zig/lib/std/crypto/utils.zig
2021-04-28 15:15:44 -07:00

134 lines
4.7 KiB
Zig

const std = @import("../std.zig");
const debug = std.debug;
const mem = std.mem;
const testing = std.testing;
const Endian = std.builtin.Endian;
const Order = std.math.Order;
/// Compares two arrays in constant time (for a given length) and returns whether they are equal.
/// This function was designed to compare short cryptographic secrets (MACs, signatures).
/// For all other applications, use mem.eql() instead.
pub fn timingSafeEql(comptime T: type, a: T, b: T) bool {
switch (@typeInfo(T)) {
.Array => |info| {
const C = info.child;
if (@typeInfo(C) != .Int) {
@compileError("Elements to be compared must be integers");
}
var acc = @as(C, 0);
for (a) |x, i| {
acc |= x ^ b[i];
}
const s = @typeInfo(C).Int.bits;
const Cu = std.meta.Int(.unsigned, s);
const Cext = std.meta.Int(.unsigned, s + 1);
return @bitCast(bool, @truncate(u1, (@as(Cext, @bitCast(Cu, acc)) -% 1) >> s));
},
.Vector => |info| {
const C = info.child;
if (@typeInfo(C) != .Int) {
@compileError("Elements to be compared must be integers");
}
const acc = @reduce(.Or, a ^ b);
const s = @typeInfo(C).Int.bits;
const Cu = std.meta.Int(.unsigned, s);
const Cext = std.meta.Int(.unsigned, s + 1);
return @bitCast(bool, @truncate(u1, (@as(Cext, @bitCast(Cu, acc)) -% 1) >> s));
},
else => {
@compileError("Only arrays and vectors can be compared");
},
}
}
/// Compare two integers serialized as arrays of the same size, in constant time.
/// Returns .lt if a<b, .gt if a>b and .eq if a=b
pub fn timingSafeCompare(comptime T: type, a: []const T, b: []const T, endian: Endian) Order {
debug.assert(a.len == b.len);
const bits = switch (@typeInfo(T)) {
.Int => |cinfo| if (cinfo.signedness != .unsigned) @compileError("Elements to be compared must be unsigned") else cinfo.bits,
else => @compileError("Elements to be compared must be integers"),
};
const Cext = std.meta.Int(.unsigned, bits + 1);
var gt: T = 0;
var eq: T = 1;
if (endian == .Little) {
var i = a.len;
while (i != 0) {
i -= 1;
const x1 = a[i];
const x2 = b[i];
gt |= @truncate(T, (@as(Cext, x2) -% @as(Cext, x1)) >> bits) & eq;
eq &= @truncate(T, (@as(Cext, (x2 ^ x1)) -% 1) >> bits);
}
} else {
for (a) |x1, i| {
const x2 = b[i];
gt |= @truncate(T, (@as(Cext, x2) -% @as(Cext, x1)) >> bits) & eq;
eq &= @truncate(T, (@as(Cext, (x2 ^ x1)) -% 1) >> bits);
}
}
if (gt != 0) {
return Order.gt;
} else if (eq != 0) {
return Order.eq;
}
return Order.lt;
}
/// Sets a slice to zeroes.
/// Prevents the store from being optimized out.
pub fn secureZero(comptime T: type, s: []T) void {
// NOTE: We do not use a volatile slice cast here since LLVM cannot
// see that it can be replaced by a memset.
const ptr = @ptrCast([*]volatile u8, s.ptr);
const length = s.len * @sizeOf(T);
@memset(ptr, 0, length);
}
test "crypto.utils.timingSafeEql" {
var a: [100]u8 = undefined;
var b: [100]u8 = undefined;
std.crypto.random.bytes(a[0..]);
std.crypto.random.bytes(b[0..]);
testing.expect(!timingSafeEql([100]u8, a, b));
mem.copy(u8, a[0..], b[0..]);
testing.expect(timingSafeEql([100]u8, a, b));
}
test "crypto.utils.timingSafeEql (vectors)" {
var a: [100]u8 = undefined;
var b: [100]u8 = undefined;
std.crypto.random.bytes(a[0..]);
std.crypto.random.bytes(b[0..]);
const v1: std.meta.Vector(100, u8) = a;
const v2: std.meta.Vector(100, u8) = b;
testing.expect(!timingSafeEql(std.meta.Vector(100, u8), v1, v2));
const v3: std.meta.Vector(100, u8) = a;
testing.expect(timingSafeEql(std.meta.Vector(100, u8), v1, v3));
}
test "crypto.utils.timingSafeCompare" {
var a = [_]u8{10} ** 32;
var b = [_]u8{10} ** 32;
testing.expectEqual(timingSafeCompare(u8, &a, &b, .Big), .eq);
testing.expectEqual(timingSafeCompare(u8, &a, &b, .Little), .eq);
a[31] = 1;
testing.expectEqual(timingSafeCompare(u8, &a, &b, .Big), .lt);
testing.expectEqual(timingSafeCompare(u8, &a, &b, .Little), .lt);
a[0] = 20;
testing.expectEqual(timingSafeCompare(u8, &a, &b, .Big), .gt);
testing.expectEqual(timingSafeCompare(u8, &a, &b, .Little), .lt);
}
test "crypto.utils.secureZero" {
var a = [_]u8{0xfe} ** 8;
var b = [_]u8{0xfe} ** 8;
mem.set(u8, a[0..], 0);
secureZero(u8, b[0..]);
testing.expectEqualSlices(u8, a[0..], b[0..]);
}