mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
141 lines
4.5 KiB
Zig
141 lines
4.5 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/tanf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/tan.c
|
|
// https://golang.org/src/math/tan.go
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
const kernel = @import("__trig.zig");
|
|
const __rem_pio2 = @import("__rem_pio2.zig").__rem_pio2;
|
|
const __rem_pio2f = @import("__rem_pio2f.zig").__rem_pio2f;
|
|
|
|
/// Returns the tangent of the radian value x.
|
|
///
|
|
/// Special Cases:
|
|
/// - tan(+-0) = +-0
|
|
/// - tan(+-inf) = nan
|
|
/// - tan(nan) = nan
|
|
pub fn tan(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => tan32(x),
|
|
f64 => tan64(x),
|
|
else => @compileError("tan not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn tan32(x: f32) f32 {
|
|
// Small multiples of pi/2 rounded to double precision.
|
|
const t1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
|
|
const t2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
|
|
const t3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
|
|
const t4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
|
|
|
|
var ix = @bitCast(u32, x);
|
|
const sign = ix >> 31 != 0;
|
|
ix &= 0x7fffffff;
|
|
|
|
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
|
|
if (ix < 0x39800000) { // |x| < 2**-12
|
|
// raise inexact if x!=0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00800000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return kernel.__tandf(x, false);
|
|
}
|
|
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
|
|
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
|
|
return kernel.__tandf((if (sign) x + t1pio2 else x - t1pio2), true);
|
|
} else {
|
|
return kernel.__tandf((if (sign) x + t2pio2 else x - t2pio2), false);
|
|
}
|
|
}
|
|
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
|
|
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
|
|
return kernel.__tandf((if (sign) x + t3pio2 else x - t3pio2), true);
|
|
} else {
|
|
return kernel.__tandf((if (sign) x + t4pio2 else x - t4pio2), false);
|
|
}
|
|
}
|
|
|
|
// tan(Inf or NaN) is NaN
|
|
if (ix >= 0x7f800000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: f64 = undefined;
|
|
const n = __rem_pio2f(x, &y);
|
|
return kernel.__tandf(y, n & 1 != 0);
|
|
}
|
|
|
|
fn tan64(x: f64) f64 {
|
|
var ix = @bitCast(u64, x) >> 32;
|
|
ix &= 0x7fffffff;
|
|
|
|
// |x| ~< pi/4
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e400000) { // |x| < 2**-27
|
|
// raise inexact if x!=0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return kernel.__tan(x, 0.0, false);
|
|
}
|
|
|
|
// tan(Inf or NaN) is NaN
|
|
if (ix >= 0x7ff00000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: [2]f64 = undefined;
|
|
const n = __rem_pio2(x, &y);
|
|
return kernel.__tan(y[0], y[1], n & 1 != 0);
|
|
}
|
|
|
|
test "math.tan" {
|
|
try expect(tan(@as(f32, 0.0)) == tan32(0.0));
|
|
try expect(tan(@as(f64, 0.0)) == tan64(0.0));
|
|
}
|
|
|
|
test "math.tan32" {
|
|
const epsilon = 0.00001;
|
|
|
|
try expect(math.approxEqAbs(f32, tan32(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, tan32(0.2), 0.202710, epsilon));
|
|
try expect(math.approxEqAbs(f32, tan32(0.8923), 1.240422, epsilon));
|
|
try expect(math.approxEqAbs(f32, tan32(1.5), 14.101420, epsilon));
|
|
try expect(math.approxEqAbs(f32, tan32(37.45), -0.254397, epsilon));
|
|
try expect(math.approxEqAbs(f32, tan32(89.123), 2.285852, epsilon));
|
|
}
|
|
|
|
test "math.tan64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, tan64(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan64(0.2), 0.202710, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan64(0.8923), 1.240422, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan64(1.5), 14.101420, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan64(37.45), -0.254397, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan64(89.123), 2.2858376, epsilon));
|
|
}
|
|
|
|
test "math.tan32.special" {
|
|
try expect(tan32(0.0) == 0.0);
|
|
try expect(tan32(-0.0) == -0.0);
|
|
try expect(math.isNan(tan32(math.inf(f32))));
|
|
try expect(math.isNan(tan32(-math.inf(f32))));
|
|
try expect(math.isNan(tan32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.tan64.special" {
|
|
try expect(tan64(0.0) == 0.0);
|
|
try expect(tan64(-0.0) == -0.0);
|
|
try expect(math.isNan(tan64(math.inf(f64))));
|
|
try expect(math.isNan(tan64(-math.inf(f64))));
|
|
try expect(math.isNan(tan64(math.nan(f64))));
|
|
}
|