
);
|
|
const code = switch (result) {
|
|
.externally_managed => |x| x,
|
|
.appended => value_bytes.items,
|
|
.fail => |em| {
|
|
decl.analysis = .codegen_failure;
|
|
try mod.failed_decls.put(mod.gpa, decl_index, em);
|
|
return error.AnalysisFail;
|
|
},
|
|
};
|
|
|
|
atom.size = @intCast(u32, code.len);
|
|
try atom.code.appendSlice(self.base.allocator, code);
|
|
return atom.sym_index;
|
|
}
|
|
|
|
/// Returns the symbol index from the name of an intrinsic.
|
|
/// If the symbol does not yet exist, creates a new one symbol instead
|
|
/// and then returns the index to it.
|
|
pub fn getGlobalSymbol(self: *Wasm, name: []const u8) !u32 {
|
|
const name_index = try self.string_table.put(self.base.allocator, name);
|
|
const gop = try self.globals.getOrPut(self.base.allocator, name_index);
|
|
if (gop.found_existing) {
|
|
return gop.value_ptr.*.index;
|
|
}
|
|
|
|
var symbol: Symbol = .{
|
|
.name = name_index,
|
|
.flags = 0,
|
|
.index = undefined, // index to type will be set after merging function symbols
|
|
.tag = .function,
|
|
};
|
|
symbol.setGlobal(true);
|
|
symbol.setUndefined(true);
|
|
|
|
const sym_index = if (self.symbols_free_list.popOrNull()) |index| index else blk: {
|
|
var index = @intCast(u32, self.symbols.items.len);
|
|
try self.symbols.ensureUnusedCapacity(self.base.allocator, 1);
|
|
self.symbols.items.len += 1;
|
|
break :blk index;
|
|
};
|
|
self.symbols.items[sym_index] = symbol;
|
|
gop.value_ptr.* = .{ .index = sym_index, .file = null };
|
|
try self.resolved_symbols.put(self.base.allocator, gop.value_ptr.*, {});
|
|
try self.undefs.putNoClobber(self.base.allocator, name, gop.value_ptr.*);
|
|
return sym_index;
|
|
}
|
|
|
|
/// For a given decl, find the given symbol index's atom, and create a relocation for the type.
|
|
/// Returns the given pointer address
|
|
pub fn getDeclVAddr(
|
|
self: *Wasm,
|
|
decl_index: Module.Decl.Index,
|
|
reloc_info: link.File.RelocInfo,
|
|
) !u64 {
|
|
const mod = self.base.options.module.?;
|
|
const decl = mod.declPtr(decl_index);
|
|
const target_symbol_index = decl.link.wasm.sym_index;
|
|
assert(target_symbol_index != 0);
|
|
assert(reloc_info.parent_atom_index != 0);
|
|
const atom = self.symbol_atom.get(.{ .file = null, .index = reloc_info.parent_atom_index }).?;
|
|
const is_wasm32 = self.base.options.target.cpu.arch == .wasm32;
|
|
if (decl.ty.zigTypeTag() == .Fn) {
|
|
assert(reloc_info.addend == 0); // addend not allowed for function relocations
|
|
// We found a function pointer, so add it to our table,
|
|
// as function pointers are not allowed to be stored inside the data section.
|
|
// They are instead stored in a function table which are called by index.
|
|
try self.addTableFunction(target_symbol_index);
|
|
try atom.relocs.append(self.base.allocator, .{
|
|
.index = target_symbol_index,
|
|
.offset = @intCast(u32, reloc_info.offset),
|
|
.relocation_type = if (is_wasm32) .R_WASM_TABLE_INDEX_I32 else .R_WASM_TABLE_INDEX_I64,
|
|
});
|
|
} else {
|
|
try atom.relocs.append(self.base.allocator, .{
|
|
.index = target_symbol_index,
|
|
.offset = @intCast(u32, reloc_info.offset),
|
|
.relocation_type = if (is_wasm32) .R_WASM_MEMORY_ADDR_I32 else .R_WASM_MEMORY_ADDR_I64,
|
|
.addend = reloc_info.addend,
|
|
});
|
|
}
|
|
// we do not know the final address at this point,
|
|
// as atom allocation will determine the address and relocations
|
|
// will calculate and rewrite this. Therefore, we simply return the symbol index
|
|
// that was targeted.
|
|
return target_symbol_index;
|
|
}
|
|
|
|
pub fn deleteExport(self: *Wasm, exp: Export) void {
|
|
if (self.llvm_object) |_| return;
|
|
const sym_index = exp.sym_index orelse return;
|
|
const loc: SymbolLoc = .{ .file = null, .index = sym_index };
|
|
const symbol = loc.getSymbol(self);
|
|
const symbol_name = self.string_table.get(symbol.name);
|
|
log.debug("Deleting export for decl '{s}'", .{symbol_name});
|
|
if (self.export_names.fetchRemove(loc)) |kv| {
|
|
assert(self.globals.remove(kv.value));
|
|
} else {
|
|
assert(self.globals.remove(symbol.name));
|
|
}
|
|
}
|
|
|
|
pub fn updateDeclExports(
|
|
self: *Wasm,
|
|
mod: *Module,
|
|
decl_index: Module.Decl.Index,
|
|
exports: []const *Module.Export,
|
|
) !void {
|
|
if (build_options.skip_non_native and builtin.object_format != .wasm) {
|
|
@panic("Attempted to compile for object format that was disabled by build configuration");
|
|
}
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| return llvm_object.updateDeclExports(mod, decl_index, exports);
|
|
}
|
|
|
|
const decl = mod.declPtr(decl_index);
|
|
|
|
for (exports) |exp| {
|
|
if (exp.options.section) |section| {
|
|
try mod.failed_exports.putNoClobber(mod.gpa, exp, try Module.ErrorMsg.create(
|
|
mod.gpa,
|
|
decl.srcLoc(),
|
|
"Unimplemented: ExportOptions.section '{s}'",
|
|
.{section},
|
|
));
|
|
continue;
|
|
}
|
|
|
|
const export_name = try self.string_table.put(self.base.allocator, exp.options.name);
|
|
if (self.globals.getPtr(export_name)) |existing_loc| {
|
|
if (existing_loc.index == decl.link.wasm.sym_index) continue;
|
|
const existing_sym: Symbol = existing_loc.getSymbol(self).*;
|
|
|
|
const exp_is_weak = exp.options.linkage == .Internal or exp.options.linkage == .Weak;
|
|
// When both the to-bo-exported symbol and the already existing symbol
|
|
// are strong symbols, we have a linker error.
|
|
// In the other case we replace one with the other.
|
|
if (!exp_is_weak and !existing_sym.isWeak()) {
|
|
try mod.failed_exports.put(mod.gpa, exp, try Module.ErrorMsg.create(
|
|
mod.gpa,
|
|
decl.srcLoc(),
|
|
\\LinkError: symbol '{s}' defined multiple times
|
|
\\ first definition in '{s}'
|
|
\\ next definition in '{s}'
|
|
,
|
|
.{ exp.options.name, self.name, self.name },
|
|
));
|
|
continue;
|
|
} else if (exp_is_weak) {
|
|
continue; // to-be-exported symbol is weak, so we keep the existing symbol
|
|
} else {
|
|
existing_loc.index = decl.link.wasm.sym_index;
|
|
existing_loc.file = null;
|
|
exp.link.wasm.sym_index = existing_loc.index;
|
|
}
|
|
}
|
|
|
|
const exported_decl = mod.declPtr(exp.exported_decl);
|
|
const sym_index = exported_decl.link.wasm.sym_index;
|
|
const sym_loc = exported_decl.link.wasm.symbolLoc();
|
|
const symbol = sym_loc.getSymbol(self);
|
|
switch (exp.options.linkage) {
|
|
.Internal => {
|
|
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
|
|
symbol.setFlag(.WASM_SYM_BINDING_WEAK);
|
|
},
|
|
.Weak => {
|
|
symbol.setFlag(.WASM_SYM_BINDING_WEAK);
|
|
},
|
|
.Strong => {}, // symbols are strong by default
|
|
.LinkOnce => {
|
|
try mod.failed_exports.putNoClobber(mod.gpa, exp, try Module.ErrorMsg.create(
|
|
mod.gpa,
|
|
decl.srcLoc(),
|
|
"Unimplemented: LinkOnce",
|
|
.{},
|
|
));
|
|
continue;
|
|
},
|
|
}
|
|
// Ensure the symbol will be exported using the given name
|
|
if (!mem.eql(u8, exp.options.name, sym_loc.getName(self))) {
|
|
try self.export_names.put(self.base.allocator, sym_loc, export_name);
|
|
}
|
|
|
|
symbol.setGlobal(true);
|
|
try self.globals.put(
|
|
self.base.allocator,
|
|
export_name,
|
|
sym_loc,
|
|
);
|
|
|
|
// if the symbol was previously undefined, remove it as an import
|
|
_ = self.imports.remove(sym_loc);
|
|
exp.link.wasm.sym_index = sym_index;
|
|
}
|
|
}
|
|
|
|
pub fn freeDecl(self: *Wasm, decl_index: Module.Decl.Index) void {
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| return llvm_object.freeDecl(decl_index);
|
|
}
|
|
const mod = self.base.options.module.?;
|
|
const decl = mod.declPtr(decl_index);
|
|
const atom = &decl.link.wasm;
|
|
self.symbols_free_list.append(self.base.allocator, atom.sym_index) catch {};
|
|
_ = self.decls.remove(decl_index);
|
|
self.symbols.items[atom.sym_index].tag = .dead;
|
|
for (atom.locals.items) |local_atom| {
|
|
const local_symbol = &self.symbols.items[local_atom.sym_index];
|
|
local_symbol.tag = .dead; // also for any local symbol
|
|
self.symbols_free_list.append(self.base.allocator, local_atom.sym_index) catch {};
|
|
assert(self.resolved_symbols.swapRemove(local_atom.symbolLoc()));
|
|
assert(self.symbol_atom.remove(local_atom.symbolLoc()));
|
|
}
|
|
|
|
if (decl.isExtern()) {
|
|
_ = self.imports.remove(atom.symbolLoc());
|
|
}
|
|
_ = self.resolved_symbols.swapRemove(atom.symbolLoc());
|
|
_ = self.symbol_atom.remove(atom.symbolLoc());
|
|
|
|
if (self.dwarf) |*dwarf| {
|
|
dwarf.freeDecl(decl);
|
|
dwarf.freeAtom(&atom.dbg_info_atom);
|
|
}
|
|
|
|
atom.deinit(self.base.allocator);
|
|
}
|
|
|
|
/// Appends a new entry to the indirect function table
|
|
pub fn addTableFunction(self: *Wasm, symbol_index: u32) !void {
|
|
const index = @intCast(u32, self.function_table.count());
|
|
try self.function_table.put(self.base.allocator, .{ .file = null, .index = symbol_index }, index);
|
|
}
|
|
|
|
/// Assigns indexes to all indirect functions.
|
|
/// Starts at offset 1, where the value `0` represents an unresolved function pointer
|
|
/// or null-pointer
|
|
fn mapFunctionTable(self: *Wasm) void {
|
|
var it = self.function_table.valueIterator();
|
|
var index: u32 = 1;
|
|
while (it.next()) |value_ptr| : (index += 1) {
|
|
value_ptr.* = index;
|
|
}
|
|
}
|
|
|
|
/// Either creates a new import, or updates one if existing.
|
|
/// When `type_index` is non-null, we assume an external function.
|
|
/// In all other cases, a data-symbol will be created instead.
|
|
pub fn addOrUpdateImport(
|
|
self: *Wasm,
|
|
/// Name of the import
|
|
name: []const u8,
|
|
/// Symbol index that is external
|
|
symbol_index: u32,
|
|
/// Optional library name (i.e. `extern "c" fn foo() void`
|
|
lib_name: ?[*:0]const u8,
|
|
/// The index of the type that represents the function signature
|
|
/// when the extern is a function. When this is null, a data-symbol
|
|
/// is asserted instead.
|
|
type_index: ?u32,
|
|
) !void {
|
|
// For the import name itself, we use the decl's name, rather than the fully qualified name
|
|
const decl_name_index = try self.string_table.put(self.base.allocator, name);
|
|
const symbol: *Symbol = &self.symbols.items[symbol_index];
|
|
symbol.setUndefined(true);
|
|
symbol.setGlobal(true);
|
|
const global_gop = try self.globals.getOrPut(self.base.allocator, decl_name_index);
|
|
if (!global_gop.found_existing) {
|
|
const loc: SymbolLoc = .{ .file = null, .index = symbol_index };
|
|
global_gop.value_ptr.* = loc;
|
|
try self.resolved_symbols.put(self.base.allocator, loc, {});
|
|
try self.undefs.putNoClobber(self.base.allocator, name, loc);
|
|
}
|
|
|
|
if (type_index) |ty_index| {
|
|
const gop = try self.imports.getOrPut(self.base.allocator, .{ .index = symbol_index, .file = null });
|
|
const module_name = if (lib_name) |l_name| blk: {
|
|
break :blk mem.sliceTo(l_name, 0);
|
|
} else self.host_name;
|
|
if (!gop.found_existing) {
|
|
gop.value_ptr.* = .{
|
|
.module_name = try self.string_table.put(self.base.allocator, module_name),
|
|
.name = decl_name_index,
|
|
.kind = .{ .function = ty_index },
|
|
};
|
|
}
|
|
} else @panic("TODO: Implement undefined symbols for non-function declarations");
|
|
}
|
|
|
|
const Kind = union(enum) {
|
|
data: void,
|
|
function: FnData,
|
|
};
|
|
|
|
/// Parses an Atom and inserts its metadata into the corresponding sections.
|
|
fn parseAtom(self: *Wasm, atom: *Atom, kind: Kind) !void {
|
|
const symbol = (SymbolLoc{ .file = null, .index = atom.sym_index }).getSymbol(self);
|
|
const final_index: u32 = switch (kind) {
|
|
.function => |fn_data| result: {
|
|
const index = @intCast(u32, self.functions.count() + self.imported_functions_count);
|
|
try self.functions.putNoClobber(
|
|
self.base.allocator,
|
|
.{ .file = null, .index = index },
|
|
.{ .type_index = fn_data.type_index },
|
|
);
|
|
symbol.tag = .function;
|
|
symbol.index = index;
|
|
|
|
if (self.code_section_index == null) {
|
|
self.code_section_index = @intCast(u32, self.segments.items.len);
|
|
try self.segments.append(self.base.allocator, .{
|
|
.alignment = atom.alignment,
|
|
.size = atom.size,
|
|
.offset = 0,
|
|
});
|
|
}
|
|
|
|
break :result self.code_section_index.?;
|
|
},
|
|
.data => result: {
|
|
// TODO: Add mutables global decls to .bss section instead
|
|
const segment_name = try std.mem.concat(self.base.allocator, u8, &.{
|
|
".rodata.",
|
|
self.string_table.get(symbol.name),
|
|
});
|
|
errdefer self.base.allocator.free(segment_name);
|
|
const segment_info: types.Segment = .{
|
|
.name = segment_name,
|
|
.alignment = atom.alignment,
|
|
.flags = 0,
|
|
};
|
|
symbol.tag = .data;
|
|
|
|
const should_merge = self.base.options.output_mode != .Obj;
|
|
const gop = try self.data_segments.getOrPut(self.base.allocator, segment_info.outputName(should_merge));
|
|
if (gop.found_existing) {
|
|
const index = gop.value_ptr.*;
|
|
self.segments.items[index].size += atom.size;
|
|
|
|
// segment indexes can be off by 1 due to also containing a segment
|
|
// for the code section, so we must check if the existing segment
|
|
// is larger than that of the code section, and substract the index by 1 in such case.
|
|
var info_add = if (self.code_section_index) |idx| blk: {
|
|
if (idx < index) break :blk @as(u32, 1);
|
|
break :blk 0;
|
|
} else @as(u32, 0);
|
|
if (self.debug_info_index != null) info_add += 1;
|
|
if (self.debug_line_index != null) info_add += 1;
|
|
symbol.index = index - info_add;
|
|
// segment info already exists, so free its memory
|
|
self.base.allocator.free(segment_name);
|
|
break :result index;
|
|
} else {
|
|
const index = @intCast(u32, self.segments.items.len);
|
|
try self.segments.append(self.base.allocator, .{
|
|
.alignment = atom.alignment,
|
|
.size = 0,
|
|
.offset = 0,
|
|
});
|
|
gop.value_ptr.* = index;
|
|
|
|
const info_index = @intCast(u32, self.segment_info.items.len);
|
|
try self.segment_info.append(self.base.allocator, segment_info);
|
|
symbol.index = info_index;
|
|
break :result index;
|
|
}
|
|
},
|
|
};
|
|
|
|
const segment: *Segment = &self.segments.items[final_index];
|
|
segment.alignment = std.math.max(segment.alignment, atom.alignment);
|
|
|
|
if (self.atoms.getPtr(final_index)) |last| {
|
|
last.*.next = atom;
|
|
atom.prev = last.*;
|
|
last.* = atom;
|
|
} else {
|
|
try self.atoms.putNoClobber(self.base.allocator, final_index, atom);
|
|
}
|
|
}
|
|
|
|
fn allocateAtoms(self: *Wasm) !void {
|
|
var it = self.atoms.iterator();
|
|
while (it.next()) |entry| {
|
|
const segment = &self.segments.items[entry.key_ptr.*];
|
|
var atom: *Atom = entry.value_ptr.*.getFirst();
|
|
var offset: u32 = 0;
|
|
while (true) {
|
|
offset = std.mem.alignForwardGeneric(u32, offset, atom.alignment);
|
|
atom.offset = offset;
|
|
const symbol_loc = atom.symbolLoc();
|
|
log.debug("Atom '{s}' allocated from 0x{x:0>8} to 0x{x:0>8} size={d}", .{
|
|
symbol_loc.getName(self),
|
|
offset,
|
|
offset + atom.size,
|
|
atom.size,
|
|
});
|
|
offset += atom.size;
|
|
self.symbol_atom.putAssumeCapacity(atom.symbolLoc(), atom); // Update atom pointers
|
|
atom = atom.next orelse break;
|
|
}
|
|
segment.size = std.mem.alignForwardGeneric(u32, offset, segment.alignment);
|
|
}
|
|
}
|
|
|
|
fn setupImports(self: *Wasm) !void {
|
|
log.debug("Merging imports", .{});
|
|
var discarded_it = self.discarded.keyIterator();
|
|
while (discarded_it.next()) |discarded| {
|
|
if (discarded.file == null) {
|
|
// remove an import if it was resolved
|
|
if (self.imports.remove(discarded.*)) {
|
|
log.debug("Removed symbol '{s}' as an import", .{
|
|
discarded.getName(self),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
for (self.resolved_symbols.keys()) |symbol_loc| {
|
|
if (symbol_loc.file == null) {
|
|
// imports generated by Zig code are already in the `import` section
|
|
continue;
|
|
}
|
|
|
|
const symbol = symbol_loc.getSymbol(self);
|
|
if (std.mem.eql(u8, symbol_loc.getName(self), "__indirect_function_table")) {
|
|
continue;
|
|
}
|
|
if (symbol.tag == .data or !symbol.requiresImport()) {
|
|
continue;
|
|
}
|
|
|
|
log.debug("Symbol '{s}' will be imported from the host", .{symbol_loc.getName(self)});
|
|
const object = self.objects.items[symbol_loc.file.?];
|
|
const import = object.findImport(symbol.tag.externalType(), symbol.index);
|
|
|
|
// We copy the import to a new import to ensure the names contain references
|
|
// to the internal string table, rather than of the object file.
|
|
var new_imp: types.Import = .{
|
|
.module_name = try self.string_table.put(self.base.allocator, object.string_table.get(import.module_name)),
|
|
.name = try self.string_table.put(self.base.allocator, object.string_table.get(import.name)),
|
|
.kind = import.kind,
|
|
};
|
|
// TODO: De-duplicate imports when they contain the same names and type
|
|
try self.imports.putNoClobber(self.base.allocator, symbol_loc, new_imp);
|
|
}
|
|
|
|
// Assign all indexes of the imports to their representing symbols
|
|
var function_index: u32 = 0;
|
|
var global_index: u32 = 0;
|
|
var table_index: u32 = 0;
|
|
var it = self.imports.iterator();
|
|
while (it.next()) |entry| {
|
|
const symbol = entry.key_ptr.*.getSymbol(self);
|
|
const import: types.Import = entry.value_ptr.*;
|
|
switch (import.kind) {
|
|
.function => {
|
|
symbol.index = function_index;
|
|
function_index += 1;
|
|
},
|
|
.global => {
|
|
symbol.index = global_index;
|
|
global_index += 1;
|
|
},
|
|
.table => {
|
|
symbol.index = table_index;
|
|
table_index += 1;
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
self.imported_functions_count = function_index;
|
|
self.imported_globals_count = global_index;
|
|
self.imported_tables_count = table_index;
|
|
|
|
log.debug("Merged ({d}) functions, ({d}) globals, and ({d}) tables into import section", .{
|
|
function_index,
|
|
global_index,
|
|
table_index,
|
|
});
|
|
}
|
|
|
|
/// Takes the global, function and table section from each linked object file
|
|
/// and merges it into a single section for each.
|
|
fn mergeSections(self: *Wasm) !void {
|
|
// append the indirect function table if initialized
|
|
if (self.string_table.getOffset("__indirect_function_table")) |offset| {
|
|
const sym_loc = self.globals.get(offset).?;
|
|
const table: wasm.Table = .{
|
|
.limits = .{ .min = @intCast(u32, self.function_table.count()), .max = null },
|
|
.reftype = .funcref,
|
|
};
|
|
sym_loc.getSymbol(self).index = @intCast(u32, self.tables.items.len) + self.imported_tables_count;
|
|
try self.tables.append(self.base.allocator, table);
|
|
}
|
|
|
|
for (self.resolved_symbols.keys()) |sym_loc| {
|
|
if (sym_loc.file == null) {
|
|
// Zig code-generated symbols are already within the sections and do not
|
|
// require to be merged
|
|
continue;
|
|
}
|
|
|
|
const object = self.objects.items[sym_loc.file.?];
|
|
const symbol = &object.symtable[sym_loc.index];
|
|
if (symbol.isUndefined() or (symbol.tag != .function and symbol.tag != .global and symbol.tag != .table)) {
|
|
// Skip undefined symbols as they go in the `import` section
|
|
// Also skip symbols that do not need to have a section merged.
|
|
continue;
|
|
}
|
|
|
|
const offset = object.importedCountByKind(symbol.tag.externalType());
|
|
const index = symbol.index - offset;
|
|
switch (symbol.tag) {
|
|
.function => {
|
|
const original_func = object.functions[index];
|
|
const gop = try self.functions.getOrPut(
|
|
self.base.allocator,
|
|
.{ .file = sym_loc.file, .index = symbol.index },
|
|
);
|
|
if (!gop.found_existing) {
|
|
gop.value_ptr.* = original_func;
|
|
}
|
|
symbol.index = @intCast(u32, gop.index) + self.imported_functions_count;
|
|
},
|
|
.global => {
|
|
const original_global = object.globals[index];
|
|
symbol.index = @intCast(u32, self.wasm_globals.items.len) + self.imported_globals_count;
|
|
try self.wasm_globals.append(self.base.allocator, original_global);
|
|
},
|
|
.table => {
|
|
const original_table = object.tables[index];
|
|
symbol.index = @intCast(u32, self.tables.items.len) + self.imported_tables_count;
|
|
try self.tables.append(self.base.allocator, original_table);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
log.debug("Merged ({d}) functions", .{self.functions.count()});
|
|
log.debug("Merged ({d}) globals", .{self.wasm_globals.items.len});
|
|
log.debug("Merged ({d}) tables", .{self.tables.items.len});
|
|
}
|
|
|
|
/// Merges function types of all object files into the final
|
|
/// 'types' section, while assigning the type index to the representing
|
|
/// section (import, export, function).
|
|
fn mergeTypes(self: *Wasm) !void {
|
|
// A map to track which functions have already had their
|
|
// type inserted. If we do this for the same function multiple times,
|
|
// it will be overwritten with the incorrect type.
|
|
var dirty = std.AutoHashMap(u32, void).init(self.base.allocator);
|
|
try dirty.ensureUnusedCapacity(@intCast(u32, self.functions.count()));
|
|
defer dirty.deinit();
|
|
|
|
for (self.resolved_symbols.keys()) |sym_loc| {
|
|
if (sym_loc.file == null) {
|
|
// zig code-generated symbols are already present in final type section
|
|
continue;
|
|
}
|
|
const object = self.objects.items[sym_loc.file.?];
|
|
const symbol = object.symtable[sym_loc.index];
|
|
if (symbol.tag != .function) {
|
|
// Only functions have types
|
|
continue;
|
|
}
|
|
|
|
if (symbol.isUndefined()) {
|
|
log.debug("Adding type from extern function '{s}'", .{sym_loc.getName(self)});
|
|
const import: *types.Import = self.imports.getPtr(sym_loc).?;
|
|
const original_type = object.func_types[import.kind.function];
|
|
import.kind.function = try self.putOrGetFuncType(original_type);
|
|
} else if (!dirty.contains(symbol.index)) {
|
|
log.debug("Adding type from function '{s}'", .{sym_loc.getName(self)});
|
|
const func = &self.functions.values()[symbol.index - self.imported_functions_count];
|
|
func.type_index = try self.putOrGetFuncType(object.func_types[func.type_index]);
|
|
dirty.putAssumeCapacityNoClobber(symbol.index, {});
|
|
}
|
|
}
|
|
log.debug("Completed merging and deduplicating types. Total count: ({d})", .{self.func_types.items.len});
|
|
}
|
|
|
|
fn setupExports(self: *Wasm) !void {
|
|
if (self.base.options.output_mode == .Obj) return;
|
|
log.debug("Building exports from symbols", .{});
|
|
|
|
for (self.resolved_symbols.keys()) |sym_loc| {
|
|
const symbol = sym_loc.getSymbol(self);
|
|
if (!symbol.isExported()) continue;
|
|
|
|
const sym_name = sym_loc.getName(self);
|
|
const export_name = if (self.export_names.get(sym_loc)) |name| name else blk: {
|
|
if (sym_loc.file == null) break :blk symbol.name;
|
|
break :blk try self.string_table.put(self.base.allocator, sym_name);
|
|
};
|
|
const exp: types.Export = .{
|
|
.name = export_name,
|
|
.kind = symbol.tag.externalType(),
|
|
.index = symbol.index,
|
|
};
|
|
log.debug("Exporting symbol '{s}' as '{s}' at index: ({d})", .{
|
|
sym_name,
|
|
self.string_table.get(exp.name),
|
|
exp.index,
|
|
});
|
|
try self.exports.append(self.base.allocator, exp);
|
|
}
|
|
|
|
log.debug("Completed building exports. Total count: ({d})", .{self.exports.items.len});
|
|
}
|
|
|
|
fn setupStart(self: *Wasm) !void {
|
|
const entry_name = self.base.options.entry orelse "_start";
|
|
|
|
const symbol_name_offset = self.string_table.getOffset(entry_name) orelse {
|
|
if (self.base.options.output_mode == .Exe) {
|
|
if (self.base.options.wasi_exec_model == .reactor) return; // Not required for reactors
|
|
} else {
|
|
return; // No entry point needed for non-executable wasm files
|
|
}
|
|
log.err("Entry symbol '{s}' missing", .{entry_name});
|
|
return error.MissingSymbol;
|
|
};
|
|
|
|
const symbol_loc = self.globals.get(symbol_name_offset).?;
|
|
const symbol = symbol_loc.getSymbol(self);
|
|
if (symbol.tag != .function) {
|
|
log.err("Entry symbol '{s}' is not a function", .{entry_name});
|
|
return error.InvalidEntryKind;
|
|
}
|
|
|
|
// Ensure the symbol is exported so host environment can access it
|
|
if (self.base.options.output_mode != .Obj) {
|
|
symbol.setFlag(.WASM_SYM_EXPORTED);
|
|
}
|
|
}
|
|
|
|
/// Sets up the memory section of the wasm module, as well as the stack.
|
|
fn setupMemory(self: *Wasm) !void {
|
|
log.debug("Setting up memory layout", .{});
|
|
const page_size = 64 * 1024;
|
|
const stack_size = self.base.options.stack_size_override orelse page_size * 1;
|
|
const stack_alignment = 16; // wasm's stack alignment as specified by tool-convention
|
|
// Always place the stack at the start by default
|
|
// unless the user specified the global-base flag
|
|
var place_stack_first = true;
|
|
var memory_ptr: u64 = if (self.base.options.global_base) |base| blk: {
|
|
place_stack_first = false;
|
|
break :blk base;
|
|
} else 0;
|
|
|
|
const is_obj = self.base.options.output_mode == .Obj;
|
|
|
|
if (place_stack_first and !is_obj) {
|
|
memory_ptr = std.mem.alignForwardGeneric(u64, memory_ptr, stack_alignment);
|
|
memory_ptr += stack_size;
|
|
// We always put the stack pointer global at index 0
|
|
self.wasm_globals.items[0].init.i32_const = @bitCast(i32, @intCast(u32, memory_ptr));
|
|
}
|
|
|
|
var offset: u32 = @intCast(u32, memory_ptr);
|
|
for (self.data_segments.values()) |segment_index| {
|
|
const segment = &self.segments.items[segment_index];
|
|
memory_ptr = std.mem.alignForwardGeneric(u64, memory_ptr, segment.alignment);
|
|
memory_ptr += segment.size;
|
|
segment.offset = offset;
|
|
offset += segment.size;
|
|
}
|
|
|
|
if (!place_stack_first and !is_obj) {
|
|
memory_ptr = std.mem.alignForwardGeneric(u64, memory_ptr, stack_alignment);
|
|
memory_ptr += stack_size;
|
|
self.wasm_globals.items[0].init.i32_const = @bitCast(i32, @intCast(u32, memory_ptr));
|
|
}
|
|
|
|
// Setup the max amount of pages
|
|
// For now we only support wasm32 by setting the maximum allowed memory size 2^32-1
|
|
const max_memory_allowed: u64 = (1 << 32) - 1;
|
|
|
|
if (self.base.options.initial_memory) |initial_memory| {
|
|
if (!std.mem.isAlignedGeneric(u64, initial_memory, page_size)) {
|
|
log.err("Initial memory must be {d}-byte aligned", .{page_size});
|
|
return error.MissAlignment;
|
|
}
|
|
if (memory_ptr > initial_memory) {
|
|
log.err("Initial memory too small, must be at least {d} bytes", .{memory_ptr});
|
|
return error.MemoryTooSmall;
|
|
}
|
|
if (initial_memory > max_memory_allowed) {
|
|
log.err("Initial memory exceeds maximum memory {d}", .{max_memory_allowed});
|
|
return error.MemoryTooBig;
|
|
}
|
|
memory_ptr = initial_memory;
|
|
}
|
|
|
|
// In case we do not import memory, but define it ourselves,
|
|
// set the minimum amount of pages on the memory section.
|
|
self.memories.limits.min = @intCast(u32, std.mem.alignForwardGeneric(u64, memory_ptr, page_size) / page_size);
|
|
log.debug("Total memory pages: {d}", .{self.memories.limits.min});
|
|
|
|
if (self.base.options.max_memory) |max_memory| {
|
|
if (!std.mem.isAlignedGeneric(u64, max_memory, page_size)) {
|
|
log.err("Maximum memory must be {d}-byte aligned", .{page_size});
|
|
return error.MissAlignment;
|
|
}
|
|
if (memory_ptr > max_memory) {
|
|
log.err("Maxmimum memory too small, must be at least {d} bytes", .{memory_ptr});
|
|
return error.MemoryTooSmall;
|
|
}
|
|
if (max_memory > max_memory_allowed) {
|
|
log.err("Maximum memory exceeds maxmium amount {d}", .{max_memory_allowed});
|
|
return error.MemoryTooBig;
|
|
}
|
|
self.memories.limits.max = @intCast(u32, max_memory / page_size);
|
|
log.debug("Maximum memory pages: {d}", .{self.memories.limits.max});
|
|
}
|
|
}
|
|
|
|
/// From a given object's index and the index of the segment, returns the corresponding
|
|
/// index of the segment within the final data section. When the segment does not yet
|
|
/// exist, a new one will be initialized and appended. The new index will be returned in that case.
|
|
pub fn getMatchingSegment(self: *Wasm, object_index: u16, relocatable_index: u32) !u32 {
|
|
const object: Object = self.objects.items[object_index];
|
|
const relocatable_data = object.relocatable_data[relocatable_index];
|
|
const index = @intCast(u32, self.segments.items.len);
|
|
|
|
switch (relocatable_data.type) {
|
|
.data => {
|
|
const segment_info = object.segment_info[relocatable_data.index];
|
|
const merge_segment = self.base.options.output_mode != .Obj;
|
|
const result = try self.data_segments.getOrPut(self.base.allocator, segment_info.outputName(merge_segment));
|
|
if (!result.found_existing) {
|
|
result.value_ptr.* = index;
|
|
try self.segments.append(self.base.allocator, .{
|
|
.alignment = 1,
|
|
.size = 0,
|
|
.offset = 0,
|
|
});
|
|
return index;
|
|
} else return result.value_ptr.*;
|
|
},
|
|
.code => return self.code_section_index orelse blk: {
|
|
self.code_section_index = index;
|
|
try self.segments.append(self.base.allocator, .{
|
|
.alignment = 1,
|
|
.size = 0,
|
|
.offset = 0,
|
|
});
|
|
break :blk index;
|
|
},
|
|
.custom => return error.@"TODO: Custom section relocations for wasm",
|
|
}
|
|
}
|
|
|
|
/// Returns the symbol index of the error name table.
|
|
///
|
|
/// When the symbol does not yet exist, it will create a new one instead.
|
|
pub fn getErrorTableSymbol(self: *Wasm) !u32 {
|
|
if (self.error_table_symbol) |symbol| {
|
|
return symbol;
|
|
}
|
|
|
|
// no error was referenced yet, so create a new symbol and atom for it
|
|
// and then return said symbol's index. The final table will be populated
|
|
// during `flush` when we know all possible error names.
|
|
|
|
// As sym_index '0' is reserved, we use it for our stack pointer symbol
|
|
const symbol_index = self.symbols_free_list.popOrNull() orelse blk: {
|
|
const index = @intCast(u32, self.symbols.items.len);
|
|
_ = try self.symbols.addOne(self.base.allocator);
|
|
break :blk index;
|
|
};
|
|
|
|
const sym_name = try self.string_table.put(self.base.allocator, "__zig_err_name_table");
|
|
const symbol = &self.symbols.items[symbol_index];
|
|
symbol.* = .{
|
|
.name = sym_name,
|
|
.tag = .data,
|
|
.flags = 0,
|
|
.index = 0,
|
|
};
|
|
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
|
|
|
|
const slice_ty = Type.initTag(.const_slice_u8_sentinel_0);
|
|
|
|
const atom = try self.base.allocator.create(Atom);
|
|
atom.* = Atom.empty;
|
|
atom.sym_index = symbol_index;
|
|
atom.alignment = slice_ty.abiAlignment(self.base.options.target);
|
|
try self.managed_atoms.append(self.base.allocator, atom);
|
|
const loc = atom.symbolLoc();
|
|
try self.resolved_symbols.put(self.base.allocator, loc, {});
|
|
try self.symbol_atom.put(self.base.allocator, loc, atom);
|
|
|
|
log.debug("Error name table was created with symbol index: ({d})", .{symbol_index});
|
|
self.error_table_symbol = symbol_index;
|
|
return symbol_index;
|
|
}
|
|
|
|
/// Populates the error name table, when `error_table_symbol` is not null.
|
|
///
|
|
/// This creates a table that consists of pointers and length to each error name.
|
|
/// The table is what is being pointed to within the runtime bodies that are generated.
|
|
fn populateErrorNameTable(self: *Wasm) !void {
|
|
const symbol_index = self.error_table_symbol orelse return;
|
|
const atom: *Atom = self.symbol_atom.get(.{ .file = null, .index = symbol_index }).?;
|
|
// Rather than creating a symbol for each individual error name,
|
|
// we create a symbol for the entire region of error names. We then calculate
|
|
// the pointers into the list using addends which are appended to the relocation.
|
|
const names_atom = try self.base.allocator.create(Atom);
|
|
names_atom.* = Atom.empty;
|
|
try self.managed_atoms.append(self.base.allocator, names_atom);
|
|
const names_symbol_index = self.symbols_free_list.popOrNull() orelse blk: {
|
|
const index = @intCast(u32, self.symbols.items.len);
|
|
_ = try self.symbols.addOne(self.base.allocator);
|
|
break :blk index;
|
|
};
|
|
names_atom.sym_index = names_symbol_index;
|
|
names_atom.alignment = 1;
|
|
const sym_name = try self.string_table.put(self.base.allocator, "__zig_err_names");
|
|
const names_symbol = &self.symbols.items[names_symbol_index];
|
|
names_symbol.* = .{
|
|
.name = sym_name,
|
|
.tag = .data,
|
|
.flags = 0,
|
|
.index = 0,
|
|
};
|
|
names_symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
|
|
|
|
log.debug("Populating error names", .{});
|
|
|
|
// Addend for each relocation to the table
|
|
var addend: u32 = 0;
|
|
const mod = self.base.options.module.?;
|
|
for (mod.error_name_list.items) |error_name| {
|
|
const len = @intCast(u32, error_name.len + 1); // names are 0-termianted
|
|
|
|
const slice_ty = Type.initTag(.const_slice_u8_sentinel_0);
|
|
const offset = @intCast(u32, atom.code.items.len);
|
|
// first we create the data for the slice of the name
|
|
try atom.code.appendNTimes(self.base.allocator, 0, 4); // ptr to name, will be relocated
|
|
try atom.code.writer(self.base.allocator).writeIntLittle(u32, len - 1);
|
|
// create relocation to the error name
|
|
try atom.relocs.append(self.base.allocator, .{
|
|
.index = names_symbol_index,
|
|
.relocation_type = .R_WASM_MEMORY_ADDR_I32,
|
|
.offset = offset,
|
|
.addend = addend,
|
|
});
|
|
atom.size += @intCast(u32, slice_ty.abiSize(self.base.options.target));
|
|
addend += len;
|
|
|
|
// as we updated the error name table, we now store the actual name within the names atom
|
|
try names_atom.code.ensureUnusedCapacity(self.base.allocator, len);
|
|
names_atom.code.appendSliceAssumeCapacity(error_name);
|
|
names_atom.code.appendAssumeCapacity(0);
|
|
|
|
log.debug("Populated error name: '{s}'", .{error_name});
|
|
}
|
|
names_atom.size = addend;
|
|
|
|
const name_loc = names_atom.symbolLoc();
|
|
try self.resolved_symbols.put(self.base.allocator, name_loc, {});
|
|
try self.symbol_atom.put(self.base.allocator, name_loc, names_atom);
|
|
|
|
// link the atoms with the rest of the binary so they can be allocated
|
|
// and relocations will be performed.
|
|
try self.parseAtom(atom, .data);
|
|
try self.parseAtom(names_atom, .data);
|
|
}
|
|
|
|
pub fn getDebugInfoIndex(self: *Wasm) !u32 {
|
|
assert(self.dwarf != null);
|
|
return self.debug_info_index orelse {
|
|
self.debug_info_index = @intCast(u32, self.segments.items.len);
|
|
const segment = try self.segments.addOne(self.base.allocator);
|
|
segment.* = .{
|
|
.size = 0,
|
|
.offset = 0,
|
|
// debug sections always have alignment '1'
|
|
.alignment = 1,
|
|
};
|
|
return self.debug_info_index.?;
|
|
};
|
|
}
|
|
|
|
pub fn getDebugLineIndex(self: *Wasm) !u32 {
|
|
assert(self.dwarf != null);
|
|
return self.debug_line_index orelse {
|
|
self.debug_line_index = @intCast(u32, self.segments.items.len);
|
|
const segment = try self.segments.addOne(self.base.allocator);
|
|
segment.* = .{
|
|
.size = 0,
|
|
.offset = 0,
|
|
.alignment = 1,
|
|
};
|
|
return self.debug_line_index.?;
|
|
};
|
|
}
|
|
|
|
fn resetState(self: *Wasm) void {
|
|
for (self.segment_info.items) |*segment_info| {
|
|
self.base.allocator.free(segment_info.name);
|
|
}
|
|
const mod = self.base.options.module.?;
|
|
var decl_it = self.decls.keyIterator();
|
|
while (decl_it.next()) |decl_index_ptr| {
|
|
const decl = mod.declPtr(decl_index_ptr.*);
|
|
const atom = &decl.link.wasm;
|
|
atom.next = null;
|
|
atom.prev = null;
|
|
|
|
for (atom.locals.items) |*local_atom| {
|
|
local_atom.next = null;
|
|
local_atom.prev = null;
|
|
}
|
|
}
|
|
self.functions.clearRetainingCapacity();
|
|
self.exports.clearRetainingCapacity();
|
|
self.segments.clearRetainingCapacity();
|
|
self.segment_info.clearRetainingCapacity();
|
|
self.data_segments.clearRetainingCapacity();
|
|
self.atoms.clearRetainingCapacity();
|
|
self.symbol_atom.clearRetainingCapacity();
|
|
self.code_section_index = null;
|
|
self.debug_info_index = null;
|
|
self.debug_line_index = null;
|
|
}
|
|
|
|
pub fn flush(self: *Wasm, comp: *Compilation, prog_node: *std.Progress.Node) !void {
|
|
if (self.base.options.emit == null) {
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| {
|
|
return try llvm_object.flushModule(comp, prog_node);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if (build_options.have_llvm and self.base.options.use_lld) {
|
|
return self.linkWithLLD(comp, prog_node);
|
|
} else {
|
|
return self.flushModule(comp, prog_node);
|
|
}
|
|
}
|
|
|
|
pub fn flushModule(self: *Wasm, comp: *Compilation, prog_node: *std.Progress.Node) !void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
if (build_options.have_llvm) {
|
|
if (self.llvm_object) |llvm_object| {
|
|
return try llvm_object.flushModule(comp, prog_node);
|
|
}
|
|
}
|
|
|
|
var sub_prog_node = prog_node.start("WASM Flush", 0);
|
|
sub_prog_node.activate();
|
|
defer sub_prog_node.end();
|
|
|
|
// ensure the error names table is populated when an error name is referenced
|
|
try self.populateErrorNameTable();
|
|
|
|
// The amount of sections that will be written
|
|
var section_count: u32 = 0;
|
|
// Index of the code section. Used to tell relocation table where the section lives.
|
|
var code_section_index: ?u32 = null;
|
|
// Index of the data section. Used to tell relocation table where the section lives.
|
|
var data_section_index: ?u32 = null;
|
|
|
|
// Used for all temporary memory allocated during flushin
|
|
var arena_instance = std.heap.ArenaAllocator.init(self.base.allocator);
|
|
defer arena_instance.deinit();
|
|
const arena = arena_instance.allocator();
|
|
|
|
// Positional arguments to the linker such as object files and static archives.
|
|
var positionals = std.ArrayList([]const u8).init(arena);
|
|
try positionals.ensureUnusedCapacity(self.base.options.objects.len);
|
|
|
|
for (self.base.options.objects) |object| {
|
|
positionals.appendAssumeCapacity(object.path);
|
|
}
|
|
|
|
for (comp.c_object_table.keys()) |c_object| {
|
|
try positionals.append(c_object.status.success.object_path);
|
|
}
|
|
|
|
if (comp.compiler_rt_static_lib) |lib| {
|
|
try positionals.append(lib.full_object_path);
|
|
}
|
|
|
|
try self.parseInputFiles(positionals.items);
|
|
|
|
var object_index: u16 = 0;
|
|
while (object_index < self.objects.items.len) : (object_index += 1) {
|
|
try self.resolveSymbolsInObject(object_index);
|
|
}
|
|
try self.resolveSymbolsInArchives();
|
|
|
|
// When we finish/error we reset the state of the linker
|
|
// So we can rebuild the binary file on each incremental update
|
|
defer self.resetState();
|
|
try self.setupStart();
|
|
try self.setupImports();
|
|
const mod = self.base.options.module.?;
|
|
var decl_it = self.decls.keyIterator();
|
|
while (decl_it.next()) |decl_index_ptr| {
|
|
const decl = mod.declPtr(decl_index_ptr.*);
|
|
if (decl.isExtern()) continue;
|
|
const atom = &decl.*.link.wasm;
|
|
if (decl.ty.zigTypeTag() == .Fn) {
|
|
try self.parseAtom(atom, .{ .function = decl.fn_link.wasm });
|
|
} else {
|
|
try self.parseAtom(atom, .data);
|
|
}
|
|
|
|
// also parse atoms for a decl's locals
|
|
for (atom.locals.items) |*local_atom| {
|
|
try self.parseAtom(local_atom, .data);
|
|
}
|
|
}
|
|
|
|
while (object_index > 0) {
|
|
object_index -= 1;
|
|
try self.objects.items[object_index].parseIntoAtoms(self.base.allocator, object_index, self);
|
|
}
|
|
|
|
if (self.dwarf) |*dwarf| {
|
|
try dwarf.flushModule(&self.base, self.base.options.module.?);
|
|
}
|
|
try self.allocateAtoms();
|
|
try self.setupMemory();
|
|
self.mapFunctionTable();
|
|
try self.mergeSections();
|
|
try self.mergeTypes();
|
|
try self.setupExports();
|
|
|
|
const file = self.base.file.?;
|
|
const header_size = 5 + 1;
|
|
const is_obj = self.base.options.output_mode == .Obj;
|
|
|
|
// No need to rewrite the magic/version header
|
|
try file.setEndPos(@sizeOf(@TypeOf(wasm.magic ++ wasm.version)));
|
|
try file.seekTo(@sizeOf(@TypeOf(wasm.magic ++ wasm.version)));
|
|
|
|
// Type section
|
|
if (self.func_types.items.len != 0) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
log.debug("Writing type section. Count: ({d})", .{self.func_types.items.len});
|
|
for (self.func_types.items) |func_type| {
|
|
try leb.writeULEB128(writer, wasm.function_type);
|
|
try leb.writeULEB128(writer, @intCast(u32, func_type.params.len));
|
|
for (func_type.params) |param_ty| try leb.writeULEB128(writer, wasm.valtype(param_ty));
|
|
try leb.writeULEB128(writer, @intCast(u32, func_type.returns.len));
|
|
for (func_type.returns) |ret_ty| try leb.writeULEB128(writer, wasm.valtype(ret_ty));
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.type,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@intCast(u32, self.func_types.items.len),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Import section
|
|
const import_memory = self.base.options.import_memory or is_obj;
|
|
const import_table = self.base.options.import_table or is_obj;
|
|
if (self.imports.count() != 0 or import_memory or import_table) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
|
|
// import table is always first table so emit that first
|
|
if (import_table) {
|
|
const table_imp: types.Import = .{
|
|
.module_name = try self.string_table.put(self.base.allocator, self.host_name),
|
|
.name = try self.string_table.put(self.base.allocator, "__indirect_function_table"),
|
|
.kind = .{
|
|
.table = .{
|
|
.limits = .{
|
|
.min = @intCast(u32, self.function_table.count()),
|
|
.max = null,
|
|
},
|
|
.reftype = .funcref,
|
|
},
|
|
},
|
|
};
|
|
try self.emitImport(writer, table_imp);
|
|
}
|
|
|
|
var it = self.imports.iterator();
|
|
while (it.next()) |entry| {
|
|
assert(entry.key_ptr.*.getSymbol(self).isUndefined());
|
|
const import = entry.value_ptr.*;
|
|
try self.emitImport(writer, import);
|
|
}
|
|
|
|
if (import_memory) {
|
|
const mem_imp: types.Import = .{
|
|
.module_name = try self.string_table.put(self.base.allocator, self.host_name),
|
|
.name = try self.string_table.put(self.base.allocator, "__linear_memory"),
|
|
.kind = .{ .memory = self.memories.limits },
|
|
};
|
|
try self.emitImport(writer, mem_imp);
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.import,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@intCast(u32, self.imports.count() + @boolToInt(import_memory) + @boolToInt(import_table)),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Function section
|
|
if (self.functions.count() != 0) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
for (self.functions.values()) |function| {
|
|
try leb.writeULEB128(writer, function.type_index);
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.function,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@intCast(u32, self.functions.count()),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Table section
|
|
const export_table = self.base.options.export_table;
|
|
if (!import_table and self.function_table.count() != 0) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
|
|
try leb.writeULEB128(writer, wasm.reftype(.funcref));
|
|
try emitLimits(writer, .{
|
|
.min = @intCast(u32, self.function_table.count()) + 1,
|
|
.max = null,
|
|
});
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.table,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@as(u32, 1),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Memory section
|
|
if (!import_memory) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
|
|
try emitLimits(writer, self.memories.limits);
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.memory,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@as(u32, 1), // wasm currently only supports 1 linear memory segment
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Global section (used to emit stack pointer)
|
|
if (self.wasm_globals.items.len > 0) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
|
|
for (self.wasm_globals.items) |global| {
|
|
try writer.writeByte(wasm.valtype(global.global_type.valtype));
|
|
try writer.writeByte(@boolToInt(global.global_type.mutable));
|
|
try emitInit(writer, global.init);
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.global,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@intCast(u32, self.wasm_globals.items.len),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Export section
|
|
if (self.exports.items.len != 0 or export_table or !import_memory) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
for (self.exports.items) |exp| {
|
|
const name = self.string_table.get(exp.name);
|
|
try leb.writeULEB128(writer, @intCast(u32, name.len));
|
|
try writer.writeAll(name);
|
|
try leb.writeULEB128(writer, @enumToInt(exp.kind));
|
|
try leb.writeULEB128(writer, exp.index);
|
|
}
|
|
|
|
if (export_table) {
|
|
try leb.writeULEB128(writer, @intCast(u32, "__indirect_function_table".len));
|
|
try writer.writeAll("__indirect_function_table");
|
|
try writer.writeByte(wasm.externalKind(.table));
|
|
try leb.writeULEB128(writer, @as(u32, 0)); // function table is always the first table
|
|
}
|
|
|
|
if (!import_memory) {
|
|
try leb.writeULEB128(writer, @intCast(u32, "memory".len));
|
|
try writer.writeAll("memory");
|
|
try writer.writeByte(wasm.externalKind(.memory));
|
|
try leb.writeULEB128(writer, @as(u32, 0));
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.@"export",
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@intCast(u32, self.exports.items.len) + @boolToInt(export_table) + @boolToInt(!import_memory),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// element section (function table)
|
|
if (self.function_table.count() > 0) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
|
|
var flags: u32 = 0x2; // Yes we have a table
|
|
try leb.writeULEB128(writer, flags);
|
|
try leb.writeULEB128(writer, @as(u32, 0)); // index of that table. TODO: Store synthetic symbols
|
|
try emitInit(writer, .{ .i32_const = 1 }); // We start at index 1, so unresolved function pointers are invalid
|
|
try leb.writeULEB128(writer, @as(u8, 0));
|
|
try leb.writeULEB128(writer, @intCast(u32, self.function_table.count()));
|
|
var symbol_it = self.function_table.keyIterator();
|
|
while (symbol_it.next()) |symbol_loc_ptr| {
|
|
try leb.writeULEB128(writer, symbol_loc_ptr.*.getSymbol(self).index);
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.element,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@as(u32, 1),
|
|
);
|
|
section_count += 1;
|
|
}
|
|
|
|
// Code section
|
|
var code_section_size: u32 = 0;
|
|
if (self.code_section_index) |code_index| {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
var atom: *Atom = self.atoms.get(code_index).?.getFirst();
|
|
|
|
// The code section must be sorted in line with the function order.
|
|
var sorted_atoms = try std.ArrayList(*Atom).initCapacity(self.base.allocator, self.functions.count());
|
|
defer sorted_atoms.deinit();
|
|
|
|
while (true) {
|
|
if (!is_obj) {
|
|
try atom.resolveRelocs(self);
|
|
}
|
|
sorted_atoms.appendAssumeCapacity(atom);
|
|
atom = atom.next orelse break;
|
|
}
|
|
|
|
const atom_sort_fn = struct {
|
|
fn sort(ctx: *const Wasm, lhs: *const Atom, rhs: *const Atom) bool {
|
|
const lhs_sym = lhs.symbolLoc().getSymbol(ctx);
|
|
const rhs_sym = rhs.symbolLoc().getSymbol(ctx);
|
|
return lhs_sym.index < rhs_sym.index;
|
|
}
|
|
}.sort;
|
|
|
|
std.sort.sort(*Atom, sorted_atoms.items, self, atom_sort_fn);
|
|
|
|
for (sorted_atoms.items) |sorted_atom| {
|
|
try leb.writeULEB128(writer, sorted_atom.size);
|
|
try writer.writeAll(sorted_atom.code.items);
|
|
}
|
|
|
|
code_section_size = @intCast(u32, (try file.getPos()) - header_offset - header_size);
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.code,
|
|
code_section_size,
|
|
@intCast(u32, self.functions.count()),
|
|
);
|
|
code_section_index = section_count;
|
|
section_count += 1;
|
|
}
|
|
|
|
// Data section
|
|
if (self.data_segments.count() != 0) {
|
|
const header_offset = try reserveVecSectionHeader(file);
|
|
const writer = file.writer();
|
|
|
|
var it = self.data_segments.iterator();
|
|
var segment_count: u32 = 0;
|
|
while (it.next()) |entry| {
|
|
// do not output 'bss' section unless we import memory and therefore
|
|
// want to guarantee the data is zero initialized
|
|
if (std.mem.eql(u8, entry.key_ptr.*, ".bss") and !import_memory) continue;
|
|
segment_count += 1;
|
|
const atom_index = entry.value_ptr.*;
|
|
var atom: *Atom = self.atoms.getPtr(atom_index).?.*.getFirst();
|
|
const segment = self.segments.items[atom_index];
|
|
|
|
// flag and index to memory section (currently, there can only be 1 memory section in wasm)
|
|
try leb.writeULEB128(writer, @as(u32, 0));
|
|
// offset into data section
|
|
try emitInit(writer, .{ .i32_const = @bitCast(i32, segment.offset) });
|
|
try leb.writeULEB128(writer, segment.size);
|
|
|
|
// fill in the offset table and the data segments
|
|
var current_offset: u32 = 0;
|
|
while (true) {
|
|
if (!is_obj) {
|
|
try atom.resolveRelocs(self);
|
|
}
|
|
|
|
// Pad with zeroes to ensure all segments are aligned
|
|
if (current_offset != atom.offset) {
|
|
const diff = atom.offset - current_offset;
|
|
try writer.writeByteNTimes(0, diff);
|
|
current_offset += diff;
|
|
}
|
|
assert(current_offset == atom.offset);
|
|
assert(atom.code.items.len == atom.size);
|
|
try writer.writeAll(atom.code.items);
|
|
|
|
current_offset += atom.size;
|
|
if (atom.next) |next| {
|
|
atom = next;
|
|
} else {
|
|
// also pad with zeroes when last atom to ensure
|
|
// segments are aligned.
|
|
if (current_offset != segment.size) {
|
|
try writer.writeByteNTimes(0, segment.size - current_offset);
|
|
current_offset += segment.size - current_offset;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
assert(current_offset == segment.size);
|
|
}
|
|
|
|
try writeVecSectionHeader(
|
|
file,
|
|
header_offset,
|
|
.data,
|
|
@intCast(u32, (try file.getPos()) - header_offset - header_size),
|
|
@intCast(u32, segment_count),
|
|
);
|
|
data_section_index = section_count;
|
|
section_count += 1;
|
|
}
|
|
|
|
if (is_obj) {
|
|
// relocations need to point to the index of a symbol in the final symbol table. To save memory,
|
|
// we never store all symbols in a single table, but store a location reference instead.
|
|
// This means that for a relocatable object file, we need to generate one and provide it to the relocation sections.
|
|
var symbol_table = std.AutoArrayHashMap(SymbolLoc, u32).init(arena);
|
|
try self.emitLinkSection(file, arena, &symbol_table);
|
|
if (code_section_index) |code_index| {
|
|
try self.emitCodeRelocations(file, arena, code_index, symbol_table);
|
|
}
|
|
if (data_section_index) |data_index| {
|
|
try self.emitDataRelocations(file, arena, data_index, symbol_table);
|
|
}
|
|
} else if (!self.base.options.strip) {
|
|
if (self.dwarf) |*dwarf| {
|
|
if (self.debug_info_index != null) {
|
|
try dwarf.writeDbgAbbrev(&self.base);
|
|
// for debug info and ranges, the address is always 0,
|
|
// as locations are always offsets relative to 'code' section.
|
|
try dwarf.writeDbgInfoHeader(&self.base, mod, 0, code_section_size);
|
|
try dwarf.writeDbgAranges(&self.base, 0, code_section_size);
|
|
try dwarf.writeDbgLineHeader(&self.base, mod);
|
|
|
|
try emitDebugSection(file, self.debug_info.items, ".debug_info");
|
|
try emitDebugSection(file, self.debug_aranges.items, ".debug_ranges");
|
|
try emitDebugSection(file, self.debug_abbrev.items, ".debug_abbrev");
|
|
try emitDebugSection(file, self.debug_line.items, ".debug_line");
|
|
try emitDebugSection(file, dwarf.strtab.items, ".debug_str");
|
|
}
|
|
}
|
|
try self.emitNameSection(file, arena);
|
|
}
|
|
}
|
|
|
|
fn emitDebugSection(file: fs.File, data: []const u8, name: []const u8) !void {
|
|
const header_offset = try reserveCustomSectionHeader(file);
|
|
const writer = file.writer();
|
|
try leb.writeULEB128(writer, @intCast(u32, name.len));
|
|
try writer.writeAll(name);
|
|
|
|
try file.writevAll(&[_]std.os.iovec_const{.{
|
|
.iov_base = data.ptr,
|
|
.iov_len = data.len,
|
|
}});
|
|
const start = header_offset + 6 + name.len + getULEB128Size(@intCast(u32, name.len));
|
|
log.debug("Emit debug section: '{s}' start=0x{x:0>8} end=0x{x:0>8}", .{ name, start, start + data.len });
|
|
|
|
try writeCustomSectionHeader(
|
|
file,
|
|
header_offset,
|
|
@intCast(u32, (try file.getPos()) - header_offset - 6),
|
|
);
|
|
}
|
|
|
|
fn emitNameSection(self: *Wasm, file: fs.File, arena: Allocator) !void {
|
|
const Name = struct {
|
|
index: u32,
|
|
name: []const u8,
|
|
|
|
fn lessThan(context: void, lhs: @This(), rhs: @This()) bool {
|
|
_ = context;
|
|
return lhs.index < rhs.index;
|
|
}
|
|
};
|
|
|
|
var funcs = try std.ArrayList(Name).initCapacity(arena, self.functions.count() + self.imported_functions_count);
|
|
var globals = try std.ArrayList(Name).initCapacity(arena, self.wasm_globals.items.len + self.imported_globals_count);
|
|
var segments = try std.ArrayList(Name).initCapacity(arena, self.data_segments.count());
|
|
|
|
for (self.resolved_symbols.keys()) |sym_loc| {
|
|
const symbol = sym_loc.getSymbol(self).*;
|
|
const name = if (symbol.isUndefined()) blk: {
|
|
break :blk self.string_table.get(self.imports.get(sym_loc).?.name);
|
|
} else sym_loc.getName(self);
|
|
switch (symbol.tag) {
|
|
.function => try funcs.append(.{ .index = symbol.index, .name = name }),
|
|
.global => globals.appendAssumeCapacity(.{ .index = symbol.index, .name = name }),
|
|
else => {},
|
|
}
|
|
}
|
|
// data segments are already 'ordered'
|
|
for (self.data_segments.keys()) |key, index| {
|
|
segments.appendAssumeCapacity(.{ .index = @intCast(u32, index), .name = key });
|
|
}
|
|
|
|
std.sort.sort(Name, funcs.items, {}, Name.lessThan);
|
|
std.sort.sort(Name, globals.items, {}, Name.lessThan);
|
|
|
|
const header_offset = try reserveCustomSectionHeader(file);
|
|
const writer = file.writer();
|
|
try leb.writeULEB128(writer, @intCast(u32, "name".len));
|
|
try writer.writeAll("name");
|
|
|
|
try self.emitNameSubsection(.function, funcs.items, writer);
|
|
try self.emitNameSubsection(.global, globals.items, writer);
|
|
try self.emitNameSubsection(.data_segment, segments.items, writer);
|
|
|
|
try writeCustomSectionHeader(
|
|
file,
|
|
header_offset,
|
|
@intCast(u32, (try file.getPos()) - header_offset - 6),
|
|
);
|
|
}
|
|
|
|
fn emitNameSubsection(self: *Wasm, section_id: std.wasm.NameSubsection, names: anytype, writer: anytype) !void {
|
|
// We must emit subsection size, so first write to a temporary list
|
|
var section_list = std.ArrayList(u8).init(self.base.allocator);
|
|
defer section_list.deinit();
|
|
const sub_writer = section_list.writer();
|
|
|
|
try leb.writeULEB128(sub_writer, @intCast(u32, names.len));
|
|
for (names) |name| {
|
|
log.debug("Emit symbol '{s}' type({s})", .{ name.name, @tagName(section_id) });
|
|
try leb.writeULEB128(sub_writer, name.index);
|
|
try leb.writeULEB128(sub_writer, @intCast(u32, name.name.len));
|
|
try sub_writer.writeAll(name.name);
|
|
}
|
|
|
|
// From now, write to the actual writer
|
|
try leb.writeULEB128(writer, @enumToInt(section_id));
|
|
try leb.writeULEB128(writer, @intCast(u32, section_list.items.len));
|
|
try writer.writeAll(section_list.items);
|
|
}
|
|
|
|
fn emitLimits(writer: anytype, limits: wasm.Limits) !void {
|
|
try leb.writeULEB128(writer, @boolToInt(limits.max != null));
|
|
try leb.writeULEB128(writer, limits.min);
|
|
if (limits.max) |max| {
|
|
try leb.writeULEB128(writer, max);
|
|
}
|
|
}
|
|
|
|
fn emitInit(writer: anytype, init_expr: wasm.InitExpression) !void {
|
|
switch (init_expr) {
|
|
.i32_const => |val| {
|
|
try writer.writeByte(wasm.opcode(.i32_const));
|
|
try leb.writeILEB128(writer, val);
|
|
},
|
|
.i64_const => |val| {
|
|
try writer.writeByte(wasm.opcode(.i64_const));
|
|
try leb.writeILEB128(writer, val);
|
|
},
|
|
.f32_const => |val| {
|
|
try writer.writeByte(wasm.opcode(.f32_const));
|
|
try writer.writeIntLittle(u32, @bitCast(u32, val));
|
|
},
|
|
.f64_const => |val| {
|
|
try writer.writeByte(wasm.opcode(.f64_const));
|
|
try writer.writeIntLittle(u64, @bitCast(u64, val));
|
|
},
|
|
.global_get => |val| {
|
|
try writer.writeByte(wasm.opcode(.global_get));
|
|
try leb.writeULEB128(writer, val);
|
|
},
|
|
}
|
|
try writer.writeByte(wasm.opcode(.end));
|
|
}
|
|
|
|
fn emitImport(self: *Wasm, writer: anytype, import: types.Import) !void {
|
|
const module_name = self.string_table.get(import.module_name);
|
|
try leb.writeULEB128(writer, @intCast(u32, module_name.len));
|
|
try writer.writeAll(module_name);
|
|
|
|
const name = self.string_table.get(import.name);
|
|
try leb.writeULEB128(writer, @intCast(u32, name.len));
|
|
try writer.writeAll(name);
|
|
|
|
try writer.writeByte(@enumToInt(import.kind));
|
|
switch (import.kind) {
|
|
.function => |type_index| try leb.writeULEB128(writer, type_index),
|
|
.global => |global_type| {
|
|
try leb.writeULEB128(writer, wasm.valtype(global_type.valtype));
|
|
try writer.writeByte(@boolToInt(global_type.mutable));
|
|
},
|
|
.table => |table| {
|
|
try leb.writeULEB128(writer, wasm.reftype(table.reftype));
|
|
try emitLimits(writer, table.limits);
|
|
},
|
|
.memory => |limits| {
|
|
try emitLimits(writer, limits);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn linkWithLLD(self: *Wasm, comp: *Compilation, prog_node: *std.Progress.Node) !void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
var arena_allocator = std.heap.ArenaAllocator.init(self.base.allocator);
|
|
defer arena_allocator.deinit();
|
|
const arena = arena_allocator.allocator();
|
|
|
|
const directory = self.base.options.emit.?.directory; // Just an alias to make it shorter to type.
|
|
const full_out_path = try directory.join(arena, &[_][]const u8{self.base.options.emit.?.sub_path});
|
|
|
|
// If there is no Zig code to compile, then we should skip flushing the output file because it
|
|
// will not be part of the linker line anyway.
|
|
const module_obj_path: ?[]const u8 = if (self.base.options.module) |mod| blk: {
|
|
const use_stage1 = build_options.is_stage1 and self.base.options.use_stage1;
|
|
if (use_stage1) {
|
|
const obj_basename = try std.zig.binNameAlloc(arena, .{
|
|
.root_name = self.base.options.root_name,
|
|
.target = self.base.options.target,
|
|
.output_mode = .Obj,
|
|
});
|
|
switch (self.base.options.cache_mode) {
|
|
.incremental => break :blk try mod.zig_cache_artifact_directory.join(
|
|
arena,
|
|
&[_][]const u8{obj_basename},
|
|
),
|
|
.whole => break :blk try fs.path.join(arena, &.{
|
|
fs.path.dirname(full_out_path).?, obj_basename,
|
|
}),
|
|
}
|
|
}
|
|
|
|
try self.flushModule(comp, prog_node);
|
|
|
|
if (fs.path.dirname(full_out_path)) |dirname| {
|
|
break :blk try fs.path.join(arena, &.{ dirname, self.base.intermediary_basename.? });
|
|
} else {
|
|
break :blk self.base.intermediary_basename.?;
|
|
}
|
|
} else null;
|
|
|
|
var sub_prog_node = prog_node.start("LLD Link", 0);
|
|
sub_prog_node.activate();
|
|
sub_prog_node.context.refresh();
|
|
defer sub_prog_node.end();
|
|
|
|
const is_obj = self.base.options.output_mode == .Obj;
|
|
|
|
const compiler_rt_path: ?[]const u8 = if (self.base.options.include_compiler_rt and !is_obj)
|
|
comp.compiler_rt_lib.?.full_object_path
|
|
else
|
|
null;
|
|
|
|
const target = self.base.options.target;
|
|
|
|
const id_symlink_basename = "lld.id";
|
|
|
|
var man: Cache.Manifest = undefined;
|
|
defer if (!self.base.options.disable_lld_caching) man.deinit();
|
|
|
|
var digest: [Cache.hex_digest_len]u8 = undefined;
|
|
|
|
if (!self.base.options.disable_lld_caching) {
|
|
man = comp.cache_parent.obtain();
|
|
|
|
// We are about to obtain this lock, so here we give other processes a chance first.
|
|
self.base.releaseLock();
|
|
|
|
comptime assert(Compilation.link_hash_implementation_version == 4);
|
|
|
|
for (self.base.options.objects) |obj| {
|
|
_ = try man.addFile(obj.path, null);
|
|
man.hash.add(obj.must_link);
|
|
}
|
|
for (comp.c_object_table.keys()) |key| {
|
|
_ = try man.addFile(key.status.success.object_path, null);
|
|
}
|
|
try man.addOptionalFile(module_obj_path);
|
|
try man.addOptionalFile(compiler_rt_path);
|
|
man.hash.addOptionalBytes(self.base.options.entry);
|
|
man.hash.addOptional(self.base.options.stack_size_override);
|
|
man.hash.add(self.base.options.import_memory);
|
|
man.hash.add(self.base.options.import_table);
|
|
man.hash.add(self.base.options.export_table);
|
|
man.hash.addOptional(self.base.options.initial_memory);
|
|
man.hash.addOptional(self.base.options.max_memory);
|
|
man.hash.add(self.base.options.shared_memory);
|
|
man.hash.addOptional(self.base.options.global_base);
|
|
man.hash.add(self.base.options.export_symbol_names.len);
|
|
// strip does not need to go into the linker hash because it is part of the hash namespace
|
|
for (self.base.options.export_symbol_names) |symbol_name| {
|
|
man.hash.addBytes(symbol_name);
|
|
}
|
|
|
|
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
|
|
_ = try man.hit();
|
|
digest = man.final();
|
|
|
|
var prev_digest_buf: [digest.len]u8 = undefined;
|
|
const prev_digest: []u8 = Cache.readSmallFile(
|
|
directory.handle,
|
|
id_symlink_basename,
|
|
&prev_digest_buf,
|
|
) catch |err| blk: {
|
|
log.debug("WASM LLD new_digest={s} error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) });
|
|
// Handle this as a cache miss.
|
|
break :blk prev_digest_buf[0..0];
|
|
};
|
|
if (mem.eql(u8, prev_digest, &digest)) {
|
|
log.debug("WASM LLD digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)});
|
|
// Hot diggity dog! The output binary is already there.
|
|
self.base.lock = man.toOwnedLock();
|
|
return;
|
|
}
|
|
log.debug("WASM LLD prev_digest={s} new_digest={s}", .{ std.fmt.fmtSliceHexLower(prev_digest), std.fmt.fmtSliceHexLower(&digest) });
|
|
|
|
// We are about to change the output file to be different, so we invalidate the build hash now.
|
|
directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
|
|
error.FileNotFound => {},
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
if (is_obj) {
|
|
// LLD's WASM driver does not support the equivalent of `-r` so we do a simple file copy
|
|
// here. TODO: think carefully about how we can avoid this redundant operation when doing
|
|
// build-obj. See also the corresponding TODO in linkAsArchive.
|
|
const the_object_path = blk: {
|
|
if (self.base.options.objects.len != 0)
|
|
break :blk self.base.options.objects[0].path;
|
|
|
|
if (comp.c_object_table.count() != 0)
|
|
break :blk comp.c_object_table.keys()[0].status.success.object_path;
|
|
|
|
if (module_obj_path) |p|
|
|
break :blk p;
|
|
|
|
// TODO I think this is unreachable. Audit this situation when solving the above TODO
|
|
// regarding eliding redundant object -> object transformations.
|
|
return error.NoObjectsToLink;
|
|
};
|
|
// This can happen when using --enable-cache and using the stage1 backend. In this case
|
|
// we can skip the file copy.
|
|
if (!mem.eql(u8, the_object_path, full_out_path)) {
|
|
try fs.cwd().copyFile(the_object_path, fs.cwd(), full_out_path, .{});
|
|
}
|
|
} else {
|
|
// Create an LLD command line and invoke it.
|
|
var argv = std.ArrayList([]const u8).init(self.base.allocator);
|
|
defer argv.deinit();
|
|
// We will invoke ourselves as a child process to gain access to LLD.
|
|
// This is necessary because LLD does not behave properly as a library -
|
|
// it calls exit() and does not reset all global data between invocations.
|
|
try argv.appendSlice(&[_][]const u8{ comp.self_exe_path.?, "wasm-ld" });
|
|
try argv.append("-error-limit=0");
|
|
|
|
if (self.base.options.lto) {
|
|
switch (self.base.options.optimize_mode) {
|
|
.Debug => {},
|
|
.ReleaseSmall => try argv.append("-O2"),
|
|
.ReleaseFast, .ReleaseSafe => try argv.append("-O3"),
|
|
}
|
|
}
|
|
|
|
if (self.base.options.import_memory) {
|
|
try argv.append("--import-memory");
|
|
}
|
|
|
|
if (self.base.options.import_table) {
|
|
assert(!self.base.options.export_table);
|
|
try argv.append("--import-table");
|
|
}
|
|
|
|
if (self.base.options.export_table) {
|
|
assert(!self.base.options.import_table);
|
|
try argv.append("--export-table");
|
|
}
|
|
|
|
if (self.base.options.strip) {
|
|
try argv.append("-s");
|
|
}
|
|
|
|
if (self.base.options.initial_memory) |initial_memory| {
|
|
const arg = try std.fmt.allocPrint(arena, "--initial-memory={d}", .{initial_memory});
|
|
try argv.append(arg);
|
|
}
|
|
|
|
if (self.base.options.max_memory) |max_memory| {
|
|
const arg = try std.fmt.allocPrint(arena, "--max-memory={d}", .{max_memory});
|
|
try argv.append(arg);
|
|
}
|
|
|
|
if (self.base.options.shared_memory) {
|
|
try argv.append("--shared-memory");
|
|
}
|
|
|
|
if (self.base.options.global_base) |global_base| {
|
|
const arg = try std.fmt.allocPrint(arena, "--global-base={d}", .{global_base});
|
|
try argv.append(arg);
|
|
} else {
|
|
// We prepend it by default, so when a stack overflow happens the runtime will trap correctly,
|
|
// rather than silently overwrite all global declarations. See https://github.com/ziglang/zig/issues/4496
|
|
//
|
|
// The user can overwrite this behavior by setting the global-base
|
|
try argv.append("--stack-first");
|
|
}
|
|
|
|
var auto_export_symbols = true;
|
|
// Users are allowed to specify which symbols they want to export to the wasm host.
|
|
for (self.base.options.export_symbol_names) |symbol_name| {
|
|
const arg = try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name});
|
|
try argv.append(arg);
|
|
auto_export_symbols = false;
|
|
}
|
|
|
|
if (self.base.options.rdynamic) {
|
|
try argv.append("--export-dynamic");
|
|
auto_export_symbols = false;
|
|
}
|
|
|
|
if (auto_export_symbols) {
|
|
if (self.base.options.module) |mod| {
|
|
// when we use stage1, we use the exports that stage1 provided us.
|
|
// For stage2, we can directly retrieve them from the module.
|
|
const use_stage1 = build_options.is_stage1 and self.base.options.use_stage1;
|
|
if (use_stage1) {
|
|
for (comp.export_symbol_names.items) |symbol_name| {
|
|
try argv.append(try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name}));
|
|
}
|
|
} else {
|
|
const skip_export_non_fn = target.os.tag == .wasi and
|
|
self.base.options.wasi_exec_model == .command;
|
|
for (mod.decl_exports.values()) |exports| {
|
|
for (exports) |exprt| {
|
|
const exported_decl = mod.declPtr(exprt.exported_decl);
|
|
if (skip_export_non_fn and exported_decl.ty.zigTypeTag() != .Fn) {
|
|
// skip exporting symbols when we're building a WASI command
|
|
// and the symbol is not a function
|
|
continue;
|
|
}
|
|
const symbol_name = exported_decl.name;
|
|
const arg = try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name});
|
|
try argv.append(arg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (self.base.options.entry) |entry| {
|
|
try argv.append("--entry");
|
|
try argv.append(entry);
|
|
}
|
|
|
|
if (self.base.options.output_mode == .Exe) {
|
|
// Increase the default stack size to a more reasonable value of 1MB instead of
|
|
// the default of 1 Wasm page being 64KB, unless overridden by the user.
|
|
try argv.append("-z");
|
|
const stack_size = self.base.options.stack_size_override orelse 1048576;
|
|
const arg = try std.fmt.allocPrint(arena, "stack-size={d}", .{stack_size});
|
|
try argv.append(arg);
|
|
|
|
if (self.base.options.wasi_exec_model == .reactor) {
|
|
// Reactor execution model does not have _start so lld doesn't look for it.
|
|
try argv.append("--no-entry");
|
|
}
|
|
} else {
|
|
if (self.base.options.stack_size_override) |stack_size| {
|
|
try argv.append("-z");
|
|
const arg = try std.fmt.allocPrint(arena, "stack-size={d}", .{stack_size});
|
|
try argv.append(arg);
|
|
}
|
|
try argv.append("--no-entry"); // So lld doesn't look for _start.
|
|
}
|
|
try argv.appendSlice(&[_][]const u8{
|
|
"--allow-undefined",
|
|
"-o",
|
|
full_out_path,
|
|
});
|
|
|
|
if (target.cpu.arch == .wasm64) {
|
|
try argv.append("-mwasm64");
|
|
}
|
|
|
|
if (target.os.tag == .wasi) {
|
|
const is_exe_or_dyn_lib = self.base.options.output_mode == .Exe or
|
|
(self.base.options.output_mode == .Lib and self.base.options.link_mode == .Dynamic);
|
|
if (is_exe_or_dyn_lib) {
|
|
const wasi_emulated_libs = self.base.options.wasi_emulated_libs;
|
|
for (wasi_emulated_libs) |crt_file| {
|
|
try argv.append(try comp.get_libc_crt_file(
|
|
arena,
|
|
wasi_libc.emulatedLibCRFileLibName(crt_file),
|
|
));
|
|
}
|
|
|
|
if (self.base.options.link_libc) {
|
|
try argv.append(try comp.get_libc_crt_file(
|
|
arena,
|
|
wasi_libc.execModelCrtFileFullName(self.base.options.wasi_exec_model),
|
|
));
|
|
try argv.append(try comp.get_libc_crt_file(arena, "libc.a"));
|
|
}
|
|
|
|
if (self.base.options.link_libcpp) {
|
|
try argv.append(comp.libcxx_static_lib.?.full_object_path);
|
|
try argv.append(comp.libcxxabi_static_lib.?.full_object_path);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Positional arguments to the linker such as object files.
|
|
var whole_archive = false;
|
|
for (self.base.options.objects) |obj| {
|
|
if (obj.must_link and !whole_archive) {
|
|
try argv.append("-whole-archive");
|
|
whole_archive = true;
|
|
} else if (!obj.must_link and whole_archive) {
|
|
try argv.append("-no-whole-archive");
|
|
whole_archive = false;
|
|
}
|
|
try argv.append(obj.path);
|
|
}
|
|
if (whole_archive) {
|
|
try argv.append("-no-whole-archive");
|
|
whole_archive = false;
|
|
}
|
|
|
|
for (comp.c_object_table.keys()) |key| {
|
|
try argv.append(key.status.success.object_path);
|
|
}
|
|
if (module_obj_path) |p| {
|
|
try argv.append(p);
|
|
}
|
|
|
|
if (self.base.options.output_mode != .Obj and
|
|
!self.base.options.skip_linker_dependencies and
|
|
!self.base.options.link_libc)
|
|
{
|
|
try argv.append(comp.libc_static_lib.?.full_object_path);
|
|
}
|
|
|
|
if (compiler_rt_path) |p| {
|
|
try argv.append(p);
|
|
}
|
|
|
|
if (self.base.options.verbose_link) {
|
|
// Skip over our own name so that the LLD linker name is the first argv item.
|
|
Compilation.dump_argv(argv.items[1..]);
|
|
}
|
|
|
|
if (std.process.can_spawn) {
|
|
// If possible, we run LLD as a child process because it does not always
|
|
// behave properly as a library, unfortunately.
|
|
// https://github.com/ziglang/zig/issues/3825
|
|
var child = std.ChildProcess.init(argv.items, arena);
|
|
if (comp.clang_passthrough_mode) {
|
|
child.stdin_behavior = .Inherit;
|
|
child.stdout_behavior = .Inherit;
|
|
child.stderr_behavior = .Inherit;
|
|
|
|
const term = child.spawnAndWait() catch |err| {
|
|
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
|
|
return error.UnableToSpawnSelf;
|
|
};
|
|
switch (term) {
|
|
.Exited => |code| {
|
|
if (code != 0) {
|
|
std.process.exit(code);
|
|
}
|
|
},
|
|
else => std.process.abort(),
|
|
}
|
|
} else {
|
|
child.stdin_behavior = .Ignore;
|
|
child.stdout_behavior = .Ignore;
|
|
child.stderr_behavior = .Pipe;
|
|
|
|
try child.spawn();
|
|
|
|
const stderr = try child.stderr.?.reader().readAllAlloc(arena, 10 * 1024 * 1024);
|
|
|
|
const term = child.wait() catch |err| {
|
|
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
|
|
return error.UnableToSpawnSelf;
|
|
};
|
|
|
|
switch (term) {
|
|
.Exited => |code| {
|
|
if (code != 0) {
|
|
// TODO parse this output and surface with the Compilation API rather than
|
|
// directly outputting to stderr here.
|
|
std.debug.print("{s}", .{stderr});
|
|
return error.LLDReportedFailure;
|
|
}
|
|
},
|
|
else => {
|
|
log.err("{s} terminated with stderr:\n{s}", .{ argv.items[0], stderr });
|
|
return error.LLDCrashed;
|
|
},
|
|
}
|
|
|
|
if (stderr.len != 0) {
|
|
log.warn("unexpected LLD stderr:\n{s}", .{stderr});
|
|
}
|
|
}
|
|
} else {
|
|
const exit_code = try lldMain(arena, argv.items, false);
|
|
if (exit_code != 0) {
|
|
if (comp.clang_passthrough_mode) {
|
|
std.process.exit(exit_code);
|
|
} else {
|
|
return error.LLDReportedFailure;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!self.base.options.disable_lld_caching) {
|
|
// Update the file with the digest. If it fails we can continue; it only
|
|
// means that the next invocation will have an unnecessary cache miss.
|
|
Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| {
|
|
log.warn("failed to save linking hash digest symlink: {s}", .{@errorName(err)});
|
|
};
|
|
// Again failure here only means an unnecessary cache miss.
|
|
man.writeManifest() catch |err| {
|
|
log.warn("failed to write cache manifest when linking: {s}", .{@errorName(err)});
|
|
};
|
|
// We hang on to this lock so that the output file path can be used without
|
|
// other processes clobbering it.
|
|
self.base.lock = man.toOwnedLock();
|
|
}
|
|
}
|
|
|
|
fn reserveVecSectionHeader(file: fs.File) !u64 {
|
|
// section id + fixed leb contents size + fixed leb vector length
|
|
const header_size = 1 + 5 + 5;
|
|
// TODO: this should be a single lseek(2) call, but fs.File does not
|
|
// currently provide a way to do this.
|
|
try file.seekBy(header_size);
|
|
return (try file.getPos()) - header_size;
|
|
}
|
|
|
|
fn reserveCustomSectionHeader(file: fs.File) !u64 {
|
|
// unlike regular section, we don't emit the count
|
|
const header_size = 1 + 5;
|
|
// TODO: this should be a single lseek(2) call, but fs.File does not
|
|
// currently provide a way to do this.
|
|
try file.seekBy(header_size);
|
|
return (try file.getPos()) - header_size;
|
|
}
|
|
|
|
fn writeVecSectionHeader(file: fs.File, offset: u64, section: wasm.Section, size: u32, items: u32) !void {
|
|
var buf: [1 + 5 + 5]u8 = undefined;
|
|
buf[0] = @enumToInt(section);
|
|
leb.writeUnsignedFixed(5, buf[1..6], size);
|
|
leb.writeUnsignedFixed(5, buf[6..], items);
|
|
try file.pwriteAll(&buf, offset);
|
|
}
|
|
|
|
fn writeCustomSectionHeader(file: fs.File, offset: u64, size: u32) !void {
|
|
var buf: [1 + 5]u8 = undefined;
|
|
buf[0] = 0; // 0 = 'custom' section
|
|
leb.writeUnsignedFixed(5, buf[1..6], size);
|
|
try file.pwriteAll(&buf, offset);
|
|
}
|
|
|
|
fn emitLinkSection(self: *Wasm, file: fs.File, arena: Allocator, symbol_table: *std.AutoArrayHashMap(SymbolLoc, u32)) !void {
|
|
const offset = try reserveCustomSectionHeader(file);
|
|
const writer = file.writer();
|
|
// emit "linking" custom section name
|
|
const section_name = "linking";
|
|
try leb.writeULEB128(writer, section_name.len);
|
|
try writer.writeAll(section_name);
|
|
|
|
// meta data version, which is currently '2'
|
|
try leb.writeULEB128(writer, @as(u32, 2));
|
|
|
|
// For each subsection type (found in types.Subsection) we can emit a section.
|
|
// Currently, we only support emitting segment info and the symbol table.
|
|
try self.emitSymbolTable(file, arena, symbol_table);
|
|
try self.emitSegmentInfo(file, arena);
|
|
|
|
const size = @intCast(u32, (try file.getPos()) - offset - 6);
|
|
try writeCustomSectionHeader(file, offset, size);
|
|
}
|
|
|
|
fn emitSymbolTable(self: *Wasm, file: fs.File, arena: Allocator, symbol_table: *std.AutoArrayHashMap(SymbolLoc, u32)) !void {
|
|
// After emitting the subtype, we must emit the subsection's length
|
|
// so first write it to a temporary arraylist to calculate the length
|
|
// and then write all data at once.
|
|
var payload = std.ArrayList(u8).init(arena);
|
|
const writer = payload.writer();
|
|
|
|
try leb.writeULEB128(file.writer(), @enumToInt(types.SubsectionType.WASM_SYMBOL_TABLE));
|
|
|
|
var symbol_count: u32 = 0;
|
|
for (self.resolved_symbols.keys()) |sym_loc| {
|
|
const symbol = sym_loc.getSymbol(self).*;
|
|
if (symbol.tag == .dead) continue; // Do not emit dead symbols
|
|
try symbol_table.putNoClobber(sym_loc, symbol_count);
|
|
symbol_count += 1;
|
|
log.debug("Emit symbol: {}", .{symbol});
|
|
try leb.writeULEB128(writer, @enumToInt(symbol.tag));
|
|
try leb.writeULEB128(writer, symbol.flags);
|
|
|
|
const sym_name = if (self.export_names.get(sym_loc)) |exp_name| self.string_table.get(exp_name) else sym_loc.getName(self);
|
|
switch (symbol.tag) {
|
|
.data => {
|
|
try leb.writeULEB128(writer, @intCast(u32, sym_name.len));
|
|
try writer.writeAll(sym_name);
|
|
|
|
if (symbol.isDefined()) {
|
|
try leb.writeULEB128(writer, symbol.index);
|
|
const atom = self.symbol_atom.get(sym_loc).?;
|
|
try leb.writeULEB128(writer, @as(u32, atom.offset));
|
|
try leb.writeULEB128(writer, @as(u32, atom.size));
|
|
}
|
|
},
|
|
.section => {
|
|
try leb.writeULEB128(writer, symbol.index);
|
|
},
|
|
else => {
|
|
try leb.writeULEB128(writer, symbol.index);
|
|
if (symbol.isDefined()) {
|
|
try leb.writeULEB128(writer, @intCast(u32, sym_name.len));
|
|
try writer.writeAll(sym_name);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
var buf: [5]u8 = undefined;
|
|
leb.writeUnsignedFixed(5, &buf, symbol_count);
|
|
try payload.insertSlice(0, &buf);
|
|
try leb.writeULEB128(file.writer(), @intCast(u32, payload.items.len));
|
|
|
|
const iovec: std.os.iovec_const = .{
|
|
.iov_base = payload.items.ptr,
|
|
.iov_len = payload.items.len,
|
|
};
|
|
var iovecs = [_]std.os.iovec_const{iovec};
|
|
try file.writevAll(&iovecs);
|
|
}
|
|
|
|
fn emitSegmentInfo(self: *Wasm, file: fs.File, arena: Allocator) !void {
|
|
var payload = std.ArrayList(u8).init(arena);
|
|
const writer = payload.writer();
|
|
try leb.writeULEB128(file.writer(), @enumToInt(types.SubsectionType.WASM_SEGMENT_INFO));
|
|
try leb.writeULEB128(writer, @intCast(u32, self.segment_info.items.len));
|
|
for (self.segment_info.items) |segment_info| {
|
|
log.debug("Emit segment: {s} align({d}) flags({b})", .{
|
|
segment_info.name,
|
|
@ctz(u32, segment_info.alignment),
|
|
segment_info.flags,
|
|
});
|
|
try leb.writeULEB128(writer, @intCast(u32, segment_info.name.len));
|
|
try writer.writeAll(segment_info.name);
|
|
try leb.writeULEB128(writer, @ctz(u32, segment_info.alignment));
|
|
try leb.writeULEB128(writer, segment_info.flags);
|
|
}
|
|
|
|
try leb.writeULEB128(file.writer(), @intCast(u32, payload.items.len));
|
|
const iovec: std.os.iovec_const = .{
|
|
.iov_base = payload.items.ptr,
|
|
.iov_len = payload.items.len,
|
|
};
|
|
var iovecs = [_]std.os.iovec_const{iovec};
|
|
try file.writevAll(&iovecs);
|
|
}
|
|
|
|
pub fn getULEB128Size(uint_value: anytype) u32 {
|
|
const T = @TypeOf(uint_value);
|
|
const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
|
|
var value = @intCast(U, uint_value);
|
|
|
|
var size: u32 = 0;
|
|
while (value != 0) : (size += 1) {
|
|
value >>= 7;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/// For each relocatable section, emits a custom "relocation.<section_name>" section
|
|
fn emitCodeRelocations(
|
|
self: *Wasm,
|
|
file: fs.File,
|
|
arena: Allocator,
|
|
section_index: u32,
|
|
symbol_table: std.AutoArrayHashMap(SymbolLoc, u32),
|
|
) !void {
|
|
const code_index = self.code_section_index orelse return;
|
|
var payload = std.ArrayList(u8).init(arena);
|
|
const writer = payload.writer();
|
|
|
|
// write custom section information
|
|
const name = "reloc.CODE";
|
|
try leb.writeULEB128(writer, @intCast(u32, name.len));
|
|
try writer.writeAll(name);
|
|
try leb.writeULEB128(writer, section_index);
|
|
const reloc_start = payload.items.len;
|
|
|
|
var count: u32 = 0;
|
|
var atom: *Atom = self.atoms.get(code_index).?.getFirst();
|
|
// for each atom, we calculate the uleb size and append that
|
|
var size_offset: u32 = 5; // account for code section size leb128
|
|
while (true) {
|
|
size_offset += getULEB128Size(atom.size);
|
|
for (atom.relocs.items) |relocation| {
|
|
count += 1;
|
|
const sym_loc: SymbolLoc = .{ .file = atom.file, .index = relocation.index };
|
|
const symbol_index = symbol_table.get(sym_loc).?;
|
|
try leb.writeULEB128(writer, @enumToInt(relocation.relocation_type));
|
|
const offset = atom.offset + relocation.offset + size_offset;
|
|
try leb.writeULEB128(writer, offset);
|
|
try leb.writeULEB128(writer, symbol_index);
|
|
if (relocation.relocation_type.addendIsPresent()) {
|
|
try leb.writeULEB128(writer, relocation.addend orelse 0);
|
|
}
|
|
log.debug("Emit relocation: {}", .{relocation});
|
|
}
|
|
atom = atom.next orelse break;
|
|
}
|
|
if (count == 0) return;
|
|
var buf: [5]u8 = undefined;
|
|
leb.writeUnsignedFixed(5, &buf, count);
|
|
try payload.insertSlice(reloc_start, &buf);
|
|
var iovecs = [_]std.os.iovec_const{
|
|
.{
|
|
.iov_base = payload.items.ptr,
|
|
.iov_len = payload.items.len,
|
|
},
|
|
};
|
|
const header_offset = try reserveCustomSectionHeader(file);
|
|
try file.writevAll(&iovecs);
|
|
const size = @intCast(u32, payload.items.len);
|
|
try writeCustomSectionHeader(file, header_offset, size);
|
|
}
|
|
|
|
fn emitDataRelocations(
|
|
self: *Wasm,
|
|
file: fs.File,
|
|
arena: Allocator,
|
|
section_index: u32,
|
|
symbol_table: std.AutoArrayHashMap(SymbolLoc, u32),
|
|
) !void {
|
|
if (self.data_segments.count() == 0) return;
|
|
var payload = std.ArrayList(u8).init(arena);
|
|
const writer = payload.writer();
|
|
|
|
// write custom section information
|
|
const name = "reloc.DATA";
|
|
try leb.writeULEB128(writer, @intCast(u32, name.len));
|
|
try writer.writeAll(name);
|
|
try leb.writeULEB128(writer, section_index);
|
|
const reloc_start = payload.items.len;
|
|
|
|
var count: u32 = 0;
|
|
// for each atom, we calculate the uleb size and append that
|
|
var size_offset: u32 = 5; // account for code section size leb128
|
|
for (self.data_segments.values()) |segment_index| {
|
|
var atom: *Atom = self.atoms.get(segment_index).?.getFirst();
|
|
while (true) {
|
|
size_offset += getULEB128Size(atom.size);
|
|
for (atom.relocs.items) |relocation| {
|
|
count += 1;
|
|
const sym_loc: SymbolLoc = .{
|
|
.file = atom.file,
|
|
.index = relocation.index,
|
|
};
|
|
const symbol_index = symbol_table.get(sym_loc).?;
|
|
try leb.writeULEB128(writer, @enumToInt(relocation.relocation_type));
|
|
const offset = atom.offset + relocation.offset + size_offset;
|
|
try leb.writeULEB128(writer, offset);
|
|
try leb.writeULEB128(writer, symbol_index);
|
|
if (relocation.relocation_type.addendIsPresent()) {
|
|
try leb.writeULEB128(writer, relocation.addend orelse 0);
|
|
}
|
|
log.debug("Emit relocation: {}", .{relocation});
|
|
}
|
|
atom = atom.next orelse break;
|
|
}
|
|
}
|
|
if (count == 0) return;
|
|
|
|
var buf: [5]u8 = undefined;
|
|
leb.writeUnsignedFixed(5, &buf, count);
|
|
try payload.insertSlice(reloc_start, &buf);
|
|
var iovecs = [_]std.os.iovec_const{
|
|
.{
|
|
.iov_base = payload.items.ptr,
|
|
.iov_len = payload.items.len,
|
|
},
|
|
};
|
|
const header_offset = try reserveCustomSectionHeader(file);
|
|
try file.writevAll(&iovecs);
|
|
const size = @intCast(u32, payload.items.len);
|
|
try writeCustomSectionHeader(file, header_offset, size);
|
|
}
|
|
|
|
/// Searches for an a matching function signature, when not found
|
|
/// a new entry will be made. The index of the existing/new signature will be returned.
|
|
pub fn putOrGetFuncType(self: *Wasm, func_type: wasm.Type) !u32 {
|
|
var index: u32 = 0;
|
|
while (index < self.func_types.items.len) : (index += 1) {
|
|
if (self.func_types.items[index].eql(func_type)) return index;
|
|
}
|
|
|
|
// functype does not exist.
|
|
const params = try self.base.allocator.dupe(wasm.Valtype, func_type.params);
|
|
errdefer self.base.allocator.free(params);
|
|
const returns = try self.base.allocator.dupe(wasm.Valtype, func_type.returns);
|
|
errdefer self.base.allocator.free(returns);
|
|
try self.func_types.append(self.base.allocator, .{
|
|
.params = params,
|
|
.returns = returns,
|
|
});
|
|
return index;
|
|
}
|