mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
256 lines
7.1 KiB
Zig
256 lines
7.1 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/atanf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/atan.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns the arc-tangent of x.
|
|
///
|
|
/// Special Cases:
|
|
/// - atan(+-0) = +-0
|
|
/// - atan(+-inf) = +-pi/2
|
|
pub fn atan(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => atan32(x),
|
|
f64 => atan64(x),
|
|
else => @compileError("atan not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn atan32(x_: f32) f32 {
|
|
const atanhi = [_]f32{
|
|
4.6364760399e-01, // atan(0.5)hi
|
|
7.8539812565e-01, // atan(1.0)hi
|
|
9.8279368877e-01, // atan(1.5)hi
|
|
1.5707962513e+00, // atan(inf)hi
|
|
};
|
|
|
|
const atanlo = [_]f32{
|
|
5.0121582440e-09, // atan(0.5)lo
|
|
3.7748947079e-08, // atan(1.0)lo
|
|
3.4473217170e-08, // atan(1.5)lo
|
|
7.5497894159e-08, // atan(inf)lo
|
|
};
|
|
|
|
const aT = [_]f32{
|
|
3.3333328366e-01,
|
|
-1.9999158382e-01,
|
|
1.4253635705e-01,
|
|
-1.0648017377e-01,
|
|
6.1687607318e-02,
|
|
};
|
|
|
|
var x = x_;
|
|
var ix: u32 = @bitCast(u32, x);
|
|
const sign = ix >> 31;
|
|
ix &= 0x7FFFFFFF;
|
|
|
|
// |x| >= 2^26
|
|
if (ix >= 0x4C800000) {
|
|
if (math.isNan(x)) {
|
|
return x;
|
|
} else {
|
|
const z = atanhi[3] + 0x1.0p-120;
|
|
return if (sign != 0) -z else z;
|
|
}
|
|
}
|
|
|
|
var id: ?usize = undefined;
|
|
|
|
// |x| < 0.4375
|
|
if (ix < 0x3EE00000) {
|
|
// |x| < 2^(-12)
|
|
if (ix < 0x39800000) {
|
|
if (ix < 0x00800000) {
|
|
math.doNotOptimizeAway(x * x);
|
|
}
|
|
return x;
|
|
}
|
|
id = null;
|
|
} else {
|
|
x = math.fabs(x);
|
|
// |x| < 1.1875
|
|
if (ix < 0x3F980000) {
|
|
// 7/16 <= |x| < 11/16
|
|
if (ix < 0x3F300000) {
|
|
id = 0;
|
|
x = (2.0 * x - 1.0) / (2.0 + x);
|
|
}
|
|
// 11/16 <= |x| < 19/16
|
|
else {
|
|
id = 1;
|
|
x = (x - 1.0) / (x + 1.0);
|
|
}
|
|
} else {
|
|
// |x| < 2.4375
|
|
if (ix < 0x401C0000) {
|
|
id = 2;
|
|
x = (x - 1.5) / (1.0 + 1.5 * x);
|
|
}
|
|
// 2.4375 <= |x| < 2^26
|
|
else {
|
|
id = 3;
|
|
x = -1.0 / x;
|
|
}
|
|
}
|
|
}
|
|
|
|
const z = x * x;
|
|
const w = z * z;
|
|
const s1 = z * (aT[0] + w * (aT[2] + w * aT[4]));
|
|
const s2 = w * (aT[1] + w * aT[3]);
|
|
|
|
if (id) |id_value| {
|
|
const zz = atanhi[id_value] - ((x * (s1 + s2) - atanlo[id_value]) - x);
|
|
return if (sign != 0) -zz else zz;
|
|
} else {
|
|
return x - x * (s1 + s2);
|
|
}
|
|
}
|
|
|
|
fn atan64(x_: f64) f64 {
|
|
const atanhi = [_]f64{
|
|
4.63647609000806093515e-01, // atan(0.5)hi
|
|
7.85398163397448278999e-01, // atan(1.0)hi
|
|
9.82793723247329054082e-01, // atan(1.5)hi
|
|
1.57079632679489655800e+00, // atan(inf)hi
|
|
};
|
|
|
|
const atanlo = [_]f64{
|
|
2.26987774529616870924e-17, // atan(0.5)lo
|
|
3.06161699786838301793e-17, // atan(1.0)lo
|
|
1.39033110312309984516e-17, // atan(1.5)lo
|
|
6.12323399573676603587e-17, // atan(inf)lo
|
|
};
|
|
|
|
const aT = [_]f64{
|
|
3.33333333333329318027e-01,
|
|
-1.99999999998764832476e-01,
|
|
1.42857142725034663711e-01,
|
|
-1.11111104054623557880e-01,
|
|
9.09088713343650656196e-02,
|
|
-7.69187620504482999495e-02,
|
|
6.66107313738753120669e-02,
|
|
-5.83357013379057348645e-02,
|
|
4.97687799461593236017e-02,
|
|
-3.65315727442169155270e-02,
|
|
1.62858201153657823623e-02,
|
|
};
|
|
|
|
var x = x_;
|
|
var ux = @bitCast(u64, x);
|
|
var ix = @intCast(u32, ux >> 32);
|
|
const sign = ix >> 31;
|
|
ix &= 0x7FFFFFFF;
|
|
|
|
// |x| >= 2^66
|
|
if (ix >= 0x44100000) {
|
|
if (math.isNan(x)) {
|
|
return x;
|
|
} else {
|
|
const z = atanhi[3] + 0x1.0p-120;
|
|
return if (sign != 0) -z else z;
|
|
}
|
|
}
|
|
|
|
var id: ?usize = undefined;
|
|
|
|
// |x| < 0.4375
|
|
if (ix < 0x3DFC0000) {
|
|
// |x| < 2^(-27)
|
|
if (ix < 0x3E400000) {
|
|
if (ix < 0x00100000) {
|
|
math.doNotOptimizeAway(@floatCast(f32, x));
|
|
}
|
|
return x;
|
|
}
|
|
id = null;
|
|
} else {
|
|
x = math.fabs(x);
|
|
// |x| < 1.1875
|
|
if (ix < 0x3FF30000) {
|
|
// 7/16 <= |x| < 11/16
|
|
if (ix < 0x3FE60000) {
|
|
id = 0;
|
|
x = (2.0 * x - 1.0) / (2.0 + x);
|
|
}
|
|
// 11/16 <= |x| < 19/16
|
|
else {
|
|
id = 1;
|
|
x = (x - 1.0) / (x + 1.0);
|
|
}
|
|
} else {
|
|
// |x| < 2.4375
|
|
if (ix < 0x40038000) {
|
|
id = 2;
|
|
x = (x - 1.5) / (1.0 + 1.5 * x);
|
|
}
|
|
// 2.4375 <= |x| < 2^66
|
|
else {
|
|
id = 3;
|
|
x = -1.0 / x;
|
|
}
|
|
}
|
|
}
|
|
|
|
const z = x * x;
|
|
const w = z * z;
|
|
const s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
|
|
const s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
|
|
|
|
if (id) |id_value| {
|
|
const zz = atanhi[id_value] - ((x * (s1 + s2) - atanlo[id_value]) - x);
|
|
return if (sign != 0) -zz else zz;
|
|
} else {
|
|
return x - x * (s1 + s2);
|
|
}
|
|
}
|
|
|
|
test "math.atan" {
|
|
try expect(@bitCast(u32, atan(@as(f32, 0.2))) == @bitCast(u32, atan32(0.2)));
|
|
try expect(atan(@as(f64, 0.2)) == atan64(0.2));
|
|
}
|
|
|
|
test "math.atan32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, atan32(0.2), 0.197396, epsilon));
|
|
try expect(math.approxEqAbs(f32, atan32(-0.2), -0.197396, epsilon));
|
|
try expect(math.approxEqAbs(f32, atan32(0.3434), 0.330783, epsilon));
|
|
try expect(math.approxEqAbs(f32, atan32(0.8923), 0.728545, epsilon));
|
|
try expect(math.approxEqAbs(f32, atan32(1.5), 0.982794, epsilon));
|
|
}
|
|
|
|
test "math.atan64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, atan64(0.2), 0.197396, epsilon));
|
|
try expect(math.approxEqAbs(f64, atan64(-0.2), -0.197396, epsilon));
|
|
try expect(math.approxEqAbs(f64, atan64(0.3434), 0.330783, epsilon));
|
|
try expect(math.approxEqAbs(f64, atan64(0.8923), 0.728545, epsilon));
|
|
try expect(math.approxEqAbs(f64, atan64(1.5), 0.982794, epsilon));
|
|
}
|
|
|
|
test "math.atan32.special" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(atan32(0.0) == 0.0);
|
|
try expect(atan32(-0.0) == -0.0);
|
|
try expect(math.approxEqAbs(f32, atan32(math.inf(f32)), math.pi / 2.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, atan32(-math.inf(f32)), -math.pi / 2.0, epsilon));
|
|
}
|
|
|
|
test "math.atan64.special" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(atan64(0.0) == 0.0);
|
|
try expect(atan64(-0.0) == -0.0);
|
|
try expect(math.approxEqAbs(f64, atan64(math.inf(f64)), math.pi / 2.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, atan64(-math.inf(f64)), -math.pi / 2.0, epsilon));
|
|
}
|