zig/src/codegen/spirv/Module.zig

921 lines
33 KiB
Zig

//! This structure represents a SPIR-V (sections) module being compiled, and keeps track of all relevant information.
//! That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
//! of data which needs to be persistent over different calls to Decl code generation.
//!
//! A SPIR-V binary module supports both little- and big endian layout. The layout is detected by the magic word in the
//! header. Therefore, we can ignore any byte order throughout the implementation, and just use the host byte order,
//! and make this a problem for the consumer.
const Module = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const ZigDecl = @import("../../Module.zig").Decl;
const spec = @import("spec.zig");
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const Section = @import("Section.zig");
const Type = @import("type.zig").Type;
pub const TypeConstantCache = @import("TypeConstantCache.zig");
const TypeCache = std.ArrayHashMapUnmanaged(Type, IdResultType, Type.ShallowHashContext32, true);
/// This structure represents a function that is in-progress of being emitted.
/// Commonly, the contents of this structure will be merged with the appropriate
/// sections of the module and re-used. Note that the SPIR-V module system makes
/// no attempt of compacting result-id's, so any Fn instance should ultimately
/// be merged into the module it's result-id's are allocated from.
pub const Fn = struct {
/// The prologue of this function; this section contains the function's
/// OpFunction, OpFunctionParameter, OpLabel and OpVariable instructions, and
/// is separated from the actual function contents as OpVariable instructions
/// must appear in the first block of a function definition.
prologue: Section = .{},
/// The code of the body of this function.
/// This section should also contain the OpFunctionEnd instruction marking
/// the end of this function definition.
body: Section = .{},
/// The decl dependencies that this function depends on.
decl_deps: std.AutoArrayHashMapUnmanaged(Decl.Index, void) = .{},
/// Reset this function without deallocating resources, so that
/// it may be used to emit code for another function.
pub fn reset(self: *Fn) void {
self.prologue.reset();
self.body.reset();
self.decl_deps.clearRetainingCapacity();
}
/// Free the resources owned by this function.
pub fn deinit(self: *Fn, a: Allocator) void {
self.prologue.deinit(a);
self.body.deinit(a);
self.decl_deps.deinit(a);
self.* = undefined;
}
};
/// Declarations, both functions and globals, can have dependencies. These are used for 2 things:
/// - Globals must be declared before they are used, also between globals. The compiler processes
/// globals unordered, so we must use the dependencies here to figure out how to order the globals
/// in the final module. The Globals structure is also used for that.
/// - Entry points must declare the complete list of OpVariable instructions that they access.
/// For these we use the same dependency structure.
/// In this mechanism, globals will only depend on other globals, while functions may depend on
/// globals or other functions.
pub const Decl = struct {
/// Index to refer to a Decl by.
pub const Index = enum(u32) { _ };
/// The result-id to be used for this declaration. This is the final result-id
/// of the decl, which may be an OpFunction, OpVariable, or the result of a sequence
/// of OpSpecConstantOp operations.
result_id: IdRef,
/// The offset of the first dependency of this decl in the `decl_deps` array.
begin_dep: u32,
/// The past-end offset of the dependencies of this decl in the `decl_deps` array.
end_dep: u32,
};
/// Globals must be kept in order: operations involving globals must be ordered
/// so that the global declaration precedes any usage.
pub const Global = struct {
/// This is the result-id of the OpVariable instruction that declares the global.
result_id: IdRef,
/// The offset into `self.globals.section` of the first instruction of this global
/// declaration.
begin_inst: u32,
/// The past-end offset into `self.flobals.section`.
end_inst: u32,
};
/// This models a kernel entry point.
pub const EntryPoint = struct {
/// The declaration that should be exported.
decl_index: Decl.Index,
/// The name of the kernel to be exported.
name: []const u8,
};
/// A general-purpose allocator which may be used to allocate resources for this module
gpa: Allocator,
/// An arena allocator used to store things that have the same lifetime as this module.
arena: Allocator,
/// Module layout, according to SPIR-V Spec section 2.4, "Logical Layout of a Module".
sections: struct {
/// Capability instructions
capabilities: Section = .{},
/// OpExtension instructions
extensions: Section = .{},
// OpExtInstImport instructions - skip for now.
// memory model defined by target, not required here.
/// OpEntryPoint instructions - Handled by `self.entry_points`.
/// OpExecutionMode and OpExecutionModeId instructions.
execution_modes: Section = .{},
/// OpString, OpSourcExtension, OpSource, OpSourceContinued.
debug_strings: Section = .{},
// OpName, OpMemberName.
debug_names: Section = .{},
// OpModuleProcessed - skip for now.
/// Annotation instructions (OpDecorate etc).
annotations: Section = .{},
/// Global variable declarations
/// From this section, OpLine and OpNoLine is allowed.
/// According to the SPIR-V documentation, this section normally
/// also holds type and constant instructions. These are managed
/// via the tc_cache instead, which is the sole structure that
/// manages that section. These will be inserted between this and
/// the previous section when emitting the final binary.
/// TODO: Do we need this section? Globals are also managed with another mechanism.
/// The only thing that needs to be kept here is OpUndef
globals: Section = .{},
/// Type declarations, constants, global variables
/// Below this section, OpLine and OpNoLine is allowed.
types_globals_constants: Section = .{},
// Functions without a body - skip for now.
/// Regular function definitions.
functions: Section = .{},
} = .{},
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
next_result_id: Word,
/// Cache for results of OpString instructions for module file names fed to OpSource.
/// Since OpString is pretty much only used for those, we don't need to keep track of all strings,
/// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource.
source_file_names: std.StringHashMapUnmanaged(IdRef) = .{},
type_cache: TypeCache = .{},
/// SPIR-V type- and constant cache. This structure is used to store information about these in a more
/// efficient manner.
tc_cache: TypeConstantCache = .{},
/// Set of Decls, referred to by Decl.Index.
decls: std.ArrayListUnmanaged(Decl) = .{},
/// List of dependencies, per decl. This list holds all the dependencies, sliced by the
/// begin_dep and end_dep in `self.decls`.
decl_deps: std.ArrayListUnmanaged(Decl.Index) = .{},
/// The list of entry points that should be exported from this module.
entry_points: std.ArrayListUnmanaged(EntryPoint) = .{},
/// The fields in this structure help to maintain the required order for global variables.
globals: struct {
/// Set of globals, referred to by Decl.Index.
globals: std.AutoArrayHashMapUnmanaged(Decl.Index, Global) = .{},
/// This pseudo-section contains the initialization code for all the globals. Instructions from
/// here are reordered when flushing the module. Its contents should be part of the
/// `types_globals_constants` SPIR-V section when the module is emitted.
section: Section = .{},
} = .{},
pub fn init(gpa: Allocator, arena: Allocator) Module {
return .{
.gpa = gpa,
.arena = arena,
.next_result_id = 1, // 0 is an invalid SPIR-V result id, so start counting at 1.
};
}
pub fn deinit(self: *Module) void {
self.sections.capabilities.deinit(self.gpa);
self.sections.extensions.deinit(self.gpa);
self.sections.execution_modes.deinit(self.gpa);
self.sections.debug_strings.deinit(self.gpa);
self.sections.debug_names.deinit(self.gpa);
self.sections.annotations.deinit(self.gpa);
self.sections.globals.deinit(self.gpa);
self.sections.functions.deinit(self.gpa);
self.source_file_names.deinit(self.gpa);
self.tc_cache.deinit(self);
self.decls.deinit(self.gpa);
self.decl_deps.deinit(self.gpa);
self.entry_points.deinit(self.gpa);
self.globals.globals.deinit(self.gpa);
self.globals.section.deinit(self.gpa);
self.* = undefined;
}
pub fn allocId(self: *Module) spec.IdResult {
defer self.next_result_id += 1;
return .{ .id = self.next_result_id };
}
pub fn allocIds(self: *Module, n: u32) spec.IdResult {
defer self.next_result_id += n;
return .{ .id = self.next_result_id };
}
pub fn idBound(self: Module) Word {
return self.next_result_id;
}
pub fn resolve(self: *Module, key: TypeConstantCache.Key) !TypeConstantCache.Ref {
return self.tc_cache.resolve(self, key);
}
pub fn resultId(self: *Module, ref: TypeConstantCache.Ref) IdResult {
return self.tc_cache.resultId(ref);
}
pub fn resolveId(self: *Module, key: TypeConstantCache.Key) !IdResult {
return self.resultId(try self.resolve(key));
}
fn orderGlobalsInto(
self: *Module,
decl_index: Decl.Index,
section: *Section,
seen: *std.DynamicBitSetUnmanaged,
) !void {
const decl = self.declPtr(decl_index);
const deps = self.decl_deps.items[decl.begin_dep..decl.end_dep];
const global = self.globalPtr(decl_index).?;
const insts = self.globals.section.instructions.items[global.begin_inst..global.end_inst];
seen.set(@enumToInt(decl_index));
for (deps) |dep| {
if (!seen.isSet(@enumToInt(dep))) {
try self.orderGlobalsInto(dep, section, seen);
}
}
try section.instructions.appendSlice(self.gpa, insts);
}
fn orderGlobals(self: *Module) !Section {
const globals = self.globals.globals.keys();
var seen = try std.DynamicBitSetUnmanaged.initEmpty(self.gpa, self.decls.items.len);
defer seen.deinit(self.gpa);
var ordered_globals = Section{};
errdefer ordered_globals.deinit(self.gpa);
for (globals) |decl_index| {
if (!seen.isSet(@enumToInt(decl_index))) {
try self.orderGlobalsInto(decl_index, &ordered_globals, &seen);
}
}
return ordered_globals;
}
fn addEntryPointDeps(
self: *Module,
decl_index: Decl.Index,
seen: *std.DynamicBitSetUnmanaged,
interface: *std.ArrayList(IdRef),
) !void {
const decl = self.declPtr(decl_index);
const deps = self.decl_deps.items[decl.begin_dep..decl.end_dep];
seen.set(@enumToInt(decl_index));
if (self.globalPtr(decl_index)) |global| {
try interface.append(global.result_id);
}
for (deps) |dep| {
if (!seen.isSet(@enumToInt(dep))) {
try self.addEntryPointDeps(dep, seen, interface);
}
}
}
fn entryPoints(self: *Module) !Section {
var entry_points = Section{};
errdefer entry_points.deinit(self.gpa);
var interface = std.ArrayList(IdRef).init(self.gpa);
defer interface.deinit();
var seen = try std.DynamicBitSetUnmanaged.initEmpty(self.gpa, self.decls.items.len);
defer seen.deinit(self.gpa);
for (self.entry_points.items) |entry_point| {
interface.items.len = 0;
seen.setRangeValue(.{ .start = 0, .end = self.decls.items.len }, false);
try self.addEntryPointDeps(entry_point.decl_index, &seen, &interface);
const entry_point_id = self.declPtr(entry_point.decl_index).result_id;
try entry_points.emit(self.gpa, .OpEntryPoint, .{
.execution_model = .Kernel,
.entry_point = entry_point_id,
.name = entry_point.name,
.interface = interface.items,
});
}
return entry_points;
}
/// Emit this module as a spir-v binary.
pub fn flush(self: *Module, file: std.fs.File) !void {
// See SPIR-V Spec section 2.3, "Physical Layout of a SPIR-V Module and Instruction"
const header = [_]Word{
spec.magic_number,
// TODO: From cpu features
// Emit SPIR-V 1.4 for now. This is the highest version that Intel's CPU OpenCL supports.
(1 << 16) | (4 << 8),
0, // TODO: Register Zig compiler magic number.
self.idBound(),
0, // Schema (currently reserved for future use)
};
// TODO: Perform topological sort on the globals.
var globals = try self.orderGlobals();
defer globals.deinit(self.gpa);
var entry_points = try self.entryPoints();
defer entry_points.deinit(self.gpa);
var types_constants = try self.tc_cache.materialize(self);
defer types_constants.deinit(self.gpa);
// Note: needs to be kept in order according to section 2.3!
const buffers = &[_][]const Word{
&header,
self.sections.capabilities.toWords(),
self.sections.extensions.toWords(),
entry_points.toWords(),
self.sections.execution_modes.toWords(),
self.sections.debug_strings.toWords(),
self.sections.debug_names.toWords(),
self.sections.annotations.toWords(),
types_constants.toWords(),
self.sections.globals.toWords(),
globals.toWords(),
self.sections.functions.toWords(),
};
var iovc_buffers: [buffers.len]std.os.iovec_const = undefined;
var file_size: u64 = 0;
for (&iovc_buffers, 0..) |*iovc, i| {
// Note, since spir-v supports both little and big endian we can ignore byte order here and
// just treat the words as a sequence of bytes.
const bytes = std.mem.sliceAsBytes(buffers[i]);
iovc.* = .{ .iov_base = bytes.ptr, .iov_len = bytes.len };
file_size += bytes.len;
}
try file.seekTo(0);
try file.setEndPos(file_size);
try file.pwritevAll(&iovc_buffers, 0);
}
/// Merge the sections making up a function declaration into this module.
pub fn addFunction(self: *Module, decl_index: Decl.Index, func: Fn) !void {
try self.sections.functions.append(self.gpa, func.prologue);
try self.sections.functions.append(self.gpa, func.body);
try self.declareDeclDeps(decl_index, func.decl_deps.keys());
}
/// Fetch the result-id of an OpString instruction that encodes the path of the source
/// file of the decl. This function may also emit an OpSource with source-level information regarding
/// the decl.
pub fn resolveSourceFileName(self: *Module, decl: *ZigDecl) !IdRef {
const path = decl.getFileScope().sub_file_path;
const result = try self.source_file_names.getOrPut(self.gpa, path);
if (!result.found_existing) {
const file_result_id = self.allocId();
result.value_ptr.* = file_result_id;
try self.sections.debug_strings.emit(self.gpa, .OpString, .{
.id_result = file_result_id,
.string = path,
});
try self.sections.debug_strings.emit(self.gpa, .OpSource, .{
.source_language = .Unknown, // TODO: Register Zig source language.
.version = 0, // TODO: Zig version as u32?
.file = file_result_id,
.source = null, // TODO: Store actual source also?
});
}
return result.value_ptr.*;
}
/// Fetch a result-id for a spir-v type. This function deduplicates the type as appropriate,
/// and returns a cached version if that exists.
/// Note: This function does not attempt to perform any validation on the type.
/// The type is emitted in a shallow fashion; any child types should already
/// be emitted at this point.
pub fn resolveType(self: *Module, ty: Type) !Type.Ref {
const result = try self.type_cache.getOrPut(self.gpa, ty);
const index = @intToEnum(Type.Ref, result.index);
if (!result.found_existing) {
const ref = try self.emitType(ty);
self.type_cache.values()[result.index] = ref;
}
return index;
}
pub fn resolveTypeId(self: *Module, ty: Type) !IdResultType {
const ty_ref = try self.resolveType(ty);
return self.typeId(ty_ref);
}
pub fn typeRefType(self: Module, ty_ref: Type.Ref) Type {
return self.type_cache.keys()[@enumToInt(ty_ref)];
}
/// Get the result-id of a particular type, by reference. Asserts type_ref is valid.
pub fn typeId(self: Module, ty_ref: Type.Ref) IdResultType {
return self.type_cache.values()[@enumToInt(ty_ref)];
}
/// Unconditionally emit a spir-v type into the appropriate section.
/// Note: If this function is called with a type that is already generated, it may yield an invalid module
/// as non-pointer non-aggregrate types must me unique!
/// Note: This function does not attempt to perform any validation on the type.
/// The type is emitted in a shallow fashion; any child types should already
/// be emitted at this point.
pub fn emitType(self: *Module, ty: Type) error{OutOfMemory}!IdResultType {
const result_id = self.allocId();
const ref_id = result_id;
const types = &self.sections.types_globals_constants;
const debug_names = &self.sections.debug_names;
const result_id_operand = .{ .id_result = result_id };
switch (ty.tag()) {
.void => {
try types.emit(self.gpa, .OpTypeVoid, result_id_operand);
try debug_names.emit(self.gpa, .OpName, .{
.target = result_id,
.name = "void",
});
},
.bool => {
try types.emit(self.gpa, .OpTypeBool, result_id_operand);
try debug_names.emit(self.gpa, .OpName, .{
.target = result_id,
.name = "bool",
});
},
.u8,
.u16,
.u32,
.u64,
.i8,
.i16,
.i32,
.i64,
.int,
=> {
// TODO: Kernels do not support OpTypeInt that is signed. We can probably
// can get rid of the signedness all together, in Shaders also.
const bits = ty.intFloatBits();
const signedness: spec.LiteralInteger = switch (ty.intSignedness()) {
.unsigned => 0,
.signed => 1,
};
try types.emit(self.gpa, .OpTypeInt, .{
.id_result = result_id,
.width = bits,
.signedness = signedness,
});
const ui: []const u8 = switch (signedness) {
0 => "u",
1 => "i",
else => unreachable,
};
const name = try std.fmt.allocPrint(self.gpa, "{s}{}", .{ ui, bits });
defer self.gpa.free(name);
try debug_names.emit(self.gpa, .OpName, .{
.target = result_id,
.name = name,
});
},
.f16, .f32, .f64 => {
const bits = ty.intFloatBits();
try types.emit(self.gpa, .OpTypeFloat, .{
.id_result = result_id,
.width = bits,
});
const name = try std.fmt.allocPrint(self.gpa, "f{}", .{bits});
defer self.gpa.free(name);
try debug_names.emit(self.gpa, .OpName, .{
.target = result_id,
.name = name,
});
},
.vector => try types.emit(self.gpa, .OpTypeVector, .{
.id_result = result_id,
.component_type = self.typeId(ty.childType()),
.component_count = ty.payload(.vector).component_count,
}),
.matrix => try types.emit(self.gpa, .OpTypeMatrix, .{
.id_result = result_id,
.column_type = self.typeId(ty.childType()),
.column_count = ty.payload(.matrix).column_count,
}),
.image => {
const info = ty.payload(.image);
try types.emit(self.gpa, .OpTypeImage, .{
.id_result = result_id,
.sampled_type = self.typeId(ty.childType()),
.dim = info.dim,
.depth = @enumToInt(info.depth),
.arrayed = @boolToInt(info.arrayed),
.ms = @boolToInt(info.multisampled),
.sampled = @enumToInt(info.sampled),
.image_format = info.format,
.access_qualifier = info.access_qualifier,
});
},
.sampler => try types.emit(self.gpa, .OpTypeSampler, result_id_operand),
.sampled_image => try types.emit(self.gpa, .OpTypeSampledImage, .{
.id_result = result_id,
.image_type = self.typeId(ty.childType()),
}),
.array => {
const info = ty.payload(.array);
assert(info.length != 0);
const size_type = Type.initTag(.u32);
const size_type_id = try self.resolveTypeId(size_type);
const length_id = self.allocId();
try self.emitConstant(size_type_id, length_id, .{ .uint32 = info.length });
try types.emit(self.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = self.typeId(ty.childType()),
.length = length_id,
});
if (info.array_stride != 0) {
try self.decorate(ref_id, .{ .ArrayStride = .{ .array_stride = info.array_stride } });
}
},
.runtime_array => {
const info = ty.payload(.runtime_array);
try types.emit(self.gpa, .OpTypeRuntimeArray, .{
.id_result = result_id,
.element_type = self.typeId(ty.childType()),
});
if (info.array_stride != 0) {
try self.decorate(ref_id, .{ .ArrayStride = .{ .array_stride = info.array_stride } });
}
},
.@"struct" => {
const info = ty.payload(.@"struct");
try types.emitRaw(self.gpa, .OpTypeStruct, 1 + info.members.len);
types.writeOperand(IdResult, result_id);
for (info.members) |member| {
types.writeOperand(IdRef, self.typeId(member.ty));
}
try self.decorateStruct(ref_id, info);
},
.@"opaque" => try types.emit(self.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = ty.payload(.@"opaque").name,
}),
.pointer => {
const info = ty.payload(.pointer);
try types.emit(self.gpa, .OpTypePointer, .{
.id_result = result_id,
.storage_class = info.storage_class,
.type = self.typeId(ty.childType()),
});
if (info.array_stride != 0) {
try self.decorate(ref_id, .{ .ArrayStride = .{ .array_stride = info.array_stride } });
}
if (info.alignment != 0) {
try self.decorate(ref_id, .{ .Alignment = .{ .alignment = info.alignment } });
}
if (info.max_byte_offset) |max_byte_offset| {
try self.decorate(ref_id, .{ .MaxByteOffset = .{ .max_byte_offset = max_byte_offset } });
}
},
.function => {
const info = ty.payload(.function);
try types.emitRaw(self.gpa, .OpTypeFunction, 2 + info.parameters.len);
types.writeOperand(IdResult, result_id);
types.writeOperand(IdRef, self.typeId(info.return_type));
for (info.parameters) |parameter_type| {
types.writeOperand(IdRef, self.typeId(parameter_type));
}
},
.event => try types.emit(self.gpa, .OpTypeEvent, result_id_operand),
.device_event => try types.emit(self.gpa, .OpTypeDeviceEvent, result_id_operand),
.reserve_id => try types.emit(self.gpa, .OpTypeReserveId, result_id_operand),
.queue => try types.emit(self.gpa, .OpTypeQueue, result_id_operand),
.pipe => try types.emit(self.gpa, .OpTypePipe, .{
.id_result = result_id,
.qualifier = ty.payload(.pipe).qualifier,
}),
.pipe_storage => try types.emit(self.gpa, .OpTypePipeStorage, result_id_operand),
.named_barrier => try types.emit(self.gpa, .OpTypeNamedBarrier, result_id_operand),
}
return result_id;
}
fn decorateStruct(self: *Module, target: IdRef, info: *const Type.Payload.Struct) !void {
const debug_names = &self.sections.debug_names;
if (info.name.len != 0) {
try debug_names.emit(self.gpa, .OpName, .{
.target = target,
.name = info.name,
});
}
// Decorations for the struct type itself.
if (info.decorations.block)
try self.decorate(target, .Block);
if (info.decorations.buffer_block)
try self.decorate(target, .BufferBlock);
if (info.decorations.glsl_shared)
try self.decorate(target, .GLSLShared);
if (info.decorations.glsl_packed)
try self.decorate(target, .GLSLPacked);
if (info.decorations.c_packed)
try self.decorate(target, .CPacked);
// Decorations for the struct members.
const extra = info.member_decoration_extra;
var extra_i: u32 = 0;
for (info.members, 0..) |member, i| {
const d = member.decorations;
const index = @intCast(Word, i);
if (member.name.len != 0) {
try debug_names.emit(self.gpa, .OpMemberName, .{
.type = target,
.member = index,
.name = member.name,
});
}
switch (member.offset) {
.none => {},
else => try self.decorateMember(
target,
index,
.{ .Offset = .{ .byte_offset = @enumToInt(member.offset) } },
),
}
switch (d.matrix_layout) {
.row_major => try self.decorateMember(target, index, .RowMajor),
.col_major => try self.decorateMember(target, index, .ColMajor),
.none => {},
}
if (d.matrix_layout != .none) {
try self.decorateMember(target, index, .{
.MatrixStride = .{ .matrix_stride = extra[extra_i] },
});
extra_i += 1;
}
if (d.no_perspective)
try self.decorateMember(target, index, .NoPerspective);
if (d.flat)
try self.decorateMember(target, index, .Flat);
if (d.patch)
try self.decorateMember(target, index, .Patch);
if (d.centroid)
try self.decorateMember(target, index, .Centroid);
if (d.sample)
try self.decorateMember(target, index, .Sample);
if (d.invariant)
try self.decorateMember(target, index, .Invariant);
if (d.@"volatile")
try self.decorateMember(target, index, .Volatile);
if (d.coherent)
try self.decorateMember(target, index, .Coherent);
if (d.non_writable)
try self.decorateMember(target, index, .NonWritable);
if (d.non_readable)
try self.decorateMember(target, index, .NonReadable);
if (d.builtin) {
try self.decorateMember(target, index, .{
.BuiltIn = .{ .built_in = @intToEnum(spec.BuiltIn, extra[extra_i]) },
});
extra_i += 1;
}
if (d.stream) {
try self.decorateMember(target, index, .{
.Stream = .{ .stream_number = extra[extra_i] },
});
extra_i += 1;
}
if (d.location) {
try self.decorateMember(target, index, .{
.Location = .{ .location = extra[extra_i] },
});
extra_i += 1;
}
if (d.component) {
try self.decorateMember(target, index, .{
.Component = .{ .component = extra[extra_i] },
});
extra_i += 1;
}
if (d.xfb_buffer) {
try self.decorateMember(target, index, .{
.XfbBuffer = .{ .xfb_buffer_number = extra[extra_i] },
});
extra_i += 1;
}
if (d.xfb_stride) {
try self.decorateMember(target, index, .{
.XfbStride = .{ .xfb_stride = extra[extra_i] },
});
extra_i += 1;
}
if (d.user_semantic) {
const len = extra[extra_i];
extra_i += 1;
const semantic = @ptrCast([*]const u8, &extra[extra_i])[0..len];
try self.decorateMember(target, index, .{
.UserSemantic = .{ .semantic = semantic },
});
extra_i += std.math.divCeil(u32, extra_i, @sizeOf(u32)) catch unreachable;
}
}
}
pub fn simpleStructType(self: *Module, members: []const Type.Payload.Struct.Member) !Type.Ref {
const payload = try self.arena.create(Type.Payload.Struct);
payload.* = .{
.members = try self.arena.dupe(Type.Payload.Struct.Member, members),
.decorations = .{},
};
return try self.resolveType(Type.initPayload(&payload.base));
}
pub fn arrayType(self: *Module, len: u32, ty: Type.Ref) !Type.Ref {
const payload = try self.arena.create(Type.Payload.Array);
payload.* = .{
.element_type = ty,
.length = len,
};
return try self.resolveType(Type.initPayload(&payload.base));
}
pub fn ptrType(
self: *Module,
child: Type.Ref,
storage_class: spec.StorageClass,
alignment: u32,
) !Type.Ref {
const ptr_payload = try self.arena.create(Type.Payload.Pointer);
ptr_payload.* = .{
.storage_class = storage_class,
.child_type = child,
.alignment = alignment,
};
return try self.resolveType(Type.initPayload(&ptr_payload.base));
}
pub fn changePtrStorageClass(self: *Module, ptr_ty_ref: Type.Ref, new_storage_class: spec.StorageClass) !Type.Ref {
const payload = try self.arena.create(Type.Payload.Pointer);
payload.* = self.typeRefType(ptr_ty_ref).payload(.pointer).*;
payload.storage_class = new_storage_class;
return try self.resolveType(Type.initPayload(&payload.base));
}
pub fn constComposite(self: *Module, ty_ref: Type.Ref, members: []const IdRef) !IdRef {
const result_id = self.allocId();
try self.sections.types_globals_constants.emit(self.gpa, .OpSpecConstantComposite, .{
.id_result_type = self.typeId(ty_ref),
.id_result = result_id,
.constituents = members,
});
return result_id;
}
pub fn emitConstant(
self: *Module,
ty_id: IdRef,
result_id: IdRef,
value: spec.LiteralContextDependentNumber,
) !void {
try self.sections.types_globals_constants.emit(self.gpa, .OpConstant, .{
.id_result_type = ty_id,
.id_result = result_id,
.value = value,
});
}
/// Decorate a result-id.
pub fn decorate(
self: *Module,
target: IdRef,
decoration: spec.Decoration.Extended,
) !void {
try self.sections.annotations.emit(self.gpa, .OpDecorate, .{
.target = target,
.decoration = decoration,
});
}
/// Decorate a result-id which is a member of some struct.
pub fn decorateMember(
self: *Module,
structure_type: IdRef,
member: u32,
decoration: spec.Decoration.Extended,
) !void {
try self.sections.annotations.emit(self.gpa, .OpMemberDecorate, .{
.structure_type = structure_type,
.member = member,
.decoration = decoration,
});
}
pub const DeclKind = enum {
func,
global,
};
pub fn allocDecl(self: *Module, kind: DeclKind) !Decl.Index {
try self.decls.append(self.gpa, .{
.result_id = self.allocId(),
.begin_dep = undefined,
.end_dep = undefined,
});
const index = @intToEnum(Decl.Index, @intCast(u32, self.decls.items.len - 1));
switch (kind) {
.func => {},
// If the decl represents a global, also allocate a global node.
.global => try self.globals.globals.putNoClobber(self.gpa, index, .{
.result_id = undefined,
.begin_inst = undefined,
.end_inst = undefined,
}),
}
return index;
}
pub fn declPtr(self: *Module, index: Decl.Index) *Decl {
return &self.decls.items[@enumToInt(index)];
}
pub fn globalPtr(self: *Module, index: Decl.Index) ?*Global {
return self.globals.globals.getPtr(index);
}
/// Declare ALL dependencies for a decl.
pub fn declareDeclDeps(self: *Module, decl_index: Decl.Index, deps: []const Decl.Index) !void {
const begin_dep = @intCast(u32, self.decl_deps.items.len);
try self.decl_deps.appendSlice(self.gpa, deps);
const end_dep = @intCast(u32, self.decl_deps.items.len);
const decl = self.declPtr(decl_index);
decl.begin_dep = begin_dep;
decl.end_dep = end_dep;
}
pub fn beginGlobal(self: *Module) u32 {
return @intCast(u32, self.globals.section.instructions.items.len);
}
pub fn endGlobal(self: *Module, global_index: Decl.Index, begin_inst: u32) void {
const global = self.globalPtr(global_index).?;
global.begin_inst = begin_inst;
global.end_inst = @intCast(u32, self.globals.section.instructions.items.len);
}
pub fn declareEntryPoint(self: *Module, decl_index: Decl.Index, name: []const u8) !void {
try self.entry_points.append(self.gpa, .{
.decl_index = decl_index,
.name = try self.arena.dupe(u8, name),
});
}
pub fn debugName(self: *Module, target: IdResult, comptime fmt: []const u8, args: anytype) !void {
const name = try std.fmt.allocPrint(self.gpa, fmt, args);
defer self.gpa.free(name);
try self.sections.debug_names.emit(self.gpa, .OpName, .{
.target = target,
.name = name,
});
}