mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
164 lines
4.6 KiB
Zig
164 lines
4.6 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrtf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrt.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns the cube root of x.
|
|
///
|
|
/// Special Cases:
|
|
/// - cbrt(+-0) = +-0
|
|
/// - cbrt(+-inf) = +-inf
|
|
/// - cbrt(nan) = nan
|
|
pub fn cbrt(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => cbrt32(x),
|
|
f64 => cbrt64(x),
|
|
else => @compileError("cbrt not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn cbrt32(x: f32) f32 {
|
|
const B1: u32 = 709958130; // (127 - 127.0 / 3 - 0.03306235651) * 2^23
|
|
const B2: u32 = 642849266; // (127 - 127.0 / 3 - 24 / 3 - 0.03306235651) * 2^23
|
|
|
|
var u = @bitCast(u32, x);
|
|
var hx = u & 0x7FFFFFFF;
|
|
|
|
// cbrt(nan, inf) = itself
|
|
if (hx >= 0x7F800000) {
|
|
return x + x;
|
|
}
|
|
|
|
// cbrt to ~5bits
|
|
if (hx < 0x00800000) {
|
|
// cbrt(+-0) = itself
|
|
if (hx == 0) {
|
|
return x;
|
|
}
|
|
u = @bitCast(u32, x * 0x1.0p24);
|
|
hx = u & 0x7FFFFFFF;
|
|
hx = hx / 3 + B2;
|
|
} else {
|
|
hx = hx / 3 + B1;
|
|
}
|
|
|
|
u &= 0x80000000;
|
|
u |= hx;
|
|
|
|
// first step newton to 16 bits
|
|
var t: f64 = @bitCast(f32, u);
|
|
var r: f64 = t * t * t;
|
|
t = t * (@as(f64, x) + x + r) / (x + r + r);
|
|
|
|
// second step newton to 47 bits
|
|
r = t * t * t;
|
|
t = t * (@as(f64, x) + x + r) / (x + r + r);
|
|
|
|
return @floatCast(f32, t);
|
|
}
|
|
|
|
fn cbrt64(x: f64) f64 {
|
|
const B1: u32 = 715094163; // (1023 - 1023 / 3 - 0.03306235651 * 2^20
|
|
const B2: u32 = 696219795; // (1023 - 1023 / 3 - 54 / 3 - 0.03306235651 * 2^20
|
|
|
|
// |1 / cbrt(x) - p(x)| < 2^(23.5)
|
|
const P0: f64 = 1.87595182427177009643;
|
|
const P1: f64 = -1.88497979543377169875;
|
|
const P2: f64 = 1.621429720105354466140;
|
|
const P3: f64 = -0.758397934778766047437;
|
|
const P4: f64 = 0.145996192886612446982;
|
|
|
|
var u = @bitCast(u64, x);
|
|
var hx = @intCast(u32, u >> 32) & 0x7FFFFFFF;
|
|
|
|
// cbrt(nan, inf) = itself
|
|
if (hx >= 0x7FF00000) {
|
|
return x + x;
|
|
}
|
|
|
|
// cbrt to ~5bits
|
|
if (hx < 0x00100000) {
|
|
u = @bitCast(u64, x * 0x1.0p54);
|
|
hx = @intCast(u32, u >> 32) & 0x7FFFFFFF;
|
|
|
|
// cbrt(0) is itself
|
|
if (hx == 0) {
|
|
return 0;
|
|
}
|
|
hx = hx / 3 + B2;
|
|
} else {
|
|
hx = hx / 3 + B1;
|
|
}
|
|
|
|
u &= 1 << 63;
|
|
u |= @as(u64, hx) << 32;
|
|
var t = @bitCast(f64, u);
|
|
|
|
// cbrt to 23 bits
|
|
// cbrt(x) = t * cbrt(x / t^3) ~= t * P(t^3 / x)
|
|
var r = (t * t) * (t / x);
|
|
t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
|
|
|
|
// Round t away from 0 to 23 bits
|
|
u = @bitCast(u64, t);
|
|
u = (u + 0x80000000) & 0xFFFFFFFFC0000000;
|
|
t = @bitCast(f64, u);
|
|
|
|
// one step newton to 53 bits
|
|
const s = t * t;
|
|
var q = x / s;
|
|
var w = t + t;
|
|
q = (q - t) / (w + q);
|
|
|
|
return t + t * q;
|
|
}
|
|
|
|
test "math.cbrt" {
|
|
try expect(cbrt(@as(f32, 0.0)) == cbrt32(0.0));
|
|
try expect(cbrt(@as(f64, 0.0)) == cbrt64(0.0));
|
|
}
|
|
|
|
test "math.cbrt32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(cbrt32(0.0) == 0.0);
|
|
try expect(math.approxEqAbs(f32, cbrt32(0.2), 0.584804, epsilon));
|
|
try expect(math.approxEqAbs(f32, cbrt32(0.8923), 0.962728, epsilon));
|
|
try expect(math.approxEqAbs(f32, cbrt32(1.5), 1.144714, epsilon));
|
|
try expect(math.approxEqAbs(f32, cbrt32(37.45), 3.345676, epsilon));
|
|
try expect(math.approxEqAbs(f32, cbrt32(123123.234375), 49.748501, epsilon));
|
|
}
|
|
|
|
test "math.cbrt64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(cbrt64(0.0) == 0.0);
|
|
try expect(math.approxEqAbs(f64, cbrt64(0.2), 0.584804, epsilon));
|
|
try expect(math.approxEqAbs(f64, cbrt64(0.8923), 0.962728, epsilon));
|
|
try expect(math.approxEqAbs(f64, cbrt64(1.5), 1.144714, epsilon));
|
|
try expect(math.approxEqAbs(f64, cbrt64(37.45), 3.345676, epsilon));
|
|
try expect(math.approxEqAbs(f64, cbrt64(123123.234375), 49.748501, epsilon));
|
|
}
|
|
|
|
test "math.cbrt.special" {
|
|
try expect(cbrt32(0.0) == 0.0);
|
|
try expect(cbrt32(-0.0) == -0.0);
|
|
try expect(math.isPositiveInf(cbrt32(math.inf(f32))));
|
|
try expect(math.isNegativeInf(cbrt32(-math.inf(f32))));
|
|
try expect(math.isNan(cbrt32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.cbrt64.special" {
|
|
try expect(cbrt64(0.0) == 0.0);
|
|
try expect(cbrt64(-0.0) == -0.0);
|
|
try expect(math.isPositiveInf(cbrt64(math.inf(f64))));
|
|
try expect(math.isNegativeInf(cbrt64(-math.inf(f64))));
|
|
try expect(math.isNan(cbrt64(math.nan(f64))));
|
|
}
|