zig/lib/std/tar.zig
2024-01-13 19:37:33 -07:00

978 lines
35 KiB
Zig
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

const std = @import("std.zig");
const assert = std.debug.assert;
pub const Options = struct {
/// Number of directory levels to skip when extracting files.
strip_components: u32 = 0,
/// How to handle the "mode" property of files from within the tar file.
mode_mode: ModeMode = .executable_bit_only,
/// Prevents creation of empty directories.
exclude_empty_directories: bool = false,
/// Provide this to receive detailed error messages.
/// When this is provided, some errors which would otherwise be returned immediately
/// will instead be added to this structure. The API user must check the errors
/// in diagnostics to know whether the operation succeeded or failed.
diagnostics: ?*Diagnostics = null,
pub const ModeMode = enum {
/// The mode from the tar file is completely ignored. Files are created
/// with the default mode when creating files.
ignore,
/// The mode from the tar file is inspected for the owner executable bit
/// only. This bit is copied to the group and other executable bits.
/// Other bits of the mode are left as the default when creating files.
executable_bit_only,
};
pub const Diagnostics = struct {
allocator: std.mem.Allocator,
errors: std.ArrayListUnmanaged(Error) = .{},
pub const Error = union(enum) {
unable_to_create_sym_link: struct {
code: anyerror,
file_name: []const u8,
link_name: []const u8,
},
unable_to_create_file: struct {
code: anyerror,
file_name: []const u8,
},
unsupported_file_type: struct {
file_name: []const u8,
file_type: Header.FileType,
},
};
pub fn deinit(d: *Diagnostics) void {
for (d.errors.items) |item| {
switch (item) {
.unable_to_create_sym_link => |info| {
d.allocator.free(info.file_name);
d.allocator.free(info.link_name);
},
.unable_to_create_file => |info| {
d.allocator.free(info.file_name);
},
.unsupported_file_type => |info| {
d.allocator.free(info.file_name);
},
}
}
d.errors.deinit(d.allocator);
d.* = undefined;
}
};
};
const BLOCK_SIZE = 512;
pub const Header = struct {
bytes: *const [BLOCK_SIZE]u8,
pub const FileType = enum(u8) {
normal_alias = 0,
normal = '0',
hard_link = '1',
symbolic_link = '2',
character_special = '3',
block_special = '4',
directory = '5',
fifo = '6',
contiguous = '7',
global_extended_header = 'g',
extended_header = 'x',
// Types 'L' and 'K' are used by the GNU format for a meta file
// used to store the path or link name for the next file.
gnu_long_name = 'L',
gnu_long_link = 'K',
_,
};
/// Includes prefix concatenated, if any.
/// Return value may point into Header buffer, or might point into the
/// argument buffer.
/// TODO: check against "../" and other nefarious things
pub fn fullFileName(header: Header, buffer: *[std.fs.MAX_PATH_BYTES]u8) ![]const u8 {
const n = name(header);
if (!is_ustar(header))
return n;
const p = prefix(header);
if (p.len == 0)
return n;
@memcpy(buffer[0..p.len], p);
buffer[p.len] = '/';
@memcpy(buffer[p.len + 1 ..][0..n.len], n);
return buffer[0 .. p.len + 1 + n.len];
}
pub fn name(header: Header) []const u8 {
return header.str(0, 100);
}
pub fn fileSize(header: Header) !u64 {
return header.numeric(124, 12);
}
pub fn chksum(header: Header) !u64 {
return header.octal(148, 8);
}
pub fn linkName(header: Header) []const u8 {
return header.str(157, 100);
}
pub fn is_ustar(header: Header) bool {
const magic = header.bytes[257..][0..6];
return std.mem.eql(u8, magic[0..5], "ustar") and (magic[5] == 0 or magic[5] == ' ');
}
pub fn prefix(header: Header) []const u8 {
return header.str(345, 155);
}
pub fn fileType(header: Header) FileType {
const result: FileType = @enumFromInt(header.bytes[156]);
if (result == .normal_alias) return .normal;
return result;
}
fn str(header: Header, start: usize, len: usize) []const u8 {
return nullStr(header.bytes[start .. start + len]);
}
fn numeric(header: Header, start: usize, len: usize) !u64 {
const raw = header.bytes[start..][0..len];
// If the leading byte is 0xff (255), all the bytes of the field
// (including the leading byte) are concatenated in big-endian order,
// with the result being a negative number expressed in twos
// complement form.
if (raw[0] == 0xff) return error.TarNumericValueNegative;
// If the leading byte is 0x80 (128), the non-leading bytes of the
// field are concatenated in big-endian order.
if (raw[0] == 0x80) {
if (raw[1] + raw[2] + raw[3] != 0) return error.TarNumericValueTooBig;
return std.mem.readInt(u64, raw[4..12], .big);
}
return try header.octal(start, len);
}
fn octal(header: Header, start: usize, len: usize) !u64 {
const raw = header.bytes[start..][0..len];
// Zero-filled octal number in ASCII. Each numeric field of width w
// contains w minus 1 digits, and a null
const ltrimmed = std.mem.trimLeft(u8, raw, "0 ");
const rtrimmed = std.mem.trimRight(u8, ltrimmed, " \x00");
if (rtrimmed.len == 0) return 0;
return std.fmt.parseInt(u64, rtrimmed, 8) catch return error.TarHeader;
}
// Sum of all bytes in the header block. The chksum field is treated as if
// it were filled with spaces (ASCII 32).
fn computeChksum(header: Header) u64 {
var sum: u64 = 0;
for (header.bytes, 0..) |b, i| {
if (148 <= i and i < 156) continue; // skip chksum field bytes
sum += b;
}
// Treating chksum bytes as spaces. 256 = 8 * 32, 8 spaces.
return if (sum > 0) sum + 256 else 0;
}
// Checks calculated chksum with value of chksum field.
// Returns error or chksum value.
// Zero value indicates empty block.
pub fn checkChksum(header: Header) !u64 {
const field = try header.chksum();
const computed = header.computeChksum();
if (field != computed) return error.TarHeaderChksum;
return field;
}
};
// break string on first null char
fn nullStr(str: []const u8) []const u8 {
for (str, 0..) |c, i| {
if (c == 0) return str[0..i];
}
return str;
}
fn BufferedReader(comptime ReaderType: type) type {
return struct {
unbuffered_reader: ReaderType,
buffer: [BLOCK_SIZE * 8]u8 = undefined,
start: usize = 0,
end: usize = 0,
const Self = @This();
pub fn readChunk(self: *Self, count: usize) ![]const u8 {
self.ensureCapacity(1024);
const ask = @min(self.buffer.len - self.end, count -| (self.end - self.start));
self.end += try self.unbuffered_reader.readAtLeast(self.buffer[self.end..], ask);
return self.buffer[self.start..self.end];
}
pub fn readBlock(self: *Self) !?[]const u8 {
const block_bytes = try self.readChunk(BLOCK_SIZE * 2);
switch (block_bytes.len) {
0 => return null,
1...(BLOCK_SIZE - 1) => return error.UnexpectedEndOfStream,
else => {},
}
self.advance(BLOCK_SIZE);
return block_bytes[0..BLOCK_SIZE];
}
pub fn advance(self: *Self, count: usize) void {
self.start += count;
assert(self.start <= self.end);
}
pub fn skip(self: *Self, count: usize) !void {
if (self.start + count > self.end) {
try self.unbuffered_reader.skipBytes(self.start + count - self.end, .{});
self.start = self.end;
} else {
self.advance(count);
}
}
pub fn skipPadding(self: *Self, file_size: usize) !void {
return self.skip(filePadding(file_size));
}
pub fn skipFile(self: *Self, file_size: usize) !void {
return self.skip(roundedFileSize(file_size));
}
inline fn ensureCapacity(self: *Self, count: usize) void {
if (self.buffer.len - self.start < count) {
const dest_end = self.end - self.start;
@memcpy(self.buffer[0..dest_end], self.buffer[self.start..self.end]);
self.end = dest_end;
self.start = 0;
}
}
pub fn write(self: *Self, writer: anytype, size: usize) !void {
var rdr = self.sliceReader(size, true);
while (try rdr.next()) |slice| {
try writer.writeAll(slice);
}
}
// copy dst.len bytes into dst
pub fn copy(self: *Self, dst: []u8) ![]const u8 {
var rdr = self.sliceReader(dst.len, true);
var pos: usize = 0;
while (try rdr.next()) |slice| : (pos += slice.len) {
@memcpy(dst[pos .. pos + slice.len], slice);
}
return dst;
}
const SliceReader = struct {
size: usize,
chunk_size: usize,
offset: usize,
reader: *Self,
auto_advance: bool,
pub fn next(self: *@This()) !?[]const u8 {
if (self.offset >= self.size) return null;
const temp = try self.reader.readChunk(self.chunk_size - self.offset);
if (temp.len == 0) return error.UnexpectedEndOfStream;
const slice = temp[0..@min(self.remainingSize(), temp.len)];
if (self.auto_advance) try self.advance(slice.len);
return slice;
}
pub fn advance(self: *@This(), len: usize) !void {
self.offset += len;
try self.reader.skip(len);
}
pub fn byte(self: *@This()) u8 {
return self.reader.buffer[self.reader.start];
}
pub fn copy(self: *@This(), dst: []u8) ![]const u8 {
_ = try self.reader.copy(dst);
self.offset += dst.len;
return dst;
}
pub fn remainingSize(self: *@This()) usize {
return self.size - self.offset;
}
};
pub fn sliceReader(self: *Self, size: usize, auto_advance: bool) Self.SliceReader {
return .{
.size = size,
.chunk_size = roundedFileSize(size) + BLOCK_SIZE,
.offset = 0,
.reader = self,
.auto_advance = auto_advance,
};
}
};
}
// File size rounded to te block boundary.
inline fn roundedFileSize(file_size: usize) usize {
return std.mem.alignForward(usize, file_size, BLOCK_SIZE);
}
// Number of padding bytes in the last file block.
inline fn filePadding(file_size: usize) usize {
return roundedFileSize(file_size) - file_size;
}
fn Iterator(comptime ReaderType: type) type {
const BufferedReaderType = BufferedReader(ReaderType);
return struct {
attrs: struct {
buffer: [std.fs.MAX_PATH_BYTES * 2]u8 = undefined,
tail: usize = 0,
fn alloc(self: *@This(), size: usize) ![]u8 {
if (size > self.len()) return error.NameTooLong;
const head = self.tail;
self.tail += size;
assert(self.tail <= self.buffer.len);
return self.buffer[head..self.tail];
}
fn free(self: *@This()) void {
self.tail = 0;
}
fn len(self: *@This()) usize {
return self.buffer.len - self.tail;
}
} = .{},
reader: BufferedReaderType,
diagnostics: ?*Options.Diagnostics,
const Self = @This();
const File = struct {
name: []const u8 = &[_]u8{},
link_name: []const u8 = &[_]u8{},
size: usize = 0,
file_type: Header.FileType = .normal,
reader: *BufferedReaderType,
pub fn write(self: File, writer: anytype) !void {
try self.reader.write(writer, self.size);
try self.skipPadding();
}
pub fn skip(self: File) !void {
try self.reader.skip(roundedFileSize(self.size));
}
fn skipPadding(self: File) !void {
try self.reader.skip(filePadding(self.size));
}
fn chksum(self: File) ![16]u8 {
var sum = [_]u8{0} ** 16;
if (self.size == 0) return sum;
var rdr = self.reader.sliceReader(self.size, true);
var h = std.crypto.hash.Md5.init(.{});
while (try rdr.next()) |slice| {
h.update(slice);
}
h.final(&sum);
try self.skipPadding();
return sum;
}
};
// Externally, `next` iterates through the tar archive as if it is a
// series of files. Internally, the tar format often uses fake "files"
// to add meta data that describes the next file. These meta data
// "files" should not normally be visible to the outside. As such, this
// loop iterates through one or more "header files" until it finds a
// "normal file".
pub fn next(self: *Self) !?File {
var file: File = .{ .reader = &self.reader };
self.attrs.free();
while (try self.reader.readBlock()) |block_bytes| {
const block = Header{ .bytes = block_bytes[0..BLOCK_SIZE] };
if (try block.checkChksum() == 0) return null; // zero block found
const file_type = block.fileType();
const file_size = try block.fileSize();
switch (file_type) {
.directory, .normal, .symbolic_link => {
if (file.size == 0) file.size = file_size;
if (file.name.len == 0)
file.name = try block.fullFileName((try self.attrs.alloc(std.fs.MAX_PATH_BYTES))[0..std.fs.MAX_PATH_BYTES]);
if (file.link_name.len == 0) file.link_name = block.linkName();
file.file_type = file_type;
return file;
},
.global_extended_header => {
self.reader.skipFile(file_size) catch return error.TarHeadersTooBig;
},
.extended_header => {
if (file_size == 0) continue;
// TODO: ovo resetiranje je nezgodno
self.attrs.free();
file = File{ .reader = &self.reader };
var rdr = self.reader.sliceReader(file_size, false);
while (try rdr.next()) |slice| {
const attr = try parsePaxAttribute(slice, rdr.remainingSize());
try rdr.advance(attr.value_off);
if (attr.is("path")) {
file.name = try noNull(try rdr.copy(try self.attrs.alloc(attr.value_len)));
} else if (attr.is("linkpath")) {
file.link_name = try noNull(try rdr.copy(try self.attrs.alloc(attr.value_len)));
} else if (attr.is("size")) {
var buf = [_]u8{'0'} ** 32;
file.size = try std.fmt.parseInt(usize, try rdr.copy(buf[0..attr.value_len]), 10);
} else {
try rdr.advance(attr.value_len);
}
if (rdr.byte() != '\n') return error.InvalidPaxAttribute;
try rdr.advance(1);
}
try self.reader.skipPadding(file_size);
},
.gnu_long_name => {
file.name = nullStr(try self.reader.copy(try self.attrs.alloc(file_size)));
try self.reader.skipPadding(file_size);
},
.gnu_long_link => {
file.link_name = nullStr(try self.reader.copy(try self.attrs.alloc(file_size)));
try self.reader.skipPadding(file_size);
},
.hard_link => return error.TarUnsupportedFileType,
else => {
const d = self.diagnostics orelse return error.TarUnsupportedFileType;
try d.errors.append(d.allocator, .{ .unsupported_file_type = .{
.file_name = try d.allocator.dupe(u8, block.name()),
.file_type = file_type,
} });
},
}
}
return null;
}
};
}
pub fn iterator(reader: anytype, diagnostics: ?*Options.Diagnostics) Iterator(@TypeOf(reader)) {
const ReaderType = @TypeOf(reader);
return .{
.reader = BufferedReader(ReaderType){ .unbuffered_reader = reader },
.diagnostics = diagnostics,
};
}
pub fn pipeToFileSystem(dir: std.fs.Dir, reader: anytype, options: Options) !void {
switch (options.mode_mode) {
.ignore => {},
.executable_bit_only => {
// This code does not look at the mode bits yet. To implement this feature,
// the implementation must be adjusted to look at the mode, and check the
// user executable bit, then call fchmod on newly created files when
// the executable bit is supposed to be set.
// It also needs to properly deal with ACLs on Windows.
@panic("TODO: unimplemented: tar ModeMode.executable_bit_only");
},
}
var iter = iterator(reader, options.diagnostics);
while (try iter.next()) |file| {
switch (file.file_type) {
.directory => {
const file_name = try stripComponents(file.name, options.strip_components);
if (file_name.len != 0 and !options.exclude_empty_directories) {
try dir.makePath(file_name);
}
},
.normal => {
if (file.size == 0 and file.name.len == 0) return;
const file_name = try stripComponents(file.name, options.strip_components);
const fs_file = dir.createFile(file_name, .{}) catch |err| switch (err) {
error.FileNotFound => again: {
const code = code: {
if (std.fs.path.dirname(file_name)) |dir_name| {
dir.makePath(dir_name) catch |code| break :code code;
break :again dir.createFile(file_name, .{}) catch |code| {
break :code code;
};
}
break :code err;
};
const d = options.diagnostics orelse return error.UnableToCreateFile;
try d.errors.append(d.allocator, .{ .unable_to_create_file = .{
.code = code,
.file_name = try d.allocator.dupe(u8, file_name),
} });
break :again null;
},
else => |e| return e,
};
defer if (fs_file) |f| f.close();
if (fs_file) |f| {
try file.write(f);
} else {
try file.skip();
}
},
.symbolic_link => {
// The file system path of the symbolic link.
const file_name = try stripComponents(file.name, options.strip_components);
// The data inside the symbolic link.
const link_name = file.link_name;
dir.symLink(link_name, file_name, .{}) catch |err| again: {
const code = code: {
if (err == error.FileNotFound) {
if (std.fs.path.dirname(file_name)) |dir_name| {
dir.makePath(dir_name) catch |code| break :code code;
break :again dir.symLink(link_name, file_name, .{}) catch |code| {
break :code code;
};
}
}
break :code err;
};
const d = options.diagnostics orelse return error.UnableToCreateSymLink;
try d.errors.append(d.allocator, .{ .unable_to_create_sym_link = .{
.code = code,
.file_name = try d.allocator.dupe(u8, file_name),
.link_name = try d.allocator.dupe(u8, link_name),
} });
};
},
else => unreachable,
}
}
}
fn stripComponents(path: []const u8, count: u32) ![]const u8 {
var i: usize = 0;
var c = count;
while (c > 0) : (c -= 1) {
if (std.mem.indexOfScalarPos(u8, path, i, '/')) |pos| {
i = pos + 1;
} else {
return error.TarComponentsOutsideStrippedPrefix;
}
}
return path[i..];
}
test stripComponents {
const expectEqualStrings = std.testing.expectEqualStrings;
try expectEqualStrings("a/b/c", try stripComponents("a/b/c", 0));
try expectEqualStrings("b/c", try stripComponents("a/b/c", 1));
try expectEqualStrings("c", try stripComponents("a/b/c", 2));
}
const PaxAttributeInfo = struct {
size: usize,
key: []const u8,
value_off: usize,
value_len: usize,
inline fn is(self: @This(), key: []const u8) bool {
return (std.mem.eql(u8, self.key, key));
}
};
fn parsePaxAttribute(data: []const u8, max_size: usize) !PaxAttributeInfo {
const pos_space = std.mem.indexOfScalar(u8, data, ' ') orelse return error.InvalidPaxAttribute;
const pos_equals = std.mem.indexOfScalarPos(u8, data, pos_space, '=') orelse return error.InvalidPaxAttribute;
const kv_size = try std.fmt.parseInt(usize, data[0..pos_space], 10);
if (kv_size > max_size) {
return error.InvalidPaxAttribute;
}
const key = data[pos_space + 1 .. pos_equals];
return .{
.size = kv_size,
.key = try noNull(key),
.value_off = pos_equals + 1,
.value_len = kv_size - pos_equals - 2,
};
}
fn noNull(str: []const u8) ![]const u8 {
if (std.mem.indexOfScalar(u8, str, 0)) |_| return error.InvalidPaxAttribute;
return str;
}
test "parsePaxAttribute" {
const expectEqual = std.testing.expectEqual;
const expectEqualStrings = std.testing.expectEqualStrings;
const expectError = std.testing.expectError;
const prefix = "1011 path=";
const file_name = "0123456789" ** 100;
const header = prefix ++ file_name ++ "\n";
const attr_info = try parsePaxAttribute(header, 1011);
try expectEqual(@as(usize, 1011), attr_info.size);
try expectEqualStrings("path", attr_info.key);
try expectEqual(prefix.len, attr_info.value_off);
try expectEqual(file_name.len, attr_info.value_len);
try expectEqual(attr_info, try parsePaxAttribute(header, 1012));
try expectError(error.InvalidPaxAttribute, parsePaxAttribute(header, 1010));
try expectError(error.InvalidPaxAttribute, parsePaxAttribute("", 0));
try expectError(error.InvalidPaxAttribute, parsePaxAttribute("13 pa\x00th=abc\n", 1024)); // null in key
}
const TestCase = struct {
const File = struct {
name: []const u8,
size: usize = 0,
link_name: []const u8 = &[0]u8{},
file_type: Header.FileType = .normal,
truncated: bool = false, // when there is no file body, just header, usefull for huge files
};
path: []const u8, // path to the tar archive file on dis
files: []const File = &[_]TestCase.File{}, // expected files to found in archive
chksums: []const []const u8 = &[_][]const u8{}, // chksums of files content
err: ?anyerror = null, // parsing should fail with this error
};
test "tar: Go test cases" {
const test_dir = try std.fs.openDirAbsolute("/usr/local/go/src/archive/tar/testdata", .{});
const cases = [_]TestCase{
.{
.path = "gnu.tar",
.files = &[_]TestCase.File{
.{
.name = "small.txt",
.size = 5,
},
.{
.name = "small2.txt",
.size = 11,
},
},
.chksums = &[_][]const u8{
"e38b27eaccb4391bdec553a7f3ae6b2f",
"c65bd2e50a56a2138bf1716f2fd56fe9",
},
},
.{
.path = "sparse-formats.tar",
.err = error.TarUnsupportedFileType,
},
.{
.path = "star.tar",
.files = &[_]TestCase.File{
.{
.name = "small.txt",
.size = 5,
},
.{
.name = "small2.txt",
.size = 11,
},
},
.chksums = &[_][]const u8{
"e38b27eaccb4391bdec553a7f3ae6b2f",
"c65bd2e50a56a2138bf1716f2fd56fe9",
},
},
.{
.path = "v7.tar",
.files = &[_]TestCase.File{
.{
.name = "small.txt",
.size = 5,
},
.{
.name = "small2.txt",
.size = 11,
},
},
.chksums = &[_][]const u8{
"e38b27eaccb4391bdec553a7f3ae6b2f",
"c65bd2e50a56a2138bf1716f2fd56fe9",
},
},
.{
.path = "pax.tar",
.files = &[_]TestCase.File{
.{
.name = "a/123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100",
.size = 7,
},
.{
.name = "a/b",
.size = 0,
.file_type = .symbolic_link,
.link_name = "123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100",
},
},
.chksums = &[_][]const u8{
"3c382e8f5b6631aa2db52643912ffd4a",
},
},
.{
// pax attribute don't end with \n
.path = "pax-bad-hdr-file.tar",
.err = error.InvalidPaxAttribute,
},
//
// .{
// .path = "pax-bad-mtime-file.tar",
// .err = error.TarBadHeader,
// },
//
.{
// size is in pax attribute
.path = "pax-pos-size-file.tar",
.files = &[_]TestCase.File{
.{
.name = "foo",
.size = 999,
.file_type = .normal,
},
},
.chksums = &[_][]const u8{
"0afb597b283fe61b5d4879669a350556",
},
},
.{
// has pax records which we are not interested in
.path = "pax-records.tar",
.files = &[_]TestCase.File{
.{
.name = "file",
},
},
},
.{
// has global records which we are ignoring
.path = "pax-global-records.tar",
.files = &[_]TestCase.File{
.{
.name = "file1",
},
.{
.name = "file2",
},
.{
.name = "file3",
},
.{
.name = "file4",
},
},
},
.{
.path = "nil-uid.tar",
.files = &[_]TestCase.File{
.{
.name = "P1050238.JPG.log",
.size = 14,
.file_type = .normal,
},
},
.chksums = &[_][]const u8{
"08d504674115e77a67244beac19668f5",
},
},
.{
// has xattrs and pax records which we are ignoring
.path = "xattrs.tar",
.files = &[_]TestCase.File{
.{
.name = "small.txt",
.size = 5,
.file_type = .normal,
},
.{
.name = "small2.txt",
.size = 11,
.file_type = .normal,
},
},
.chksums = &[_][]const u8{
"e38b27eaccb4391bdec553a7f3ae6b2f",
"c65bd2e50a56a2138bf1716f2fd56fe9",
},
},
.{
.path = "gnu-multi-hdrs.tar",
.files = &[_]TestCase.File{
.{
.name = "GNU2/GNU2/long-path-name",
.link_name = "GNU4/GNU4/long-linkpath-name",
.file_type = .symbolic_link,
},
},
},
.{
// has gnu type D (directory) and S (sparse) blocks
.path = "gnu-incremental.tar",
.err = error.TarUnsupportedFileType,
},
.{
// should use values only from last pax header
.path = "pax-multi-hdrs.tar",
.files = &[_]TestCase.File{
.{
.name = "bar",
.link_name = "PAX4/PAX4/long-linkpath-name",
.file_type = .symbolic_link,
},
},
},
.{
.path = "gnu-long-nul.tar",
.files = &[_]TestCase.File{
.{
.name = "0123456789",
},
},
},
.{
.path = "gnu-utf8.tar",
.files = &[_]TestCase.File{
.{
.name = "☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹",
},
},
},
.{
.path = "gnu-not-utf8.tar",
.files = &[_]TestCase.File{
.{
.name = "hi\x80\x81\x82\x83bye",
},
},
},
.{
// null in pax key
.path = "pax-nul-xattrs.tar",
.err = error.InvalidPaxAttribute,
},
.{
.path = "pax-nul-path.tar",
.err = error.InvalidPaxAttribute,
},
.{
.path = "neg-size.tar",
.err = error.TarHeader,
},
.{
.path = "issue10968.tar",
.err = error.TarHeader,
},
.{
.path = "issue11169.tar",
.err = error.TarHeader,
},
.{
.path = "issue12435.tar",
.err = error.TarHeaderChksum,
},
.{
// has magic with space at end instead of null
.path = "invalid-go17.tar",
.files = &[_]TestCase.File{
.{
.name = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/foo",
},
},
},
.{
.path = "ustar-file-devs.tar",
.files = &[_]TestCase.File{
.{
.name = "file",
},
},
},
.{
.path = "trailing-slash.tar",
.files = &[_]TestCase.File{
.{
.name = "123456789/" ** 30,
.file_type = .directory,
},
},
},
.{
// Has size in gnu extended format. To represent size bigger than 8 GB.
.path = "writer-big.tar",
.files = &[_]TestCase.File{
.{
.name = "tmp/16gig.txt",
.size = 16 * 1024 * 1024 * 1024,
.truncated = true,
},
},
},
.{
// Size in gnu extended format, and name in pax attribute.
.path = "writer-big-long.tar",
.files = &[_]TestCase.File{
.{
.name = "longname/" ** 15 ++ "16gig.txt",
.size = 16 * 1024 * 1024 * 1024,
.truncated = true,
},
},
},
};
for (cases) |case| {
//if (!std.mem.eql(u8, case.path, "pax-pos-size-file.tar")) continue;
var fs_file = try test_dir.openFile(case.path, .{});
defer fs_file.close();
var iter = iterator(fs_file.reader(), null);
var i: usize = 0;
while (iter.next() catch |err| {
if (case.err) |e| {
try std.testing.expectEqual(e, err);
continue;
} else {
return err;
}
}) |actual| {
const expected = case.files[i];
try std.testing.expectEqualStrings(expected.name, actual.name);
try std.testing.expectEqual(expected.size, actual.size);
try std.testing.expectEqual(expected.file_type, actual.file_type);
try std.testing.expectEqualStrings(expected.link_name, actual.link_name);
if (case.chksums.len > i) {
var actual_chksum = try actual.chksum();
var hex_to_bytes_buffer: [16]u8 = undefined;
const expected_chksum = try std.fmt.hexToBytes(&hex_to_bytes_buffer, case.chksums[i]);
// std.debug.print("actual chksum: {s}\n", .{std.fmt.fmtSliceHexLower(&actual_chksum)});
try std.testing.expectEqualStrings(expected_chksum, &actual_chksum);
} else {
if (!expected.truncated) try actual.skip(); // skip file content
}
i += 1;
}
try std.testing.expectEqual(case.files.len, i);
}
}