zig/lib/std/testing.zig
Andrew Kelley 93b854eb74 stage2: implement @ctz and @clz including SIMD
AIR:
 * `array_elem_val` is now allowed to be used with a vector as the array
   type.
 * New instructions: splat, vector_init

AstGen:
 * The splat ZIR instruction uses coerced_ty for the ResultLoc, avoiding
   an unnecessary `as` instruction, since the coercion will be performed
   in Sema.
 * Builtins that accept vectors now ignore the type parameter. Comment
   from this commit reproduced here:

   The accepted proposal #6835 tells us to remove the type parameter from
   these builtins. To stay source-compatible with stage1, we still observe
   the parameter here, but we do not encode it into the ZIR. To implement
   this proposal in stage2, only AstGen code will need to be changed.

Sema:
 * `clz` and `ctz` ZIR instructions are now handled by the same function
   which accept AIR tag and comptime eval function pointer to
   differentiate.
 * `@typeInfo` for vectors is implemented.
 * `@splat` is implemented. It takes advantage of `Value.Tag.repeated` 😎
 * `elemValue` is implemented for vectors, when the index is a scalar.
   Handling a vector index is still TODO.
 * Element-wise coercion is implemented for vectors. It could probably
   be optimized a bit, but it is at least complete & correct.
 * `Type.intInfo` supports vectors, returning int info for the element.
 * `Value.ctz` initial implementation. Needs work.
 * `Value.eql` is implemented for arrays and vectors.

LLVM backend:
 * Implement vector support when lowering `array_elem_val`.
 * Implement vector support when lowering `ctz` and `clz`.
 * Implement `splat` and `vector_init`.
2022-01-12 23:53:26 -07:00

472 lines
17 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const math = std.math;
const print = std.debug.print;
pub const FailingAllocator = @import("testing/failing_allocator.zig").FailingAllocator;
/// This should only be used in temporary test programs.
pub const allocator = allocator_instance.allocator();
pub var allocator_instance = std.heap.GeneralPurposeAllocator(.{}){};
pub const failing_allocator = failing_allocator_instance.allocator();
pub var failing_allocator_instance = FailingAllocator.init(base_allocator_instance.allocator(), 0);
pub var base_allocator_instance = std.heap.FixedBufferAllocator.init("");
/// TODO https://github.com/ziglang/zig/issues/5738
pub var log_level = std.log.Level.warn;
/// This is available to any test that wants to execute Zig in a child process.
/// It will be the same executable that is running `zig test`.
pub var zig_exe_path: []const u8 = undefined;
/// This function is intended to be used only in tests. It prints diagnostics to stderr
/// and then aborts when actual_error_union is not expected_error.
pub fn expectError(expected_error: anyerror, actual_error_union: anytype) !void {
if (actual_error_union) |actual_payload| {
std.debug.print("expected error.{s}, found {any}\n", .{ @errorName(expected_error), actual_payload });
return error.TestUnexpectedError;
} else |actual_error| {
if (expected_error != actual_error) {
std.debug.print("expected error.{s}, found error.{s}\n", .{
@errorName(expected_error),
@errorName(actual_error),
});
return error.TestExpectedError;
}
}
}
/// This function is intended to be used only in tests. When the two values are not
/// equal, prints diagnostics to stderr to show exactly how they are not equal,
/// then aborts.
/// `actual` is casted to the type of `expected`.
pub fn expectEqual(expected: anytype, actual: @TypeOf(expected)) !void {
switch (@typeInfo(@TypeOf(actual))) {
.NoReturn,
.BoundFn,
.Opaque,
.Frame,
.AnyFrame,
=> @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"),
.Undefined,
.Null,
.Void,
=> return,
.Type => {
if (actual != expected) {
std.debug.print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) });
return error.TestExpectedEqual;
}
},
.Bool,
.Int,
.Float,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Enum,
.Fn,
.ErrorSet,
=> {
if (actual != expected) {
std.debug.print("expected {}, found {}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Pointer => |pointer| {
switch (pointer.size) {
.One, .Many, .C => {
if (actual != expected) {
std.debug.print("expected {*}, found {*}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Slice => {
if (actual.ptr != expected.ptr) {
std.debug.print("expected slice ptr {*}, found {*}\n", .{ expected.ptr, actual.ptr });
return error.TestExpectedEqual;
}
if (actual.len != expected.len) {
std.debug.print("expected slice len {}, found {}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
},
}
},
.Array => |array| try expectEqualSlices(array.child, &expected, &actual),
.Vector => |info| {
var i: usize = 0;
while (i < info.len) : (i += 1) {
if (!std.meta.eql(expected[i], actual[i])) {
std.debug.print("index {} incorrect. expected {}, found {}\n", .{
i, expected[i], actual[i],
});
return error.TestExpectedEqual;
}
}
},
.Struct => |structType| {
inline for (structType.fields) |field| {
try expectEqual(@field(expected, field.name), @field(actual, field.name));
}
},
.Union => |union_info| {
if (union_info.tag_type == null) {
@compileError("Unable to compare untagged union values");
}
const Tag = std.meta.Tag(@TypeOf(expected));
const expectedTag = @as(Tag, expected);
const actualTag = @as(Tag, actual);
try expectEqual(expectedTag, actualTag);
// we only reach this loop if the tags are equal
inline for (std.meta.fields(@TypeOf(actual))) |fld| {
if (std.mem.eql(u8, fld.name, @tagName(actualTag))) {
try expectEqual(@field(expected, fld.name), @field(actual, fld.name));
return;
}
}
// we iterate over *all* union fields
// => we should never get here as the loop above is
// including all possible values.
unreachable;
},
.Optional => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqual(expected_payload, actual_payload);
} else {
std.debug.print("expected {any}, found null\n", .{expected_payload});
return error.TestExpectedEqual;
}
} else {
if (actual) |actual_payload| {
std.debug.print("expected null, found {any}\n", .{actual_payload});
return error.TestExpectedEqual;
}
}
},
.ErrorUnion => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqual(expected_payload, actual_payload);
} else |actual_err| {
std.debug.print("expected {any}, found {}\n", .{ expected_payload, actual_err });
return error.TestExpectedEqual;
}
} else |expected_err| {
if (actual) |actual_payload| {
std.debug.print("expected {}, found {any}\n", .{ expected_err, actual_payload });
return error.TestExpectedEqual;
} else |actual_err| {
try expectEqual(expected_err, actual_err);
}
}
},
}
}
test "expectEqual.union(enum)" {
const T = union(enum) {
a: i32,
b: f32,
};
const a10 = T{ .a = 10 };
try expectEqual(a10, a10);
}
/// This function is intended to be used only in tests. When the formatted result of the template
/// and its arguments does not equal the expected text, it prints diagnostics to stderr to show how
/// they are not equal, then returns an error.
pub fn expectFmt(expected: []const u8, comptime template: []const u8, args: anytype) !void {
const result = try std.fmt.allocPrint(allocator, template, args);
defer allocator.free(result);
if (std.mem.eql(u8, result, expected)) return;
print("\n====== expected this output: =========\n", .{});
print("{s}", .{expected});
print("\n======== instead found this: =========\n", .{});
print("{s}", .{result});
print("\n======================================\n", .{});
return error.TestExpectedFmt;
}
/// This function is intended to be used only in tests. When the actual value is
/// not approximately equal to the expected value, prints diagnostics to stderr
/// to show exactly how they are not equal, then aborts.
/// See `math.approxEqAbs` for more informations on the tolerance parameter.
/// The types must be floating point
pub fn expectApproxEqAbs(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void {
const T = @TypeOf(expected);
switch (@typeInfo(T)) {
.Float => if (!math.approxEqAbs(T, expected, actual, tolerance)) {
std.debug.print("actual {}, not within absolute tolerance {} of expected {}\n", .{ actual, tolerance, expected });
return error.TestExpectedApproxEqAbs;
},
.ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),
else => @compileError("Unable to compare non floating point values"),
}
}
test "expectApproxEqAbs" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const pos_x: T = 12.0;
const pos_y: T = 12.06;
const neg_x: T = -12.0;
const neg_y: T = -12.06;
try expectApproxEqAbs(pos_x, pos_y, 0.1);
try expectApproxEqAbs(neg_x, neg_y, 0.1);
}
}
/// This function is intended to be used only in tests. When the actual value is
/// not approximately equal to the expected value, prints diagnostics to stderr
/// to show exactly how they are not equal, then aborts.
/// See `math.approxEqRel` for more informations on the tolerance parameter.
/// The types must be floating point
pub fn expectApproxEqRel(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void {
const T = @TypeOf(expected);
switch (@typeInfo(T)) {
.Float => if (!math.approxEqRel(T, expected, actual, tolerance)) {
std.debug.print("actual {}, not within relative tolerance {} of expected {}\n", .{ actual, tolerance, expected });
return error.TestExpectedApproxEqRel;
},
.ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),
else => @compileError("Unable to compare non floating point values"),
}
}
test "expectApproxEqRel" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const eps_value = comptime math.epsilon(T);
const sqrt_eps_value = comptime math.sqrt(eps_value);
const pos_x: T = 12.0;
const pos_y: T = pos_x + 2 * eps_value;
const neg_x: T = -12.0;
const neg_y: T = neg_x - 2 * eps_value;
try expectApproxEqRel(pos_x, pos_y, sqrt_eps_value);
try expectApproxEqRel(neg_x, neg_y, sqrt_eps_value);
}
}
/// This function is intended to be used only in tests. When the two slices are not
/// equal, prints diagnostics to stderr to show exactly how they are not equal,
/// then aborts.
/// If your inputs are UTF-8 encoded strings, consider calling `expectEqualStrings` instead.
pub fn expectEqualSlices(comptime T: type, expected: []const T, actual: []const T) !void {
// TODO better printing of the difference
// If the arrays are small enough we could print the whole thing
// If the child type is u8 and no weird bytes, we could print it as strings
// Even for the length difference, it would be useful to see the values of the slices probably.
if (expected.len != actual.len) {
std.debug.print("slice lengths differ. expected {d}, found {d}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
var i: usize = 0;
while (i < expected.len) : (i += 1) {
if (!std.meta.eql(expected[i], actual[i])) {
std.debug.print("index {} incorrect. expected {any}, found {any}\n", .{ i, expected[i], actual[i] });
return error.TestExpectedEqual;
}
}
}
/// This function is intended to be used only in tests. When `ok` is false, the test fails.
/// A message is printed to stderr and then abort is called.
pub fn expect(ok: bool) !void {
if (!ok) return error.TestUnexpectedResult;
}
pub const TmpDir = struct {
dir: std.fs.Dir,
parent_dir: std.fs.Dir,
sub_path: [sub_path_len]u8,
const random_bytes_count = 12;
const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count);
pub fn cleanup(self: *TmpDir) void {
self.dir.close();
self.parent_dir.deleteTree(&self.sub_path) catch {};
self.parent_dir.close();
self.* = undefined;
}
};
fn getCwdOrWasiPreopen() std.fs.Dir {
if (builtin.os.tag == .wasi and !builtin.link_libc) {
var preopens = std.fs.wasi.PreopenList.init(allocator);
defer preopens.deinit();
preopens.populate() catch
@panic("unable to make tmp dir for testing: unable to populate preopens");
const preopen = preopens.find(std.fs.wasi.PreopenType{ .Dir = "." }) orelse
@panic("unable to make tmp dir for testing: didn't find '.' in the preopens");
return std.fs.Dir{ .fd = preopen.fd };
} else {
return std.fs.cwd();
}
}
pub fn tmpDir(opts: std.fs.Dir.OpenDirOptions) TmpDir {
var random_bytes: [TmpDir.random_bytes_count]u8 = undefined;
std.crypto.random.bytes(&random_bytes);
var sub_path: [TmpDir.sub_path_len]u8 = undefined;
_ = std.fs.base64_encoder.encode(&sub_path, &random_bytes);
var cwd = getCwdOrWasiPreopen();
var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open zig-cache dir");
defer cache_dir.close();
var parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir");
var dir = parent_dir.makeOpenPath(&sub_path, opts) catch
@panic("unable to make tmp dir for testing: unable to make and open the tmp dir");
return .{
.dir = dir,
.parent_dir = parent_dir,
.sub_path = sub_path,
};
}
test "expectEqual nested array" {
const a = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
const b = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
try expectEqual(a, b);
}
test "expectEqual vector" {
var a = @splat(4, @as(u32, 4));
var b = @splat(4, @as(u32, 4));
try expectEqual(a, b);
}
pub fn expectEqualStrings(expected: []const u8, actual: []const u8) !void {
if (std.mem.indexOfDiff(u8, actual, expected)) |diff_index| {
print("\n====== expected this output: =========\n", .{});
printWithVisibleNewlines(expected);
print("\n======== instead found this: =========\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
var diff_line_number: usize = 1;
for (expected[0..diff_index]) |value| {
if (value == '\n') diff_line_number += 1;
}
print("First difference occurs on line {d}:\n", .{diff_line_number});
print("expected:\n", .{});
printIndicatorLine(expected, diff_index);
print("found:\n", .{});
printIndicatorLine(actual, diff_index);
return error.TestExpectedEqual;
}
}
pub fn expectStringEndsWith(actual: []const u8, expected_ends_with: []const u8) !void {
if (std.mem.endsWith(u8, actual, expected_ends_with))
return;
const shortened_actual = if (actual.len >= expected_ends_with.len)
actual[(actual.len - expected_ends_with.len)..]
else
actual;
print("\n====== expected to end with: =========\n", .{});
printWithVisibleNewlines(expected_ends_with);
print("\n====== instead ended with: ===========\n", .{});
printWithVisibleNewlines(shortened_actual);
print("\n========= full output: ==============\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
return error.TestExpectedEndsWith;
}
fn printIndicatorLine(source: []const u8, indicator_index: usize) void {
const line_begin_index = if (std.mem.lastIndexOfScalar(u8, source[0..indicator_index], '\n')) |line_begin|
line_begin + 1
else
0;
const line_end_index = if (std.mem.indexOfScalar(u8, source[indicator_index..], '\n')) |line_end|
(indicator_index + line_end)
else
source.len;
printLine(source[line_begin_index..line_end_index]);
{
var i: usize = line_begin_index;
while (i < indicator_index) : (i += 1)
print(" ", .{});
}
print("^\n", .{});
}
fn printWithVisibleNewlines(source: []const u8) void {
var i: usize = 0;
while (std.mem.indexOfScalar(u8, source[i..], '\n')) |nl| : (i += nl + 1) {
printLine(source[i .. i + nl]);
}
print("{s}␃\n", .{source[i..]}); // End of Text symbol (ETX)
}
fn printLine(line: []const u8) void {
if (line.len != 0) switch (line[line.len - 1]) {
' ', '\t' => return print("{s}⏎\n", .{line}), // Carriage return symbol,
else => {},
};
print("{s}\n", .{line});
}
test {
try expectEqualStrings("foo", "foo");
}
/// Given a type, reference all the declarations inside, so that the semantic analyzer sees them.
pub fn refAllDecls(comptime T: type) void {
if (!builtin.is_test) return;
inline for (std.meta.declarations(T)) |decl| {
_ = decl;
}
}